fecfbfa4a2
* builtins.c: Use HOST_WIDE_INT_1 instead of (HOST_WIDE_INT) 1, HOST_WIDE_INT_1U instead of (unsigned HOST_WIDE_INT) 1, HOST_WIDE_INT_M1 instead of (HOST_WIDE_INT) -1 and HOST_WIDE_INT_M1U instead of (unsigned HOST_WIDE_INT) -1. * combine.c: Ditto. * cse.c: Ditto. * dojump.c: Ditto. * double-int.c: Ditto. * dse.c: Ditto. * dwarf2out.c: Ditto. * expmed.c: Ditto. * expr.c: Ditto. * fold-const.c: Ditto. * function.c: Ditto. * fwprop.c: Ditto. * genmodes.c: Ditto. * hwint.c: Ditto. * hwint.h: Ditto. * ifcvt.c: Ditto. * loop-doloop.c: Ditto. * loop-invariant.c: Ditto. * loop-iv.c: Ditto. * match.pd: Ditto. * optabs.c: Ditto. * real.c: Ditto. * reload.c: Ditto. * rtlanal.c: Ditto. * simplify-rtx.c: Ditto. * stor-layout.c: Ditto. * toplev.c: Ditto. * tree-ssa-loop-ivopts.c: Ditto. * tree-vect-generic.c: Ditto. * tree-vect-patterns.c: Ditto. * tree.c: Ditto. * tree.h: Ditto. * ubsan.c: Ditto. * varasm.c: Ditto. * wide-int-print.cc: Ditto. * wide-int.cc: Ditto. * wide-int.h: Ditto. From-SVN: r238481
3263 lines
104 KiB
C++
3263 lines
104 KiB
C++
/* Operations with very long integers. -*- C++ -*-
|
|
Copyright (C) 2012-2016 Free Software Foundation, Inc.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by the
|
|
Free Software Foundation; either version 3, or (at your option) any
|
|
later version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#ifndef WIDE_INT_H
|
|
#define WIDE_INT_H
|
|
|
|
/* wide-int.[cc|h] implements a class that efficiently performs
|
|
mathematical operations on finite precision integers. wide_ints
|
|
are designed to be transient - they are not for long term storage
|
|
of values. There is tight integration between wide_ints and the
|
|
other longer storage GCC representations (rtl and tree).
|
|
|
|
The actual precision of a wide_int depends on the flavor. There
|
|
are three predefined flavors:
|
|
|
|
1) wide_int (the default). This flavor does the math in the
|
|
precision of its input arguments. It is assumed (and checked)
|
|
that the precisions of the operands and results are consistent.
|
|
This is the most efficient flavor. It is not possible to examine
|
|
bits above the precision that has been specified. Because of
|
|
this, the default flavor has semantics that are simple to
|
|
understand and in general model the underlying hardware that the
|
|
compiler is targetted for.
|
|
|
|
This flavor must be used at the RTL level of gcc because there
|
|
is, in general, not enough information in the RTL representation
|
|
to extend a value beyond the precision specified in the mode.
|
|
|
|
This flavor should also be used at the TREE and GIMPLE levels of
|
|
the compiler except for the circumstances described in the
|
|
descriptions of the other two flavors.
|
|
|
|
The default wide_int representation does not contain any
|
|
information inherent about signedness of the represented value,
|
|
so it can be used to represent both signed and unsigned numbers.
|
|
For operations where the results depend on signedness (full width
|
|
multiply, division, shifts, comparisons, and operations that need
|
|
overflow detected), the signedness must be specified separately.
|
|
|
|
2) offset_int. This is a fixed-precision integer that can hold
|
|
any address offset, measured in either bits or bytes, with at
|
|
least one extra sign bit. At the moment the maximum address
|
|
size GCC supports is 64 bits. With 8-bit bytes and an extra
|
|
sign bit, offset_int therefore needs to have at least 68 bits
|
|
of precision. We round this up to 128 bits for efficiency.
|
|
Values of type T are converted to this precision by sign- or
|
|
zero-extending them based on the signedness of T.
|
|
|
|
The extra sign bit means that offset_int is effectively a signed
|
|
128-bit integer, i.e. it behaves like int128_t.
|
|
|
|
Since the values are logically signed, there is no need to
|
|
distinguish between signed and unsigned operations. Sign-sensitive
|
|
comparison operators <, <=, > and >= are therefore supported.
|
|
Shift operators << and >> are also supported, with >> being
|
|
an _arithmetic_ right shift.
|
|
|
|
[ Note that, even though offset_int is effectively int128_t,
|
|
it can still be useful to use unsigned comparisons like
|
|
wi::leu_p (a, b) as a more efficient short-hand for
|
|
"a >= 0 && a <= b". ]
|
|
|
|
3) widest_int. This representation is an approximation of
|
|
infinite precision math. However, it is not really infinite
|
|
precision math as in the GMP library. It is really finite
|
|
precision math where the precision is 4 times the size of the
|
|
largest integer that the target port can represent.
|
|
|
|
Like offset_int, widest_int is wider than all the values that
|
|
it needs to represent, so the integers are logically signed.
|
|
Sign-sensitive comparison operators <, <=, > and >= are supported,
|
|
as are << and >>.
|
|
|
|
There are several places in the GCC where this should/must be used:
|
|
|
|
* Code that does induction variable optimizations. This code
|
|
works with induction variables of many different types at the
|
|
same time. Because of this, it ends up doing many different
|
|
calculations where the operands are not compatible types. The
|
|
widest_int makes this easy, because it provides a field where
|
|
nothing is lost when converting from any variable,
|
|
|
|
* There are a small number of passes that currently use the
|
|
widest_int that should use the default. These should be
|
|
changed.
|
|
|
|
There are surprising features of offset_int and widest_int
|
|
that the users should be careful about:
|
|
|
|
1) Shifts and rotations are just weird. You have to specify a
|
|
precision in which the shift or rotate is to happen in. The bits
|
|
above this precision are zeroed. While this is what you
|
|
want, it is clearly non obvious.
|
|
|
|
2) Larger precision math sometimes does not produce the same
|
|
answer as would be expected for doing the math at the proper
|
|
precision. In particular, a multiply followed by a divide will
|
|
produce a different answer if the first product is larger than
|
|
what can be represented in the input precision.
|
|
|
|
The offset_int and the widest_int flavors are more expensive
|
|
than the default wide int, so in addition to the caveats with these
|
|
two, the default is the prefered representation.
|
|
|
|
All three flavors of wide_int are represented as a vector of
|
|
HOST_WIDE_INTs. The default and widest_int vectors contain enough elements
|
|
to hold a value of MAX_BITSIZE_MODE_ANY_INT bits. offset_int contains only
|
|
enough elements to hold ADDR_MAX_PRECISION bits. The values are stored
|
|
in the vector with the least significant HOST_BITS_PER_WIDE_INT bits
|
|
in element 0.
|
|
|
|
The default wide_int contains three fields: the vector (VAL),
|
|
the precision and a length (LEN). The length is the number of HWIs
|
|
needed to represent the value. widest_int and offset_int have a
|
|
constant precision that cannot be changed, so they only store the
|
|
VAL and LEN fields.
|
|
|
|
Since most integers used in a compiler are small values, it is
|
|
generally profitable to use a representation of the value that is
|
|
as small as possible. LEN is used to indicate the number of
|
|
elements of the vector that are in use. The numbers are stored as
|
|
sign extended numbers as a means of compression. Leading
|
|
HOST_WIDE_INTs that contain strings of either -1 or 0 are removed
|
|
as long as they can be reconstructed from the top bit that is being
|
|
represented.
|
|
|
|
The precision and length of a wide_int are always greater than 0.
|
|
Any bits in a wide_int above the precision are sign-extended from the
|
|
most significant bit. For example, a 4-bit value 0x8 is represented as
|
|
VAL = { 0xf...fff8 }. However, as an optimization, we allow other integer
|
|
constants to be represented with undefined bits above the precision.
|
|
This allows INTEGER_CSTs to be pre-extended according to TYPE_SIGN,
|
|
so that the INTEGER_CST representation can be used both in TYPE_PRECISION
|
|
and in wider precisions.
|
|
|
|
There are constructors to create the various forms of wide_int from
|
|
trees, rtl and constants. For trees you can simply say:
|
|
|
|
tree t = ...;
|
|
wide_int x = t;
|
|
|
|
However, a little more syntax is required for rtl constants since
|
|
they do not have an explicit precision. To make an rtl into a
|
|
wide_int, you have to pair it with a mode. The canonical way to do
|
|
this is with std::make_pair as in:
|
|
|
|
rtx r = ...
|
|
wide_int x = std::make_pair (r, mode);
|
|
|
|
Similarly, a wide_int can only be constructed from a host value if
|
|
the target precision is given explicitly, such as in:
|
|
|
|
wide_int x = wi::shwi (c, prec); // sign-extend C if necessary
|
|
wide_int y = wi::uhwi (c, prec); // zero-extend C if necessary
|
|
|
|
However, offset_int and widest_int have an inherent precision and so
|
|
can be initialized directly from a host value:
|
|
|
|
offset_int x = (int) c; // sign-extend C
|
|
widest_int x = (unsigned int) c; // zero-extend C
|
|
|
|
It is also possible to do arithmetic directly on trees, rtxes and
|
|
constants. For example:
|
|
|
|
wi::add (t1, t2); // add equal-sized INTEGER_CSTs t1 and t2
|
|
wi::add (t1, 1); // add 1 to INTEGER_CST t1
|
|
wi::add (r1, r2); // add equal-sized rtx constants r1 and r2
|
|
wi::lshift (1, 100); // 1 << 100 as a widest_int
|
|
|
|
Many binary operations place restrictions on the combinations of inputs,
|
|
using the following rules:
|
|
|
|
- {tree, rtx, wide_int} op {tree, rtx, wide_int} -> wide_int
|
|
The inputs must be the same precision. The result is a wide_int
|
|
of the same precision
|
|
|
|
- {tree, rtx, wide_int} op (un)signed HOST_WIDE_INT -> wide_int
|
|
(un)signed HOST_WIDE_INT op {tree, rtx, wide_int} -> wide_int
|
|
The HOST_WIDE_INT is extended or truncated to the precision of
|
|
the other input. The result is a wide_int of the same precision
|
|
as that input.
|
|
|
|
- (un)signed HOST_WIDE_INT op (un)signed HOST_WIDE_INT -> widest_int
|
|
The inputs are extended to widest_int precision and produce a
|
|
widest_int result.
|
|
|
|
- offset_int op offset_int -> offset_int
|
|
offset_int op (un)signed HOST_WIDE_INT -> offset_int
|
|
(un)signed HOST_WIDE_INT op offset_int -> offset_int
|
|
|
|
- widest_int op widest_int -> widest_int
|
|
widest_int op (un)signed HOST_WIDE_INT -> widest_int
|
|
(un)signed HOST_WIDE_INT op widest_int -> widest_int
|
|
|
|
Other combinations like:
|
|
|
|
- widest_int op offset_int and
|
|
- wide_int op offset_int
|
|
|
|
are not allowed. The inputs should instead be extended or truncated
|
|
so that they match.
|
|
|
|
The inputs to comparison functions like wi::eq_p and wi::lts_p
|
|
follow the same compatibility rules, although their return types
|
|
are different. Unary functions on X produce the same result as
|
|
a binary operation X + X. Shift functions X op Y also produce
|
|
the same result as X + X; the precision of the shift amount Y
|
|
can be arbitrarily different from X. */
|
|
|
|
/* The MAX_BITSIZE_MODE_ANY_INT is automatically generated by a very
|
|
early examination of the target's mode file. The WIDE_INT_MAX_ELTS
|
|
can accomodate at least 1 more bit so that unsigned numbers of that
|
|
mode can be represented as a signed value. Note that it is still
|
|
possible to create fixed_wide_ints that have precisions greater than
|
|
MAX_BITSIZE_MODE_ANY_INT. This can be useful when representing a
|
|
double-width multiplication result, for example. */
|
|
#define WIDE_INT_MAX_ELTS \
|
|
((MAX_BITSIZE_MODE_ANY_INT + HOST_BITS_PER_WIDE_INT) / HOST_BITS_PER_WIDE_INT)
|
|
|
|
#define WIDE_INT_MAX_PRECISION (WIDE_INT_MAX_ELTS * HOST_BITS_PER_WIDE_INT)
|
|
|
|
/* This is the max size of any pointer on any machine. It does not
|
|
seem to be as easy to sniff this out of the machine description as
|
|
it is for MAX_BITSIZE_MODE_ANY_INT since targets may support
|
|
multiple address sizes and may have different address sizes for
|
|
different address spaces. However, currently the largest pointer
|
|
on any platform is 64 bits. When that changes, then it is likely
|
|
that a target hook should be defined so that targets can make this
|
|
value larger for those targets. */
|
|
#define ADDR_MAX_BITSIZE 64
|
|
|
|
/* This is the internal precision used when doing any address
|
|
arithmetic. The '4' is really 3 + 1. Three of the bits are for
|
|
the number of extra bits needed to do bit addresses and the other bit
|
|
is to allow everything to be signed without loosing any precision.
|
|
Then everything is rounded up to the next HWI for efficiency. */
|
|
#define ADDR_MAX_PRECISION \
|
|
((ADDR_MAX_BITSIZE + 4 + HOST_BITS_PER_WIDE_INT - 1) \
|
|
& ~(HOST_BITS_PER_WIDE_INT - 1))
|
|
|
|
/* The number of HWIs needed to store an offset_int. */
|
|
#define OFFSET_INT_ELTS (ADDR_MAX_PRECISION / HOST_BITS_PER_WIDE_INT)
|
|
|
|
/* The type of result produced by a binary operation on types T1 and T2.
|
|
Defined purely for brevity. */
|
|
#define WI_BINARY_RESULT(T1, T2) \
|
|
typename wi::binary_traits <T1, T2>::result_type
|
|
|
|
/* The type of result produced by T1 << T2. Leads to substitution failure
|
|
if the operation isn't supported. Defined purely for brevity. */
|
|
#define WI_SIGNED_SHIFT_RESULT(T1, T2) \
|
|
typename wi::binary_traits <T1, T2>::signed_shift_result_type
|
|
|
|
/* The type of result produced by a signed binary predicate on types T1 and T2.
|
|
This is bool if signed comparisons make sense for T1 and T2 and leads to
|
|
substitution failure otherwise. */
|
|
#define WI_SIGNED_BINARY_PREDICATE_RESULT(T1, T2) \
|
|
typename wi::binary_traits <T1, T2>::signed_predicate_result
|
|
|
|
/* The type of result produced by a unary operation on type T. */
|
|
#define WI_UNARY_RESULT(T) \
|
|
typename wi::unary_traits <T>::result_type
|
|
|
|
/* Define a variable RESULT to hold the result of a binary operation on
|
|
X and Y, which have types T1 and T2 respectively. Define VAL to
|
|
point to the blocks of RESULT. Once the user of the macro has
|
|
filled in VAL, it should call RESULT.set_len to set the number
|
|
of initialized blocks. */
|
|
#define WI_BINARY_RESULT_VAR(RESULT, VAL, T1, X, T2, Y) \
|
|
WI_BINARY_RESULT (T1, T2) RESULT = \
|
|
wi::int_traits <WI_BINARY_RESULT (T1, T2)>::get_binary_result (X, Y); \
|
|
HOST_WIDE_INT *VAL = RESULT.write_val ()
|
|
|
|
/* Similar for the result of a unary operation on X, which has type T. */
|
|
#define WI_UNARY_RESULT_VAR(RESULT, VAL, T, X) \
|
|
WI_UNARY_RESULT (T) RESULT = \
|
|
wi::int_traits <WI_UNARY_RESULT (T)>::get_binary_result (X, X); \
|
|
HOST_WIDE_INT *VAL = RESULT.write_val ()
|
|
|
|
template <typename T> class generic_wide_int;
|
|
template <int N> class fixed_wide_int_storage;
|
|
class wide_int_storage;
|
|
|
|
/* An N-bit integer. Until we can use typedef templates, use this instead. */
|
|
#define FIXED_WIDE_INT(N) \
|
|
generic_wide_int < fixed_wide_int_storage <N> >
|
|
|
|
typedef generic_wide_int <wide_int_storage> wide_int;
|
|
typedef FIXED_WIDE_INT (ADDR_MAX_PRECISION) offset_int;
|
|
typedef FIXED_WIDE_INT (WIDE_INT_MAX_PRECISION) widest_int;
|
|
|
|
template <bool SE>
|
|
struct wide_int_ref_storage;
|
|
|
|
typedef generic_wide_int <wide_int_ref_storage <false> > wide_int_ref;
|
|
|
|
/* This can be used instead of wide_int_ref if the referenced value is
|
|
known to have type T. It carries across properties of T's representation,
|
|
such as whether excess upper bits in a HWI are defined, and can therefore
|
|
help avoid redundant work.
|
|
|
|
The macro could be replaced with a template typedef, once we're able
|
|
to use those. */
|
|
#define WIDE_INT_REF_FOR(T) \
|
|
generic_wide_int \
|
|
<wide_int_ref_storage <wi::int_traits <T>::is_sign_extended> >
|
|
|
|
namespace wi
|
|
{
|
|
/* Classifies an integer based on its precision. */
|
|
enum precision_type {
|
|
/* The integer has both a precision and defined signedness. This allows
|
|
the integer to be converted to any width, since we know whether to fill
|
|
any extra bits with zeros or signs. */
|
|
FLEXIBLE_PRECISION,
|
|
|
|
/* The integer has a variable precision but no defined signedness. */
|
|
VAR_PRECISION,
|
|
|
|
/* The integer has a constant precision (known at GCC compile time)
|
|
and is signed. */
|
|
CONST_PRECISION
|
|
};
|
|
|
|
/* This class, which has no default implementation, is expected to
|
|
provide the following members:
|
|
|
|
static const enum precision_type precision_type;
|
|
Classifies the type of T.
