e36711f3cd
2007-06-23 Richard Guenther <rguenther@suse.de> PR tree-optimization/16876 PR middle-end/29478 * tree.h (CALL_CANNOT_INLINE_P): New macro to access static_flag for CALL_EXPRs. * tree-inline.c (initialize_inlined_parameters): Do not call lang_hooks.tree_inlining.convert_parm_for_inlining. * cgraphbuild.c (initialize_inline_failed): Set inline failed reason for mismatched types. * gimplify.c (gimplify_call_expr): Verify the call expression arguments match the called function type signature. Otherwise mark the call expression to be not considered for inlining using CALL_CANNOT_INLINE_P flag. * ipa-inline.c (cgraph_mark_inline): Honor CALL_CANNOT_INLINE_P on the edges call expression. (cgraph_decide_inlining_of_small_function): Likewise. (cgraph_decide_inlining): Likewise. * c-objc-common.h (LANG_HOOKS_TREE_INLINING_CONVERT_PARM_FOR_INLINING): Remove define. * c-tree.h (c_convert_parm_for_inlining): Remove declaration. * c-typeck.c (c_convert_parm_for_inlining): Remove. * langhooks-def.h (lhd_tree_inlining_convert_parm_for_inlining): Remove declaration. (LANG_HOOKS_TREE_INLINING_CONVERT_PARM_FOR_INLINING): Remove define. * langhooks.c (lhd_tree_inlining_convert_parm_for_inlining): Remove. * langhooks.h (struct lang_hooks_for_tree_inlining): Remove convert_parm_for_inlining member. * gcc.dg/pr29254.c: The warning is bogus. * gcc.dg/warn-1.c: Likewise. * gcc.dg/assign-warn-3.c: Likewise. * gcc.dg/noncompile/pr16876.c: The testcase is bogus, remove. From-SVN: r125974
1615 lines
49 KiB
C
1615 lines
49 KiB
C
/* Inlining decision heuristics.
|
|
Copyright (C) 2003, 2004 Free Software Foundation, Inc.
|
|
Contributed by Jan Hubicka
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 2, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING. If not, write to the Free
|
|
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
|
|
02110-1301, USA. */
|
|
|
|
/* Inlining decision heuristics
|
|
|
|
We separate inlining decisions from the inliner itself and store it
|
|
inside callgraph as so called inline plan. Refer to cgraph.c
|
|
documentation about particular representation of inline plans in the
|
|
callgraph.
|
|
|
|
There are three major parts of this file:
|
|
|
|
cgraph_mark_inline implementation
|
|
|
|
This function allows to mark given call inline and performs necessary
|
|
modifications of cgraph (production of the clones and updating overall
|
|
statistics)
|
|
|
|
inlining heuristics limits
|
|
|
|
These functions allow to check that particular inlining is allowed
|
|
by the limits specified by user (allowed function growth, overall unit
|
|
growth and so on).
|
|
|
|
inlining heuristics
|
|
|
|
This is implementation of IPA pass aiming to get as much of benefit
|
|
from inlining obeying the limits checked above.
|
|
|
|
The implementation of particular heuristics is separated from
|
|
the rest of code to make it easier to replace it with more complicated
|
|
implementation in the future. The rest of inlining code acts as a
|
|
library aimed to modify the callgraph and verify that the parameters
|
|
on code size growth fits.
|
|
|
|
To mark given call inline, use cgraph_mark_inline function, the
|
|
verification is performed by cgraph_default_inline_p and
|
|
cgraph_check_inline_limits.
|
|
|
|
The heuristics implements simple knapsack style algorithm ordering
|
|
all functions by their "profitability" (estimated by code size growth)
|
|
and inlining them in priority order.
|
|
|
|
cgraph_decide_inlining implements heuristics taking whole callgraph
|
|
into account, while cgraph_decide_inlining_incrementally considers
|
|
only one function at a time and is used in non-unit-at-a-time mode.
|
|
|
|
The inliner itself is split into several passes:
|
|
|
|
pass_inline_parameters
|
|
|
|
This pass computes local properties of functions that are used by inliner:
|
|
estimated function body size, whether function is inlinable at all and
|
|
stack frame consumption.
|
|
|
|
Before executing any of inliner passes, this local pass has to be applied
|
|
to each function in the callgraph (ie run as subpass of some earlier
|
|
IPA pass). The results are made out of date by any optimization applied
|
|
on the function body.
|
|
|
|
pass_early_inlining
|
|
|
|
Simple local inlining pass inlining callees into current function. This
|
|
pass makes no global whole compilation unit analysis and this when allowed
|
|
to do inlining expanding code size it might result in unbounded growth of
|
|
whole unit.
|
|
|
|
This is the main inlining pass in non-unit-at-a-time.
|
|
|
|
With unit-at-a-time the pass is run during conversion into SSA form.
|
|
Only functions already converted into SSA form are inlined, so the
|
|
conversion must happen in topological order on the callgraph (that is
|
|
maintained by pass manager). The functions after inlining are early
|
|
optimized so the early inliner sees unoptimized function itself, but
|
|
all considered callees are already optimized allowing it to unfold
|
|
abstraction penalty on C++ effectively and cheaply.
|
|
|
|
pass_ipa_early_inlining
|
|
|
|
With profiling, the early inlining is also necessary to reduce
|
|
instrumentation costs on program with high abstraction penalty (doing
|
|
many redundant calls). This can't happen in parallel with early
|
|
optimization and profile instrumentation, because we would end up
|
|
re-instrumenting already instrumented function bodies we brought in via
|
|
inlining.
|
|
|
|
To avoid this, this pass is executed as IPA pass before profiling. It is
|
|
simple wrapper to pass_early_inlining and ensures first inlining.
|
|
|
|
pass_ipa_inline
|
|
|
|
This is the main pass implementing simple greedy algorithm to do inlining
|
|
of small functions that results in overall growth of compilation unit and
|
|
inlining of functions called once. The pass compute just so called inline
|
|
plan (representation of inlining to be done in callgraph) and unlike early
|
|
inlining it is not performing the inlining itself.
|
|
|
|
pass_apply_inline
|
|
|
|
This pass performs actual inlining according to pass_ipa_inline on given
|
|
function. Possible the function body before inlining is saved when it is
|
|
needed for further inlining later.
|
|
*/
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "tm.h"
|
|
#include "tree.h"
|
|
#include "tree-inline.h"
|
|
#include "langhooks.h"
|
|
#include "flags.h"
|
|
#include "cgraph.h"
|
|
#include "diagnostic.h"
|
|
#include "timevar.h"
|
|
#include "params.h"
|
|
#include "fibheap.h"
|
|
#include "intl.h"
|
|
#include "tree-pass.h"
|
|
#include "hashtab.h"
|
|
#include "coverage.h"
|
|
#include "ggc.h"
|
|
#include "tree-flow.h"
|
|
#include "rtl.h"
|
|
|
|
/* Mode incremental inliner operate on:
|
|
|
|
In ALWAYS_INLINE only functions marked
|
|
always_inline are inlined. This mode is used after detecting cycle during
|
|
flattening.
|
|
|
|
In SIZE mode, only functions that reduce function body size after inlining
|
|
are inlined, this is used during early inlining.
|
|
|
|
In SPEED mode, all small functions are inlined. This might result in
|
|
unbounded growth of compilation unit and is used only in non-unit-at-a-time
|
|
mode.
