gcc/libgfortran/generated/matmul_r4.c
Richard Henderson 7f68c75fb3 iresolve.c (gfc_resolve_all, [...]): Use PREFIX.
gcc/fortran/
        * iresolve.c (gfc_resolve_all, gfc_resolve_any, gfc_resolve_count,
        gfc_resolve_cshift, gfc_resolve_dot_product, gfc_resolve_eoshift,
        gfc_resolve_matmul, gfc_resolve_maxloc, gfc_resolve_maxval,
        gfc_resolve_minloc, gfc_resolve_minval, gfc_resolve_pack,
        gfc_resolve_product, gfc_resolve_reshape, gfc_resolve_shape,
        gfc_resolve_spread, gfc_resolve_sum, gfc_resolve_transpose,
        gfc_resolve_unpack: Use PREFIX.
libgfortran/
        * intrinsics/cshift0.c, intrinsics/eoshift0.c, intrinsics/eoshift2.c,
        intrinsics/pack_generic.c, intrinsics/reshape_generic.c,
        intrinsics/spread_generic.c, intrinsics/transpose_generic.c,
        intrinsics/unpack_generic.c, m4/cshift1.m4, m4/dotprod.m4,
        m4/dotprodc.m4, m4/dotprodl.m4, m4/eoshift1.m4, m4/eoshift3.m4,
        m4/iforeach.m4, m4/ifunction.m4, m4/matmul.m4, m4/matmull.m4,
        m4/reshape.m4, m4/shape.m4, m4/transpose.m4: Use standard prefix
        instead of "__".
        * generated/*: Rebuild.

From-SVN: r92075
2004-12-12 18:47:58 -08:00

206 lines
5.6 KiB
C

/* Implementation of the MATMUL intrinsic
Copyright 2002 Free Software Foundation, Inc.
Contributed by Paul Brook <paul@nowt.org>
This file is part of the GNU Fortran 95 runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with libgfor; see the file COPYING.LIB. If not,
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "config.h"
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "libgfortran.h"
/* This is a C version of the following fortran pseudo-code. The key
point is the loop order -- we access all arrays column-first, which
improves the performance enough to boost galgel spec score by 50%.
DIMENSION A(M,COUNT), B(COUNT,N), C(M,N)
C = 0
DO J=1,N
DO K=1,COUNT
DO I=1,M
C(I,J) = C(I,J)+A(I,K)*B(K,J)
*/
extern void matmul_r4 (gfc_array_r4 * retarray, gfc_array_r4 * a, gfc_array_r4 * b);
export_proto(matmul_r4);
void
matmul_r4 (gfc_array_r4 * retarray, gfc_array_r4 * a, gfc_array_r4 * b)
{
GFC_REAL_4 *abase;
GFC_REAL_4 *bbase;
GFC_REAL_4 *dest;
index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
index_type x, y, n, count, xcount, ycount;
assert (GFC_DESCRIPTOR_RANK (a) == 2
|| GFC_DESCRIPTOR_RANK (b) == 2);
/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
Either A or B (but not both) can be rank 1:
o One-dimensional argument A is implicitly treated as a row matrix
dimensioned [1,count], so xcount=1.
o One-dimensional argument B is implicitly treated as a column matrix
dimensioned [count, 1], so ycount=1.
*/
if (retarray->data == NULL)
{
if (GFC_DESCRIPTOR_RANK (a) == 1)
{
retarray->dim[0].lbound = 0;
retarray->dim[0].ubound = b->dim[1].ubound - b->dim[1].lbound;
retarray->dim[0].stride = 1;
}
else if (GFC_DESCRIPTOR_RANK (b) == 1)
{
retarray->dim[0].lbound = 0;
retarray->dim[0].ubound = a->dim[0].ubound - a->dim[0].lbound;
retarray->dim[0].stride = 1;
}
else
{
retarray->dim[0].lbound = 0;
retarray->dim[0].ubound = a->dim[0].ubound - a->dim[0].lbound;
retarray->dim[0].stride = 1;
retarray->dim[1].lbound = 0;
retarray->dim[1].ubound = b->dim[1].ubound - b->dim[1].lbound;
retarray->dim[1].stride = retarray->dim[0].ubound+1;
}
retarray->data
= internal_malloc_size (sizeof (GFC_REAL_4) * size0 (retarray));
retarray->base = 0;
}
abase = a->data;
bbase = b->data;
dest = retarray->data;
if (retarray->dim[0].stride == 0)
retarray->dim[0].stride = 1;
if (a->dim[0].stride == 0)
a->dim[0].stride = 1;
if (b->dim[0].stride == 0)
b->dim[0].stride = 1;
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
{
/* One-dimensional result may be addressed in the code below
either as a row or a column matrix. We want both cases to
work. */
rxstride = rystride = retarray->dim[0].stride;
}
else
{
rxstride = retarray->dim[0].stride;
rystride = retarray->dim[1].stride;
}
if (GFC_DESCRIPTOR_RANK (a) == 1)
{
/* Treat it as a a row matrix A[1,count]. */
axstride = a->dim[0].stride;
aystride = 1;
xcount = 1;
count = a->dim[0].ubound + 1 - a->dim[0].lbound;
}
else
{
axstride = a->dim[0].stride;
aystride = a->dim[1].stride;
count = a->dim[1].ubound + 1 - a->dim[1].lbound;
xcount = a->dim[0].ubound + 1 - a->dim[0].lbound;
}
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
if (GFC_DESCRIPTOR_RANK (b) == 1)
{
/* Treat it as a column matrix B[count,1] */
bxstride = b->dim[0].stride;
/* bystride should never be used for 1-dimensional b.
in case it is we want it to cause a segfault, rather than
an incorrect result. */
bystride = 0xDEADBEEF;
ycount = 1;
}
else
{
bxstride = b->dim[0].stride;
bystride = b->dim[1].stride;
ycount = b->dim[1].ubound + 1 - b->dim[1].lbound;
}
assert (a->base == 0);
assert (b->base == 0);
assert (retarray->base == 0);
abase = a->data;
bbase = b->data;
dest = retarray->data;
if (rxstride == 1 && axstride == 1 && bxstride == 1)
{
GFC_REAL_4 *bbase_y;
GFC_REAL_4 *dest_y;
GFC_REAL_4 *abase_n;
GFC_REAL_4 bbase_yn;
memset (dest, 0, (sizeof (GFC_REAL_4) * size0(retarray)));
for (y = 0; y < ycount; y++)
{
bbase_y = bbase + y*bystride;
dest_y = dest + y*rystride;
for (n = 0; n < count; n++)
{
abase_n = abase + n*aystride;
bbase_yn = bbase_y[n];
for (x = 0; x < xcount; x++)
{
dest_y[x] += abase_n[x] * bbase_yn;
}
}
}
}
else
{
for (y = 0; y < ycount; y++)
for (x = 0; x < xcount; x++)
dest[x*rxstride + y*rystride] = (GFC_REAL_4)0;
for (y = 0; y < ycount; y++)
for (n = 0; n < count; n++)
for (x = 0; x < xcount; x++)
/* dest[x,y] += a[x,n] * b[n,y] */
dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
}
}