|
|
|
|
static const unsigned int precision;
|
|
Only defined if precision_type == CONST_PRECISION. Specifies the
|
|
precision of all integers of type T.
|
|
|
|
static const bool host_dependent_precision;
|
|
True if the precision of T depends (or can depend) on the host.
|
|
|
|
static unsigned int get_precision (const T &x)
|
|
Return the number of bits in X.
|
|
|
|
static wi::storage_ref *decompose (HOST_WIDE_INT *scratch,
|
|
unsigned int precision, const T &x)
|
|
Decompose X as a PRECISION-bit integer, returning the associated
|
|
wi::storage_ref. SCRATCH is available as scratch space if needed.
|
|
The routine should assert that PRECISION is acceptable. */
|
|
template <typename T> struct int_traits;
|
|
|
|
/* This class provides a single type, result_type, which specifies the
|
|
type of integer produced by a binary operation whose inputs have
|
|
types T1 and T2. The definition should be symmetric. */
|
|
template <typename T1, typename T2,
|
|
enum precision_type P1 = int_traits <T1>::precision_type,
|
|
enum precision_type P2 = int_traits <T2>::precision_type>
|
|
struct binary_traits;
|
|
|
|
/* The result of a unary operation on T is the same as the result of
|
|
a binary operation on two values of type T. */
|
|
template <typename T>
|
|
struct unary_traits : public binary_traits <T, T> {};
|
|
|
|
/* Specify the result type for each supported combination of binary
|
|
inputs. Note that CONST_PRECISION and VAR_PRECISION cannot be
|
|
mixed, in order to give stronger type checking. When both inputs
|
|
are CONST_PRECISION, they must have the same precision. */
|
|
template <typename T1, typename T2>
|
|
struct binary_traits <T1, T2, FLEXIBLE_PRECISION, FLEXIBLE_PRECISION>
|
|
{
|
|
typedef widest_int result_type;
|
|
};
|
|
|
|
template <typename T1, typename T2>
|
|
struct binary_traits <T1, T2, FLEXIBLE_PRECISION, VAR_PRECISION>
|
|
{
|
|
typedef wide_int result_type;
|
|
};
|
|
|
|
template <typename T1, typename T2>
|
|
struct binary_traits <T1, T2, FLEXIBLE_PRECISION, CONST_PRECISION>
|
|
{
|
|
/* Spelled out explicitly (rather than through FIXED_WIDE_INT)
|
|
so as not to confuse gengtype. */
|
|
typedef generic_wide_int < fixed_wide_int_storage
|
|
<int_traits <T2>::precision> > result_type;
|
|
typedef bool signed_predicate_result;
|
|
};
|
|
|
|
template <typename T1, typename T2>
|
|
struct binary_traits <T1, T2, VAR_PRECISION, FLEXIBLE_PRECISION>
|
|
{
|
|
typedef wide_int result_type;
|
|
};
|
|
|
|
template <typename T1, typename T2>
|
|
struct binary_traits <T1, T2, CONST_PRECISION, FLEXIBLE_PRECISION>
|
|
{
|
|
/* Spelled out explicitly (rather than through FIXED_WIDE_INT)
|
|
so as not to confuse gengtype. */
|
|
typedef generic_wide_int < fixed_wide_int_storage
|
|
<int_traits <T1>::precision> > result_type;
|
|
typedef result_type signed_shift_result_type;
|
|
typedef bool signed_predicate_result;
|
|
};
|
|
|
|
template <typename T1, typename T2>
|
|
struct binary_traits <T1, T2, CONST_PRECISION, CONST_PRECISION>
|
|
{
|
|
/* Spelled out explicitly (rather than through FIXED_WIDE_INT)
|
|
so as not to confuse gengtype. */
|
|
STATIC_ASSERT (int_traits <T1>::precision == int_traits <T2>::precision);
|
|
typedef generic_wide_int < fixed_wide_int_storage
|
|
<int_traits <T1>::precision> > result_type;
|
|
typedef result_type signed_shift_result_type;
|
|
typedef bool signed_predicate_result;
|
|
};
|
|
|
|
template <typename T1, typename T2>
|
|
struct binary_traits <T1, T2, VAR_PRECISION, VAR_PRECISION>
|
|
{
|
|
typedef wide_int result_type;
|
|
};
|
|
}
|
|
|
|
/* Public functions for querying and operating on integers. */
|
|
namespace wi
|
|
{
|
|
template <typename T>
|
|
unsigned int get_precision (const T &);
|
|
|
|
template <typename T1, typename T2>
|
|
unsigned int get_binary_precision (const T1 &, const T2 &);
|
|
|
|
template <typename T1, typename T2>
|
|
void copy (T1 &, const T2 &);
|
|
|
|
#define UNARY_PREDICATE \
|
|
template <typename T> bool
|
|
#define UNARY_FUNCTION \
|
|
template <typename T> WI_UNARY_RESULT (T)
|
|
#define BINARY_PREDICATE \
|
|
template <typename T1, typename T2> bool
|
|
#define BINARY_FUNCTION \
|
|
template <typename T1, typename T2> WI_BINARY_RESULT (T1, T2)
|
|
#define SHIFT_FUNCTION \
|
|
template <typename T1, typename T2> WI_UNARY_RESULT (T1)
|
|
|
|
UNARY_PREDICATE fits_shwi_p (const T &);
|
|
UNARY_PREDICATE fits_uhwi_p (const T &);
|
|
UNARY_PREDICATE neg_p (const T &, signop = SIGNED);
|
|
|
|
template <typename T>
|
|
HOST_WIDE_INT sign_mask (const T &);
|
|
|
|
BINARY_PREDICATE eq_p (const T1 &, const T2 &);
|
|
BINARY_PREDICATE ne_p (const T1 &, const T2 &);
|
|
BINARY_PREDICATE lt_p (const T1 &, const T2 &, signop);
|
|
BINARY_PREDICATE lts_p (const T1 &, const T2 &);
|
|
BINARY_PREDICATE ltu_p (const T1 &, const T2 &);
|
|
BINARY_PREDICATE le_p (const T1 &, const T2 &, signop);
|
|
BINARY_PREDICATE les_p (const T1 &, const T2 &);
|
|
BINARY_PREDICATE leu_p (const T1 &, const T2 &);
|
|
BINARY_PREDICATE gt_p (const T1 &, const T2 &, signop);
|
|
BINARY_PREDICATE gts_p (const T1 &, const T2 &);
|
|
BINARY_PREDICATE gtu_p (const T1 &, const T2 &);
|
|
BINARY_PREDICATE ge_p (const T1 &, const T2 &, signop);
|
|
BINARY_PREDICATE ges_p (const T1 &, const T2 &);
|
|
BINARY_PREDICATE geu_p (const T1 &, const T2 &);
|
|
|
|
template <typename T1, typename T2>
|
|
int cmp (const T1 &, const T2 &, signop);
|
|
|
|
template <typename T1, typename T2>
|
|
int cmps (const T1 &, const T2 &);
|
|
|
|
template <typename T1, typename T2>
|
|
int cmpu (const T1 &, const T2 &);
|
|
|
|
UNARY_FUNCTION bit_not (const T &);
|
|
UNARY_FUNCTION neg (const T &);
|
|
UNARY_FUNCTION neg (const T &, bool *);
|
|
UNARY_FUNCTION abs (const T &);
|
|
UNARY_FUNCTION ext (const T &, unsigned int, signop);
|
|
UNARY_FUNCTION sext (const T &, unsigned int);
|
|
UNARY_FUNCTION zext (const T &, unsigned int);
|
|
UNARY_FUNCTION set_bit (const T &, unsigned int);
|
|
|
|
BINARY_FUNCTION min (const T1 &, const T2 &, signop);
|
|
BINARY_FUNCTION smin (const T1 &, const T2 &);
|
|
BINARY_FUNCTION umin (const T1 &, const T2 &);
|
|
BINARY_FUNCTION max (const T1 &, const T2 &, signop);
|
|
BINARY_FUNCTION smax (const T1 &, const T2 &);
|
|
BINARY_FUNCTION umax (const T1 &, const T2 &);
|
|
|
|
BINARY_FUNCTION bit_and (const T1 &, const T2 &);
|
|
BINARY_FUNCTION bit_and_not (const T1 &, const T2 &);
|
|
BINARY_FUNCTION bit_or (const T1 &, const T2 &);
|
|
BINARY_FUNCTION bit_or_not (const T1 &, const T2 &);
|
|
BINARY_FUNCTION bit_xor (const T1 &, const T2 &);
|
|
BINARY_FUNCTION add (const T1 &, const T2 &);
|
|
BINARY_FUNCTION add (const T1 &, const T2 &, signop, bool *);
|
|
BINARY_FUNCTION sub (const T1 &, const T2 &);
|
|
BINARY_FUNCTION sub (const T1 &, const T2 &, signop, bool *);
|
|
BINARY_FUNCTION mul (const T1 &, const T2 &);
|
|
BINARY_FUNCTION mul (const T1 &, const T2 &, signop, bool *);
|
|
BINARY_FUNCTION smul (const T1 &, const T2 &, bool *);
|
|
BINARY_FUNCTION umul (const T1 &, const T2 &, bool *);
|
|
BINARY_FUNCTION mul_high (const T1 &, const T2 &, signop);
|
|
BINARY_FUNCTION div_trunc (const T1 &, const T2 &, signop, bool * = 0);
|
|
BINARY_FUNCTION sdiv_trunc (const T1 &, const T2 &);
|
|
BINARY_FUNCTION udiv_trunc (const T1 &, const T2 &);
|
|
BINARY_FUNCTION div_floor (const T1 &, const T2 &, signop, bool * = 0);
|
|
BINARY_FUNCTION udiv_floor (const T1 &, const T2 &);
|
|
BINARY_FUNCTION sdiv_floor (const T1 &, const T2 &);
|
|
BINARY_FUNCTION div_ceil (const T1 &, const T2 &, signop, bool * = 0);
|
|
BINARY_FUNCTION div_round (const T1 &, const T2 &, signop, bool * = 0);
|
|
BINARY_FUNCTION divmod_trunc (const T1 &, const T2 &, signop,
|
|
WI_BINARY_RESULT (T1, T2) *);
|
|
BINARY_FUNCTION gcd (const T1 &, const T2 &, signop = UNSIGNED);
|
|
BINARY_FUNCTION mod_trunc (const T1 &, const T2 &, signop, bool * = 0);
|
|
BINARY_FUNCTION smod_trunc (const T1 &, const T2 &);
|
|
BINARY_FUNCTION umod_trunc (const T1 &, const T2 &);
|
|
BINARY_FUNCTION mod_floor (const T1 &, const T2 &, signop, bool * = 0);
|
|
BINARY_FUNCTION umod_floor (const T1 &, const T2 &);
|
|
BINARY_FUNCTION mod_ceil (const T1 &, const T2 &, signop, bool * = 0);
|
|
BINARY_FUNCTION mod_round (const T1 &, const T2 &, signop, bool * = 0);
|
|
|
|
template <typename T1, typename T2>
|
|
bool multiple_of_p (const T1 &, const T2 &, signop);
|
|
|
|
template <typename T1, typename T2>
|
|
bool multiple_of_p (const T1 &, const T2 &, signop,
|
|
WI_BINARY_RESULT (T1, T2) *);
|
|
|
|
SHIFT_FUNCTION lshift (const T1 &, const T2 &);
|
|
SHIFT_FUNCTION lrshift (const T1 &, const T2 &);
|
|
SHIFT_FUNCTION arshift (const T1 &, const T2 &);
|
|
SHIFT_FUNCTION rshift (const T1 &, const T2 &, signop sgn);
|
|
SHIFT_FUNCTION lrotate (const T1 &, const T2 &, unsigned int = 0);
|
|
SHIFT_FUNCTION rrotate (const T1 &, const T2 &, unsigned int = 0);
|
|
|
|
#undef SHIFT_FUNCTION
|
|
#undef BINARY_PREDICATE
|
|
#undef BINARY_FUNCTION
|
|
#undef UNARY_PREDICATE
|
|
#undef UNARY_FUNCTION
|
|
|
|
bool only_sign_bit_p (const wide_int_ref &, unsigned int);
|
|
bool only_sign_bit_p (const wide_int_ref &);
|
|
int clz (const wide_int_ref &);
|
|
int clrsb (const wide_int_ref &);
|
|
int ctz (const wide_int_ref &);
|
|
int exact_log2 (const wide_int_ref &);
|
|
int floor_log2 (const wide_int_ref &);
|
|
int ffs (const wide_int_ref &);
|
|
int popcount (const wide_int_ref &);
|
|
int parity (const wide_int_ref &);
|
|
|
|
template <typename T>
|
|
unsigned HOST_WIDE_INT extract_uhwi (const T &, unsigned int, unsigned int);
|
|
|
|
template <typename T>
|
|
unsigned int min_precision (const T &, signop);
|
|
}
|
|
|
|
namespace wi
|
|
{
|
|
/* Contains the components of a decomposed integer for easy, direct
|
|
access. */
|
|
struct storage_ref
|
|
{
|
|
storage_ref (const HOST_WIDE_INT *, unsigned int, unsigned int);
|
|
|
|
const HOST_WIDE_INT *val;
|
|
unsigned int len;
|
|
unsigned int precision;
|
|
|
|
/* Provide enough trappings for this class to act as storage for
|
|
generic_wide_int. */
|
|
unsigned int get_len () const;
|
|
unsigned int get_precision () const;
|
|
const HOST_WIDE_INT *get_val () const;
|
|
};
|
|
}
|
|
|
|
inline::wi::storage_ref::storage_ref (const HOST_WIDE_INT *val_in,
|
|
unsigned int len_in,
|
|
unsigned int precision_in)
|
|
: val (val_in), len (len_in), precision (precision_in)
|
|
{
|
|
}
|
|
|
|
inline unsigned int
|
|
wi::storage_ref::get_len () const
|
|
{
|
|
return len;
|
|
}
|
|
|
|
inline unsigned int
|
|
wi::storage_ref::get_precision () const
|
|
{
|
|
return precision;
|
|
}
|
|
|
|
inline const HOST_WIDE_INT *
|
|
wi::storage_ref::get_val () const
|
|
{
|
|
return val;
|
|
}
|
|
|
|
/* This class defines an integer type using the storage provided by the
|
|
template argument. The storage class must provide the following
|
|
functions:
|
|
|
|
unsigned int get_precision () const
|
|
Return the number of bits in the integer.
|
|
|
|
HOST_WIDE_INT *get_val () const
|
|
Return a pointer to the array of blocks that encodes the integer.
|
|
|
|
unsigned int get_len () const
|
|
Return the number of blocks in get_val (). If this is smaller
|
|
than the number of blocks implied by get_precision (), the
|
|
remaining blocks are sign extensions of block get_len () - 1.
|
|
|
|
Although not required by generic_wide_int itself, writable storage
|
|
classes can also provide the following functions:
|
|
|
|
HOST_WIDE_INT *write_val ()
|
|
Get a modifiable version of get_val ()
|
|
|
|
unsigned int set_len (unsigned int len)
|
|
Set the value returned by get_len () to LEN. */
|
|
template <typename storage>
|
|
class GTY(()) generic_wide_int : public storage
|
|
{
|
|
public:
|
|
generic_wide_int ();
|
|
|
|
template <typename T>
|
|
generic_wide_int (const T &);
|
|
|
|
template <typename T>
|
|
generic_wide_int (const T &, unsigned int);
|
|
|
|
/* Conversions. */
|
|
HOST_WIDE_INT to_shwi (unsigned int) const;
|
|
HOST_WIDE_INT to_shwi () const;
|
|
unsigned HOST_WIDE_INT to_uhwi (unsigned int) const;
|
|
unsigned HOST_WIDE_INT to_uhwi () const;
|
|
HOST_WIDE_INT to_short_addr () const;
|
|
|
|
/* Public accessors for the interior of a wide int. */
|
|
HOST_WIDE_INT sign_mask () const;
|
|
HOST_WIDE_INT elt (unsigned int) const;
|
|
unsigned HOST_WIDE_INT ulow () const;
|
|
unsigned HOST_WIDE_INT uhigh () const;
|
|
HOST_WIDE_INT slow () const;
|
|
HOST_WIDE_INT shigh () const;
|
|
|
|
template <typename T>
|
|
generic_wide_int &operator = (const T &);
|
|
|
|
#define BINARY_PREDICATE(OP, F) \
|
|
template <typename T> \
|
|
bool OP (const T &c) const { return wi::F (*this, c); }
|
|
|
|
#define UNARY_OPERATOR(OP, F) \
|
|
WI_UNARY_RESULT (generic_wide_int) OP () const { return wi::F (*this); }
|
|
|
|
#define BINARY_OPERATOR(OP, F) \
|
|
template <typename T> \
|
|
WI_BINARY_RESULT (generic_wide_int, T) \
|
|
OP (const T &c) const { return wi::F (*this, c); }
|
|
|
|
#define ASSIGNMENT_OPERATOR(OP, F) \
|
|
template <typename T> \
|
|
generic_wide_int &OP (const T &c) { return (*this = wi::F (*this, c)); }
|
|
|
|
/* Restrict these to cases where the shift operator is defined. */
|
|
#define SHIFT_ASSIGNMENT_OPERATOR(OP, OP2) \
|
|
template <typename T> \
|
|
generic_wide_int &OP (const T &c) { return (*this = *this OP2 c); }
|
|
|
|
#define INCDEC_OPERATOR(OP, DELTA) \
|
|
generic_wide_int &OP () { *this += DELTA; return *this; }
|
|
|
|
UNARY_OPERATOR (operator ~, bit_not)
|
|
UNARY_OPERATOR (operator -, neg)
|
|
BINARY_PREDICATE (operator ==, eq_p)
|
|
BINARY_PREDICATE (operator !=, ne_p)
|
|
BINARY_OPERATOR (operator &, bit_and)
|
|
BINARY_OPERATOR (and_not, bit_and_not)
|
|
BINARY_OPERATOR (operator |, bit_or)
|
|
BINARY_OPERATOR (or_not, bit_or_not)
|
|
BINARY_OPERATOR (operator ^, bit_xor)
|
|
BINARY_OPERATOR (operator +, add)
|
|
BINARY_OPERATOR (operator -, sub)
|
|
BINARY_OPERATOR (operator *, mul)
|
|
ASSIGNMENT_OPERATOR (operator &=, bit_and)
|
|
ASSIGNMENT_OPERATOR (operator |=, bit_or)
|
|
ASSIGNMENT_OPERATOR (operator ^=, bit_xor)
|
|
ASSIGNMENT_OPERATOR (operator +=, add)
|
|
ASSIGNMENT_OPERATOR (operator -=, sub)
|
|
ASSIGNMENT_OPERATOR (operator *=, mul)
|
|
SHIFT_ASSIGNMENT_OPERATOR (operator <<=, <<)
|
|
SHIFT_ASSIGNMENT_OPERATOR (operator >>=, >>)
|
|
INCDEC_OPERATOR (operator ++, 1)
|
|
INCDEC_OPERATOR (operator --, -1)
|
|
|
|
#undef BINARY_PREDICATE
|
|
#undef UNARY_OPERATOR
|
|
#undef BINARY_OPERATOR
|
|
#undef SHIFT_ASSIGNMENT_OPERATOR
|
|
#undef ASSIGNMENT_OPERATOR
|
|
#undef INCDEC_OPERATOR
|
|
|
|
/* Debugging functions. */
|
|
void dump () const;
|
|
|
|
static const bool is_sign_extended
|
|
= wi::int_traits <generic_wide_int <storage> >::is_sign_extended;
|
|
};
|
|
|
|
template <typename storage>
|
|
inline generic_wide_int <storage>::generic_wide_int () {}
|
|
|
|
template <typename storage>
|
|
template <typename T>
|
|
inline generic_wide_int <storage>::generic_wide_int (const T &x)
|
|
: storage (x)
|
|
{
|
|
}
|
|
|
|
template <typename storage>
|
|
template <typename T>
|
|
inline generic_wide_int <storage>::generic_wide_int (const T &x,
|
|
unsigned int precision)
|
|
: storage (x, precision)
|
|
{
|
|
}
|
|
|
|
/* Return THIS as a signed HOST_WIDE_INT, sign-extending from PRECISION.