|
|
|
|
in ALL mode, everything is inlined. This is used during flattening. */
|
|
enum inlining_mode {
|
|
INLINE_NONE = 0,
|
|
INLINE_ALWAYS_INLINE,
|
|
INLINE_SIZE,
|
|
INLINE_SPEED,
|
|
INLINE_ALL
|
|
};
|
|
static bool
|
|
cgraph_decide_inlining_incrementally (struct cgraph_node *, enum inlining_mode,
|
|
int);
|
|
|
|
|
|
/* Statistics we collect about inlining algorithm. */
|
|
static int ncalls_inlined;
|
|
static int nfunctions_inlined;
|
|
static int overall_insns;
|
|
static gcov_type max_count;
|
|
|
|
/* Estimate size of the function after inlining WHAT into TO. */
|
|
|
|
static int
|
|
cgraph_estimate_size_after_inlining (int times, struct cgraph_node *to,
|
|
struct cgraph_node *what)
|
|
{
|
|
int size;
|
|
tree fndecl = what->decl, arg;
|
|
int call_insns = PARAM_VALUE (PARAM_INLINE_CALL_COST);
|
|
|
|
for (arg = DECL_ARGUMENTS (fndecl); arg; arg = TREE_CHAIN (arg))
|
|
call_insns += estimate_move_cost (TREE_TYPE (arg));
|
|
size = (what->global.insns - call_insns) * times + to->global.insns;
|
|
gcc_assert (size >= 0);
|
|
return size;
|
|
}
|
|
|
|
/* E is expected to be an edge being inlined. Clone destination node of
|
|
the edge and redirect it to the new clone.
|
|
DUPLICATE is used for bookkeeping on whether we are actually creating new
|
|
clones or re-using node originally representing out-of-line function call.
|
|
*/
|
|
void
|
|
cgraph_clone_inlined_nodes (struct cgraph_edge *e, bool duplicate, bool update_original)
|
|
{
|
|
HOST_WIDE_INT peak;
|
|
if (duplicate)
|
|
{
|
|
/* We may eliminate the need for out-of-line copy to be output.
|
|
In that case just go ahead and re-use it. */
|
|
if (!e->callee->callers->next_caller
|
|
&& !e->callee->needed
|
|
&& !cgraph_new_nodes
|
|
&& flag_unit_at_a_time)
|
|
{
|
|
gcc_assert (!e->callee->global.inlined_to);
|
|
if (DECL_SAVED_TREE (e->callee->decl))
|
|
overall_insns -= e->callee->global.insns, nfunctions_inlined++;
|
|
duplicate = false;
|
|
}
|
|
else
|
|
{
|
|
struct cgraph_node *n;
|
|
n = cgraph_clone_node (e->callee, e->count, e->frequency, e->loop_nest,
|
|
update_original);
|
|
cgraph_redirect_edge_callee (e, n);
|
|
}
|
|
}
|
|
|
|
if (e->caller->global.inlined_to)
|
|
e->callee->global.inlined_to = e->caller->global.inlined_to;
|
|
else
|
|
e->callee->global.inlined_to = e->caller;
|
|
e->callee->global.stack_frame_offset
|
|
= e->caller->global.stack_frame_offset + e->caller->local.estimated_self_stack_size;
|
|
peak = e->callee->global.stack_frame_offset + e->callee->local.estimated_self_stack_size;
|
|
if (e->callee->global.inlined_to->global.estimated_stack_size < peak)
|
|
e->callee->global.inlined_to->global.estimated_stack_size = peak;
|
|
|
|
/* Recursively clone all bodies. */
|
|
for (e = e->callee->callees; e; e = e->next_callee)
|
|
if (!e->inline_failed)
|
|
cgraph_clone_inlined_nodes (e, duplicate, update_original);
|
|
}
|
|
|
|
/* Mark edge E as inlined and update callgraph accordingly.
|
|
UPDATE_ORIGINAL specify whether profile of original function should be
|
|
updated. */
|
|
|
|
void
|
|
cgraph_mark_inline_edge (struct cgraph_edge *e, bool update_original)
|
|
{
|
|
int old_insns = 0, new_insns = 0;
|
|
struct cgraph_node *to = NULL, *what;
|
|
|
|
if (e->callee->inline_decl)
|
|
cgraph_redirect_edge_callee (e, cgraph_node (e->callee->inline_decl));
|
|
|
|
gcc_assert (e->inline_failed);
|
|
e->inline_failed = NULL;
|
|
|
|
if (!e->callee->global.inlined && flag_unit_at_a_time)
|
|
DECL_POSSIBLY_INLINED (e->callee->decl) = true;
|
|
e->callee->global.inlined = true;
|
|
|
|
cgraph_clone_inlined_nodes (e, true, update_original);
|
|
|
|
what = e->callee;
|
|
|
|
/* Now update size of caller and all functions caller is inlined into. */
|
|
for (;e && !e->inline_failed; e = e->caller->callers)
|
|
{
|
|
old_insns = e->caller->global.insns;
|
|
new_insns = cgraph_estimate_size_after_inlining (1, e->caller,
|
|
what);
|
|
gcc_assert (new_insns >= 0);
|
|
to = e->caller;
|
|
to->global.insns = new_insns;
|
|
}
|
|
gcc_assert (what->global.inlined_to == to);
|
|
if (new_insns > old_insns)
|
|
overall_insns += new_insns - old_insns;
|
|
ncalls_inlined++;
|
|
}
|
|
|
|
/* Mark all calls of EDGE->CALLEE inlined into EDGE->CALLER.
|
|
Return following unredirected edge in the list of callers
|
|
of EDGE->CALLEE */
|
|
|
|
static struct cgraph_edge *
|
|
cgraph_mark_inline (struct cgraph_edge *edge)
|
|
{
|
|
struct cgraph_node *to = edge->caller;
|
|
struct cgraph_node *what = edge->callee;
|
|
struct cgraph_edge *e, *next;
|
|
|
|
/* Look for all calls, mark them inline and clone recursively
|
|
all inlined functions. */
|
|
for (e = what->callers; e; e = next)
|
|
{
|
|
next = e->next_caller;
|
|
if (e->caller == to && e->inline_failed
|
|
&& !CALL_CANNOT_INLINE_P (e->call_stmt))
|
|
{
|
|
cgraph_mark_inline_edge (e, true);
|
|
if (e == edge)
|
|
edge = next;
|
|
}
|
|
}
|
|
|
|
return edge;
|
|
}
|
|
|
|
/* Estimate the growth caused by inlining NODE into all callees. */
|
|
|
|
static int
|
|
cgraph_estimate_growth (struct cgraph_node *node)
|
|
{
|
|
int growth = 0;
|
|
struct cgraph_edge *e;
|
|
if (node->global.estimated_growth != INT_MIN)
|
|
return node->global.estimated_growth;
|
|
|
|
for (e = node->callers; e; e = e->next_caller)
|
|
if (e->inline_failed)
|
|
growth += (cgraph_estimate_size_after_inlining (1, e->caller, node)
|
|
- e->caller->global.insns);
|
|
|
|
/* ??? Wrong for self recursive functions or cases where we decide to not
|
|
inline for different reasons, but it is not big deal as in that case
|
|
we will keep the body around, but we will also avoid some inlining. */
|
|
if (!node->needed && !DECL_EXTERNAL (node->decl))
|
|
growth -= node->global.insns;
|
|
|
|
node->global.estimated_growth = growth;
|
|
return growth;
|
|
}
|
|
|
|
/* Return false when inlining WHAT into TO is not good idea
|
|
as it would cause too large growth of function bodies.
|
|
When ONE_ONLY is true, assume that only one call site is going
|
|
to be inlined, otherwise figure out how many call sites in
|
|
TO calls WHAT and verify that all can be inlined.
