3d07b7cde4
From-SVN: r162492
5581 lines
128 KiB
C
5581 lines
128 KiB
C
/* Source code for an implementation of the Omega test, an integer
|
|
programming algorithm for dependence analysis, by William Pugh,
|
|
appeared in Supercomputing '91 and CACM Aug 92.
|
|
|
|
This code has no license restrictions, and is considered public
|
|
domain.
|
|
|
|
Changes copyright (C) 2005, 2006, 2007, 2008, 2009,
|
|
2010 Free Software Foundation, Inc.
|
|
Contributed by Sebastian Pop <sebastian.pop@inria.fr>
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
/* For a detailed description, see "Constraint-Based Array Dependence
|
|
Analysis" William Pugh, David Wonnacott, TOPLAS'98 and David
|
|
Wonnacott's thesis:
|
|
ftp://ftp.cs.umd.edu/pub/omega/davewThesis/davewThesis.ps.gz
|
|
*/
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "tm.h"
|
|
#include "ggc.h"
|
|
#include "tree.h"
|
|
#include "diagnostic-core.h"
|
|
#include "tree-pass.h"
|
|
#include "omega.h"
|
|
|
|
/* When set to true, keep substitution variables. When set to false,
|
|
resurrect substitution variables (convert substitutions back to EQs). */
|
|
static bool omega_reduce_with_subs = true;
|
|
|
|
/* When set to true, omega_simplify_problem checks for problem with no
|
|
solutions, calling verify_omega_pb. */
|
|
static bool omega_verify_simplification = false;
|
|
|
|
/* When set to true, only produce a single simplified result. */
|
|
static bool omega_single_result = false;
|
|
|
|
/* Set return_single_result to 1 when omega_single_result is true. */
|
|
static int return_single_result = 0;
|
|
|
|
/* Hash table for equations generated by the solver. */
|
|
#define HASH_TABLE_SIZE PARAM_VALUE (PARAM_OMEGA_HASH_TABLE_SIZE)
|
|
#define MAX_KEYS PARAM_VALUE (PARAM_OMEGA_MAX_KEYS)
|
|
static eqn hash_master;
|
|
static int next_key;
|
|
static int hash_version = 0;
|
|
|
|
/* Set to true for making the solver enter in approximation mode. */
|
|
static bool in_approximate_mode = false;
|
|
|
|
/* When set to zero, the solver is allowed to add new equalities to
|
|
the problem to be solved. */
|
|
static int conservative = 0;
|
|
|
|
/* Set to omega_true when the problem was successfully reduced, set to
|
|
omega_unknown when the solver is unable to determine an answer. */
|
|
static enum omega_result omega_found_reduction;
|
|
|
|
/* Set to true when the solver is allowed to add omega_red equations. */
|
|
static bool create_color = false;
|
|
|
|
/* Set to nonzero when the problem to be solved can be reduced. */
|
|
static int may_be_red = 0;
|
|
|
|
/* When false, there should be no substitution equations in the
|
|
simplified problem. */
|
|
static int please_no_equalities_in_simplified_problems = 0;
|
|
|
|
/* Variables names for pretty printing. */
|
|
static char wild_name[200][40];
|
|
|
|
/* Pointer to the void problem. */
|