|
|
If THIS does not fit in PRECISION, the information is lost. */
|
|
template <typename storage>
|
|
inline HOST_WIDE_INT
|
|
generic_wide_int <storage>::to_shwi (unsigned int precision) const
|
|
{
|
|
if (precision < HOST_BITS_PER_WIDE_INT)
|
|
return sext_hwi (this->get_val ()[0], precision);
|
|
else
|
|
return this->get_val ()[0];
|
|
}
|
|
|
|
/* Return THIS as a signed HOST_WIDE_INT, in its natural precision. */
|
|
template <typename storage>
|
|
inline HOST_WIDE_INT
|
|
generic_wide_int <storage>::to_shwi () const
|
|
{
|
|
if (is_sign_extended)
|
|
return this->get_val ()[0];
|
|
else
|
|
return to_shwi (this->get_precision ());
|
|
}
|
|
|
|
/* Return THIS as an unsigned HOST_WIDE_INT, zero-extending from
|
|
PRECISION. If THIS does not fit in PRECISION, the information
|
|
is lost. */
|
|
template <typename storage>
|
|
inline unsigned HOST_WIDE_INT
|
|
generic_wide_int <storage>::to_uhwi (unsigned int precision) const
|
|
{
|
|
if (precision < HOST_BITS_PER_WIDE_INT)
|
|
return zext_hwi (this->get_val ()[0], precision);
|
|
else
|
|
return this->get_val ()[0];
|
|
}
|
|
|
|
/* Return THIS as an signed HOST_WIDE_INT, in its natural precision. */
|
|
template <typename storage>
|
|
inline unsigned HOST_WIDE_INT
|
|
generic_wide_int <storage>::to_uhwi () const
|
|
{
|
|
return to_uhwi (this->get_precision ());
|
|
}
|
|
|
|
/* TODO: The compiler is half converted from using HOST_WIDE_INT to
|
|
represent addresses to using offset_int to represent addresses.
|
|
We use to_short_addr at the interface from new code to old,
|
|
unconverted code. */
|
|
template <typename storage>
|
|
inline HOST_WIDE_INT
|
|
generic_wide_int <storage>::to_short_addr () const
|
|
{
|
|
return this->get_val ()[0];
|
|
}
|
|
|
|
/* Return the implicit value of blocks above get_len (). */
|
|
template <typename storage>
|
|
inline HOST_WIDE_INT
|
|
generic_wide_int <storage>::sign_mask () const
|
|
{
|
|
unsigned int len = this->get_len ();
|
|
unsigned HOST_WIDE_INT high = this->get_val ()[len - 1];
|
|
if (!is_sign_extended)
|
|
{
|
|
unsigned int precision = this->get_precision ();
|
|
int excess = len * HOST_BITS_PER_WIDE_INT - precision;
|
|
if (excess > 0)
|
|
high <<= excess;
|
|
}
|
|
return (HOST_WIDE_INT) (high) < 0 ? -1 : 0;
|
|
}
|
|
|
|
/* Return the signed value of the least-significant explicitly-encoded
|
|
block. */
|
|
template <typename storage>
|
|
inline HOST_WIDE_INT
|
|
generic_wide_int <storage>::slow () const
|
|
{
|
|
return this->get_val ()[0];
|
|
}
|
|
|
|
/* Return the signed value of the most-significant explicitly-encoded
|
|
block. */
|
|
template <typename storage>
|
|
inline HOST_WIDE_INT
|
|
generic_wide_int <storage>::shigh () const
|
|
{
|
|
return this->get_val ()[this->get_len () - 1];
|
|
}
|
|
|
|
/* Return the unsigned value of the least-significant
|
|
explicitly-encoded block. */
|
|
template <typename storage>
|
|
inline unsigned HOST_WIDE_INT
|
|
generic_wide_int <storage>::ulow () const
|
|
{
|
|
return this->get_val ()[0];
|
|
}
|
|
|
|
/* Return the unsigned value of the most-significant
|
|
explicitly-encoded block. */
|
|
template <typename storage>
|
|
inline unsigned HOST_WIDE_INT
|
|
generic_wide_int <storage>::uhigh () const
|
|
{
|
|
return this->get_val ()[this->get_len () - 1];
|
|
}
|
|
|
|
/* Return block I, which might be implicitly or explicit encoded. */
|
|
template <typename storage>
|
|
inline HOST_WIDE_INT
|
|
generic_wide_int <storage>::elt (unsigned int i) const
|
|
{
|
|
if (i >= this->get_len ())
|
|
return sign_mask ();
|
|
else
|
|
return this->get_val ()[i];
|
|
}
|
|
|
|
template <typename storage>
|
|
template <typename T>
|
|
inline generic_wide_int <storage> &
|
|
generic_wide_int <storage>::operator = (const T &x)
|
|
{
|
|
storage::operator = (x);
|
|
return *this;
|
|
}
|
|
|
|
/* Dump the contents of the integer to stderr, for debugging. */
|
|
template <typename storage>
|
|
void
|
|
generic_wide_int <storage>::dump () const
|
|
{
|
|
unsigned int len = this->get_len ();
|
|
const HOST_WIDE_INT *val = this->get_val ();
|
|
unsigned int precision = this->get_precision ();
|
|
fprintf (stderr, "[");
|
|
if (len * HOST_BITS_PER_WIDE_INT < precision)
|
|
fprintf (stderr, "...,");
|
|
for (unsigned int i = 0; i < len - 1; ++i)
|
|
fprintf (stderr, HOST_WIDE_INT_PRINT_HEX ",", val[len - 1 - i]);
|
|
fprintf (stderr, HOST_WIDE_INT_PRINT_HEX "], precision = %d\n",
|
|
val[0], precision);
|
|
}
|
|
|
|
namespace wi
|
|
{
|
|
template <typename storage>
|
|
struct int_traits < generic_wide_int <storage> >
|
|
: public wi::int_traits <storage>
|
|
{
|
|
static unsigned int get_precision (const generic_wide_int <storage> &);
|
|
static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
|
|
const generic_wide_int <storage> &);
|
|
};
|
|
}
|
|
|
|
template <typename storage>
|
|
inline unsigned int
|
|
wi::int_traits < generic_wide_int <storage> >::
|
|
get_precision (const generic_wide_int <storage> &x)
|
|
{
|
|
return x.get_precision ();
|
|
}
|
|
|
|
template <typename storage>
|
|
inline wi::storage_ref
|
|
wi::int_traits < generic_wide_int <storage> >::
|
|
decompose (HOST_WIDE_INT *, unsigned int precision,
|
|
const generic_wide_int <storage> &x)
|
|
{
|
|
gcc_checking_assert (precision == x.get_precision ());
|
|
return wi::storage_ref (x.get_val (), x.get_len (), precision);
|
|
}
|
|
|
|
/* Provide the storage for a wide_int_ref. This acts like a read-only
|
|
wide_int, with the optimization that VAL is normally a pointer to
|
|
another integer's storage, so that no array copy is needed. */
|
|
template <bool SE>
|
|
struct wide_int_ref_storage : public wi::storage_ref
|
|
{
|
|
private:
|
|
/* Scratch space that can be used when decomposing the original integer.
|
|
It must live as long as this object. */
|
|
HOST_WIDE_INT scratch[2];
|
|
|
|
public:
|
|
wide_int_ref_storage (const wi::storage_ref &);
|
|
|
|
template <typename T>
|
|
wide_int_ref_storage (const T &);
|
|
|
|
template <typename T>
|
|
wide_int_ref_storage (const T &, unsigned int);
|
|
};
|
|
|
|
/* Create a reference from an existing reference. */
|
|
template <bool SE>
|
|
inline wide_int_ref_storage <SE>::
|
|
wide_int_ref_storage (const wi::storage_ref &x)
|
|
: storage_ref (x)
|
|
{}
|
|
|
|
/* Create a reference to integer X in its natural precision. Note
|
|
that the natural precision is host-dependent for primitive
|
|
types. */
|
|
template <bool SE>
|
|
template <typename T>
|
|
inline wide_int_ref_storage <SE>::wide_int_ref_storage (const T &x)
|
|
: storage_ref (wi::int_traits <T>::decompose (scratch,
|
|
wi::get_precision (x), x))
|
|
{
|
|
}
|
|
|
|
/* Create a reference to integer X in precision PRECISION. */
|
|
template <bool SE>
|
|
template <typename T>
|
|
inline wide_int_ref_storage <SE>::wide_int_ref_storage (const T &x,
|
|
unsigned int precision)
|
|
: storage_ref (wi::int_traits <T>::decompose (scratch, precision, x))
|
|
{
|
|
}
|
|
|
|
namespace wi
|
|
{
|
|
template <bool SE>
|
|
struct int_traits <wide_int_ref_storage <SE> >
|
|
{
|
|
static const enum precision_type precision_type = VAR_PRECISION;
|
|
/* wi::storage_ref can be a reference to a primitive type,
|
|
so this is the conservatively-correct setting. */
|
|
static const bool host_dependent_precision = true;
|
|
static const bool is_sign_extended = SE;
|
|
};
|
|
}
|
|
|
|
namespace wi
|
|
{
|
|
unsigned int force_to_size (HOST_WIDE_INT *, const HOST_WIDE_INT *,
|
|
unsigned int, unsigned int, unsigned int,
|
|
signop sgn);
|
|
unsigned int from_array (HOST_WIDE_INT *, const HOST_WIDE_INT *,
|
|
unsigned int, unsigned int, bool = true);
|
|
}
|
|
|
|
/* The storage used by wide_int. */
|
|
class GTY(()) wide_int_storage
|
|
{
|
|
private:
|
|
HOST_WIDE_INT val[WIDE_INT_MAX_ELTS];
|
|
unsigned int len;
|
|
unsigned int precision;
|
|
|
|
public:
|
|
wide_int_storage ();
|
|
template <typename T>
|
|
wide_int_storage (const T &);
|
|
|
|
/* The standard generic_wide_int storage methods. */
|
|
unsigned int get_precision () const;
|
|
const HOST_WIDE_INT *get_val () const;
|
|
unsigned int get_len () const;
|
|
HOST_WIDE_INT *write_val ();
|
|
void set_len (unsigned int, bool = false);
|
|
|
|
static wide_int from (const wide_int_ref &, unsigned int, signop);
|
|
static wide_int from_array (const HOST_WIDE_INT *, unsigned int,
|
|
unsigned int, bool = true);
|
|
static wide_int create (unsigned int);
|
|
|
|
/* FIXME: target-dependent, so should disappear. */
|
|
wide_int bswap () const;
|
|
};
|
|
|
|
namespace wi
|
|
{
|
|
template <>
|
|
struct int_traits <wide_int_storage>
|
|
{
|
|
static const enum precision_type precision_type = VAR_PRECISION;
|
|
/* Guaranteed by a static assert in the wide_int_storage constructor. */
|
|
static const bool host_dependent_precision = false;
|
|
static const bool is_sign_extended = true;
|
|
template <typename T1, typename T2>
|
|
static wide_int get_binary_result (const T1 &, const T2 &);
|
|
};
|
|
}
|
|
|
|
inline wide_int_storage::wide_int_storage () {}
|
|
|
|
/* Initialize the storage from integer X, in its natural precision.
