gcc/libgfortran/generated/minloc0_4_r4.c
Richard Henderson 7f68c75fb3 iresolve.c (gfc_resolve_all, [...]): Use PREFIX.
gcc/fortran/
        * iresolve.c (gfc_resolve_all, gfc_resolve_any, gfc_resolve_count,
        gfc_resolve_cshift, gfc_resolve_dot_product, gfc_resolve_eoshift,
        gfc_resolve_matmul, gfc_resolve_maxloc, gfc_resolve_maxval,
        gfc_resolve_minloc, gfc_resolve_minval, gfc_resolve_pack,
        gfc_resolve_product, gfc_resolve_reshape, gfc_resolve_shape,
        gfc_resolve_spread, gfc_resolve_sum, gfc_resolve_transpose,
        gfc_resolve_unpack: Use PREFIX.
libgfortran/
        * intrinsics/cshift0.c, intrinsics/eoshift0.c, intrinsics/eoshift2.c,
        intrinsics/pack_generic.c, intrinsics/reshape_generic.c,
        intrinsics/spread_generic.c, intrinsics/transpose_generic.c,
        intrinsics/unpack_generic.c, m4/cshift1.m4, m4/dotprod.m4,
        m4/dotprodc.m4, m4/dotprodl.m4, m4/eoshift1.m4, m4/eoshift3.m4,
        m4/iforeach.m4, m4/ifunction.m4, m4/matmul.m4, m4/matmull.m4,
        m4/reshape.m4, m4/shape.m4, m4/transpose.m4: Use standard prefix
        instead of "__".
        * generated/*: Rebuild.

From-SVN: r92075
2004-12-12 18:47:58 -08:00

239 lines
6.0 KiB
C

/* Implementation of the MINLOC intrinsic
Copyright 2002 Free Software Foundation, Inc.
Contributed by Paul Brook <paul@nowt.org>
This file is part of the GNU Fortran 95 runtime library (libgfor).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with libgfor; see the file COPYING.LIB. If not,
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "config.h"
#include <stdlib.h>
#include <assert.h>
#include <float.h>
#include <limits.h>
#include "libgfortran.h"
extern void minloc0_4_r4 (gfc_array_i4 * retarray, gfc_array_r4 *array);
export_proto(minloc0_4_r4);
void
minloc0_4_r4 (gfc_array_i4 * retarray, gfc_array_r4 *array)
{
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type sstride[GFC_MAX_DIMENSIONS];
index_type dstride;
GFC_REAL_4 *base;
GFC_INTEGER_4 *dest;
index_type rank;
index_type n;
rank = GFC_DESCRIPTOR_RANK (array);
assert (rank > 0);
assert (GFC_DESCRIPTOR_RANK (retarray) == 1);
assert (retarray->dim[0].ubound + 1 - retarray->dim[0].lbound == rank);
if (array->dim[0].stride == 0)
array->dim[0].stride = 1;
if (retarray->dim[0].stride == 0)
retarray->dim[0].stride = 1;
dstride = retarray->dim[0].stride;
dest = retarray->data;
for (n = 0; n < rank; n++)
{
sstride[n] = array->dim[n].stride;
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
count[n] = 0;
if (extent[n] <= 0)
{
/* Set the return value. */
for (n = 0; n < rank; n++)
dest[n * dstride] = 0;
return;
}
}
base = array->data;
/* Initialize the return value. */
for (n = 0; n < rank; n++)
dest[n * dstride] = 1;
{
GFC_REAL_4 minval;
minval = GFC_REAL_4_HUGE;
while (base)
{
{
/* Implementation start. */
if (*base < minval)
{
minval = *base;
for (n = 0; n < rank; n++)
dest[n * dstride] = count[n] + 1;
}
/* Implementation end. */
}
/* Advance to the next element. */
count[0]++;
base += sstride[0];
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so proabably not worth it. */
base -= sstride[n] * extent[n];
n++;
if (n == rank)
{
/* Break out of the loop. */
base = NULL;
break;
}
else
{
count[n]++;
base += sstride[n];
}
}
}
}
}
extern void mminloc0_4_r4 (gfc_array_i4 *, gfc_array_r4 *, gfc_array_l4 *);
export_proto(mminloc0_4_r4);
void
mminloc0_4_r4 (gfc_array_i4 * retarray, gfc_array_r4 *array,
gfc_array_l4 * mask)
{
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type sstride[GFC_MAX_DIMENSIONS];
index_type mstride[GFC_MAX_DIMENSIONS];
index_type dstride;
GFC_INTEGER_4 *dest;
GFC_REAL_4 *base;
GFC_LOGICAL_4 *mbase;
int rank;
index_type n;
rank = GFC_DESCRIPTOR_RANK (array);
assert (rank > 0);
assert (GFC_DESCRIPTOR_RANK (retarray) == 1);
assert (retarray->dim[0].ubound + 1 - retarray->dim[0].lbound == rank);
assert (GFC_DESCRIPTOR_RANK (mask) == rank);
if (array->dim[0].stride == 0)
array->dim[0].stride = 1;
if (retarray->dim[0].stride == 0)
retarray->dim[0].stride = 1;
if (retarray->dim[0].stride == 0)
retarray->dim[0].stride = 1;
dstride = retarray->dim[0].stride;
dest = retarray->data;
for (n = 0; n < rank; n++)
{
sstride[n] = array->dim[n].stride;
mstride[n] = mask->dim[n].stride;
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
count[n] = 0;
if (extent[n] <= 0)
{
/* Set the return value. */
for (n = 0; n < rank; n++)
dest[n * dstride] = 0;
return;
}
}
base = array->data;
mbase = mask->data;
if (GFC_DESCRIPTOR_SIZE (mask) != 4)
{
/* This allows the same loop to be used for all logical types. */
assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
for (n = 0; n < rank; n++)
mstride[n] <<= 1;
mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
}
/* Initialize the return value. */
for (n = 0; n < rank; n++)
dest[n * dstride] = 1;
{
GFC_REAL_4 minval;
minval = GFC_REAL_4_HUGE;
while (base)
{
{
/* Implementation start. */
if (*mbase && *base < minval)
{
minval = *base;
for (n = 0; n < rank; n++)
dest[n * dstride] = count[n] + 1;
}
/* Implementation end. */
}
/* Advance to the next element. */
count[0]++;
base += sstride[0];
mbase += mstride[0];
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so proabably not worth it. */
base -= sstride[n] * extent[n];
mbase -= mstride[n] * extent[n];
n++;
if (n == rank)
{
/* Break out of the loop. */
base = NULL;
break;
}
else
{
count[n]++;
base += sstride[n];
mbase += mstride[n];
}
}
}
}
}