|
static omega_pb no_problem = (omega_pb) 0;
|
|
|
|
/* Pointer to the problem to be solved. */
|
|
static omega_pb original_problem = (omega_pb) 0;
|
|
|
|
|
|
/* Return the integer A divided by B. */
|
|
|
|
static inline int
|
|
int_div (int a, int b)
|
|
{
|
|
if (a > 0)
|
|
return a/b;
|
|
else
|
|
return -((-a + b - 1)/b);
|
|
}
|
|
|
|
/* Return the integer A modulo B. */
|
|
|
|
static inline int
|
|
int_mod (int a, int b)
|
|
{
|
|
return a - b * int_div (a, b);
|
|
}
|
|
|
|
/* For X and Y positive integers, return X multiplied by Y and check
|
|
that the result does not overflow. */
|
|
|
|
static inline int
|
|
check_pos_mul (int x, int y)
|
|
{
|
|
if (x != 0)
|
|
gcc_assert ((INT_MAX) / x > y);
|
|
|
|
return x * y;
|
|
}
|
|
|
|
/* Return X multiplied by Y and check that the result does not
|
|
overflow. */
|
|
|
|
static inline int
|
|
check_mul (int x, int y)
|
|
{
|
|
if (x >= 0)
|
|
{
|
|
if (y >= 0)
|
|
return check_pos_mul (x, y);
|
|
else
|
|
return -check_pos_mul (x, -y);
|
|
}
|
|
else if (y >= 0)
|
|
return -check_pos_mul (-x, y);
|
|
else
|
|
return check_pos_mul (-x, -y);
|
|
}
|
|
|
|
/* Test whether equation E is red. */
|
|
|
|
static inline bool
|
|
omega_eqn_is_red (eqn e, int desired_res)
|
|
{
|
|
return (desired_res == omega_simplify && e->color == omega_red);
|
|
}
|
|
|
|
/* Return a string for VARIABLE. */
|
|
|
|
static inline char *
|
|
omega_var_to_str (int variable)
|
|
{
|
|
if (0 <= variable && variable <= 20)
|
|
return wild_name[variable];
|
|
|
|
if (-20 < variable && variable < 0)
|
|
return wild_name[40 + variable];
|
|
|
|
/* Collapse all the entries that would have overflowed. */
|
|
return wild_name[21];
|
|
}
|
|
|
|
/* Return a string for variable I in problem PB. */
|
|
|
|
static inline char *
|
|
omega_variable_to_str (omega_pb pb, int i)
|
|
{
|
|
return omega_var_to_str (pb->var[i]);
|
|
}
|
|
|
|
/* Do nothing function: used for default initializations. */
|
|
|
|
void
|
|
omega_no_procedure (omega_pb pb ATTRIBUTE_UNUSED)
|
|
{
|
|
}
|
|
|
|
void (*omega_when_reduced) (omega_pb) = omega_no_procedure;
|
|
|
|
/* Compute the greatest common divisor of A and B. */
|
|
|
|
static inline int
|
|
gcd (int b, int a)
|
|
{
|
|
if (b == 1)
|
|
return 1;
|
|
|
|
while (b != 0)
|
|
{
|
|
int t = b;
|
|
b = a % b;
|
|
a = t;
|
|
}
|
|
|
|
return a;
|
|
}
|
|
|
|
/* Print to FILE from PB equation E with all its coefficients
|
|
multiplied by C. */
|
|
|
|
static void
|
|
omega_print_term (FILE *file, omega_pb pb, eqn e, int c)
|
|
{
|
|
int i;
|
|
bool first = true;
|
|
int n = pb->num_vars;
|
|
int went_first = -1;
|
|
|
|
for (i = 1; i <= n; i++)
|
|
if (c * e->coef[i] > 0)
|
|
{
|
|
first = false;
|
|
went_first = i;
|
|
|
|
if (c * e->coef[i] == 1)
|
|
fprintf (file, "%s", omega_variable_to_str (pb, i));
|
|
else
|
|
fprintf (file, "%d * %s", c * e->coef[i],