|
|
Note that we do not allow integers with host-dependent precision
|
|
to become wide_ints; wide_ints must always be logically independent
|
|
of the host. */
|
|
template <typename T>
|
|
inline wide_int_storage::wide_int_storage (const T &x)
|
|
{
|
|
{ STATIC_ASSERT (!wi::int_traits<T>::host_dependent_precision); }
|
|
{ STATIC_ASSERT (wi::int_traits<T>::precision_type != wi::CONST_PRECISION); }
|
|
WIDE_INT_REF_FOR (T) xi (x);
|
|
precision = xi.precision;
|
|
wi::copy (*this, xi);
|
|
}
|
|
|
|
inline unsigned int
|
|
wide_int_storage::get_precision () const
|
|
{
|
|
return precision;
|
|
}
|
|
|
|
inline const HOST_WIDE_INT *
|
|
wide_int_storage::get_val () const
|
|
{
|
|
return val;
|
|
}
|
|
|
|
inline unsigned int
|
|
wide_int_storage::get_len () const
|
|
{
|
|
return len;
|
|
}
|
|
|
|
inline HOST_WIDE_INT *
|
|
wide_int_storage::write_val ()
|
|
{
|
|
return val;
|
|
}
|
|
|
|
inline void
|
|
wide_int_storage::set_len (unsigned int l, bool is_sign_extended)
|
|
{
|
|
len = l;
|
|
if (!is_sign_extended && len * HOST_BITS_PER_WIDE_INT > precision)
|
|
val[len - 1] = sext_hwi (val[len - 1],
|
|
precision % HOST_BITS_PER_WIDE_INT);
|
|
}
|
|
|
|
/* Treat X as having signedness SGN and convert it to a PRECISION-bit
|
|
number. */
|
|
inline wide_int
|
|
wide_int_storage::from (const wide_int_ref &x, unsigned int precision,
|
|
signop sgn)
|
|
{
|
|
wide_int result = wide_int::create (precision);
|
|
result.set_len (wi::force_to_size (result.write_val (), x.val, x.len,
|
|
x.precision, precision, sgn));
|
|
return result;
|
|
}
|
|
|
|
/* Create a wide_int from the explicit block encoding given by VAL and
|
|
LEN. PRECISION is the precision of the integer. NEED_CANON_P is
|
|
true if the encoding may have redundant trailing blocks. */
|
|
inline wide_int
|
|
wide_int_storage::from_array (const HOST_WIDE_INT *val, unsigned int len,
|
|
unsigned int precision, bool need_canon_p)
|
|
{
|
|
wide_int result = wide_int::create (precision);
|
|
result.set_len (wi::from_array (result.write_val (), val, len, precision,
|
|
need_canon_p));
|
|
return result;
|
|
}
|
|
|
|
/* Return an uninitialized wide_int with precision PRECISION. */
|
|
inline wide_int
|
|
wide_int_storage::create (unsigned int precision)
|
|
{
|
|
wide_int x;
|
|
x.precision = precision;
|
|
return x;
|
|
}
|
|
|
|
template <typename T1, typename T2>
|
|
inline wide_int
|
|
wi::int_traits <wide_int_storage>::get_binary_result (const T1 &x, const T2 &y)
|
|
{
|
|
/* This shouldn't be used for two flexible-precision inputs. */
|
|
STATIC_ASSERT (wi::int_traits <T1>::precision_type != FLEXIBLE_PRECISION
|
|
|| wi::int_traits <T2>::precision_type != FLEXIBLE_PRECISION);
|
|
if (wi::int_traits <T1>::precision_type == FLEXIBLE_PRECISION)
|
|
return wide_int::create (wi::get_precision (y));
|
|
else
|
|
return wide_int::create (wi::get_precision (x));
|
|
}
|
|
|
|
/* The storage used by FIXED_WIDE_INT (N). */
|
|
template <int N>
|
|
class GTY(()) fixed_wide_int_storage
|
|
{
|
|
private:
|
|
HOST_WIDE_INT val[(N + HOST_BITS_PER_WIDE_INT + 1) / HOST_BITS_PER_WIDE_INT];
|
|
unsigned int len;
|
|
|
|
public:
|
|
fixed_wide_int_storage ();
|
|
template <typename T>
|
|
fixed_wide_int_storage (const T &);
|
|
|
|
/* The standard generic_wide_int storage methods. */
|
|
unsigned int get_precision () const;
|
|
const HOST_WIDE_INT *get_val () const;
|
|
unsigned int get_len () const;
|
|
HOST_WIDE_INT *write_val ();
|
|
void set_len (unsigned int, bool = false);
|
|
|
|
static FIXED_WIDE_INT (N) from (const wide_int_ref &, signop);
|
|
static FIXED_WIDE_INT (N) from_array (const HOST_WIDE_INT *, unsigned int,
|
|
bool = true);
|
|
};
|
|
|
|
namespace wi
|
|
{
|
|
template <int N>
|
|
struct int_traits < fixed_wide_int_storage <N> >
|
|
{
|
|
static const enum precision_type precision_type = CONST_PRECISION;
|
|
static const bool host_dependent_precision = false;
|
|
static const bool is_sign_extended = true;
|
|
static const unsigned int precision = N;
|
|
template <typename T1, typename T2>
|
|
static FIXED_WIDE_INT (N) get_binary_result (const T1 &, const T2 &);
|
|
};
|
|
}
|
|
|
|
template <int N>
|
|
inline fixed_wide_int_storage <N>::fixed_wide_int_storage () {}
|
|
|
|
/* Initialize the storage from integer X, in precision N. */
|
|
template <int N>
|
|
template <typename T>
|
|
inline fixed_wide_int_storage <N>::fixed_wide_int_storage (const T &x)
|
|
{
|
|
/* Check for type compatibility. We don't want to initialize a
|
|
fixed-width integer from something like a wide_int. */
|
|
WI_BINARY_RESULT (T, FIXED_WIDE_INT (N)) *assertion ATTRIBUTE_UNUSED;
|
|
wi::copy (*this, WIDE_INT_REF_FOR (T) (x, N));
|
|
}
|
|
|
|
template <int N>
|
|
inline unsigned int
|
|
fixed_wide_int_storage <N>::get_precision () const
|
|
{
|
|
return N;
|
|
}
|
|
|
|
template <int N>
|
|
inline const HOST_WIDE_INT *
|
|
fixed_wide_int_storage <N>::get_val () const
|
|
{
|
|
return val;
|
|
}
|
|
|
|
template <int N>
|
|
inline unsigned int
|
|
fixed_wide_int_storage <N>::get_len () const
|
|
{
|
|
return len;
|
|
}
|
|
|
|
template <int N>
|
|
inline HOST_WIDE_INT *
|
|
fixed_wide_int_storage <N>::write_val ()
|
|
{
|
|
return val;
|
|
}
|
|
|
|
template <int N>
|
|
inline void
|
|
fixed_wide_int_storage <N>::set_len (unsigned int l, bool)
|
|
{
|
|
len = l;
|
|
/* There are no excess bits in val[len - 1]. */
|
|
STATIC_ASSERT (N % HOST_BITS_PER_WIDE_INT == 0);
|
|
}
|
|
|
|
/* Treat X as having signedness SGN and convert it to an N-bit number. */
|
|
template <int N>
|
|
inline FIXED_WIDE_INT (N)
|
|
fixed_wide_int_storage <N>::from (const wide_int_ref &x, signop sgn)
|
|
{
|
|
FIXED_WIDE_INT (N) result;
|
|
result.set_len (wi::force_to_size (result.write_val (), x.val, x.len,
|
|
x.precision, N, sgn));
|
|
return result;
|
|
}
|
|
|
|
/* Create a FIXED_WIDE_INT (N) from the explicit block encoding given by
|
|
VAL and LEN. NEED_CANON_P is true if the encoding may have redundant
|
|
trailing blocks. */
|
|
template <int N>
|
|
inline FIXED_WIDE_INT (N)
|
|
fixed_wide_int_storage <N>::from_array (const HOST_WIDE_INT *val,
|
|
unsigned int len,
|
|
bool need_canon_p)
|
|
{
|
|
FIXED_WIDE_INT (N) result;
|
|
result.set_len (wi::from_array (result.write_val (), val, len,
|
|
N, need_canon_p));
|
|
return result;
|
|
}
|
|
|
|
template <int N>
|
|
template <typename T1, typename T2>
|
|
inline FIXED_WIDE_INT (N)
|
|
wi::int_traits < fixed_wide_int_storage <N> >::
|
|
get_binary_result (const T1 &, const T2 &)
|
|
{
|
|
return FIXED_WIDE_INT (N) ();
|
|
}
|
|
|
|
/* A reference to one element of a trailing_wide_ints structure. */
|
|
class trailing_wide_int_storage
|
|
{
|
|
private:
|
|
/* The precision of the integer, which is a fixed property of the
|
|
parent trailing_wide_ints. */
|
|
unsigned int m_precision;
|
|
|
|
/* A pointer to the length field. */
|
|
unsigned char *m_len;
|
|
|
|
/* A pointer to the HWI array. There are enough elements to hold all
|
|
values of precision M_PRECISION. */
|
|
HOST_WIDE_INT *m_val;
|
|
|
|
public:
|
|
trailing_wide_int_storage (unsigned int, unsigned char *, HOST_WIDE_INT *);
|
|
|
|
/* The standard generic_wide_int storage methods. */
|
|
unsigned int get_len () const;
|
|
unsigned int get_precision () const;
|
|
const HOST_WIDE_INT *get_val () const;
|
|
HOST_WIDE_INT *write_val ();
|
|
void set_len (unsigned int, bool = false);
|
|
|
|
template <typename T>
|
|
trailing_wide_int_storage &operator = (const T &);
|
|
};
|
|
|
|
typedef generic_wide_int <trailing_wide_int_storage> trailing_wide_int;
|
|
|
|
/* trailing_wide_int behaves like a wide_int. */
|
|
namespace wi
|
|
{
|
|
template <>
|
|
struct int_traits <trailing_wide_int_storage>
|
|
: public int_traits <wide_int_storage> {};
|
|
}
|
|
|
|
/* An array of N wide_int-like objects that can be put at the end of
|
|
a variable-sized structure. Use extra_size to calculate how many
|
|
bytes beyond the sizeof need to be allocated. Use set_precision
|
|
to initialize the structure. */
|
|
template <int N>
|
|
class GTY(()) trailing_wide_ints
|
|
{
|
|
private:
|
|
/* The shared precision of each number. */
|
|
unsigned short m_precision;
|
|
|
|
/* The shared maximum length of each number. */
|
|
unsigned char m_max_len;
|
|
|
|
/* The current length of each number. */
|
|
unsigned char m_len[N];
|
|
|
|
/* The variable-length part of the structure, which always contains
|
|
at least one HWI. Element I starts at index I * M_MAX_LEN. */
|
|
HOST_WIDE_INT m_val[1];
|
|
|
|
public:
|
|
void set_precision (unsigned int);
|
|
trailing_wide_int operator [] (unsigned int);
|
|
static size_t extra_size (unsigned int);
|
|
};
|
|
|
|
inline trailing_wide_int_storage::
|
|
trailing_wide_int_storage (unsigned int precision, unsigned char *len,
|
|
HOST_WIDE_INT *val)
|
|
: m_precision (precision), m_len (len), m_val (val)
|
|
{
|
|
}
|
|
|
|
inline unsigned int
|
|
trailing_wide_int_storage::get_len () const
|
|
{
|
|
return *m_len;
|
|
}
|
|
|
|
inline unsigned int
|
|
trailing_wide_int_storage::get_precision () const
|
|
{
|
|
return m_precision;
|
|
}
|
|
|
|
inline const HOST_WIDE_INT *
|
|
trailing_wide_int_storage::get_val () const
|
|
{
|
|
return m_val;
|
|
}
|
|
|
|
inline HOST_WIDE_INT *
|
|
trailing_wide_int_storage::write_val ()
|
|
{
|
|
return m_val;
|
|
}
|
|
|
|
inline void
|
|
trailing_wide_int_storage::set_len (unsigned int len, bool is_sign_extended)
|
|
{
|
|
*m_len = len;
|
|
if (!is_sign_extended && len * HOST_BITS_PER_WIDE_INT > m_precision)
|
|
m_val[len - 1] = sext_hwi (m_val[len - 1],
|
|
m_precision % HOST_BITS_PER_WIDE_INT);
|
|
}
|
|
|
|
template <typename T>
|
|
inline trailing_wide_int_storage &
|
|
trailing_wide_int_storage::operator = (const T &x)
|
|
{
|
|
WIDE_INT_REF_FOR (T) xi (x, m_precision);
|
|
wi::copy (*this, xi);
|
|
return *this;
|
|
}
|
|
|
|
/* Initialize the structure and record that all elements have precision
|
|
PRECISION. */
|
|
template <int N>
|
|
inline void
|
|
trailing_wide_ints <N>::set_precision (unsigned int precision)
|
|
{
|
|
m_precision = precision;
|
|
m_max_len = ((precision + HOST_BITS_PER_WIDE_INT - 1)
|
|
/ HOST_BITS_PER_WIDE_INT);
|
|
}
|
|
|
|
/* Return a reference to element INDEX. */
|
|
template <int N>
|
|
inline trailing_wide_int
|
|
trailing_wide_ints <N>::operator [] (unsigned int index)
|
|
{
|
|
return trailing_wide_int_storage (m_precision, &m_len[index],
|
|
&m_val[index * m_max_len]);
|
|
}
|
|
|
|
/* Return how many extra bytes need to be added to the end of the structure
|
|
in order to handle N wide_ints of precision PRECISION. */
|
|
template <int N>
|
|
inline size_t
|
|
trailing_wide_ints <N>::extra_size (unsigned int precision)
|
|
{
|
|
unsigned int max_len = ((precision + HOST_BITS_PER_WIDE_INT - 1)
|
|
/ HOST_BITS_PER_WIDE_INT);
|
|
return (N * max_len - 1) * sizeof (HOST_WIDE_INT);
|
|
}
|
|
|
|
/* This macro is used in structures that end with a trailing_wide_ints field
|
|
called FIELD. It declares get_NAME() and set_NAME() methods to access
|
|
element I of FIELD. */
|
|
#define TRAILING_WIDE_INT_ACCESSOR(NAME, FIELD, I) \
|
|
trailing_wide_int get_##NAME () { return FIELD[I]; } \
|
|
template <typename T> void set_##NAME (const T &x) { FIELD[I] = x; }
|
|
|
|
namespace wi
|
|
{
|
|
/* Implementation of int_traits for primitive integer types like "int". */
|
|
template <typename T, bool signed_p>
|
|
struct primitive_int_traits
|
|
{
|
|
static const enum precision_type precision_type = FLEXIBLE_PRECISION;
|
|
static const bool host_dependent_precision = true;
|
|
static const bool is_sign_extended = true;
|
|
static unsigned int get_precision (T);
|
|
static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int, T);
|
|
};
|
|
}
|
|
|
|
template <typename T, bool signed_p>
|
|
inline unsigned int
|
|
wi::primitive_int_traits <T, signed_p>::get_precision (T)
|
|
{
|
|
return sizeof (T) * CHAR_BIT;
|
|
}
|
|
|
|
template <typename T, bool signed_p>
|
|
inline wi::storage_ref
|
|
wi::primitive_int_traits <T, signed_p>::decompose (HOST_WIDE_INT *scratch,
|
|
unsigned int precision, T x)
|
|
{
|
|
scratch[0] = x;
|
|
if (signed_p || scratch[0] >= 0 || precision <= HOST_BITS_PER_WIDE_INT)
|
|
return wi::storage_ref (scratch, 1, precision);
|
|
scratch[1] = 0;
|
|
return wi::storage_ref (scratch, 2, precision);
|
|
}
|
|
|
|
/* Allow primitive C types to be used in wi:: routines. */
|
|
namespace wi
|
|
{
|
|
template <>
|
|
struct int_traits <int>
|
|
: public primitive_int_traits <int, true> {};
|
|
|
|
template <>
|
|
struct int_traits <unsigned int>
|
|
: public primitive_int_traits <unsigned int, false> {};
|
|
|
|
template <>
|
|
struct int_traits <long>
|
|
: public primitive_int_traits <long, true> {};
|
|
|
|
template <>
|
|
struct int_traits <unsigned long>
|
|
: public primitive_int_traits <unsigned long, false> {};
|
|
|
|
#if defined HAVE_LONG_LONG
|
|
template <>
|
|
struct int_traits <long long>
|
|
: public primitive_int_traits <long long, true> {};
|
|
|
|
template <>
|
|
struct int_traits <unsigned long long>
|
|
: public primitive_int_traits <unsigned long long, false> {};
|
|
#endif
|
|
}
|
|
|
|
namespace wi
|
|
{
|
|
/* Stores HWI-sized integer VAL, treating it as having signedness SGN
|
|
and precision PRECISION. */
|
|
struct hwi_with_prec
|
|
{
|
|
hwi_with_prec (HOST_WIDE_INT, unsigned int, signop);
|
|
HOST_WIDE_INT val;
|
|
unsigned int precision;
|
|
signop sgn;
|
|
};
|
|
|
|
hwi_with_prec shwi (HOST_WIDE_INT, unsigned int);
|
|
hwi_with_prec uhwi (unsigned HOST_WIDE_INT, unsigned int);
|
|
|
|
hwi_with_prec minus_one (unsigned int);
|
|
hwi_with_prec zero (unsigned int);
|
|
hwi_with_prec one (unsigned int);
|
|
hwi_with_prec two (unsigned int);
|
|
}
|
|
|
|
inline wi::hwi_with_prec::hwi_with_prec (HOST_WIDE_INT v, unsigned int p,
|
|
signop s)
|
|
: val (v), precision (p), sgn (s)
|
|
{
|
|
}
|
|
|
|
/* Return a signed integer that has value VAL and precision PRECISION. */
|
|
inline wi::hwi_with_prec
|
|
wi::shwi (HOST_WIDE_INT val, unsigned int precision)
|
|
{
|
|
return hwi_with_prec (val, precision, SIGNED);
|
|
}
|
|
|
|
/* Return an unsigned integer that has value VAL and precision PRECISION. */
|
|
inline wi::hwi_with_prec
|
|
wi::uhwi (unsigned HOST_WIDE_INT val, unsigned int precision)
|
|
{
|
|
return hwi_with_prec (val, precision, UNSIGNED);
|
|
}
|
|
|
|
/* Return a wide int of -1 with precision PRECISION. */
|
|
inline wi::hwi_with_prec
|
|
wi::minus_one (unsigned int precision)
|
|
{
|
|
return wi::shwi (-1, precision);
|
|
}
|
|
|
|
/* Return a wide int of 0 with precision PRECISION. */
|
|
inline wi::hwi_with_prec
|
|
wi::zero (unsigned int precision)
|
|
{
|
|
return wi::shwi (0, precision);
|
|
}
|
|
|
|
/* Return a wide int of 1 with precision PRECISION. */
|
|
inline wi::hwi_with_prec
|
|
wi::one (unsigned int precision)
|
|
{
|
|
return wi::shwi (1, precision);
|
|
}
|
|
|
|
/* Return a wide int of 2 with precision PRECISION. */
|
|
inline wi::hwi_with_prec
|
|
wi::two (unsigned int precision)
|
|
{
|
|
return wi::shwi (2, precision);
|
|
}
|
|
|
|
namespace wi
|
|
{
|
|
template <>
|
|
struct int_traits <wi::hwi_with_prec>
|
|
{
|
|
static const enum precision_type precision_type = VAR_PRECISION;
|
|
/* hwi_with_prec has an explicitly-given precision, rather than the
|
|
precision of HOST_WIDE_INT. */
|
|
static const bool host_dependent_precision = false;
|
|
static const bool is_sign_extended = true;
|
|
static unsigned int get_precision (const wi::hwi_with_prec &);
|
|
static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
|
|
const wi::hwi_with_prec &);
|
|
};
|
|
}
|
|
|
|
inline unsigned int
|
|
wi::int_traits <wi::hwi_with_prec>::get_precision (const wi::hwi_with_prec &x)
|
|
{
|
|
return x.precision;
|
|
}
|
|
|
|
inline wi::storage_ref
|
|
wi::int_traits <wi::hwi_with_prec>::
|
|
decompose (HOST_WIDE_INT *scratch, unsigned int precision,
|
|
const wi::hwi_with_prec &x)
|
|
{
|
|
gcc_checking_assert (precision == x.precision);
|
|
scratch[0] = x.val;
|
|
if (x.sgn == SIGNED || x.val >= 0 || precision <= HOST_BITS_PER_WIDE_INT)
|
|
return wi::storage_ref (scratch, 1, precision);
|
|
scratch[1] = 0;
|
|
return wi::storage_ref (scratch, 2, precision);
|
|
}
|
|
|
|
/* Private functions for handling large cases out of line. They take
|
|
individual length and array parameters because that is cheaper for
|
|
the inline caller than constructing an object on the stack and
|
|
passing a reference to it. (Although many callers use wide_int_refs,
|
|
we generally want those to be removed by SRA.) */
|
|
namespace wi
|
|
{
|
|
bool eq_p_large (const HOST_WIDE_INT *, unsigned int,
|
|
const HOST_WIDE_INT *, unsigned int, unsigned int);
|
|
bool lts_p_large (const HOST_WIDE_INT *, unsigned int, unsigned int,
|
|
const HOST_WIDE_INT *, unsigned int);
|
|
bool ltu_p_large (const HOST_WIDE_INT *, unsigned int, unsigned int,
|
|
const HOST_WIDE_INT *, unsigned int);
|
|
int cmps_large (const HOST_WIDE_INT *, unsigned int, unsigned int,
|
|
const HOST_WIDE_INT *, unsigned int);
|
|
int cmpu_large (const HOST_WIDE_INT *, unsigned int, unsigned int,
|
|
const HOST_WIDE_INT *, unsigned int);
|
|
unsigned int sext_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
|
|
unsigned int,
|
|
unsigned int, unsigned int);
|
|
unsigned int zext_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
|
|
unsigned int,
|
|
unsigned int, unsigned int);
|
|
unsigned int set_bit_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
|
|
unsigned int, unsigned int, unsigned int);
|
|
unsigned int lshift_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
|
|
unsigned int, unsigned int, unsigned int);
|
|
unsigned int lrshift_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
|
|
unsigned int, unsigned int, unsigned int,
|
|
unsigned int);
|
|
unsigned int arshift_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
|
|
unsigned int, unsigned int, unsigned int,
|
|
unsigned int);
|
|
unsigned int and_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int,
|
|
const HOST_WIDE_INT *, unsigned int, unsigned int);
|
|
unsigned int and_not_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
|
|
unsigned int, const HOST_WIDE_INT *,
|
|
unsigned int, unsigned int);
|
|
unsigned int or_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int,
|
|
const HOST_WIDE_INT *, unsigned int, unsigned int);
|
|
unsigned int or_not_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
|
|
unsigned int, const HOST_WIDE_INT *,
|
|
unsigned int, unsigned int);
|
|
unsigned int xor_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int,
|
|
const HOST_WIDE_INT *, unsigned int, unsigned int);
|
|
unsigned int add_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int,
|
|
const HOST_WIDE_INT *, unsigned int, unsigned int,
|
|
signop, bool *);
|
|
unsigned int sub_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int,
|
|
const HOST_WIDE_INT *, unsigned int, unsigned int,
|
|
signop, bool *);
|
|
unsigned int mul_internal (HOST_WIDE_INT *, const HOST_WIDE_INT *,
|
|
unsigned int, const HOST_WIDE_INT *,
|
|
unsigned int, unsigned int, signop, bool *,
|
|
bool);
|
|
unsigned int divmod_internal (HOST_WIDE_INT *, unsigned int *,
|
|
HOST_WIDE_INT *, const HOST_WIDE_INT *,
|
|
unsigned int, unsigned int,
|
|
const HOST_WIDE_INT *,
|
|
unsigned int, unsigned int,
|
|
signop, bool *);
|
|
}
|
|
|
|
/* Return the number of bits that integer X can hold. */
|
|
template <typename T>
|
|
inline unsigned int
|
|
wi::get_precision (const T &x)
|
|
{
|
|
return wi::int_traits <T>::get_precision (x);
|
|
}
|
|
|
|
/* Return the number of bits that the result of a binary operation can
|
|
hold when the input operands are X and Y. */
|
|
template <typename T1, typename T2>
|
|
inline unsigned int
|
|
wi::get_binary_precision (const T1 &x, const T2 &y)
|
|
{
|
|
return get_precision (wi::int_traits <WI_BINARY_RESULT (T1, T2)>::
|
|
get_binary_result (x, y));
|
|
}
|
|
|
|
/* Copy the contents of Y to X, but keeping X's current precision. */
|
|
template <typename T1, typename T2>
|
|
inline void
|
|
wi::copy (T1 &x, const T2 &y)
|
|
{
|
|
HOST_WIDE_INT *xval = x.write_val ();
|
|
const HOST_WIDE_INT *yval = y.get_val ();
|
|
unsigned int len = y.get_len ();
|
|
unsigned int i = 0;
|
|
do
|
|
xval[i] = yval[i];
|
|
while (++i < len);
|
|
x.set_len (len, y.is_sign_extended);
|
|
}
|
|
|
|
/* Return true if X fits in a HOST_WIDE_INT with no loss of precision. */
|
|
template <typename T>
|
|
inline bool
|
|
wi::fits_shwi_p (const T &x)
|
|
{
|
|
WIDE_INT_REF_FOR (T) xi (x);
|
|
return xi.len == 1;
|
|
}
|
|
|
|
/* Return true if X fits in an unsigned HOST_WIDE_INT with no loss of
|
|
precision. */
|
|
template <typename T>
|
|
inline bool
|
|
wi::fits_uhwi_p (const T &x)
|
|
{
|
|
WIDE_INT_REF_FOR (T) xi (x);
|
|
if (xi.precision <= HOST_BITS_PER_WIDE_INT)
|
|
return true;
|
|
if (xi.len == 1)
|
|
return xi.slow () >= 0;
|
|
return xi.len == 2 && xi.uhigh () == 0;
|
|
}
|
|
|
|
/* Return true if X is negative based on the interpretation of SGN.
