156 lines
3.7 KiB
Go
156 lines
3.7 KiB
Go
// Copyright 2011 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as
|
|
// defined in FIPS 186-3.
|
|
package ecdsa
|
|
|
|
// References:
|
|
// [NSA]: Suite B implementer's guide to FIPS 186-3,
|
|
// http://www.nsa.gov/ia/_files/ecdsa.pdf
|
|
// [SECG]: SECG, SEC1
|
|
// http://www.secg.org/download/aid-780/sec1-v2.pdf
|
|
|
|
import (
|
|
"crypto/elliptic"
|
|
"io"
|
|
"math/big"
|
|
)
|
|
|
|
// PublicKey represents an ECDSA public key.
|
|
type PublicKey struct {
|
|
elliptic.Curve
|
|
X, Y *big.Int
|
|
}
|
|
|
|
// PrivateKey represents a ECDSA private key.
|
|
type PrivateKey struct {
|
|
PublicKey
|
|
D *big.Int
|
|
}
|
|
|
|
var one = new(big.Int).SetInt64(1)
|
|
|
|
// randFieldElement returns a random element of the field underlying the given
|
|
// curve using the procedure given in [NSA] A.2.1.
|
|
func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) {
|
|
params := c.Params()
|
|
b := make([]byte, params.BitSize/8+8)
|
|
_, err = io.ReadFull(rand, b)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
k = new(big.Int).SetBytes(b)
|
|
n := new(big.Int).Sub(params.N, one)
|
|
k.Mod(k, n)
|
|
k.Add(k, one)
|
|
return
|
|
}
|
|
|
|
// GenerateKey generates a public&private key pair.
|
|
func GenerateKey(c elliptic.Curve, rand io.Reader) (priv *PrivateKey, err error) {
|
|
k, err := randFieldElement(c, rand)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
priv = new(PrivateKey)
|
|
priv.PublicKey.Curve = c
|
|
priv.D = k
|
|
priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes())
|
|
return
|
|
}
|
|
|
|
// hashToInt converts a hash value to an integer. There is some disagreement
|
|
// about how this is done. [NSA] suggests that this is done in the obvious
|
|
// manner, but [SECG] truncates the hash to the bit-length of the curve order
|
|
// first. We follow [SECG] because that's what OpenSSL does. Additionally,
|
|
// OpenSSL right shifts excess bits from the number if the hash is too large
|
|
// and we mirror that too.
|
|
func hashToInt(hash []byte, c elliptic.Curve) *big.Int {
|
|
orderBits := c.Params().N.BitLen()
|
|
orderBytes := (orderBits + 7) / 8
|
|
if len(hash) > orderBytes {
|
|
hash = hash[:orderBytes]
|
|
}
|
|
|
|
ret := new(big.Int).SetBytes(hash)
|
|
excess := len(hash)*8 - orderBits
|
|
if excess > 0 {
|
|
ret.Rsh(ret, uint(excess))
|
|
}
|
|
return ret
|
|
}
|
|
|
|
// Sign signs an arbitrary length hash (which should be the result of hashing a
|
|
// larger message) using the private key, priv. It returns the signature as a
|
|
// pair of integers. The security of the private key depends on the entropy of
|
|
// rand.
|
|
func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) {
|
|
// See [NSA] 3.4.1
|
|
c := priv.PublicKey.Curve
|
|
N := c.Params().N
|
|
|
|
var k, kInv *big.Int
|
|
for {
|
|
for {
|
|
k, err = randFieldElement(c, rand)
|
|
if err != nil {
|
|
r = nil
|
|
return
|
|
}
|
|
|
|
kInv = new(big.Int).ModInverse(k, N)
|
|
r, _ = priv.Curve.ScalarBaseMult(k.Bytes())
|
|
r.Mod(r, N)
|
|
if r.Sign() != 0 {
|
|
break
|
|
}
|
|
}
|
|
|
|
e := hashToInt(hash, c)
|
|
s = new(big.Int).Mul(priv.D, r)
|
|
s.Add(s, e)
|
|
s.Mul(s, kInv)
|
|
s.Mod(s, N)
|
|
if s.Sign() != 0 {
|
|
break
|
|
}
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
// Verify verifies the signature in r, s of hash using the public key, pub. It
|
|
// returns true iff the signature is valid.
|
|
func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool {
|
|
// See [NSA] 3.4.2
|
|
c := pub.Curve
|
|
N := c.Params().N
|
|
|
|
if r.Sign() == 0 || s.Sign() == 0 {
|
|
return false
|
|
}
|
|
if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 {
|
|
return false
|
|
}
|
|
e := hashToInt(hash, c)
|
|
w := new(big.Int).ModInverse(s, N)
|
|
|
|
u1 := e.Mul(e, w)
|
|
u1.Mod(u1, N)
|
|
u2 := w.Mul(r, w)
|
|
u2.Mod(u2, N)
|
|
|
|
x1, y1 := c.ScalarBaseMult(u1.Bytes())
|
|
x2, y2 := c.ScalarMult(pub.X, pub.Y, u2.Bytes())
|
|
x, y := c.Add(x1, y1, x2, y2)
|
|
if x.Sign() == 0 && y.Sign() == 0 {
|
|
return false
|
|
}
|
|
x.Mod(x, N)
|
|
return x.Cmp(r) == 0
|
|
}
|