|
|
omega_variable_to_str (pb, i));
|
|
break;
|
|
}
|
|
|
|
for (i = 1; i <= n; i++)
|
|
if (i != went_first && c * e->coef[i] != 0)
|
|
{
|
|
if (!first && c * e->coef[i] > 0)
|
|
fprintf (file, " + ");
|
|
|
|
first = false;
|
|
|
|
if (c * e->coef[i] == 1)
|
|
fprintf (file, "%s", omega_variable_to_str (pb, i));
|
|
else if (c * e->coef[i] == -1)
|
|
fprintf (file, " - %s", omega_variable_to_str (pb, i));
|
|
else
|
|
fprintf (file, "%d * %s", c * e->coef[i],
|
|
omega_variable_to_str (pb, i));
|
|
}
|
|
|
|
if (!first && c * e->coef[0] > 0)
|
|
fprintf (file, " + ");
|
|
|
|
if (first || c * e->coef[0] != 0)
|
|
fprintf (file, "%d", c * e->coef[0]);
|
|
}
|
|
|
|
/* Print to FILE the equation E of problem PB. */
|
|
|
|
void
|
|
omega_print_eqn (FILE *file, omega_pb pb, eqn e, bool test, int extra)
|
|
{
|
|
int i;
|
|
int n = pb->num_vars + extra;
|
|
bool is_lt = test && e->coef[0] == -1;
|
|
bool first;
|
|
|
|
if (test)
|
|
{
|
|
if (e->touched)
|
|
fprintf (file, "!");
|
|
|
|
else if (e->key != 0)
|
|
fprintf (file, "%d: ", e->key);
|
|
}
|
|
|
|
if (e->color == omega_red)
|
|
fprintf (file, "[");
|
|
|
|
first = true;
|
|
|
|
for (i = is_lt ? 1 : 0; i <= n; i++)
|
|
if (e->coef[i] < 0)
|
|
{
|
|
if (!first)
|
|
fprintf (file, " + ");
|
|
else
|
|
first = false;
|
|
|
|
if (i == 0)
|
|
fprintf (file, "%d", -e->coef[i]);
|
|
else if (e->coef[i] == -1)
|
|
fprintf (file, "%s", omega_variable_to_str (pb, i));
|
|
else
|
|
fprintf (file, "%d * %s", -e->coef[i],
|
|
omega_variable_to_str (pb, i));
|
|
}
|
|
|
|
if (first)
|
|
{
|
|
if (is_lt)
|
|
{
|
|
fprintf (file, "1");
|
|
is_lt = false;
|
|
}
|
|
else
|
|
fprintf (file, "0");
|
|
}
|
|
|
|
if (test == 0)
|
|
fprintf (file, " = ");
|
|
else if (is_lt)
|
|
fprintf (file, " < ");
|
|
else
|
|
fprintf (file, " <= ");
|
|
|
|
first = true;
|
|
|
|
for (i = 0; i <= n; i++)
|
|
if (e->coef[i] > 0)
|
|
{
|
|
if (!first)
|
|
fprintf (file, " + ");
|
|
else
|
|
first = false;
|
|
|
|
if (i == 0)
|
|
fprintf (file, "%d", e->coef[i]);
|
|
else if (e->coef[i] == 1)
|
|
fprintf (file, "%s", omega_variable_to_str (pb, i));
|
|
else
|
|
fprintf (file, "%d * %s", e->coef[i],
|
|
omega_variable_to_str (pb, i));
|
|
}
|
|
|
|
if (first)
|
|
fprintf (file, "0");
|
|
|
|
if (e->color == omega_red)
|
|
fprintf (file, "]");
|
|
}
|
|
|
|
/* Print to FILE all the variables of problem PB. */
|
|
|
|
static void
|
|
omega_print_vars (FILE *file, omega_pb pb)
|
|
{
|
|
int i;
|
|
|
|
fprintf (file, "variables = ");
|
|
|
|
if (pb->safe_vars > 0)
|
|
fprintf (file, "protected (");
|
|
|
|
for (i = 1; i <= pb->num_vars; i++)
|
|
{
|
|
fprintf (file, "%s", omega_variable_to_str (pb, i));
|
|
|
|
if (i == pb->safe_vars)
|
|
fprintf (file, ")");
|
|
|
|
if (i < pb->num_vars)
|
|
fprintf (file, ", ");
|
|
}
|
|
|
|
fprintf (file, "\n");
|
|
}
|
|
|
|