|
|
For UNSIGNED, this is always false. */
|
|
template <typename T>
|
|
inline bool
|
|
wi::neg_p (const T &x, signop sgn)
|
|
{
|
|
WIDE_INT_REF_FOR (T) xi (x);
|
|
if (sgn == UNSIGNED)
|
|
return false;
|
|
return xi.sign_mask () < 0;
|
|
}
|
|
|
|
/* Return -1 if the top bit of X is set and 0 if the top bit is clear. */
|
|
template <typename T>
|
|
inline HOST_WIDE_INT
|
|
wi::sign_mask (const T &x)
|
|
{
|
|
WIDE_INT_REF_FOR (T) xi (x);
|
|
return xi.sign_mask ();
|
|
}
|
|
|
|
/* Return true if X == Y. X and Y must be binary-compatible. */
|
|
template <typename T1, typename T2>
|
|
inline bool
|
|
wi::eq_p (const T1 &x, const T2 &y)
|
|
{
|
|
unsigned int precision = get_binary_precision (x, y);
|
|
WIDE_INT_REF_FOR (T1) xi (x, precision);
|
|
WIDE_INT_REF_FOR (T2) yi (y, precision);
|
|
if (xi.is_sign_extended && yi.is_sign_extended)
|
|
{
|
|
/* This case reduces to array equality. */
|
|
if (xi.len != yi.len)
|
|
return false;
|
|
unsigned int i = 0;
|
|
do
|
|
if (xi.val[i] != yi.val[i])
|
|
return false;
|
|
while (++i != xi.len);
|
|
return true;
|
|
}
|
|
if (__builtin_expect (yi.len == 1, true))
|
|
{
|
|
/* XI is only equal to YI if it too has a single HWI. */
|
|
if (xi.len != 1)
|
|
return false;
|
|
/* Excess bits in xi.val[0] will be signs or zeros, so comparisons
|
|
with 0 are simple. */
|
|
if (STATIC_CONSTANT_P (yi.val[0] == 0))
|
|
return xi.val[0] == 0;
|
|
/* Otherwise flush out any excess bits first. */
|
|
unsigned HOST_WIDE_INT diff = xi.val[0] ^ yi.val[0];
|
|
int excess = HOST_BITS_PER_WIDE_INT - precision;
|
|
if (excess > 0)
|
|
diff <<= excess;
|
|
return diff == 0;
|
|
}
|
|
return eq_p_large (xi.val, xi.len, yi.val, yi.len, precision);
|
|
}
|
|
|
|
/* Return true if X != Y. X and Y must be binary-compatible. */
|
|
template <typename T1, typename T2>
|
|
inline bool
|
|
wi::ne_p (const T1 &x, const T2 &y)
|
|
{
|
|
return !eq_p (x, y);
|
|
}
|
|
|
|
/* Return true if X < Y when both are treated as signed values. */
|
|
template <typename T1, typename T2>
|
|
inline bool
|
|
wi::lts_p (const T1 &x, const T2 &y)
|
|
{
|
|
unsigned int precision = get_binary_precision (x, y);
|
|
WIDE_INT_REF_FOR (T1) xi (x, precision);
|
|
WIDE_INT_REF_FOR (T2) yi (y, precision);
|
|
/* We optimize x < y, where y is 64 or fewer bits. */
|
|
if (wi::fits_shwi_p (yi))
|
|
{
|
|
/* Make lts_p (x, 0) as efficient as wi::neg_p (x). */
|
|
if (STATIC_CONSTANT_P (yi.val[0] == 0))
|
|
return neg_p (xi);
|
|
/* If x fits directly into a shwi, we can compare directly. */
|
|
if (wi::fits_shwi_p (xi))
|
|
return xi.to_shwi () < yi.to_shwi ();
|
|
/* If x doesn't fit and is negative, then it must be more
|
|
negative than any value in y, and hence smaller than y. */
|
|
if (neg_p (xi))
|
|
return true;
|
|
/* If x is positive, then it must be larger than any value in y,
|
|
and hence greater than y. */
|
|
return false;
|
|
}
|
|
/* Optimize the opposite case, if it can be detected at compile time. */
|
|
if (STATIC_CONSTANT_P (xi.len == 1))
|
|
/* If YI is negative it is lower than the least HWI.
|
|
If YI is positive it is greater than the greatest HWI. */
|
|
return !neg_p (yi);
|
|
return lts_p_large (xi.val, xi.len, precision, yi.val, yi.len);
|
|
}
|
|
|
|
/* Return true if X < Y when both are treated as unsigned values. */
|
|
template <typename T1, typename T2>
|
|
inline bool
|
|
wi::ltu_p (const T1 &x, const T2 &y)
|
|
{
|
|
unsigned int precision = get_binary_precision (x, y);
|
|
WIDE_INT_REF_FOR (T1) xi (x, precision);
|
|
WIDE_INT_REF_FOR (T2) yi (y, precision);
|
|
/* Optimize comparisons with constants. */
|
|
if (STATIC_CONSTANT_P (yi.len == 1 && yi.val[0] >= 0))
|
|
return xi.len == 1 && xi.to_uhwi () < (unsigned HOST_WIDE_INT) yi.val[0];
|
|
if (STATIC_CONSTANT_P (xi.len == 1 && xi.val[0] >= 0))
|
|
return yi.len != 1 || yi.to_uhwi () > (unsigned HOST_WIDE_INT) xi.val[0];
|
|
/* Optimize the case of two HWIs. The HWIs are implicitly sign-extended
|
|
for precisions greater than HOST_BITS_WIDE_INT, but sign-extending both
|
|
values does not change the result. */
|
|
if (__builtin_expect (xi.len + yi.len == 2, true))
|
|
{
|
|
unsigned HOST_WIDE_INT xl = xi.to_uhwi ();
|
|
unsigned HOST_WIDE_INT yl = yi.to_uhwi ();
|
|
return xl < yl;
|
|
}
|
|
return ltu_p_large (xi.val, xi.len, precision, yi.val, yi.len);
|
|
}
|
|
|
|
/* Return true if X < Y. Signedness of X and Y is indicated by SGN. */
|
|
template <typename T1, typename T2>
|
|
inline bool
|
|
wi::lt_p (const T1 &x, const T2 &y, signop sgn)
|
|
{
|
|
if (sgn == SIGNED)
|
|
return lts_p (x, y);
|
|
else
|
|
return ltu_p (x, y);
|
|
}
|
|
|
|
/* Return true if X <= Y when both are treated as signed values. */
|
|
template <typename T1, typename T2>
|
|
inline bool
|
|
wi::les_p (const T1 &x, const T2 &y)
|
|
{
|
|
return !lts_p (y, x);
|
|
}
|
|
|
|
/* Return true if X <= Y when both are treated as unsigned values. */
|
|
template <typename T1, typename T2>
|
|
inline bool
|
|
wi::leu_p (const T1 &x, const T2 &y)
|
|
{
|
|
return !ltu_p (y, x);
|
|
}
|
|
|
|
/* Return true if X <= Y. Signedness of X and Y is indicated by SGN. */
|
|
template <typename T1, typename T2>
|
|
inline bool
|
|
wi::le_p (const T1 &x, const T2 &y, signop sgn)
|
|
{
|
|
if (sgn == SIGNED)
|
|
return les_p (x, y);
|
|
else
|
|
return leu_p (x, y);
|
|
}
|
|
|
|
/* Return true if X > Y when both are treated as signed values. */
|
|
template <typename T1, typename T2>
|
|
inline bool
|
|
wi::gts_p (const T1 &x, const T2 &y)
|
|
{
|
|
return lts_p (y, x);
|
|
}
|
|
|
|
/* Return true if X > Y when both are treated as unsigned values. */
|
|
template <typename T1, typename T2>
|
|
inline bool
|
|
wi::gtu_p (const T1 &x, const T2 &y)
|
|
{
|
|
return ltu_p (y, x);
|
|
}
|
|
|
|
/* Return true if X > Y. Signedness of X and Y is indicated by SGN. */
|
|
template <typename T1, typename T2>
|
|
inline bool
|
|
wi::gt_p (const T1 &x, const T2 &y, signop sgn)
|
|
{
|
|
if (sgn == SIGNED)
|
|
return gts_p (x, y);
|
|
else
|
|
return gtu_p (x, y);
|
|
}
|
|
|
|
/* Return true if X >= Y when both are treated as signed values. */
|
|
template <typename T1, typename T2>
|
|
inline bool
|
|
wi::ges_p (const T1 &x, const T2 &y)
|
|
{
|
|
return !lts_p (x, y);
|
|
}
|
|
|
|
/* Return true if X >= Y when both are treated as unsigned values. */
|
|
template <typename T1, typename T2>
|
|
inline bool
|
|
wi::geu_p (const T1 &x, const T2 &y)
|
|
{
|
|
return !ltu_p (x, y);
|
|
}
|
|
|
|
/* Return true if X >= Y. Signedness of X and Y is indicated by SGN. */
|
|
template <typename T1, typename T2>
|
|
inline bool
|
|
wi::ge_p (const T1 &x, const T2 &y, signop sgn)
|
|
{
|
|
if (sgn == SIGNED)
|
|
return ges_p (x, y);
|
|
else
|
|
return geu_p (x, y);
|
|
}
|
|
|
|
/* Return -1 if X < Y, 0 if X == Y and 1 if X > Y. Treat both X and Y
|
|
as signed values. */
|
|
template <typename T1, typename T2>
|
|
inline int
|
|
wi::cmps (const T1 &x, const T2 &y)
|
|
{
|
|
unsigned int precision = get_binary_precision (x, y);
|
|
WIDE_INT_REF_FOR (T1) xi (x, precision);
|
|
WIDE_INT_REF_FOR (T2) yi (y, precision);
|
|
if (wi::fits_shwi_p (yi))
|
|
{
|
|
/* Special case for comparisons with 0. */
|
|
if (STATIC_CONSTANT_P (yi.val[0] == 0))
|
|
return neg_p (xi) ? -1 : !(xi.len == 1 && xi.val[0] == 0);
|
|
/* If x fits into a signed HWI, we can compare directly. */
|
|
if (wi::fits_shwi_p (xi))
|
|
{
|
|
HOST_WIDE_INT xl = xi.to_shwi ();
|
|
HOST_WIDE_INT yl = yi.to_shwi ();
|
|
return xl < yl ? -1 : xl > yl;
|
|
}
|
|
/* If x doesn't fit and is negative, then it must be more
|
|
negative than any signed HWI, and hence smaller than y. */
|
|
if (neg_p (xi))
|
|
return -1;
|
|
/* If x is positive, then it must be larger than any signed HWI,
|
|
and hence greater than y. */
|
|
return 1;
|
|
}
|
|
/* Optimize the opposite case, if it can be detected at compile time. */
|
|
if (STATIC_CONSTANT_P (xi.len == 1))
|
|
/* If YI is negative it is lower than the least HWI.