|
|
*/
|
|
|
|
static bool
|
|
cgraph_check_inline_limits (struct cgraph_node *to, struct cgraph_node *what,
|
|
const char **reason, bool one_only)
|
|
{
|
|
int times = 0;
|
|
struct cgraph_edge *e;
|
|
int newsize;
|
|
int limit;
|
|
HOST_WIDE_INT stack_size_limit, inlined_stack;
|
|
|
|
if (one_only)
|
|
times = 1;
|
|
else
|
|
for (e = to->callees; e; e = e->next_callee)
|
|
if (e->callee == what)
|
|
times++;
|
|
|
|
if (to->global.inlined_to)
|
|
to = to->global.inlined_to;
|
|
|
|
/* When inlining large function body called once into small function,
|
|
take the inlined function as base for limiting the growth. */
|
|
if (to->local.self_insns > what->local.self_insns)
|
|
limit = to->local.self_insns;
|
|
else
|
|
limit = what->local.self_insns;
|
|
|
|
limit += limit * PARAM_VALUE (PARAM_LARGE_FUNCTION_GROWTH) / 100;
|
|
|
|
/* Check the size after inlining against the function limits. But allow
|
|
the function to shrink if it went over the limits by forced inlining. */
|
|
newsize = cgraph_estimate_size_after_inlining (times, to, what);
|
|
if (newsize >= to->global.insns
|
|
&& newsize > PARAM_VALUE (PARAM_LARGE_FUNCTION_INSNS)
|
|
&& newsize > limit)
|
|
{
|
|
if (reason)
|
|
*reason = N_("--param large-function-growth limit reached");
|
|
return false;
|
|
}
|
|
|
|
stack_size_limit = to->local.estimated_self_stack_size;
|
|
|
|
stack_size_limit += stack_size_limit * PARAM_VALUE (PARAM_STACK_FRAME_GROWTH) / 100;
|
|
|
|
inlined_stack = (to->global.stack_frame_offset
|
|
+ to->local.estimated_self_stack_size
|
|
+ what->global.estimated_stack_size);
|
|
if (inlined_stack > stack_size_limit
|
|
&& inlined_stack > PARAM_VALUE (PARAM_LARGE_STACK_FRAME))
|
|
{
|
|
if (reason)
|
|
*reason = N_("--param large-stack-frame-growth limit reached");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Return true when function N is small enough to be inlined. */
|
|
|
|
bool
|
|
cgraph_default_inline_p (struct cgraph_node *n, const char **reason)
|
|
{
|
|
tree decl = n->decl;
|
|
|
|
if (n->inline_decl)
|
|
decl = n->inline_decl;
|
|
if (!DECL_INLINE (decl))
|
|
{
|
|
if (reason)
|
|
*reason = N_("function not inlinable");
|
|
return false;
|
|
}
|
|
|
|
if (!DECL_STRUCT_FUNCTION (decl)->cfg)
|
|
{
|
|
if (reason)
|
|
*reason = N_("function body not available");
|
|
return false;
|
|
}
|
|
|
|
if (DECL_DECLARED_INLINE_P (decl))
|
|
{
|
|
if (n->global.insns >= MAX_INLINE_INSNS_SINGLE)
|
|
{
|
|
if (reason)
|
|
*reason = N_("--param max-inline-insns-single limit reached");
|
|
return false;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (n->global.insns >= MAX_INLINE_INSNS_AUTO)
|
|
{
|
|
if (reason)
|
|
*reason = N_("--param max-inline-insns-auto limit reached");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Return true when inlining WHAT would create recursive inlining.
|
|
We call recursive inlining all cases where same function appears more than
|
|
once in the single recursion nest path in the inline graph. */
|
|
|
|
static bool
|
|
cgraph_recursive_inlining_p (struct cgraph_node *to,
|
|
struct cgraph_node *what,
|
|
const char **reason)
|
|
{
|
|
bool recursive;
|
|
if (to->global.inlined_to)
|
|
recursive = what->decl == to->global.inlined_to->decl;
|
|
else
|
|
recursive = what->decl == to->decl;
|
|
/* Marking recursive function inline has sane semantic and thus we should
|
|
not warn on it. */
|
|
if (recursive && reason)
|
|
*reason = (what->local.disregard_inline_limits
|
|
? N_("recursive inlining") : "");
|
|
return recursive;
|
|
}
|
|
|
|
/* Return true if the call can be hot. */
|
|
static bool
|
|
cgraph_maybe_hot_edge_p (struct cgraph_edge *edge)
|
|
{
|
|
if (profile_info && flag_branch_probabilities
|
|
&& (edge->count
|
|
<= profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
|
|
return false;
|
|
if (lookup_attribute ("cold", DECL_ATTRIBUTES (edge->callee->decl))
|
|
|| lookup_attribute ("cold", DECL_ATTRIBUTES (edge->caller->decl)))
|
|
return false;
|
|
if (lookup_attribute ("hot", DECL_ATTRIBUTES (edge->caller->decl)))
|
|
return true;
|
|
if (flag_guess_branch_prob
|
|
&& edge->frequency < (CGRAPH_FREQ_MAX
|
|
/ PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/* A cost model driving the inlining heuristics in a way so the edges with
|
|
smallest badness are inlined first. After each inlining is performed
|
|
the costs of all caller edges of nodes affected are recomputed so the
|
|
metrics may accurately depend on values such as number of inlinable callers
|
|
of the function or function body size. */
|
|
|
|
static int
|
|
cgraph_edge_badness (struct cgraph_edge *edge)
|
|
{
|
|
int badness;
|
|
int growth =
|
|
cgraph_estimate_size_after_inlining (1, edge->caller, edge->callee);
|
|
|
|
growth -= edge->caller->global.insns;
|
|
|
|
/* Always prefer inlining saving code size. */
|
|
if (growth <= 0)
|
|
badness = INT_MIN - growth;
|
|
|
|
/* When profiling is available, base priorities -(#calls / growth).
|
|
So we optimize for overall number of "executed" inlined calls. */
|
|
else if (max_count)
|
|
badness = ((int)((double)edge->count * INT_MIN / max_count)) / growth;
|
|
|
|
/* When function local profile is available, base priorities on
|
|
growth / frequency, so we optimize for overall frequency of inlined
|
|
calls. This is not too accurate since while the call might be frequent
|
|
within function, the function itself is infrequent.
|
|
|
|
Other objective to optimize for is number of different calls inlined.