/* Debug problem PB. */
|
|
|
|
DEBUG_FUNCTION void
|
|
debug_omega_problem (omega_pb pb)
|
|
{
|
|
omega_print_problem (stderr, pb);
|
|
}
|
|
|
|
/* Print to FILE problem PB. */
|
|
|
|
void
|
|
omega_print_problem (FILE *file, omega_pb pb)
|
|
{
|
|
int e;
|
|
|
|
if (!pb->variables_initialized)
|
|
omega_initialize_variables (pb);
|
|
|
|
omega_print_vars (file, pb);
|
|
|
|
for (e = 0; e < pb->num_eqs; e++)
|
|
{
|
|
omega_print_eq (file, pb, &pb->eqs[e]);
|
|
fprintf (file, "\n");
|
|
}
|
|
|
|
fprintf (file, "Done with EQ\n");
|
|
|
|
for (e = 0; e < pb->num_geqs; e++)
|
|
{
|
|
omega_print_geq (file, pb, &pb->geqs[e]);
|
|
fprintf (file, "\n");
|
|
}
|
|
|
|
fprintf (file, "Done with GEQ\n");
|
|
|
|
for (e = 0; e < pb->num_subs; e++)
|
|
{
|
|
eqn eq = &pb->subs[e];
|
|
|
|
if (eq->color == omega_red)
|
|
fprintf (file, "[");
|
|
|
|
if (eq->key > 0)
|
|
fprintf (file, "%s := ", omega_var_to_str (eq->key));
|
|
else
|
|
fprintf (file, "#%d := ", eq->key);
|
|
|
|
omega_print_term (file, pb, eq, 1);
|
|
|
|
if (eq->color == omega_red)
|
|
fprintf (file, "]");
|
|
|
|
fprintf (file, "\n");
|
|
}
|
|
}
|
|
|
|
/* Return the number of equations in PB tagged omega_red. */
|
|
|
|
int
|
|
omega_count_red_equations (omega_pb pb)
|
|
{
|
|
int e, i;
|
|
int result = 0;
|
|
|
|
for (e = 0; e < pb->num_eqs; e++)
|
|
if (pb->eqs[e].color == omega_red)
|
|
{
|
|
for (i = pb->num_vars; i > 0; i--)
|
|
if (pb->geqs[e].coef[i])
|
|
break;
|
|
|
|
if (i == 0 && pb->geqs[e].coef[0] == 1)
|
|
return 0;
|
|
else
|
|
result += 2;
|
|
}
|
|
|
|
for (e = 0; e < pb->num_geqs; e++)
|
|
if (pb->geqs[e].color == omega_red)
|
|
result += 1;
|
|
|
|
for (e = 0; e < pb->num_subs; e++)
|
|
if (pb->subs[e].color == omega_red)
|
|
result += 2;
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Print to FILE all the equations in PB that are tagged omega_red. */
|
|
|
|
void
|
|
omega_print_red_equations (FILE *file, omega_pb pb)
|
|
{
|
|
int e;
|
|
|
|
if (!pb->variables_initialized)
|
|
omega_initialize_variables (pb);
|
|
|
|
omega_print_vars (file, pb);
|
|
|
|
for (e = 0; e < pb->num_eqs; e++)
|
|
if (pb->eqs[e].color == omega_red)
|
|
{
|
|
omega_print_eq (file, pb, &pb->eqs[e]);
|
|
fprintf (file, "\n");
|
|
}
|
|
|
|
for (e = 0; e < pb->num_geqs; e++)
|
|
if (pb->geqs[e].color == omega_red)
|
|
{
|
|
omega_print_geq (file, pb, &pb->geqs[e]);
|
|
fprintf (file, "\n");
|
|
}
|
|
|
|
for (e = 0; e < pb->num_subs; e++)
|
|
if (pb->subs[e].color == omega_red)
|
|
{
|
|
eqn eq = &pb->subs[e];
|
|
fprintf (file, "[");
|
|
|
|
if (eq->key > 0)
|
|
fprintf (file, "%s := ", omega_var_to_str (eq->key));
|
|
else
|
|
fprintf (file, "#%d := ", eq->key);
|
|
|
|
omega_print_term (file, pb, eq, 1);
|
|
fprintf (file, "]\n");
|
|
}
|
|
}
|
|
|
|
/* Pretty print PB to FILE. */
|
|
|
|
void
|
|
omega_pretty_print_problem (FILE *file, omega_pb pb)