|
|
If YI is positive it is greater than the greatest HWI. */
|
|
return neg_p (yi) ? 1 : -1;
|
|
return cmps_large (xi.val, xi.len, precision, yi.val, yi.len);
|
|
}
|
|
|
|
/* Return -1 if X < Y, 0 if X == Y and 1 if X > Y. Treat both X and Y
|
|
as unsigned values. */
|
|
template <typename T1, typename T2>
|
|
inline int
|
|
wi::cmpu (const T1 &x, const T2 &y)
|
|
{
|
|
unsigned int precision = get_binary_precision (x, y);
|
|
WIDE_INT_REF_FOR (T1) xi (x, precision);
|
|
WIDE_INT_REF_FOR (T2) yi (y, precision);
|
|
/* Optimize comparisons with constants. */
|
|
if (STATIC_CONSTANT_P (yi.len == 1 && yi.val[0] >= 0))
|
|
{
|
|
/* If XI doesn't fit in a HWI then it must be larger than YI. */
|
|
if (xi.len != 1)
|
|
return 1;
|
|
/* Otherwise compare directly. */
|
|
unsigned HOST_WIDE_INT xl = xi.to_uhwi ();
|
|
unsigned HOST_WIDE_INT yl = yi.val[0];
|
|
return xl < yl ? -1 : xl > yl;
|
|
}
|
|
if (STATIC_CONSTANT_P (xi.len == 1 && xi.val[0] >= 0))
|
|
{
|
|
/* If YI doesn't fit in a HWI then it must be larger than XI. */
|
|
if (yi.len != 1)
|
|
return -1;
|
|
/* Otherwise compare directly. */
|
|
unsigned HOST_WIDE_INT xl = xi.val[0];
|
|
unsigned HOST_WIDE_INT yl = yi.to_uhwi ();
|
|
return xl < yl ? -1 : xl > yl;
|
|
}
|
|
/* Optimize the case of two HWIs. The HWIs are implicitly sign-extended
|
|
for precisions greater than HOST_BITS_WIDE_INT, but sign-extending both
|
|
values does not change the result. */
|
|
if (__builtin_expect (xi.len + yi.len == 2, true))
|
|
{
|
|
unsigned HOST_WIDE_INT xl = xi.to_uhwi ();
|
|
unsigned HOST_WIDE_INT yl = yi.to_uhwi ();
|
|
return xl < yl ? -1 : xl > yl;
|
|
}
|
|
return cmpu_large (xi.val, xi.len, precision, yi.val, yi.len);
|
|
}
|
|
|
|
/* Return -1 if X < Y, 0 if X == Y and 1 if X > Y. Signedness of
|
|
X and Y indicated by SGN. */
|
|
template <typename T1, typename T2>
|
|
inline int
|
|
wi::cmp (const T1 &x, const T2 &y, signop sgn)
|
|
{
|
|
if (sgn == SIGNED)
|
|
return cmps (x, y);
|
|
else
|
|
return cmpu (x, y);
|
|
}
|
|
|
|
/* Return ~x. */
|
|
template <typename T>
|
|
inline WI_UNARY_RESULT (T)
|
|
wi::bit_not (const T &x)
|
|
{
|
|
WI_UNARY_RESULT_VAR (result, val, T, x);
|
|
WIDE_INT_REF_FOR (T) xi (x, get_precision (result));
|
|
for (unsigned int i = 0; i < xi.len; ++i)
|
|
val[i] = ~xi.val[i];
|
|
result.set_len (xi.len);
|
|
return result;
|
|
}
|
|
|
|
/* Return -x. */
|
|
template <typename T>
|
|
inline WI_UNARY_RESULT (T)
|
|
wi::neg (const T &x)
|
|
{
|
|
return sub (0, x);
|
|
}
|
|
|
|
/* Return -x. Indicate in *OVERFLOW if X is the minimum signed value. */
|
|
template <typename T>
|
|
inline WI_UNARY_RESULT (T)
|
|
wi::neg (const T &x, bool *overflow)
|
|
{
|
|
*overflow = only_sign_bit_p (x);
|
|
return sub (0, x);
|
|
}
|
|
|
|
/* Return the absolute value of x. */
|
|
template <typename T>
|
|
inline WI_UNARY_RESULT (T)
|
|
wi::abs (const T &x)
|
|
{
|
|
return neg_p (x) ? neg (x) : WI_UNARY_RESULT (T) (x);
|
|
}
|
|
|
|
/* Return the result of sign-extending the low OFFSET bits of X. */
|
|
template <typename T>
|
|
inline WI_UNARY_RESULT (T)
|
|
wi::sext (const T &x, unsigned int offset)
|
|
{
|
|
WI_UNARY_RESULT_VAR (result, val, T, x);
|
|
unsigned int precision = get_precision (result);
|
|
WIDE_INT_REF_FOR (T) xi (x, precision);
|
|
|
|
if (offset <= HOST_BITS_PER_WIDE_INT)
|
|
{
|
|
val[0] = sext_hwi (xi.ulow (), offset);
|
|
result.set_len (1, true);
|
|
}
|
|
else
|
|
result.set_len (sext_large (val, xi.val, xi.len, precision, offset));
|
|
return result;
|
|
}
|
|
|
|
/* Return the result of zero-extending the low OFFSET bits of X. */
|
|
template <typename T>
|
|
inline WI_UNARY_RESULT (T)
|
|
wi::zext (const T &x, unsigned int offset)
|
|
{
|
|
WI_UNARY_RESULT_VAR (result, val, T, x);
|
|
unsigned int precision = get_precision (result);
|
|
WIDE_INT_REF_FOR (T) xi (x, precision);
|
|
|
|
/* This is not just an optimization, it is actually required to
|
|
maintain canonization. */
|
|
if (offset >= precision)
|
|
{
|
|
wi::copy (result, xi);
|
|
return result;
|
|
}
|
|
|
|
/* In these cases we know that at least the top bit will be clear,
|
|
so no sign extension is necessary. */
|
|
if (offset < HOST_BITS_PER_WIDE_INT)
|
|
{
|
|
val[0] = zext_hwi (xi.ulow (), offset);
|
|
result.set_len (1, true);
|
|
}
|
|
else
|
|
result.set_len (zext_large (val, xi.val, xi.len, precision, offset), true);
|
|
return result;
|
|
}
|
|
|
|
/* Return the result of extending the low OFFSET bits of X according to
|
|
signedness SGN. */
|
|
template <typename T>
|
|
inline WI_UNARY_RESULT (T)
|
|
wi::ext (const T &x, unsigned int offset, signop sgn)
|
|
{
|
|
return sgn == SIGNED ? sext (x, offset) : zext (x, offset);
|
|
}
|
|
|
|
/* Return an integer that represents X | (1 << bit). */
|
|
template <typename T>
|
|
inline WI_UNARY_RESULT (T)
|
|
wi::set_bit (const T &x, unsigned int bit)
|
|
{
|
|
WI_UNARY_RESULT_VAR (result, val, T, x);
|
|
unsigned int precision = get_precision (result);
|
|
WIDE_INT_REF_FOR (T) xi (x, precision);
|
|
if (precision <= HOST_BITS_PER_WIDE_INT)
|
|
{
|
|
val[0] = xi.ulow () | (HOST_WIDE_INT_1U << bit);
|
|
result.set_len (1);
|
|
}
|
|
else
|
|
result.set_len (set_bit_large (val, xi.val, xi.len, precision, bit));
|
|
return result;
|
|
}
|
|
|
|
/* Return the mininum of X and Y, treating them both as having
|
|
signedness SGN. */
|
|
template <typename T1, typename T2>
|
|
inline WI_BINARY_RESULT (T1, T2)
|
|
wi::min (const T1 &x, const T2 &y, signop sgn)
|
|
{
|
|
WI_BINARY_RESULT_VAR (result, val ATTRIBUTE_UNUSED, T1, x, T2, y);
|
|
unsigned int precision = get_precision (result);
|
|
if (wi::le_p (x, y, sgn))
|
|
wi::copy (result, WIDE_INT_REF_FOR (T1) (x, precision));
|
|
else
|
|
wi::copy (result, WIDE_INT_REF_FOR (T2) (y, precision));
|
|
return result;
|
|
}
|
|
|
|
/* Return the minimum of X and Y, treating both as signed values. */
|
|
template <typename T1, typename T2>
|
|
inline WI_BINARY_RESULT (T1, T2)
|
|
wi::smin (const T1 &x, const T2 &y)
|
|
{
|
|
return wi::min (x, y, SIGNED);
|
|
}
|
|
|
|
/* Return the minimum of X and Y, treating both as unsigned values. */
|
|
template <typename T1, typename T2>
|
|
inline WI_BINARY_RESULT (T1, T2)
|
|
wi::umin (const T1 &x, const T2 &y)
|
|
{
|
|
return wi::min (x, y, UNSIGNED);
|
|
}
|
|
|
|
/* Return the maxinum of X and Y, treating them both as having
|
|
signedness SGN. */
|
|
template <typename T1, typename T2>
|
|
inline WI_BINARY_RESULT (T1, T2)
|
|
wi::max (const T1 &x, const T2 &y, signop sgn)
|
|
{
|
|
WI_BINARY_RESULT_VAR (result, val ATTRIBUTE_UNUSED, T1, x, T2, y);
|
|
unsigned int precision = get_precision (result);
|
|
if (wi::ge_p (x, y, sgn))
|
|
wi::copy (result, WIDE_INT_REF_FOR (T1) (x, precision));
|
|
else
|
|
wi::copy (result, WIDE_INT_REF_FOR (T2) (y, precision));
|
|
return result;
|
|
}
|
|
|
|
/* Return the maximum of X and Y, treating both as signed values. */
|
|
template <typename T1, typename T2>
|
|
inline WI_BINARY_RESULT (T1, T2)
|
|
wi::smax (const T1 &x, const T2 &y)
|
|
{
|
|
return wi::max (x, y, SIGNED);
|
|
}
|
|
|
|
/* Return the maximum of X and Y, treating both as unsigned values. */
|
|
template <typename T1, typename T2>
|
|
inline WI_BINARY_RESULT (T1, T2)
|
|
wi::umax (const T1 &x, const T2 &y)
|
|
{
|
|
return wi::max (x, y, UNSIGNED);
|
|
}
|
|
|
|
/* Return X & Y. */
|
|
template <typename T1, typename T2>
|
|
inline WI_BINARY_RESULT (T1, T2)
|
|
wi::bit_and (const T1 &x, const T2 &y)
|
|
{
|
|
WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
|
|
unsigned int precision = get_precision (result);
|
|
WIDE_INT_REF_FOR (T1) xi (x, precision);
|
|
WIDE_INT_REF_FOR (T2) yi (y, precision);
|
|
bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended;
|
|
if (__builtin_expect (xi.len + yi.len == 2, true))
|
|
{
|
|
val[0] = xi.ulow () & yi.ulow ();
|
|
result.set_len (1, is_sign_extended);
|
|
}
|
|
else
|
|
result.set_len (and_large (val, xi.val, xi.len, yi.val, yi.len,
|
|
precision), is_sign_extended);
|
|
return result;
|
|
}
|
|
|
|
/* Return X & ~Y. */
|
|
template <typename T1, typename T2>
|
|
inline WI_BINARY_RESULT (T1, T2)
|
|
wi::bit_and_not (const T1 &x, const T2 &y)
|
|
{
|
|
WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
|
|
unsigned int precision = get_precision (result);
|
|
WIDE_INT_REF_FOR (T1) xi (x, precision);
|
|
WIDE_INT_REF_FOR (T2) yi (y, precision);
|
|
bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended;
|
|
if (__builtin_expect (xi.len + yi.len == 2, true))
|
|
{
|
|
val[0] = xi.ulow () & ~yi.ulow ();
|
|
result.set_len (1, is_sign_extended);
|
|
}
|
|
else
|
|
result.set_len (and_not_large (val, xi.val, xi.len, yi.val, yi.len,
|
|
precision), is_sign_extended);
|
|
return result;
|
|
}
|
|
|
|
/* Return X | Y. */
|
|
template <typename T1, typename T2>
|
|
inline WI_BINARY_RESULT (T1, T2)
|
|
wi::bit_or (const T1 &x, const T2 &y)
|
|
{
|
|
WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
|
|
unsigned int precision = get_precision (result);
|
|
WIDE_INT_REF_FOR (T1) xi (x, precision);
|
|
WIDE_INT_REF_FOR (T2) yi (y, precision);
|
|
bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended;
|
|
if (__builtin_expect (xi.len + yi.len == 2, true))
|
|
{
|
|
val[0] = xi.ulow () | yi.ulow ();
|
|
result.set_len (1, is_sign_extended);
|
|
}
|
|
else
|
|
result.set_len (or_large (val, xi.val, xi.len,
|
|
yi.val, yi.len, precision), is_sign_extended);
|
|
return result;
|
|
}
|
|
|
|
/* Return X | ~Y. */
|
|
template <typename T1, typename T2>
|
|
inline WI_BINARY_RESULT (T1, T2)
|
|
wi::bit_or_not (const T1 &x, const T2 &y)
|
|
{
|
|
WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
|
|
unsigned int precision = get_precision (result);
|
|
WIDE_INT_REF_FOR (T1) xi (x, precision);
|
|
WIDE_INT_REF_FOR (T2) yi (y, precision);
|
|
bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended;
|
|
if (__builtin_expect (xi.len + yi.len == 2, true))
|
|
{
|
|
val[0] = xi.ulow () | ~yi.ulow ();
|
|
result.set_len (1, is_sign_extended);
|
|
}
|
|
else
|
|
result.set_len (or_not_large (val, xi.val, xi.len, yi.val, yi.len,
|
|
precision), is_sign_extended);
|
|
return result;
|
|
}
|
|
|
|
/* Return X ^ Y. */
|
|
template <typename T1, typename T2>
|
|
inline WI_BINARY_RESULT (T1, T2)
|
|
wi::bit_xor (const T1 &x, const T2 &y)
|
|
{
|
|
WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
|
|
unsigned int precision = get_precision (result);
|
|
WIDE_INT_REF_FOR (T1) xi (x, precision);
|
|
WIDE_INT_REF_FOR (T2) yi (y, precision);
|
|
bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended;
|
|
if (__builtin_expect (xi.len + yi.len == 2, true))
|
|
{
|
|
val[0] = xi.ulow () ^ yi.ulow ();
|
|
result.set_len (1, is_sign_extended);
|
|
}
|
|
else
|
|
result.set_len (xor_large (val, xi.val, xi.len,
|
|
yi.val, yi.len, precision), is_sign_extended);
|
|
return result;
|
|
}
|
|
|
|
/* Return X + Y. */
|
|
template <typename T1, typename T2>
|
|
inline WI_BINARY_RESULT (T1, T2)
|
|
wi::add (const T1 &x, const T2 &y)
|
|
{
|
|
WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
|
|
unsigned int precision = get_precision (result);
|
|
WIDE_INT_REF_FOR (T1) xi (x, precision);
|
|
WIDE_INT_REF_FOR (T2) yi (y, precision);
|
|
if (precision <= HOST_BITS_PER_WIDE_INT)
|
|
{
|
|
val[0] = xi.ulow () + yi.ulow ();
|
|
result.set_len (1);
|
|
}
|
|
/* If the precision is known at compile time to be greater than
|
|
HOST_BITS_PER_WIDE_INT, we can optimize the single-HWI case
|
|
knowing that (a) all bits in those HWIs are significant and
|
|
(b) the result has room for at least two HWIs. This provides
|
|
a fast path for things like offset_int and widest_int.
|
|
|
|
The STATIC_CONSTANT_P test prevents this path from being
|
|
used for wide_ints. wide_ints with precisions greater than
|
|
HOST_BITS_PER_WIDE_INT are relatively rare and there's not much
|
|
point handling them inline. */
|
|
else if (STATIC_CONSTANT_P (precision > HOST_BITS_PER_WIDE_INT)
|
|
&& __builtin_expect (xi.len + yi.len == 2, true))
|
|
{
|
|
unsigned HOST_WIDE_INT xl = xi.ulow ();
|
|
unsigned HOST_WIDE_INT yl = yi.ulow ();
|
|
unsigned HOST_WIDE_INT resultl = xl + yl;
|
|
val[0] = resultl;
|
|
val[1] = (HOST_WIDE_INT) resultl < 0 ? 0 : -1;
|
|
result.set_len (1 + (((resultl ^ xl) & (resultl ^ yl))
|
|
>> (HOST_BITS_PER_WIDE_INT - 1)));
|
|
}
|
|
else
|
|
result.set_len (add_large (val, xi.val, xi.len,
|
|
yi.val, yi.len, precision,
|
|
UNSIGNED, 0));
|
|
return result;
|
|
}
|
|
|
|
/* Return X + Y. Treat X and Y as having the signednes given by SGN
|
|
and indicate in *OVERFLOW whether the operation overflowed. */
|
|
template <typename T1, typename T2>
|
|
inline WI_BINARY_RESULT (T1, T2)
|
|
wi::add (const T1 &x, const T2 &y, signop sgn, bool *overflow)
|
|
{
|
|
WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
|
|
unsigned int precision = get_precision (result);
|
|
WIDE_INT_REF_FOR (T1) xi (x, precision);
|
|
WIDE_INT_REF_FOR (T2) yi (y, precision);
|
|
if (precision <= HOST_BITS_PER_WIDE_INT)
|
|
{
|
|
unsigned HOST_WIDE_INT xl = xi.ulow ();
|
|
unsigned HOST_WIDE_INT yl = yi.ulow ();
|
|
unsigned HOST_WIDE_INT resultl = xl + yl;
|
|
if (sgn == SIGNED)
|
|
*overflow = (((resultl ^ xl) & (resultl ^ yl))
|
|
>> (precision - 1)) & 1;
|
|
else
|
|
*overflow = ((resultl << (HOST_BITS_PER_WIDE_INT - precision))
|
|
< (xl << (HOST_BITS_PER_WIDE_INT - precision)));
|
|
val[0] = resultl;
|
|
result.set_len (1);
|
|
}
|
|
else
|
|
result.set_len (add_large (val, xi.val, xi.len,
|
|
yi.val, yi.len, precision,
|
|
sgn, overflow));
|
|
return result;
|
|
}
|
|
|
|
/* Return X - Y. */
|
|
template <typename T1, typename T2>
|
|
inline WI_BINARY_RESULT (T1, T2)
|
|
wi::sub (const T1 &x, const T2 &y)
|
|
{
|
|
WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
|
|
unsigned int precision = get_precision (result);
|
|
WIDE_INT_REF_FOR (T1) xi (x, precision);
|
|
WIDE_INT_REF_FOR (T2) yi (y, precision);
|
|
if (precision <= HOST_BITS_PER_WIDE_INT)
|
|
{
|
|
val[0] = xi.ulow () - yi.ulow ();
|
|
result.set_len (1);
|
|
}
|
|
/* If the precision is known at compile time to be greater than
|
|
HOST_BITS_PER_WIDE_INT, we can optimize the single-HWI case
|
|
knowing that (a) all bits in those HWIs are significant and
|
|
(b) the result has room for at least two HWIs. This provides
|
|
a fast path for things like offset_int and widest_int.