|
|
We add the estimated growth after inlining all functions to biass the
|
|
priorities slightly in this direction (so fewer times called functions
|
|
of the same size gets priority). */
|
|
else if (flag_guess_branch_prob)
|
|
{
|
|
int div = edge->frequency * 100 / CGRAPH_FREQ_BASE;
|
|
int growth =
|
|
cgraph_estimate_size_after_inlining (1, edge->caller, edge->callee);
|
|
growth -= edge->caller->global.insns;
|
|
badness = growth * 256;
|
|
|
|
/* Decrease badness if call is nested. */
|
|
/* Compress the range so we don't overflow. */
|
|
if (div > 256)
|
|
div = 256 + ceil_log2 (div) - 8;
|
|
if (div < 1)
|
|
div = 1;
|
|
if (badness > 0)
|
|
badness /= div;
|
|
badness += cgraph_estimate_growth (edge->callee);
|
|
}
|
|
/* When function local profile is not available or it does not give
|
|
useful information (ie frequency is zero), base the cost on
|
|
loop nest and overall size growth, so we optimize for overall number
|
|
of functions fully inlined in program. */
|
|
else
|
|
{
|
|
int nest = MIN (edge->loop_nest, 8);
|
|
badness = cgraph_estimate_growth (edge->callee) * 256;
|
|
|
|
/* Decrease badness if call is nested. */
|
|
if (badness > 0)
|
|
badness >>= nest;
|
|
else
|
|
{
|
|
badness <<= nest;
|
|
}
|
|
}
|
|
/* Make recursive inlining happen always after other inlining is done. */
|
|
if (cgraph_recursive_inlining_p (edge->caller, edge->callee, NULL))
|
|
return badness + 1;
|
|
else
|
|
return badness;
|
|
}
|
|
|
|
/* Recompute heap nodes for each of caller edge. */
|
|
|
|
static void
|
|
update_caller_keys (fibheap_t heap, struct cgraph_node *node,
|
|
bitmap updated_nodes)
|
|
{
|
|
struct cgraph_edge *edge;
|
|
const char *failed_reason;
|
|
|
|
if (!node->local.inlinable || node->local.disregard_inline_limits
|
|
|| node->global.inlined_to)
|
|
return;
|
|
if (bitmap_bit_p (updated_nodes, node->uid))
|
|
return;
|
|
bitmap_set_bit (updated_nodes, node->uid);
|
|
node->global.estimated_growth = INT_MIN;
|
|
|
|
if (!node->local.inlinable)
|
|
return;
|
|
/* Prune out edges we won't inline into anymore. */
|
|
if (!cgraph_default_inline_p (node, &failed_reason))
|
|
{
|
|
for (edge = node->callers; edge; edge = edge->next_caller)
|
|
if (edge->aux)
|
|
{
|
|
fibheap_delete_node (heap, edge->aux);
|
|
edge->aux = NULL;
|
|
if (edge->inline_failed)
|
|
edge->inline_failed = failed_reason;
|
|
}
|
|
return;
|
|
}
|
|
|
|
for (edge = node->callers; edge; edge = edge->next_caller)
|
|
if (edge->inline_failed)
|
|
{
|
|
int badness = cgraph_edge_badness (edge);
|
|
if (edge->aux)
|
|
{
|
|
fibnode_t n = edge->aux;
|
|
gcc_assert (n->data == edge);
|
|
if (n->key == badness)
|
|
continue;
|
|
|
|
/* fibheap_replace_key only increase the keys. */
|
|
if (fibheap_replace_key (heap, n, badness))
|
|
continue;
|
|
fibheap_delete_node (heap, edge->aux);
|
|
}
|
|
edge->aux = fibheap_insert (heap, badness, edge);
|
|
}
|
|
}
|
|
|
|
/* Recompute heap nodes for each of caller edges of each of callees. */
|
|
|
|
static void
|
|
update_callee_keys (fibheap_t heap, struct cgraph_node *node,
|
|
bitmap updated_nodes)
|
|
{
|
|
struct cgraph_edge *e;
|
|
node->global.estimated_growth = INT_MIN;
|
|
|
|
for (e = node->callees; e; e = e->next_callee)
|
|
if (e->inline_failed)
|
|
update_caller_keys (heap, e->callee, updated_nodes);
|
|
else if (!e->inline_failed)
|
|
update_callee_keys (heap, e->callee, updated_nodes);
|
|
}
|
|
|
|
/* Enqueue all recursive calls from NODE into priority queue depending on
|
|
how likely we want to recursively inline the call. */
|
|
|
|
static void
|
|
lookup_recursive_calls (struct cgraph_node *node, struct cgraph_node *where,
|
|
fibheap_t heap)
|
|
{
|
|
static int priority;
|
|
struct cgraph_edge *e;
|
|
for (e = where->callees; e; e = e->next_callee)
|
|
if (e->callee == node)
|
|
{
|
|
/* When profile feedback is available, prioritize by expected number
|
|
of calls. Without profile feedback we maintain simple queue
|
|
to order candidates via recursive depths. */
|
|
fibheap_insert (heap,
|
|
!max_count ? priority++
|
|
: -(e->count / ((max_count + (1<<24) - 1) / (1<<24))),
|
|
e);
|
|
}
|
|
for (e = where->callees; e; e = e->next_callee)
|
|
if (!e->inline_failed)
|
|
lookup_recursive_calls (node, e->callee, heap);
|
|
}
|
|
|
|
/* Decide on recursive inlining: in the case function has recursive calls,
|
|
inline until body size reaches given argument. */
|
|
|
|
static bool
|
|
cgraph_decide_recursive_inlining (struct cgraph_node *node)
|
|
{
|
|
int limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE_AUTO);
|
|
int max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH_AUTO);
|
|
int probability = PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY);
|
|
fibheap_t heap;
|
|
struct cgraph_edge *e;
|
|
struct cgraph_node *master_clone, *next;
|
|
int depth = 0;
|
|
int n = 0;
|
|
|
|
if (optimize_size)
|
|
return false;
|
|
|
|
if (DECL_DECLARED_INLINE_P (node->decl))
|
|
{
|
|
limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE);
|
|
max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH);
|
|
}
|
|
|
|
/* Make sure that function is small enough to be considered for inlining. */
|
|
if (!max_depth
|
|
|| cgraph_estimate_size_after_inlining (1, node, node) >= limit)
|
|
return false;
|
|
heap = fibheap_new ();
|
|
lookup_recursive_calls (node, node, heap);
|
|
if (fibheap_empty (heap))
|
|
{
|
|
fibheap_delete (heap);
|
|
return false;
|
|
}
|
|
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
" Performing recursive inlining on %s\n",
|
|
cgraph_node_name (node));
|
|
|
|
/* We need original clone to copy around. */
|
|
master_clone = cgraph_clone_node (node, node->count, CGRAPH_FREQ_BASE, 1, false);
|
|
master_clone->needed = true;
|
|
for (e = master_clone->callees; e; e = e->next_callee)
|
|
if (!e->inline_failed)
|
|
cgraph_clone_inlined_nodes (e, true, false);
|
|
|
|
/* Do the inlining and update list of recursive call during process. */
|
|
while (!fibheap_empty (heap)
|
|
&& (cgraph_estimate_size_after_inlining (1, node, master_clone)
|
|
<= limit))
|
|
{
|
|
struct cgraph_edge *curr = fibheap_extract_min (heap);
|
|
struct cgraph_node *cnode;
|
|
|
|
depth = 1;
|
|
for (cnode = curr->caller;
|
|
cnode->global.inlined_to; cnode = cnode->callers->caller)
|
|
if (node->decl == curr->callee->decl)
|
|
depth++;
|
|
if (depth > max_depth)
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
" maximal depth reached\n");
|
|
continue;
|
|
}
|
|
|
|
if (max_count)
|
|
{
|
|
if (!cgraph_maybe_hot_edge_p (curr))
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, " Not inlining cold call\n");
|
|
continue;
|
|
}
|
|
if (curr->count * 100 / node->count < probability)
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
" Probability of edge is too small\n");
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (dump_file)
|
|
{
|
|
fprintf (dump_file,
|
|
" Inlining call of depth %i", depth);
|
|
if (node->count)
|
|
{
|
|
fprintf (dump_file, " called approx. %.2f times per call",
|
|
(double)curr->count / node->count);
|
|
}
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
cgraph_redirect_edge_callee (curr, master_clone);
|
|
cgraph_mark_inline_edge (curr, false);
|
|
lookup_recursive_calls (node, curr->callee, heap);
|
|
n++;
|
|
}
|
|
if (!fibheap_empty (heap) && dump_file)
|
|
fprintf (dump_file, " Recursive inlining growth limit met.\n");
|
|
|
|
fibheap_delete (heap);
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
"\n Inlined %i times, body grown from %i to %i insns\n", n,
|
|
master_clone->global.insns, node->global.insns);
|
|
|
|
/* Remove master clone we used for inlining. We rely that clones inlined
|
|
into master clone gets queued just before master clone so we don't
|
|
need recursion. */
|
|
for (node = cgraph_nodes; node != master_clone;
|
|
node = next)
|
|
{
|
|
next = node->next;
|
|
if (node->global.inlined_to == master_clone)
|
|
cgraph_remove_node (node);
|
|
}
|
|
cgraph_remove_node (master_clone);
|
|
/* FIXME: Recursive inlining actually reduces number of calls of the
|
|
function. At this place we should probably walk the function and
|
|
inline clones and compensate the counts accordingly. This probably
|
|
doesn't matter much in practice. */
|
|
return n > 0;
|
|
}
|
|
|
|
/* Set inline_failed for all callers of given function to REASON. */
|
|
|
|
static void
|
|
cgraph_set_inline_failed (struct cgraph_node *node, const char *reason)
|
|
{
|
|
struct cgraph_edge *e;
|
|
|
|
if (dump_file)
|
|
fprintf (dump_file, "Inlining failed: %s\n", reason);
|
|
for (e = node->callers; e; e = e->next_caller)
|
|
if (e->inline_failed)
|
|
e->inline_failed = reason;
|
|
}
|
|
|
|
/* Given whole compilation unit estimate of INSNS, compute how large we can
|
|
allow the unit to grow. */
|
|
static int
|
|
compute_max_insns (int insns)
|
|
{
|
|
int max_insns = insns;
|
|
if (max_insns < PARAM_VALUE (PARAM_LARGE_UNIT_INSNS))
|
|
max_insns = PARAM_VALUE (PARAM_LARGE_UNIT_INSNS);
|
|
|
|
return ((HOST_WIDEST_INT) max_insns
|
|
* (100 + PARAM_VALUE (PARAM_INLINE_UNIT_GROWTH)) / 100);
|
|
}
|
|
|
|
/* We use greedy algorithm for inlining of small functions:
|
|
All inline candidates are put into prioritized heap based on estimated
|
|
growth of the overall number of instructions and then update the estimates.