|
|
{
|
|
int e, v, v1, v2, v3, t;
|
|
bool *live = XNEWVEC (bool, OMEGA_MAX_GEQS);
|
|
int stuffPrinted = 0;
|
|
bool change;
|
|
|
|
typedef enum {
|
|
none, le, lt
|
|
} partial_order_type;
|
|
|
|
partial_order_type **po = XNEWVEC (partial_order_type *,
|
|
OMEGA_MAX_VARS * OMEGA_MAX_VARS);
|
|
int **po_eq = XNEWVEC (int *, OMEGA_MAX_VARS * OMEGA_MAX_VARS);
|
|
int *last_links = XNEWVEC (int, OMEGA_MAX_VARS);
|
|
int *first_links = XNEWVEC (int, OMEGA_MAX_VARS);
|
|
int *chain_length = XNEWVEC (int, OMEGA_MAX_VARS);
|
|
int *chain = XNEWVEC (int, OMEGA_MAX_VARS);
|
|
int i, m;
|
|
bool multiprint;
|
|
|
|
if (!pb->variables_initialized)
|
|
omega_initialize_variables (pb);
|
|
|
|
if (pb->num_vars > 0)
|
|
{
|
|
omega_eliminate_redundant (pb, false);
|
|
|
|
for (e = 0; e < pb->num_eqs; e++)
|
|
{
|
|
if (stuffPrinted)
|
|
fprintf (file, "; ");
|
|
|
|
stuffPrinted = 1;
|
|
omega_print_eq (file, pb, &pb->eqs[e]);
|
|
}
|
|
|
|
for (e = 0; e < pb->num_geqs; e++)
|
|
live[e] = true;
|
|
|
|
while (1)
|
|
{
|
|
for (v = 1; v <= pb->num_vars; v++)
|
|
{
|
|
last_links[v] = first_links[v] = 0;
|
|
chain_length[v] = 0;
|
|
|
|
for (v2 = 1; v2 <= pb->num_vars; v2++)
|
|
po[v][v2] = none;
|
|
}
|
|
|
|
for (e = 0; e < pb->num_geqs; e++)
|
|
if (live[e])
|
|
{
|
|
for (v = 1; v <= pb->num_vars; v++)
|
|
if (pb->geqs[e].coef[v] == 1)
|
|
first_links[v]++;
|
|
else if (pb->geqs[e].coef[v] == -1)
|
|
last_links[v]++;
|
|
|
|
v1 = pb->num_vars;
|
|
|
|
while (v1 > 0 && pb->geqs[e].coef[v1] == 0)
|
|
v1--;
|
|
|
|
v2 = v1 - 1;
|
|
|
|
while (v2 > 0 && pb->geqs[e].coef[v2] == 0)
|
|
v2--;
|
|
|
|
v3 = v2 - 1;
|
|
|
|
while (v3 > 0 && pb->geqs[e].coef[v3] == 0)
|
|
v3--;
|
|
|
|
if (pb->geqs[e].coef[0] > 0 || pb->geqs[e].coef[0] < -1
|
|
|| v2 <= 0 || v3 > 0
|
|
|| pb->geqs[e].coef[v1] * pb->geqs[e].coef[v2] != -1)
|
|
{
|
|
/* Not a partial order relation. */
|
|
}
|
|
else
|
|
{
|
|
if (pb->geqs[e].coef[v1] == 1)
|
|
{
|
|
v3 = v2;
|
|
v2 = v1;
|
|
v1 = v3;
|
|
}
|
|
|
|
/* Relation is v1 <= v2 or v1 < v2. */
|
|
po[v1][v2] = ((pb->geqs[e].coef[0] == 0) ? le : lt);
|
|
po_eq[v1][v2] = e;
|
|
}
|
|
}
|
|
for (v = 1; v <= pb->num_vars; v++)
|
|
chain_length[v] = last_links[v];
|
|
|
|
/* Just in case pb->num_vars <= 0. */
|
|
change = false;
|
|
for (t = 0; t < pb->num_vars; t++)
|
|
{
|
|
change = false;
|
|
|
|
for (v1 = 1; v1 <= pb->num_vars; v1++)
|
|
for (v2 = 1; v2 <= pb->num_vars; v2++)
|
|
if (po[v1][v2] != none &&
|
|
chain_length[v1] <= chain_length[v2])
|
|
{
|
|
chain_length[v1] = chain_length[v2] + 1;
|
|
change = true;
|
|
}
|
|
}
|
|
|
|
/* Caught in cycle. */
|
|
gcc_assert (!change);
|
|
|
|
for (v1 = 1; v1 <= pb->num_vars; v1++)
|
|
if (chain_length[v1] == 0)
|
|
first_links[v1] = 0;
|
|
|
|
v = 1;
|
|
|
|
for (v1 = 2; v1 <= pb->num_vars; v1++)
|
|
if (chain_length[v1] + first_links[v1] >