|
|
|
|
The STATIC_CONSTANT_P test prevents this path from being
|
|
used for wide_ints. wide_ints with precisions greater than
|
|
HOST_BITS_PER_WIDE_INT are relatively rare and there's not much
|
|
point handling them inline. */
|
|
else if (STATIC_CONSTANT_P (precision > HOST_BITS_PER_WIDE_INT)
|
|
&& __builtin_expect (xi.len + yi.len == 2, true))
|
|
{
|
|
unsigned HOST_WIDE_INT xl = xi.ulow ();
|
|
unsigned HOST_WIDE_INT yl = yi.ulow ();
|
|
unsigned HOST_WIDE_INT resultl = xl - yl;
|
|
val[0] = resultl;
|
|
val[1] = (HOST_WIDE_INT) resultl < 0 ? 0 : -1;
|
|
result.set_len (1 + (((resultl ^ xl) & (xl ^ yl))
|
|
>> (HOST_BITS_PER_WIDE_INT - 1)));
|
|
}
|
|
else
|
|
result.set_len (sub_large (val, xi.val, xi.len,
|
|
yi.val, yi.len, precision,
|
|
UNSIGNED, 0));
|
|
return result;
|
|
}
|
|
|
|
/* Return X - Y. Treat X and Y as having the signednes given by SGN
|
|
and indicate in *OVERFLOW whether the operation overflowed. */
|
|
template <typename T1, typename T2>
|
|
inline WI_BINARY_RESULT (T1, T2)
|
|
wi::sub (const T1 &x, const T2 &y, signop sgn, bool *overflow)
|
|
{
|
|
WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
|
|
unsigned int precision = get_precision (result);
|
|
WIDE_INT_REF_FOR (T1) xi (x, precision);
|
|
WIDE_INT_REF_FOR (T2) yi (y, precision);
|
|
if (precision <= HOST_BITS_PER_WIDE_INT)
|
|
{
|
|
unsigned HOST_WIDE_INT xl = xi.ulow ();
|
|
unsigned HOST_WIDE_INT yl = yi.ulow ();
|
|
unsigned HOST_WIDE_INT resultl = xl - yl;
|
|
if (sgn == SIGNED)
|
|
*overflow = (((xl ^ yl) & (resultl ^ xl)) >> (precision - 1)) & 1;
|
|
else
|
|
*overflow = ((resultl << (HOST_BITS_PER_WIDE_INT - precision))
|
|
> (xl << (HOST_BITS_PER_WIDE_INT - precision)));
|
|
val[0] = resultl;
|
|
result.set_len (1);
|
|
}
|
|
else
|
|
result.set_len (sub_large (val, xi.val, xi.len,
|
|
yi.val, yi.len, precision,
|
|
sgn, overflow));
|
|
return result;
|
|
}
|
|
|
|
/* Return X * Y. */
|
|
template <typename T1, typename T2>
|
|
inline WI_BINARY_RESULT (T1, T2)
|
|
wi::mul (const T1 &x, const T2 &y)
|
|
{
|
|
WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
|
|
unsigned int precision = get_precision (result);
|
|
WIDE_INT_REF_FOR (T1) xi (x, precision);
|
|
WIDE_INT_REF_FOR (T2) yi (y, precision);
|
|
if (precision <= HOST_BITS_PER_WIDE_INT)
|
|
{
|
|
val[0] = xi.ulow () * yi.ulow ();
|
|
result.set_len (1);
|
|
}
|
|
else
|
|
result.set_len (mul_internal (val, xi.val, xi.len, yi.val, yi.len,
|
|
precision, UNSIGNED, 0, false));
|
|
return result;
|
|
}
|
|
|
|
/* Return X * Y. Treat X and Y as having the signednes given by SGN
|
|
and indicate in *OVERFLOW whether the operation overflowed. */
|
|
template <typename T1, typename T2>
|
|
inline WI_BINARY_RESULT (T1, T2)
|
|
wi::mul (const T1 &x, const T2 &y, signop sgn, bool *overflow)
|
|
{
|
|
WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
|
|
unsigned int precision = get_precision (result);
|
|
WIDE_INT_REF_FOR (T1) xi (x, precision);
|
|
WIDE_INT_REF_FOR (T2) yi (y, precision);
|
|
result.set_len (mul_internal (val, xi.val, xi.len,
|
|
yi.val, yi.len, precision,
|
|
sgn, overflow, false));
|
|
return result;
|
|
}
|
|
|
|
/* Return X * Y, treating both X and Y as signed values. Indicate in
|
|
*OVERFLOW whether the operation overflowed. */
|
|
template <typename T1, typename T2>
|
|
inline WI_BINARY_RESULT (T1, T2)
|
|
wi::smul (const T1 &x, const T2 &y, bool *overflow)
|
|
{
|
|
return mul (x, y, SIGNED, overflow);
|
|
}
|
|
|
|
/* Return X * Y, treating both X and Y as unsigned values. Indicate in
|
|
*OVERFLOW whether the operation overflowed. */
|
|
template <typename T1, typename T2>
|
|
inline WI_BINARY_RESULT (T1, T2)
|
|
wi::umul (const T1 &x, const T2 &y, bool *overflow)
|
|
{
|
|
return mul (x, y, UNSIGNED, overflow);
|
|
}
|
|
|
|
/* Perform a widening multiplication of X and Y, extending the values
|
|
according to SGN, and return the high part of the result. */
|
|
template <typename T1, typename T2>
|
|
inline WI_BINARY_RESULT (T1, T2)
|
|
wi::mul_high (const T1 &x, const T2 &y, signop sgn)
|
|
{
|
|
WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
|
|
unsigned int precision = get_precision (result);
|
|
WIDE_INT_REF_FOR (T1) xi (x, precision);
|
|
WIDE_INT_REF_FOR (T2) yi (y, precision);
|
|
result.set_len (mul_internal (val, xi.val, xi.len,
|
|
yi.val, yi.len, precision,
|
|
sgn, 0, true));
|
|
return result;
|
|
}
|
|
|
|
/* Return X / Y, rouding towards 0. Treat X and Y as having the
|
|
signedness given by SGN. Indicate in *OVERFLOW if the result
|
|
overflows. */
|
|
template <typename T1, typename T2>
|
|
inline WI_BINARY_RESULT (T1, T2)
|
|
wi::div_trunc (const T1 &x, const T2 &y, signop sgn, bool *overflow)
|
|
{
|
|
WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
|
|
unsigned int precision = get_precision (quotient);
|
|
WIDE_INT_REF_FOR (T1) xi (x, precision);
|
|
WIDE_INT_REF_FOR (T2) yi (y);
|
|
|
|
quotient.set_len (divmod_internal (quotient_val, 0, 0, xi.val, xi.len,
|
|
precision,
|
|
yi.val, yi.len, yi.precision,
|
|
sgn, overflow));
|
|
return quotient;
|
|
}
|
|
|
|
/* Return X / Y, rouding towards 0. Treat X and Y as signed values. */
|
|
template <typename T1, typename T2>
|
|
inline WI_BINARY_RESULT (T1, T2)
|
|
wi::sdiv_trunc (const T1 &x, const T2 &y)
|
|
{
|
|
return div_trunc (x, y, SIGNED);
|
|
}
|
|
|
|
/* Return X / Y, rouding towards 0. Treat X and Y as unsigned values. */
|
|
template <typename T1, typename T2>
|
|
inline WI_BINARY_RESULT (T1, T2)
|
|
wi::udiv_trunc (const T1 &x, const T2 &y)
|
|
{
|
|
return div_trunc (x, y, UNSIGNED);
|
|
}
|
|
|
|
/* Return X / Y, rouding towards -inf. Treat X and Y as having the
|
|
signedness given by SGN. Indicate in *OVERFLOW if the result
|
|
overflows. */
|
|
template <typename T1, typename T2>
|
|
inline WI_BINARY_RESULT (T1, T2)
|
|
wi::div_floor (const T1 &x, const T2 &y, signop sgn, bool *overflow)
|
|
{
|
|
WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
|
|
WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
|
|
unsigned int precision = get_precision (quotient);
|
|
WIDE_INT_REF_FOR (T1) xi (x, precision);
|
|
WIDE_INT_REF_FOR (T2) yi (y);
|
|
|
|
unsigned int remainder_len;
|
|
quotient.set_len (divmod_internal (quotient_val,
|
|
&remainder_len, remainder_val,
|
|
xi.val, xi.len, precision,
|
|
yi.val, yi.len, yi.precision, sgn,
|
|
overflow));
|
|
remainder.set_len (remainder_len);
|
|
if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn) && remainder != 0)
|
|
return quotient - 1;
|
|
return quotient;
|
|
}
|
|
|
|
/* Return X / Y, rouding towards -inf. Treat X and Y as signed values. */
|
|
template <typename T1, typename T2>
|
|
inline WI_BINARY_RESULT (T1, T2)
|
|
wi::sdiv_floor (const T1 &x, const T2 &y)
|
|
{
|
|
return div_floor (x, y, SIGNED);
|
|
}
|
|
|
|
/* Return X / Y, rouding towards -inf. Treat X and Y as unsigned values. */
|
|
/* ??? Why do we have both this and udiv_trunc. Aren't they the same? */
|
|
template <typename T1, typename T2>
|
|
inline WI_BINARY_RESULT (T1, T2)
|
|
wi::udiv_floor (const T1 &x, const T2 &y)
|
|
{
|
|
return div_floor (x, y, UNSIGNED);
|
|
}
|
|
|
|
/* Return X / Y, rouding towards +inf. Treat X and Y as having the
|
|
signedness given by SGN. Indicate in *OVERFLOW if the result
|
|
overflows. */
|
|
template <typename T1, typename T2>
|
|
inline WI_BINARY_RESULT (T1, T2)
|
|
wi::div_ceil (const T1 &x, const T2 &y, signop sgn, bool *overflow)
|
|
{
|
|
WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
|
|
WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
|
|
unsigned int precision = get_precision (quotient);
|
|
WIDE_INT_REF_FOR (T1) xi (x, precision);
|
|
WIDE_INT_REF_FOR (T2) yi (y);
|
|
|
|
unsigned int remainder_len;
|
|
quotient.set_len (divmod_internal (quotient_val,
|
|
&remainder_len, remainder_val,
|
|
xi.val, xi.len, precision,
|
|
yi.val, yi.len, yi.precision, sgn,
|
|
overflow));
|
|
remainder.set_len (remainder_len);
|
|
if (wi::neg_p (x, sgn) == wi::neg_p (y, sgn) && remainder != 0)
|
|
return quotient + 1;
|
|
return quotient;
|
|
}
|
|
|
|
/* Return X / Y, rouding towards nearest with ties away from zero.
|
|
Treat X and Y as having the signedness given by SGN. Indicate
|
|
in *OVERFLOW if the result overflows. */
|
|
template <typename T1, typename T2>
|
|
inline WI_BINARY_RESULT (T1, T2)
|
|
wi::div_round (const T1 &x, const T2 &y, signop sgn, bool *overflow)
|
|
{
|
|
WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
|
|
WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
|
|
unsigned int precision = get_precision (quotient);
|
|
WIDE_INT_REF_FOR (T1) xi (x, precision);
|
|
WIDE_INT_REF_FOR (T2) yi (y);
|
|
|
|
unsigned int remainder_len;
|
|
quotient.set_len (divmod_internal (quotient_val,
|
|
&remainder_len, remainder_val,
|
|
xi.val, xi.len, precision,
|
|
yi.val, yi.len, yi.precision, sgn,
|
|
overflow));
|
|
remainder.set_len (remainder_len);
|
|
|
|
if (remainder != 0)
|
|
{
|
|
if (sgn == SIGNED)
|
|
{
|
|
WI_BINARY_RESULT (T1, T2) abs_remainder = wi::abs (remainder);
|
|
if (wi::geu_p (abs_remainder, wi::sub (wi::abs (y), abs_remainder)))
|
|
{
|
|
if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn))
|
|
return quotient - 1;
|
|
else
|
|
return quotient + 1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (wi::geu_p (remainder, wi::sub (y, remainder)))
|
|
return quotient + 1;
|
|
}
|
|
}
|
|
return quotient;
|
|
}
|
|
|
|
/* Return X / Y, rouding towards 0. Treat X and Y as having the
|
|
signedness given by SGN. Store the remainder in *REMAINDER_PTR. */
|
|
template <typename T1, typename T2>
|
|
inline WI_BINARY_RESULT (T1, T2)
|
|
wi::divmod_trunc (const T1 &x, const T2 &y, signop sgn,
|
|
WI_BINARY_RESULT (T1, T2) *remainder_ptr)
|
|
{
|
|
WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
|
|
WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
|
|
unsigned int precision = get_precision (quotient);
|
|
WIDE_INT_REF_FOR (T1) xi (x, precision);
|
|
WIDE_INT_REF_FOR (T2) yi (y);
|
|
|
|
unsigned int remainder_len;
|
|
quotient.set_len (divmod_internal (quotient_val,
|
|
&remainder_len, remainder_val,
|
|
xi.val, xi.len, precision,
|
|
yi.val, yi.len, yi.precision, sgn, 0));
|
|
remainder.set_len (remainder_len);
|
|
|
|
*remainder_ptr = remainder;
|
|
return quotient;
|
|
}
|
|
|
|
/* Compute the greatest common divisor of two numbers A and B using
|
|
Euclid's algorithm. */
|
|
template <typename T1, typename T2>
|
|
inline WI_BINARY_RESULT (T1, T2)
|
|
wi::gcd (const T1 &a, const T2 &b, signop sgn)
|
|
{
|
|
T1 x, y, z;
|
|
|
|
x = wi::abs (a);
|
|
y = wi::abs (b);
|
|
|
|
while (gt_p (x, 0, sgn))
|
|
{
|
|
z = mod_trunc (y, x, sgn);
|
|
y = x;
|
|
x = z;
|
|
}
|
|
|
|
return y;
|
|
}
|
|
|
|
/* Compute X / Y, rouding towards 0, and return the remainder.
|
|
Treat X and Y as having the signedness given by SGN. Indicate
|
|
in *OVERFLOW if the division overflows. */
|
|
template <typename T1, typename T2>
|
|
inline WI_BINARY_RESULT (T1, T2)
|
|
wi::mod_trunc (const T1 &x, const T2 &y, signop sgn, bool *overflow)
|
|
{
|
|
WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
|
|
unsigned int precision = get_precision (remainder);
|
|
WIDE_INT_REF_FOR (T1) xi (x, precision);
|
|
WIDE_INT_REF_FOR (T2) yi (y);
|
|
|
|
unsigned int remainder_len;
|
|
divmod_internal (0, &remainder_len, remainder_val,
|
|
xi.val, xi.len, precision,
|
|
yi.val, yi.len, yi.precision, sgn, overflow);
|
|
remainder.set_len (remainder_len);
|
|
|
|
return remainder;
|
|
}
|
|
|
|
/* Compute X / Y, rouding towards 0, and return the remainder.
|
|
Treat X and Y as signed values. */
|
|
template <typename T1, typename T2>
|
|
inline WI_BINARY_RESULT (T1, T2)
|
|
wi::smod_trunc (const T1 &x, const T2 &y)
|
|
{
|
|
return mod_trunc (x, y, SIGNED);
|
|
}
|
|
|
|
/* Compute X / Y, rouding towards 0, and return the remainder.
|
|
Treat X and Y as unsigned values. */
|
|
template <typename T1, typename T2>
|
|
inline WI_BINARY_RESULT (T1, T2)
|
|
wi::umod_trunc (const T1 &x, const T2 &y)
|
|
{
|
|
return mod_trunc (x, y, UNSIGNED);
|
|
}
|
|
|
|
/* Compute X / Y, rouding towards -inf, and return the remainder.
|
|
Treat X and Y as having the signedness given by SGN. Indicate
|
|
in *OVERFLOW if the division overflows. */
|
|
template <typename T1, typename T2>
|
|
inline WI_BINARY_RESULT (T1, T2)
|
|
wi::mod_floor (const T1 &x, const T2 &y, signop sgn, bool *overflow)
|
|
{
|
|
WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
|
|
WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
|
|
unsigned int precision = get_precision (quotient);
|
|
WIDE_INT_REF_FOR (T1) xi (x, precision);
|
|
WIDE_INT_REF_FOR (T2) yi (y);
|
|
|
|
unsigned int remainder_len;
|
|
quotient.set_len (divmod_internal (quotient_val,
|
|
&remainder_len, remainder_val,
|
|
xi.val, xi.len, precision,
|
|
yi.val, yi.len, yi.precision, sgn,
|
|
overflow));
|
|
remainder.set_len (remainder_len);
|
|
|
|
if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn) && remainder != 0)
|
|
return remainder + y;
|
|
return remainder;
|
|
}
|
|
|
|
/* Compute X / Y, rouding towards -inf, and return the remainder.
|
|
Treat X and Y as unsigned values. */
|
|
/* ??? Why do we have both this and umod_trunc. Aren't they the same? */
|
|
template <typename T1, typename T2>
|
|
inline WI_BINARY_RESULT (T1, T2)
|
|
wi::umod_floor (const T1 &x, const T2 &y)
|
|
{
|
|
return mod_floor (x, y, UNSIGNED);
|
|
}
|
|
|
|
/* Compute X / Y, rouding towards +inf, and return the remainder.
|
|
Treat X and Y as having the signedness given by SGN. Indicate
|
|
in *OVERFLOW if the division overflows. */
|
|
template <typename T1, typename T2>
|
|
inline WI_BINARY_RESULT (T1, T2)
|
|
wi::mod_ceil (const T1 &x, const T2 &y, signop sgn, bool *overflow)
|
|
{
|
|
WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
|
|
WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
|
|
unsigned int precision = get_precision (quotient);
|
|
WIDE_INT_REF_FOR (T1) xi (x, precision);
|
|
WIDE_INT_REF_FOR (T2) yi (y);
|
|
|
|
unsigned int remainder_len;
|
|
quotient.set_len (divmod_internal (quotient_val,
|
|
&remainder_len, remainder_val,
|
|
xi.val, xi.len, precision,
|
|
yi.val, yi.len, yi.precision, sgn,
|
|
overflow));
|
|
remainder.set_len (remainder_len);
|
|
|
|
if (wi::neg_p (x, sgn) == wi::neg_p (y, sgn) && remainder != 0)
|
|
return remainder - y;
|
|
return remainder;
|
|
}
|
|
|
|
/* Compute X / Y, rouding towards nearest with ties away from zero,
|
|
and return the remainder. Treat X and Y as having the signedness
|
|
given by SGN. Indicate in *OVERFLOW if the division overflows. */
|
|
template <typename T1, typename T2>
|
|
inline WI_BINARY_RESULT (T1, T2)
|
|
wi::mod_round (const T1 &x, const T2 &y, signop sgn, bool *overflow)
|
|
{
|
|
WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
|
|
WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
|
|
unsigned int precision = get_precision (quotient);
|
|
WIDE_INT_REF_FOR (T1) xi (x, precision);
|
|
WIDE_INT_REF_FOR (T2) yi (y);
|
|
|
|
unsigned int remainder_len;
|
|
quotient.set_len (divmod_internal (quotient_val,
|
|
&remainder_len, remainder_val,
|
|
xi.val, xi.len, precision,
|
|
yi.val, yi.len, yi.precision, sgn,
|
|
overflow));
|
|
remainder.set_len (remainder_len);
|
|
|
|
if (remainder != 0)
|
|
{
|
|
if (sgn == SIGNED)
|
|
{
|
|
WI_BINARY_RESULT (T1, T2) abs_remainder = wi::abs (remainder);
|
|
if (wi::geu_p (abs_remainder, wi::sub (wi::abs (y), abs_remainder)))
|
|
{
|
|
if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn))
|
|
return remainder + y;
|
|
else
|
|
return remainder - y;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (wi::geu_p (remainder, wi::sub (y, remainder)))
|
|
return remainder - y;
|
|
}
|
|
}
|
|
return remainder;
|
|
}
|
|
|
|
/* Return true if X is a multiple of Y. Treat X and Y as having the
|
|
signedness given by SGN. */
|
|
template <typename T1, typename T2>
|
|
inline bool
|
|
wi::multiple_of_p (const T1 &x, const T2 &y, signop sgn)
|
|
{
|
|
return wi::mod_trunc (x, y, sgn) == 0;
|
|
}
|
|
|
|
/* Return true if X is a multiple of Y, storing X / Y in *RES if so.