|
|
|
|
INLINED and INLINED_CALEES are just pointers to arrays large enough
|
|
to be passed to cgraph_inlined_into and cgraph_inlined_callees. */
|
|
|
|
static void
|
|
cgraph_decide_inlining_of_small_functions (void)
|
|
{
|
|
struct cgraph_node *node;
|
|
struct cgraph_edge *edge;
|
|
const char *failed_reason;
|
|
fibheap_t heap = fibheap_new ();
|
|
bitmap updated_nodes = BITMAP_ALLOC (NULL);
|
|
int min_insns, max_insns;
|
|
|
|
if (dump_file)
|
|
fprintf (dump_file, "\nDeciding on smaller functions:\n");
|
|
|
|
/* Put all inline candidates into the heap. */
|
|
|
|
for (node = cgraph_nodes; node; node = node->next)
|
|
{
|
|
if (!node->local.inlinable || !node->callers
|
|
|| node->local.disregard_inline_limits)
|
|
continue;
|
|
if (dump_file)
|
|
fprintf (dump_file, "Considering inline candidate %s.\n", cgraph_node_name (node));
|
|
|
|
node->global.estimated_growth = INT_MIN;
|
|
if (!cgraph_default_inline_p (node, &failed_reason))
|
|
{
|
|
cgraph_set_inline_failed (node, failed_reason);
|
|
continue;
|
|
}
|
|
|
|
for (edge = node->callers; edge; edge = edge->next_caller)
|
|
if (edge->inline_failed)
|
|
{
|
|
gcc_assert (!edge->aux);
|
|
edge->aux = fibheap_insert (heap, cgraph_edge_badness (edge), edge);
|
|
}
|
|
}
|
|
|
|
max_insns = compute_max_insns (overall_insns);
|
|
min_insns = overall_insns;
|
|
|
|
while (overall_insns <= max_insns && (edge = fibheap_extract_min (heap)))
|
|
{
|
|
int old_insns = overall_insns;
|
|
struct cgraph_node *where;
|
|
int growth =
|
|
cgraph_estimate_size_after_inlining (1, edge->caller, edge->callee);
|
|
|
|
growth -= edge->caller->global.insns;
|
|
|
|
if (dump_file)
|
|
{
|
|
fprintf (dump_file,
|
|
"\nConsidering %s with %i insns\n",
|
|
cgraph_node_name (edge->callee),
|
|
edge->callee->global.insns);
|
|
fprintf (dump_file,
|
|
" to be inlined into %s\n"
|
|
" Estimated growth after inlined into all callees is %+i insns.\n"
|
|
" Estimated badness is %i, frequency %.2f.\n",
|
|
cgraph_node_name (edge->caller),
|
|
cgraph_estimate_growth (edge->callee),
|
|
cgraph_edge_badness (edge),
|
|
edge->frequency / (double)CGRAPH_FREQ_BASE);
|
|
if (edge->count)
|
|
fprintf (dump_file," Called "HOST_WIDEST_INT_PRINT_DEC"x\n", edge->count);
|
|
}
|
|
gcc_assert (edge->aux);
|
|
edge->aux = NULL;
|
|
if (!edge->inline_failed || CALL_CANNOT_INLINE_P (edge->call_stmt))
|
|
continue;
|
|
|
|
/* When not having profile info ready we don't weight by any way the
|
|
position of call in procedure itself. This means if call of
|
|
function A from function B seems profitable to inline, the recursive
|
|
call of function A in inline copy of A in B will look profitable too
|
|
and we end up inlining until reaching maximal function growth. This
|
|
is not good idea so prohibit the recursive inlining.
|
|
|
|
??? When the frequencies are taken into account we might not need this
|
|
restriction. */
|
|
if (!max_count)
|
|
{
|
|
where = edge->caller;
|
|
while (where->global.inlined_to)
|
|
{
|
|
if (where->decl == edge->callee->decl)
|
|
break;
|
|
where = where->callers->caller;
|
|
}
|
|
if (where->global.inlined_to)
|
|
{
|
|
edge->inline_failed
|
|
= (edge->callee->local.disregard_inline_limits ? N_("recursive inlining") : "");
|
|
if (dump_file)
|
|
fprintf (dump_file, " inline_failed:Recursive inlining performed only for function itself.\n");
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if ((!cgraph_maybe_hot_edge_p (edge) || optimize_size) && growth > 0)
|
|
{
|
|
if (!cgraph_recursive_inlining_p (edge->caller, edge->callee,
|
|
&edge->inline_failed))
|
|
{
|
|
edge->inline_failed =
|
|
N_("call is unlikely");
|
|
if (dump_file)
|
|
fprintf (dump_file, " inline_failed:%s.\n", edge->inline_failed);
|
|
}
|
|
continue;
|
|
}
|
|
if (!cgraph_default_inline_p (edge->callee, &edge->inline_failed))
|
|
{
|
|
if (!cgraph_recursive_inlining_p (edge->caller, edge->callee,
|
|
&edge->inline_failed))
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, " inline_failed:%s.\n", edge->inline_failed);
|
|
}
|
|
continue;
|
|
}
|
|
if (cgraph_recursive_inlining_p (edge->caller, edge->callee,
|
|
&edge->inline_failed))
|
|
{
|
|
where = edge->caller;
|
|
if (where->global.inlined_to)
|
|
where = where->global.inlined_to;
|
|
if (!cgraph_decide_recursive_inlining (where))
|
|
continue;
|
|
update_callee_keys (heap, where, updated_nodes);
|
|
}
|
|
else
|
|
{
|
|
struct cgraph_node *callee;
|
|
if (!cgraph_check_inline_limits (edge->caller, edge->callee,
|
|
&edge->inline_failed, true))
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, " Not inlining into %s:%s.\n",
|
|
cgraph_node_name (edge->caller), edge->inline_failed);
|
|
continue;
|
|
}
|
|
callee = edge->callee;
|
|
cgraph_mark_inline_edge (edge, true);
|
|
update_callee_keys (heap, callee, updated_nodes);
|
|
}
|
|
where = edge->caller;
|
|
if (where->global.inlined_to)
|
|
where = where->global.inlined_to;
|
|
|
|
/* Our profitability metric can depend on local properties
|
|
such as number of inlinable calls and size of the function body.