|
|
chain_length[v] + first_links[v])
|
|
v = v1;
|
|
|
|
if (chain_length[v] + first_links[v] == 0)
|
|
break;
|
|
|
|
if (stuffPrinted)
|
|
fprintf (file, "; ");
|
|
|
|
stuffPrinted = 1;
|
|
|
|
/* Chain starts at v. */
|
|
{
|
|
int tmp;
|
|
bool first = true;
|
|
|
|
for (e = 0; e < pb->num_geqs; e++)
|
|
if (live[e] && pb->geqs[e].coef[v] == 1)
|
|
{
|
|
if (!first)
|
|
fprintf (file, ", ");
|
|
|
|
tmp = pb->geqs[e].coef[v];
|
|
pb->geqs[e].coef[v] = 0;
|
|
omega_print_term (file, pb, &pb->geqs[e], -1);
|
|
pb->geqs[e].coef[v] = tmp;
|
|
live[e] = false;
|
|
first = false;
|
|
}
|
|
|
|
if (!first)
|
|
fprintf (file, " <= ");
|
|
}
|
|
|
|
/* Find chain. */
|
|
chain[0] = v;
|
|
m = 1;
|
|
while (1)
|
|
{
|
|
/* Print chain. */
|
|
for (v2 = 1; v2 <= pb->num_vars; v2++)
|
|
if (po[v][v2] && chain_length[v] == 1 + chain_length[v2])
|
|
break;
|
|
|
|
if (v2 > pb->num_vars)
|
|
break;
|
|
|
|
chain[m++] = v2;
|
|
v = v2;
|
|
}
|
|
|
|
fprintf (file, "%s", omega_variable_to_str (pb, chain[0]));
|
|
|
|
for (multiprint = false, i = 1; i < m; i++)
|
|
{
|
|
v = chain[i - 1];
|
|
v2 = chain[i];
|
|
|
|
if (po[v][v2] == le)
|
|
fprintf (file, " <= ");
|
|
else
|
|
fprintf (file, " < ");
|
|
|
|
fprintf (file, "%s", omega_variable_to_str (pb, v2));
|
|
live[po_eq[v][v2]] = false;
|
|
|
|
if (!multiprint && i < m - 1)
|
|
for (v3 = 1; v3 <= pb->num_vars; v3++)
|
|
{
|
|
if (v == v3 || v2 == v3
|
|
|| po[v][v2] != po[v][v3]
|
|
|| po[v2][chain[i + 1]] != po[v3][chain[i + 1]])
|
|
continue;
|
|
|
|
fprintf (file, ",%s", omega_variable_to_str (pb, v3));
|
|
live[po_eq[v][v3]] = false;
|
|
live[po_eq[v3][chain[i + 1]]] = false;
|
|
multiprint = true;
|
|
}
|
|
else
|
|
multiprint = false;
|
|
}
|
|
|
|
v = chain[m - 1];
|
|
/* Print last_links. */
|
|
{
|
|
int tmp;
|
|
bool first = true;
|
|
|
|
for (e = 0; e < pb->num_geqs; e++)
|
|
if (live[e] && pb->geqs[e].coef[v] == -1)
|
|
{
|
|
if (!first)
|
|
fprintf (file, ", ");
|
|
else
|
|
fprintf (file, " <= ");
|
|
|
|
tmp = pb->geqs[e].coef[v];
|
|
pb->geqs[e].coef[v] = 0;
|
|
omega_print_term (file, pb, &pb->geqs[e], 1);
|
|
pb->geqs[e].coef[v] = tmp;
|
|
live[e] = false;
|
|
first = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (e = 0; e < pb->num_geqs; e++)
|
|
if (live[e])
|
|
{
|
|
if (stuffPrinted)
|
|
fprintf (file, "; ");
|
|
stuffPrinted = 1;
|
|
omega_print_geq (file, pb, &pb->geqs[e]);
|
|
}
|
|
|
|
for (e = 0; e < pb->num_subs; e++)
|
|
{
|
|
eqn eq = &pb->subs[e];
|
|
|
|
if (stuffPrinted)
|
|
fprintf (file, "; ");
|
|
|
|
stuffPrinted = 1;
|
|
|
|
if (eq->key > 0)
|
|
fprintf (file, "%s := ", omega_var_to_str (eq->key));
|
|
else
|
|
fprintf (file, "#%d := ", eq->key);
|
|
|
|
omega_print_term (file, pb, eq, 1);
|
|
}
|
|
}
|
|
|
|
free (live);
|
|
free (po);
|
|
free (po_eq);
|
|
free (last_links);
|
|
free (first_links);