|
|
Treat X and Y as having the signedness given by SGN. */
|
|
template <typename T1, typename T2>
|
|
inline bool
|
|
wi::multiple_of_p (const T1 &x, const T2 &y, signop sgn,
|
|
WI_BINARY_RESULT (T1, T2) *res)
|
|
{
|
|
WI_BINARY_RESULT (T1, T2) remainder;
|
|
WI_BINARY_RESULT (T1, T2) quotient
|
|
= divmod_trunc (x, y, sgn, &remainder);
|
|
if (remainder == 0)
|
|
{
|
|
*res = quotient;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Return X << Y. Return 0 if Y is greater than or equal to
|
|
the precision of X. */
|
|
template <typename T1, typename T2>
|
|
inline WI_UNARY_RESULT (T1)
|
|
wi::lshift (const T1 &x, const T2 &y)
|
|
{
|
|
WI_UNARY_RESULT_VAR (result, val, T1, x);
|
|
unsigned int precision = get_precision (result);
|
|
WIDE_INT_REF_FOR (T1) xi (x, precision);
|
|
WIDE_INT_REF_FOR (T2) yi (y);
|
|
/* Handle the simple cases quickly. */
|
|
if (geu_p (yi, precision))
|
|
{
|
|
val[0] = 0;
|
|
result.set_len (1);
|
|
}
|
|
else
|
|
{
|
|
unsigned int shift = yi.to_uhwi ();
|
|
/* For fixed-precision integers like offset_int and widest_int,
|
|
handle the case where the shift value is constant and the
|
|
result is a single nonnegative HWI (meaning that we don't
|
|
need to worry about val[1]). This is particularly common
|
|
for converting a byte count to a bit count.
|
|
|
|
For variable-precision integers like wide_int, handle HWI
|
|
and sub-HWI integers inline. */
|
|
if (STATIC_CONSTANT_P (xi.precision > HOST_BITS_PER_WIDE_INT)
|
|
? (STATIC_CONSTANT_P (shift < HOST_BITS_PER_WIDE_INT - 1)
|
|
&& xi.len == 1
|
|
&& xi.val[0] <= (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT)
|
|
HOST_WIDE_INT_MAX >> shift))
|
|
: precision <= HOST_BITS_PER_WIDE_INT)
|
|
{
|
|
val[0] = xi.ulow () << shift;
|
|
result.set_len (1);
|
|
}
|
|
else
|
|
result.set_len (lshift_large (val, xi.val, xi.len,
|
|
precision, shift));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/* Return X >> Y, using a logical shift. Return 0 if Y is greater than
|
|
or equal to the precision of X. */
|
|
template <typename T1, typename T2>
|
|
inline WI_UNARY_RESULT (T1)
|
|
wi::lrshift (const T1 &x, const T2 &y)
|
|
{
|
|
WI_UNARY_RESULT_VAR (result, val, T1, x);
|
|
/* Do things in the precision of the input rather than the output,
|
|
since the result can be no larger than that. */
|
|
WIDE_INT_REF_FOR (T1) xi (x);
|
|
WIDE_INT_REF_FOR (T2) yi (y);
|
|
/* Handle the simple cases quickly. */
|
|
if (geu_p (yi, xi.precision))
|
|
{
|
|
val[0] = 0;
|
|
result.set_len (1);
|
|
}
|
|
else
|
|
{
|
|
unsigned int shift = yi.to_uhwi ();
|
|
/* For fixed-precision integers like offset_int and widest_int,
|
|
handle the case where the shift value is constant and the
|
|
shifted value is a single nonnegative HWI (meaning that all
|
|
bits above the HWI are zero). This is particularly common
|
|
for converting a bit count to a byte count.
|
|
|
|
For variable-precision integers like wide_int, handle HWI
|
|
and sub-HWI integers inline. */
|
|
if (STATIC_CONSTANT_P (xi.precision > HOST_BITS_PER_WIDE_INT)
|
|
? (shift < HOST_BITS_PER_WIDE_INT
|
|
&& xi.len == 1
|
|
&& xi.val[0] >= 0)
|
|
: xi.precision <= HOST_BITS_PER_WIDE_INT)
|
|
{
|
|
val[0] = xi.to_uhwi () >> shift;
|
|
result.set_len (1);
|
|
}
|
|
else
|
|
result.set_len (lrshift_large (val, xi.val, xi.len, xi.precision,
|
|
get_precision (result), shift));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/* Return X >> Y, using an arithmetic shift. Return a sign mask if
|
|
Y is greater than or equal to the precision of X. */
|
|
template <typename T1, typename T2>
|
|
inline WI_UNARY_RESULT (T1)
|
|
wi::arshift (const T1 &x, const T2 &y)
|
|
{
|
|
WI_UNARY_RESULT_VAR (result, val, T1, x);
|
|
/* Do things in the precision of the input rather than the output,
|
|
since the result can be no larger than that. */
|
|
WIDE_INT_REF_FOR (T1) xi (x);
|
|
WIDE_INT_REF_FOR (T2) yi (y);
|
|
/* Handle the simple cases quickly. */
|
|
if (geu_p (yi, xi.precision))
|
|
{
|
|
val[0] = sign_mask (x);
|
|
result.set_len (1);
|
|
}
|
|
else
|
|
{
|
|
unsigned int shift = yi.to_uhwi ();
|
|
if (xi.precision <= HOST_BITS_PER_WIDE_INT)
|
|
{
|
|
val[0] = sext_hwi (xi.ulow () >> shift, xi.precision - shift);
|
|
result.set_len (1, true);
|
|
}
|
|
else
|
|
result.set_len (arshift_large (val, xi.val, xi.len, xi.precision,
|
|
get_precision (result), shift));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/* Return X >> Y, using an arithmetic shift if SGN is SIGNED and a
|
|
logical shift otherwise. */
|
|
template <typename T1, typename T2>
|
|
inline WI_UNARY_RESULT (T1)
|
|
wi::rshift (const T1 &x, const T2 &y, signop sgn)
|
|
{
|
|
if (sgn == UNSIGNED)
|
|
return lrshift (x, y);
|
|
else
|
|
return arshift (x, y);
|
|
}
|
|
|
|
/* Return the result of rotating the low WIDTH bits of X left by Y
|
|
bits and zero-extending the result. Use a full-width rotate if
|
|
WIDTH is zero. */
|
|
template <typename T1, typename T2>
|
|
WI_UNARY_RESULT (T1)
|
|
wi::lrotate (const T1 &x, const T2 &y, unsigned int width)
|
|
{
|
|
unsigned int precision = get_binary_precision (x, x);
|
|
if (width == 0)
|
|
width = precision;
|
|
WI_UNARY_RESULT (T2) ymod = umod_trunc (y, width);
|
|
WI_UNARY_RESULT (T1) left = wi::lshift (x, ymod);
|
|
WI_UNARY_RESULT (T1) right = wi::lrshift (x, wi::sub (width, ymod));
|
|
if (width != precision)
|
|
return wi::zext (left, width) | wi::zext (right, width);
|
|
return left | right;
|
|
}
|
|
|
|
/* Return the result of rotating the low WIDTH bits of X right by Y
|
|
bits and zero-extending the result. Use a full-width rotate if
|
|
WIDTH is zero. */
|
|
template <typename T1, typename T2>
|
|
WI_UNARY_RESULT (T1)
|
|
wi::rrotate (const T1 &x, const T2 &y, unsigned int width)
|
|
{
|
|
unsigned int precision = get_binary_precision (x, x);
|
|
if (width == 0)
|
|
width = precision;
|
|
WI_UNARY_RESULT (T2) ymod = umod_trunc (y, width);
|
|
WI_UNARY_RESULT (T1) right = wi::lrshift (x, ymod);
|
|
WI_UNARY_RESULT (T1) left = wi::lshift (x, wi::sub (width, ymod));
|
|
if (width != precision)
|
|
return wi::zext (left, width) | wi::zext (right, width);
|
|
return left | right;
|
|
}
|
|
|
|
/* Return 0 if the number of 1s in X is even and 1 if the number of 1s
|
|
is odd. */
|
|
inline int
|
|
wi::parity (const wide_int_ref &x)
|
|
{
|
|
return popcount (x) & 1;
|
|
}
|
|
|
|
/* Extract WIDTH bits from X, starting at BITPOS. */
|
|
template <typename T>
|
|
inline unsigned HOST_WIDE_INT
|
|
wi::extract_uhwi (const T &x, unsigned int bitpos, unsigned int width)
|
|
{
|
|
unsigned precision = get_precision (x);
|
|
if (precision < bitpos + width)
|
|
precision = bitpos + width;
|
|
WIDE_INT_REF_FOR (T) xi (x, precision);
|
|
|
|
/* Handle this rare case after the above, so that we assert about
|
|
bogus BITPOS values. */
|
|
if (width == 0)
|
|
return 0;
|
|
|
|
unsigned int start = bitpos / HOST_BITS_PER_WIDE_INT;
|
|
unsigned int shift = bitpos % HOST_BITS_PER_WIDE_INT;
|
|
unsigned HOST_WIDE_INT res = xi.elt (start);
|
|
res >>= shift;
|
|
if (shift + width > HOST_BITS_PER_WIDE_INT)
|
|
{
|
|
unsigned HOST_WIDE_INT upper = xi.elt (start + 1);
|
|
res |= upper << (-shift % HOST_BITS_PER_WIDE_INT);
|
|
}
|
|
return zext_hwi (res, width);
|
|
}
|
|
|
|
/* Return the minimum precision needed to store X with sign SGN. */
|
|
template <typename T>
|
|
inline unsigned int
|
|
wi::min_precision (const T &x, signop sgn)
|
|
{
|
|
if (sgn == SIGNED)
|
|
return get_precision (x) - clrsb (x);
|
|
else
|
|
return get_precision (x) - clz (x);
|
|
}
|
|
|
|
#define SIGNED_BINARY_PREDICATE(OP, F) \
|
|
template <typename T1, typename T2> \
|
|
inline WI_SIGNED_BINARY_PREDICATE_RESULT (T1, T2) \
|
|
OP (const T1 &x, const T2 &y) \
|
|
{ \
|
|
return wi::F (x, y); \
|
|
}
|
|
|
|
SIGNED_BINARY_PREDICATE (operator <, lts_p)
|
|
SIGNED_BINARY_PREDICATE (operator <=, les_p)
|
|
SIGNED_BINARY_PREDICATE (operator >, gts_p)
|
|
SIGNED_BINARY_PREDICATE (operator >=, ges_p)
|
|
|
|
#undef SIGNED_BINARY_PREDICATE
|
|
|
|
template <typename T1, typename T2>
|
|
inline WI_SIGNED_SHIFT_RESULT (T1, T2)
|
|
operator << (const T1 &x, const T2 &y)
|
|
{
|
|
return wi::lshift (x, y);
|
|
}
|
|
|
|
template <typename T1, typename T2>
|
|
inline WI_SIGNED_SHIFT_RESULT (T1, T2)
|
|
operator >> (const T1 &x, const T2 &y)
|
|
{
|
|
return wi::arshift (x, y);
|
|
}
|
|
|
|
template<typename T>
|
|
void
|
|
gt_ggc_mx (generic_wide_int <T> *)
|
|
{
|
|
}
|
|
|
|
template<typename T>
|
|
void
|
|
gt_pch_nx (generic_wide_int <T> *)
|
|
{
|
|
}
|
|
|
|
template<typename T>
|
|
void
|
|
gt_pch_nx (generic_wide_int <T> *, void (*) (void *, void *), void *)
|
|
{
|
|
}
|
|
|
|
template<int N>
|
|
void
|
|
gt_ggc_mx (trailing_wide_ints <N> *)
|
|
{
|
|
}
|
|
|
|
template<int N>
|
|
void
|
|
gt_pch_nx (trailing_wide_ints <N> *)
|
|
{
|
|
}
|
|
|
|
template<int N>
|
|
void
|
|
gt_pch_nx (trailing_wide_ints <N> *, void (*) (void *, void *), void *)
|
|
{
|
|
}
|
|
|
|
namespace wi
|
|
{
|
|
/* Used for overloaded functions in which the only other acceptable
|
|
scalar type is a pointer. It stops a plain 0 from being treated
|
|
as a null pointer. */
|
|
struct never_used1 {};
|
|
struct never_used2 {};
|
|
|
|
wide_int min_value (unsigned int, signop);
|
|
wide_int min_value (never_used1 *);
|
|
wide_int min_value (never_used2 *);
|
|
wide_int max_value (unsigned int, signop);
|
|
wide_int max_value (never_used1 *);
|
|
wide_int max_value (never_used2 *);
|
|
|
|
/* FIXME: this is target dependent, so should be elsewhere.
|
|
It also seems to assume that CHAR_BIT == BITS_PER_UNIT. */
|
|
wide_int from_buffer (const unsigned char *, unsigned int);
|
|
|
|
#ifndef GENERATOR_FILE
|
|
void to_mpz (const wide_int_ref &, mpz_t, signop);
|
|
#endif
|
|
|
|
wide_int mask (unsigned int, bool, unsigned int);
|
|
wide_int shifted_mask (unsigned int, unsigned int, bool, unsigned int);
|
|
wide_int set_bit_in_zero (unsigned int, unsigned int);
|
|
wide_int insert (const wide_int &x, const wide_int &y, unsigned int,
|
|
unsigned int);
|
|
|
|
template <typename T>
|
|
T mask (unsigned int, bool);
|
|
|
|
template <typename T>
|
|
T shifted_mask (unsigned int, unsigned int, bool);
|
|
|
|
template <typename T>
|
|
T set_bit_in_zero (unsigned int);
|
|
|
|
unsigned int mask (HOST_WIDE_INT *, unsigned int, bool, unsigned int);
|
|
unsigned int shifted_mask (HOST_WIDE_INT *, unsigned int, unsigned int,
|
|
bool, unsigned int);
|
|
unsigned int from_array (HOST_WIDE_INT *, const HOST_WIDE_INT *,
|
|
unsigned int, unsigned int, bool);
|
|
}
|
|
|
|
/* Return a PRECISION-bit integer in which the low WIDTH bits are set
|
|
and the other bits are clear, or the inverse if NEGATE_P. */
|
|
inline wide_int
|
|
wi::mask (unsigned int width, bool negate_p, unsigned int precision)
|
|
{
|
|
wide_int result = wide_int::create (precision);
|
|
result.set_len (mask (result.write_val (), width, negate_p, precision));
|
|
return result;
|
|
}
|
|
|
|
/* Return a PRECISION-bit integer in which the low START bits are clear,
|
|
the next WIDTH bits are set, and the other bits are clear,
|
|
or the inverse if NEGATE_P. */
|
|
inline wide_int
|
|
wi::shifted_mask (unsigned int start, unsigned int width, bool negate_p,
|
|
unsigned int precision)
|
|
{
|
|
wide_int result = wide_int::create (precision);
|
|
result.set_len (shifted_mask (result.write_val (), start, width, negate_p,
|
|
precision));
|
|
return result;
|
|
}
|
|
|
|
/* Return a PRECISION-bit integer in which bit BIT is set and all the
|
|
others are clear. */
|
|
inline wide_int
|
|
wi::set_bit_in_zero (unsigned int bit, unsigned int precision)
|
|
{
|
|
return shifted_mask (bit, 1, false, precision);
|
|
}
|
|
|
|
/* Return an integer of type T in which the low WIDTH bits are set
|
|
and the other bits are clear, or the inverse if NEGATE_P. */
|
|
template <typename T>
|
|
inline T
|
|
wi::mask (unsigned int width, bool negate_p)
|
|
{
|
|
STATIC_ASSERT (wi::int_traits<T>::precision);
|
|
T result;
|
|
result.set_len (mask (result.write_val (), width, negate_p,
|
|
wi::int_traits <T>::precision));
|
|
return result;
|
|
}
|
|
|
|
/* Return an integer of type T in which the low START bits are clear,
|
|
the next WIDTH bits are set, and the other bits are clear, or the
|
|
inverse if NEGATE_P. */
|
|
template <typename T>
|
|
inline T
|
|
wi::shifted_mask (unsigned int start, unsigned int width, bool negate_p)
|
|
{
|
|
STATIC_ASSERT (wi::int_traits<T>::precision);
|
|
T result;
|
|
result.set_len (shifted_mask (result.write_val (), start, width,
|
|
negate_p,
|
|
wi::int_traits <T>::precision));
|
|
return result;
|
|
}
|
|
|
|
/* Return an integer of type T in which bit BIT is set and all the
|
|
others are clear. */
|
|
template <typename T>
|
|
inline T
|
|
wi::set_bit_in_zero (unsigned int bit)
|
|
{
|
|
return shifted_mask <T> (bit, 1, false);
|
|
}
|
|
|
|
#endif /* WIDE_INT_H */
|