|
|
After inlining these properties might change for the function we
|
|
inlined into (since it's body size changed) and for the functions
|
|
called by function we inlined (since number of it inlinable callers
|
|
might change). */
|
|
update_caller_keys (heap, where, updated_nodes);
|
|
bitmap_clear (updated_nodes);
|
|
|
|
if (dump_file)
|
|
{
|
|
fprintf (dump_file,
|
|
" Inlined into %s which now has %i insns,"
|
|
"net change of %+i insns.\n",
|
|
cgraph_node_name (edge->caller),
|
|
edge->caller->global.insns,
|
|
overall_insns - old_insns);
|
|
}
|
|
if (min_insns > overall_insns)
|
|
{
|
|
min_insns = overall_insns;
|
|
max_insns = compute_max_insns (min_insns);
|
|
|
|
if (dump_file)
|
|
fprintf (dump_file, "New minimal insns reached: %i\n", min_insns);
|
|
}
|
|
}
|
|
while ((edge = fibheap_extract_min (heap)) != NULL)
|
|
{
|
|
gcc_assert (edge->aux);
|
|
edge->aux = NULL;
|
|
if (!edge->callee->local.disregard_inline_limits && edge->inline_failed
|
|
&& !cgraph_recursive_inlining_p (edge->caller, edge->callee,
|
|
&edge->inline_failed))
|
|
edge->inline_failed = N_("--param inline-unit-growth limit reached");
|
|
}
|
|
fibheap_delete (heap);
|
|
BITMAP_FREE (updated_nodes);
|
|
}
|
|
|
|
/* Decide on the inlining. We do so in the topological order to avoid
|
|
expenses on updating data structures. */
|
|
|
|
static unsigned int
|
|
cgraph_decide_inlining (void)
|
|
{
|
|
struct cgraph_node *node;
|
|
int nnodes;
|
|
struct cgraph_node **order =
|
|
XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
|
|
int old_insns = 0;
|
|
int i;
|
|
int initial_insns = 0;
|
|
|
|
max_count = 0;
|
|
for (node = cgraph_nodes; node; node = node->next)
|
|
if (node->analyzed && (node->needed || node->reachable))
|
|
{
|
|
struct cgraph_edge *e;
|
|
|
|
initial_insns += node->local.self_insns;
|
|
gcc_assert (node->local.self_insns == node->global.insns);
|
|
for (e = node->callees; e; e = e->next_callee)
|
|
if (max_count < e->count)
|
|
max_count = e->count;
|
|
}
|
|
overall_insns = initial_insns;
|
|
gcc_assert (!max_count || (profile_info && flag_branch_probabilities));
|
|
|
|
nnodes = cgraph_postorder (order);
|
|
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
"\nDeciding on inlining. Starting with %i insns.\n",
|
|
initial_insns);
|
|
|
|
for (node = cgraph_nodes; node; node = node->next)
|
|
node->aux = 0;
|
|
|
|
if (dump_file)
|
|
fprintf (dump_file, "\nInlining always_inline functions:\n");
|
|
|
|
/* In the first pass mark all always_inline edges. Do this with a priority
|
|
so none of our later choices will make this impossible. */
|
|
for (i = nnodes - 1; i >= 0; i--)
|
|
{
|
|
struct cgraph_edge *e, *next;
|
|
|
|
node = order[i];
|
|
|
|
/* Handle nodes to be flattened, but don't update overall unit size. */
|
|
if (lookup_attribute ("flatten", DECL_ATTRIBUTES (node->decl)) != NULL)
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
"Flattening %s\n", cgraph_node_name (node));
|
|
cgraph_decide_inlining_incrementally (node, INLINE_ALL, 0);
|
|
}
|
|
|
|
if (!node->local.disregard_inline_limits)
|
|
continue;
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
"\nConsidering %s %i insns (always inline)\n",
|
|
cgraph_node_name (node), node->global.insns);
|
|
old_insns = overall_insns;
|
|
for (e = node->callers; e; e = next)
|
|
{
|
|
next = e->next_caller;
|
|
if (!e->inline_failed || CALL_CANNOT_INLINE_P (e->call_stmt))
|
|
continue;
|
|
if (cgraph_recursive_inlining_p (e->caller, e->callee,
|
|
&e->inline_failed))
|
|
continue;
|
|
cgraph_mark_inline_edge (e, true);
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
" Inlined into %s which now has %i insns.\n",
|
|
cgraph_node_name (e->caller),
|
|
e->caller->global.insns);
|
|
}
|
|
/* Inlining self recursive function might introduce new calls to
|
|
themselves we didn't see in the loop above. Fill in the proper
|
|
reason why inline failed. */
|
|
for (e = node->callers; e; e = e->next_caller)
|
|
if (e->inline_failed)
|
|
e->inline_failed = N_("recursive inlining");
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
" Inlined for a net change of %+i insns.\n",
|
|
overall_insns - old_insns);
|
|
}
|
|
|
|
if (!flag_really_no_inline)
|
|
cgraph_decide_inlining_of_small_functions ();
|
|
|
|
if (!flag_really_no_inline
|
|
&& flag_inline_functions_called_once)
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, "\nDeciding on functions called once:\n");
|
|
|
|
/* And finally decide what functions are called once. */
|
|
|
|
for (i = nnodes - 1; i >= 0; i--)
|
|
{
|
|
node = order[i];
|
|
|
|
if (node->callers && !node->callers->next_caller && !node->needed
|
|
&& node->local.inlinable && node->callers->inline_failed
|
|
&& !DECL_EXTERNAL (node->decl) && !DECL_COMDAT (node->decl))
|
|
{
|
|
if (dump_file)
|
|
{
|
|
fprintf (dump_file,
|
|
"\nConsidering %s %i insns.\n",
|
|
cgraph_node_name (node), node->global.insns);
|
|
fprintf (dump_file,
|
|
" Called once from %s %i insns.\n",
|
|
cgraph_node_name (node->callers->caller),
|
|
node->callers->caller->global.insns);
|
|
}
|
|
|
|
old_insns = overall_insns;
|
|
|
|
if (cgraph_check_inline_limits (node->callers->caller, node,
|
|
NULL, false))
|
|
{
|
|
cgraph_mark_inline (node->callers);
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
" Inlined into %s which now has %i insns"
|
|
" for a net change of %+i insns.\n",
|
|
cgraph_node_name (node->callers->caller),
|
|
node->callers->caller->global.insns,
|
|
overall_insns - old_insns);
|
|
}
|
|
else
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
" Inline limit reached, not inlined.\n");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
"\nInlined %i calls, eliminated %i functions, "
|
|
"%i insns turned to %i insns.\n\n",
|
|
ncalls_inlined, nfunctions_inlined, initial_insns,
|
|
overall_insns);
|
|
free (order);
|
|
return 0;
|
|
}
|
|
|
|
/* Try to inline edge E from incremental inliner. MODE specifies mode
|
|
of inliner.
|
|
|
|
We are detecting cycles by storing mode of inliner into cgraph_node last
|
|
time we visited it in the recursion. In general when mode is set, we have
|
|
recursive inlining, but as an special case, we want to try harder inline
|
|
ALWAYS_INLINE functions: consider callgraph a->b->c->b, with a being
|
|
flatten, b being always inline. Flattening 'a' will collapse
|
|
a->b->c before hitting cycle. To accommodate always inline, we however
|
|
need to inline a->b->c->b.
|
|
|
|
So after hitting cycle first time, we switch into ALWAYS_INLINE mode and
|
|
stop inlining only after hitting ALWAYS_INLINE in ALWAY_INLINE mode. */
|
|
static bool
|
|
try_inline (struct cgraph_edge *e, enum inlining_mode mode, int depth)
|
|
{
|
|
struct cgraph_node *callee = e->callee;
|
|
enum inlining_mode callee_mode = (size_t) callee->aux;
|
|
bool always_inline = e->callee->local.disregard_inline_limits;
|
|
|
|
/* We've hit cycle? */
|
|
if (callee_mode)
|
|
{
|
|
/* It is first time we see it and we are not in ALWAY_INLINE only
|
|
mode yet. and the function in question is always_inline. */
|
|
if (always_inline && mode != INLINE_ALWAYS_INLINE)
|
|
{
|
|
if (dump_file)
|
|
{
|
|
indent_to (dump_file, depth);
|
|
fprintf (dump_file,
|
|
"Hit cycle in %s, switching to always inline only.\n",
|
|
cgraph_node_name (callee));
|
|
}
|
|
mode = INLINE_ALWAYS_INLINE;
|
|
}
|
|
/* Otherwise it is time to give up. */
|
|
else
|
|
{
|
|
if (dump_file)
|
|
{
|
|
indent_to (dump_file, depth);
|
|
fprintf (dump_file,
|
|
"Not inlining %s into %s to avoid cycle.\n",
|
|
cgraph_node_name (callee),
|
|
cgraph_node_name (e->caller));
|
|
}
|
|
e->inline_failed = (e->callee->local.disregard_inline_limits
|
|
? N_("recursive inlining") : "");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
callee->aux = (void *)(size_t) mode;
|
|
if (dump_file)
|
|
{
|
|
indent_to (dump_file, depth);
|
|
fprintf (dump_file, " Inlining %s into %s.\n",
|
|
cgraph_node_name (e->callee),
|
|
cgraph_node_name (e->caller));
|
|
}
|
|
if (e->inline_failed)
|
|
cgraph_mark_inline (e);
|
|
|
|
/* In order to fully inline always_inline functions at -O0, we need to
|
|
recurse here, since the inlined functions might not be processed by
|
|
incremental inlining at all yet.