|
|
free (chain_length);
|
|
free (chain);
|
|
}
|
|
|
|
/* Assign to variable I in PB the next wildcard name. The name of a
|
|
wildcard is a negative number. */
|
|
static int next_wild_card = 0;
|
|
|
|
static void
|
|
omega_name_wild_card (omega_pb pb, int i)
|
|
{
|
|
--next_wild_card;
|
|
if (next_wild_card < -PARAM_VALUE (PARAM_OMEGA_MAX_WILD_CARDS))
|
|
next_wild_card = -1;
|
|
pb->var[i] = next_wild_card;
|
|
}
|
|
|
|
/* Return the index of the last protected (or safe) variable in PB,
|
|
after having added a new wildcard variable. */
|
|
|
|
static int
|
|
omega_add_new_wild_card (omega_pb pb)
|
|
{
|
|
int e;
|
|
int i = ++pb->safe_vars;
|
|
pb->num_vars++;
|
|
|
|
/* Make a free place in the protected (safe) variables, by moving
|
|
the non protected variable pointed by "I" at the end, ie. at
|
|
offset pb->num_vars. */
|
|
if (pb->num_vars != i)
|
|
{
|
|
/* Move "I" for all the inequalities. */
|
|
for (e = pb->num_geqs - 1; e >= 0; e--)
|
|
{
|
|
if (pb->geqs[e].coef[i])
|
|
pb->geqs[e].touched = 1;
|
|
|
|
pb->geqs[e].coef[pb->num_vars] = pb->geqs[e].coef[i];
|
|
}
|
|
|
|
/* Move "I" for all the equalities. */
|
|
for (e = pb->num_eqs - 1; e >= 0; e--)
|
|
pb->eqs[e].coef[pb->num_vars] = pb->eqs[e].coef[i];
|
|
|
|
/* Move "I" for all the substitutions. */
|
|
for (e = pb->num_subs - 1; e >= 0; e--)
|
|
pb->subs[e].coef[pb->num_vars] = pb->subs[e].coef[i];
|
|
|
|
/* Move the identifier. */
|
|
pb->var[pb->num_vars] = pb->var[i];
|
|
}
|
|
|
|
/* Initialize at zero all the coefficients */
|
|
for (e = pb->num_geqs - 1; e >= 0; e--)
|
|
pb->geqs[e].coef[i] = 0;
|
|
|
|
for (e = pb->num_eqs - 1; e >= 0; e--)
|
|
pb->eqs[e].coef[i] = 0;
|
|
|
|
for (e = pb->num_subs - 1; e >= 0; e--)
|
|
pb->subs[e].coef[i] = 0;
|
|
|
|
/* And give it a name. */
|
|
omega_name_wild_card (pb, i);
|
|
return i;
|
|
}
|
|
|
|
/* Delete inequality E from problem PB that has N_VARS variables. */
|
|
|
|
static void
|
|
omega_delete_geq (omega_pb pb, int e, int n_vars)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Deleting %d (last:%d): ", e, pb->num_geqs - 1);
|
|
omega_print_geq (dump_file, pb, &pb->geqs[e]);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
if (e < pb->num_geqs - 1)
|
|
omega_copy_eqn (&pb->geqs[e], &pb->geqs[pb->num_geqs - 1], n_vars);
|
|
|
|
pb->num_geqs--;
|
|
}
|
|
|
|
/* Delete extra inequality E from problem PB that has N_VARS
|
|
variables. */
|
|
|
|
static void
|
|
omega_delete_geq_extra (omega_pb pb, int e, int n_vars)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Deleting %d: ",e);
|
|
omega_print_geq_extra (dump_file, pb, &pb->geqs[e]);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
if (e < pb->num_geqs - 1)
|
|
omega_copy_eqn (&pb->geqs[e], &pb->geqs[pb->num_geqs - 1], n_vars);
|
|
|
|
pb->num_geqs--;
|
|
}
|
|
|
|
|
|
/* Remove variable I from problem PB. */