|
|
|
|
Also flattening needs to be done recursively. */
|
|
|
|
if (!flag_unit_at_a_time || mode == INLINE_ALL || always_inline)
|
|
cgraph_decide_inlining_incrementally (e->callee, mode, depth + 1);
|
|
callee->aux = (void *)(size_t) callee_mode;
|
|
return true;
|
|
}
|
|
|
|
/* Decide on the inlining. We do so in the topological order to avoid
|
|
expenses on updating data structures.
|
|
DEPTH is depth of recursion, used only for debug output. */
|
|
|
|
static bool
|
|
cgraph_decide_inlining_incrementally (struct cgraph_node *node,
|
|
enum inlining_mode mode,
|
|
int depth)
|
|
{
|
|
struct cgraph_edge *e;
|
|
bool inlined = false;
|
|
const char *failed_reason;
|
|
enum inlining_mode old_mode;
|
|
|
|
#ifdef ENABLE_CHECKING
|
|
verify_cgraph_node (node);
|
|
#endif
|
|
|
|
old_mode = (size_t)node->aux;
|
|
|
|
if (mode != INLINE_ALWAYS_INLINE
|
|
&& lookup_attribute ("flatten", DECL_ATTRIBUTES (node->decl)) != NULL)
|
|
{
|
|
if (dump_file)
|
|
{
|
|
indent_to (dump_file, depth);
|
|
fprintf (dump_file, "Flattening %s\n", cgraph_node_name (node));
|
|
}
|
|
mode = INLINE_ALL;
|
|
}
|
|
|
|
node->aux = (void *)(size_t) mode;
|
|
|
|
/* First of all look for always inline functions. */
|
|
for (e = node->callees; e; e = e->next_callee)
|
|
{
|
|
if (!e->callee->local.disregard_inline_limits
|
|
&& (mode != INLINE_ALL || !e->callee->local.inlinable))
|
|
continue;
|
|
/* When the edge is already inlined, we just need to recurse into
|
|
it in order to fully flatten the leaves. */
|
|
if (!e->inline_failed && mode == INLINE_ALL)
|
|
{
|
|
inlined |= try_inline (e, mode, depth);
|
|
continue;
|
|
}
|
|
if (dump_file)
|
|
{
|
|
indent_to (dump_file, depth);
|
|
fprintf (dump_file,
|
|
"Considering to always inline inline candidate %s.\n",
|
|
cgraph_node_name (e->callee));
|
|
}
|
|
if (cgraph_recursive_inlining_p (node, e->callee, &e->inline_failed))
|
|
{
|
|
if (dump_file)
|
|
{
|
|
indent_to (dump_file, depth);
|
|
fprintf (dump_file, "Not inlining: recursive call.\n");
|
|
}
|
|
continue;
|
|
}
|
|
if (gimple_in_ssa_p (DECL_STRUCT_FUNCTION (node->decl))
|
|
!= gimple_in_ssa_p (DECL_STRUCT_FUNCTION (e->callee->decl)))
|
|
{
|
|
if (dump_file)
|
|
{
|
|
indent_to (dump_file, depth);
|
|
fprintf (dump_file, "Not inlining: SSA form does not match.\n");
|
|
}
|
|
continue;
|
|
}
|
|
if (!DECL_SAVED_TREE (e->callee->decl) && !e->callee->inline_decl)
|
|
{
|
|
if (dump_file)
|
|
{
|
|
indent_to (dump_file, depth);
|
|
fprintf (dump_file,
|
|
"Not inlining: Function body no longer available.\n");
|
|
}
|
|
continue;
|
|
}
|
|
inlined |= try_inline (e, mode, depth);
|
|
}
|
|
|
|
/* Now do the automatic inlining. */
|
|
if (!flag_really_no_inline && mode != INLINE_ALL
|
|
&& mode != INLINE_ALWAYS_INLINE)
|
|
for (e = node->callees; e; e = e->next_callee)
|
|
{
|
|
if (!e->callee->local.inlinable
|
|
|| !e->inline_failed
|
|
|| e->callee->local.disregard_inline_limits)
|
|
continue;
|
|
if (dump_file)
|
|
fprintf (dump_file, "Considering inline candidate %s.\n",
|
|
cgraph_node_name (e->callee));
|
|
if (cgraph_recursive_inlining_p (node, e->callee, &e->inline_failed))
|
|
{
|
|
if (dump_file)
|
|
{
|
|
indent_to (dump_file, depth);
|
|
fprintf (dump_file, "Not inlining: recursive call.\n");
|
|
}
|
|
continue;
|
|
}
|
|
if (gimple_in_ssa_p (DECL_STRUCT_FUNCTION (node->decl))
|
|
!= gimple_in_ssa_p (DECL_STRUCT_FUNCTION (e->callee->decl)))
|
|
{
|
|
if (dump_file)
|
|
{
|
|
indent_to (dump_file, depth);
|
|
fprintf (dump_file, "Not inlining: SSA form does not match.\n");
|
|
}
|
|
continue;
|
|
}
|
|
/* When the function body would grow and inlining the function won't
|
|
eliminate the need for offline copy of the function, don't inline.
|
|
*/
|
|
if (mode == INLINE_SIZE
|
|
&& (cgraph_estimate_size_after_inlining (1, e->caller, e->callee)
|
|
> e->caller->global.insns)
|
|
&& cgraph_estimate_growth (e->callee) > 0)
|
|
{
|
|
if (dump_file)
|
|
{
|
|
indent_to (dump_file, depth);
|
|
fprintf (dump_file,
|
|
"Not inlining: code size would grow by %i insns.\n",
|
|
cgraph_estimate_size_after_inlining (1, e->caller,
|
|
e->callee)
|
|
- e->caller->global.insns);
|
|
}
|
|
continue;
|
|
}
|
|
if (!cgraph_check_inline_limits (node, e->callee, &e->inline_failed,
|
|
false))
|
|
{
|
|
if (dump_file)
|
|
{
|
|
indent_to (dump_file, depth);
|
|
fprintf (dump_file, "Not inlining: %s.\n", e->inline_failed);
|
|
}
|
|
continue;
|
|
}
|
|
if (!DECL_SAVED_TREE (e->callee->decl) && !e->callee->inline_decl)
|
|
{
|
|
if (dump_file)
|
|
{
|
|
indent_to (dump_file, depth);
|
|
fprintf (dump_file,
|
|
"Not inlining: Function body no longer available.\n");
|
|
}
|
|
continue;
|
|
}
|
|
if (cgraph_default_inline_p (e->callee, &failed_reason))
|
|
inlined |= try_inline (e, mode, depth);
|
|
else if (!flag_unit_at_a_time)
|
|
e->inline_failed = failed_reason;
|
|
}
|
|
node->aux = (void *)(size_t) old_mode;
|
|
return inlined;
|
|
}
|
|
|
|
/* When inlining shall be performed. */
|
|
static bool
|
|
cgraph_gate_inlining (void)
|
|
{
|
|
return flag_inline_trees;
|
|
}
|
|
|
|
struct tree_opt_pass pass_ipa_inline =
|
|
{
|
|
"inline", /* name */
|
|
cgraph_gate_inlining, /* gate */
|
|
cgraph_decide_inlining, /* execute */
|
|
NULL, /* sub */
|
|
NULL, /* next */
|
|
0, /* static_pass_number */
|
|
TV_INLINE_HEURISTICS, /* tv_id */
|
|
0, /* properties_required */
|
|
PROP_cfg, /* properties_provided */
|
|
0, /* properties_destroyed */
|
|
TODO_remove_functions, /* todo_flags_finish */
|
|
TODO_dump_cgraph | TODO_dump_func
|
|
| TODO_remove_functions, /* todo_flags_finish */
|
|
0 /* letter */
|
|
};
|
|
|
|
/* Because inlining might remove no-longer reachable nodes, we need to
|
|
keep the array visible to garbage collector to avoid reading collected
|
|
out nodes. */
|
|
static int nnodes;
|
|
static GTY ((length ("nnodes"))) struct cgraph_node **order;
|
|
|
|
/* Do inlining of small functions. Doing so early helps profiling and other
|
|
passes to be somewhat more effective and avoids some code duplication in
|
|
later real inlining pass for testcases with very many function calls. */
|
|
static unsigned int
|
|
cgraph_early_inlining (void)
|
|
{
|
|
struct cgraph_node *node = cgraph_node (current_function_decl);
|
|
unsigned int todo = 0;
|
|
|
|
if (sorrycount || errorcount)
|
|
return 0;
|
|
if (cgraph_decide_inlining_incrementally (node,
|
|
flag_unit_at_a_time || optimize_size
|
|
? INLINE_SIZE : INLINE_SPEED, 0))
|
|
{
|
|
timevar_push (TV_INTEGRATION);
|
|
todo = optimize_inline_calls (current_function_decl);
|
|
timevar_pop (TV_INTEGRATION);
|
|
}
|
|
return todo;
|
|
}
|
|
|
|
/* When inlining shall be performed. */
|
|
static bool
|
|
cgraph_gate_early_inlining (void)
|
|
{
|
|
return flag_inline_trees && flag_early_inlining;
|
|
}
|
|
|
|
struct tree_opt_pass pass_early_inline =
|
|
{
|
|
"einline", /* name */
|
|
cgraph_gate_early_inlining, /* gate */
|
|
cgraph_early_inlining, /* execute */
|
|
NULL, /* sub */
|
|
NULL, /* next */
|
|
0, /* static_pass_number */
|
|
TV_INLINE_HEURISTICS, /* tv_id */
|
|
0, /* properties_required */
|
|
PROP_cfg, /* properties_provided */
|
|
0, /* properties_destroyed */
|
|
0, /* todo_flags_start */
|
|
TODO_dump_func, /* todo_flags_finish */
|
|
0 /* letter */
|
|
};
|
|
|
|
/* When inlining shall be performed. */
|
|
static bool
|
|
cgraph_gate_ipa_early_inlining (void)
|
|
{
|
|
return (flag_inline_trees && flag_early_inlining
|
|
&& (flag_branch_probabilities || flag_test_coverage
|
|
|| profile_arc_flag));
|
|
}
|
|
|
|
/* IPA pass wrapper for early inlining pass. We need to run early inlining
|
|
before tree profiling so we have stand alone IPA pass for doing so. */
|
|
struct tree_opt_pass pass_ipa_early_inline =
|
|
{
|
|
"einline_ipa", /* name */
|
|
cgraph_gate_ipa_early_inlining, /* gate */
|
|
NULL, /* execute */
|
|
NULL, /* sub */
|
|
NULL, /* next */
|
|
0, /* static_pass_number */
|
|
TV_INLINE_HEURISTICS, /* tv_id */
|
|
0, /* properties_required */
|
|
PROP_cfg, /* properties_provided */
|
|
0, /* properties_destroyed */
|
|
0, /* todo_flags_start */
|
|
TODO_dump_cgraph, /* todo_flags_finish */
|
|
0 /* letter */
|
|
};
|
|
|
|
/* Compute parameters of functions used by inliner. */
|
|
static unsigned int
|
|
compute_inline_parameters (void)
|
|
{
|
|
struct cgraph_node *node = cgraph_node (current_function_decl);
|
|
|
|
gcc_assert (!node->global.inlined_to);
|
|
node->local.estimated_self_stack_size = estimated_stack_frame_size ();
|
|
node->global.estimated_stack_size = node->local.estimated_self_stack_size;
|
|
node->global.stack_frame_offset = 0;
|
|
node->local.inlinable = tree_inlinable_function_p (current_function_decl);
|
|
node->local.self_insns = estimate_num_insns (current_function_decl,
|
|
&eni_inlining_weights);
|
|
if (node->local.inlinable)
|
|
node->local.disregard_inline_limits
|
|
= lang_hooks.tree_inlining.disregard_inline_limits (current_function_decl);
|
|
if (flag_really_no_inline && !node->local.disregard_inline_limits)
|
|
node->local.inlinable = 0;
|
|
/* Inlining characteristics are maintained by the cgraph_mark_inline. */
|
|
node->global.insns = node->local.self_insns;
|
|
return 0;
|
|
}
|
|
|
|
/* When inlining shall be performed. */
|
|
static bool
|
|
gate_inline_passes (void)
|
|
{
|
|
return flag_inline_trees;
|
|
}
|
|
|
|
struct tree_opt_pass pass_inline_parameters =
|
|
{
|
|
NULL, /* name */
|
|
gate_inline_passes, /* gate */
|
|
compute_inline_parameters, /* execute */
|
|
NULL, /* sub */
|
|
NULL, /* next */
|
|
0, /* static_pass_number */
|
|
TV_INLINE_HEURISTICS, /* tv_id */
|
|
0, /* properties_required */
|
|
PROP_cfg, /* properties_provided */
|
|
0, /* properties_destroyed */
|
|
0, /* todo_flags_start */
|
|
0, /* todo_flags_finish */
|
|
0 /* letter */
|
|
};
|
|
|
|
/* Apply inline plan to the function. */
|
|
static unsigned int
|
|
apply_inline (void)
|
|
{
|
|
unsigned int todo = 0;
|
|
struct cgraph_edge *e;
|
|
struct cgraph_node *node = cgraph_node (current_function_decl);
|
|
|
|
/* Even when not optimizing, ensure that always_inline functions get inlined.
|
|
*/
|
|
if (!optimize)
|
|
cgraph_decide_inlining_incrementally (node, INLINE_SPEED, 0);
|
|
|
|
/* We might need the body of this function so that we can expand
|
|
it inline somewhere else. */
|
|
if (cgraph_preserve_function_body_p (current_function_decl))
|
|
save_inline_function_body (node);
|
|
|
|
for (e = node->callees; e; e = e->next_callee)
|
|
if (!e->inline_failed || warn_inline)
|
|
break;
|
|
if (e)
|
|
{
|
|
timevar_push (TV_INTEGRATION);
|
|
todo = optimize_inline_calls (current_function_decl);
|
|
timevar_pop (TV_INTEGRATION);
|
|
}
|
|
/* In non-unit-at-a-time we must mark all referenced functions as needed. */
|
|
if (!flag_unit_at_a_time)
|
|
{
|
|
struct cgraph_edge *e;
|
|
for (e = node->callees; e; e = e->next_callee)
|
|
if (e->callee->analyzed)
|
|
cgraph_mark_needed_node (e->callee);
|
|
}
|
|
return todo | execute_fixup_cfg ();
|
|
}
|
|
|
|
struct tree_opt_pass pass_apply_inline =
|
|
{
|
|
"apply_inline", /* name */
|
|
NULL, /* gate */
|
|
apply_inline, /* execute */
|
|
NULL, /* sub */
|
|
NULL, /* next */
|
|
0, /* static_pass_number */
|
|
TV_INLINE_HEURISTICS, /* tv_id */
|
|
0, /* properties_required */
|
|
PROP_cfg, /* properties_provided */
|
|
0, /* properties_destroyed */
|
|
0, /* todo_flags_start */
|
|
TODO_dump_func | TODO_verify_flow
|
|
| TODO_verify_stmts, /* todo_flags_finish */
|
|
0 /* letter */
|
|
};
|
|
|
|
#include "gt-ipa-inline.h"
|