|
|
|
|
static void
|
|
omega_delete_variable (omega_pb pb, int i)
|
|
{
|
|
int n_vars = pb->num_vars;
|
|
int e;
|
|
|
|
if (omega_safe_var_p (pb, i))
|
|
{
|
|
int j = pb->safe_vars;
|
|
|
|
for (e = pb->num_geqs - 1; e >= 0; e--)
|
|
{
|
|
pb->geqs[e].touched = 1;
|
|
pb->geqs[e].coef[i] = pb->geqs[e].coef[j];
|
|
pb->geqs[e].coef[j] = pb->geqs[e].coef[n_vars];
|
|
}
|
|
|
|
for (e = pb->num_eqs - 1; e >= 0; e--)
|
|
{
|
|
pb->eqs[e].coef[i] = pb->eqs[e].coef[j];
|
|
pb->eqs[e].coef[j] = pb->eqs[e].coef[n_vars];
|
|
}
|
|
|
|
for (e = pb->num_subs - 1; e >= 0; e--)
|
|
{
|
|
pb->subs[e].coef[i] = pb->subs[e].coef[j];
|
|
pb->subs[e].coef[j] = pb->subs[e].coef[n_vars];
|
|
}
|
|
|
|
pb->var[i] = pb->var[j];
|
|
pb->var[j] = pb->var[n_vars];
|
|
}
|
|
else if (i < n_vars)
|
|
{
|
|
for (e = pb->num_geqs - 1; e >= 0; e--)
|
|
if (pb->geqs[e].coef[n_vars])
|
|
{
|
|
pb->geqs[e].coef[i] = pb->geqs[e].coef[n_vars];
|
|
pb->geqs[e].touched = 1;
|
|
}
|
|
|
|
for (e = pb->num_eqs - 1; e >= 0; e--)
|
|
pb->eqs[e].coef[i] = pb->eqs[e].coef[n_vars];
|
|
|
|
for (e = pb->num_subs - 1; e >= 0; e--)
|
|
pb->subs[e].coef[i] = pb->subs[e].coef[n_vars];
|
|
|
|
pb->var[i] = pb->var[n_vars];
|
|
}
|
|
|
|
if (omega_safe_var_p (pb, i))
|
|
pb->safe_vars--;
|
|
|
|
pb->num_vars--;
|
|
}
|
|
|
|
/* Because the coefficients of an equation are sparse, PACKING records
|
|
indices for non null coefficients. */
|
|
static int *packing;
|
|
|
|
/* Set up the coefficients of PACKING, following the coefficients of
|
|
equation EQN that has NUM_VARS variables. */
|
|
|
|
static inline int
|
|
setup_packing (eqn eqn, int num_vars)
|
|
{
|
|
int k;
|
|
int n = 0;
|
|
|
|
for (k = num_vars; k >= 0; k--)
|
|
if (eqn->coef[k])
|
|
packing[n++] = k;
|
|
|
|
return n;
|
|
}
|
|
|
|
/* Computes a linear combination of EQ and SUB at VAR with coefficient
|
|
C, such that EQ->coef[VAR] is set to 0. TOP_VAR is the number of
|
|
non null indices of SUB stored in PACKING. */
|
|
|
|
static inline void
|
|
omega_substitute_red_1 (eqn eq, eqn sub, int var, int c, bool *found_black,
|
|
int top_var)
|
|
{
|
|
if (eq->coef[var] != 0)
|
|
{
|
|
if (eq->color == omega_black)
|
|
*found_black = true;
|
|
else
|
|
{
|
|
int j, k = eq->coef[var];
|
|
|
|
eq->coef[var] = 0;
|
|
|
|
for (j = top_var; j >= 0; j--)
|
|
eq->coef[packing[j]] -= sub->coef[packing[j]] * k * c;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Substitute in PB variable VAR with "C * SUB". */
|
|
|
|
static void
|
|
omega_substitute_red (omega_pb pb, eqn sub, int var, int c, bool *found_black)
|
|
{
|
|
int e, top_var = setup_packing (sub, pb->num_vars);
|
|
|
|
*found_black = false;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
if (sub->color == omega_red)
|
|
fprintf (dump_file, "[");
|
|
|
|
fprintf (dump_file, "substituting using %s := ",
|
|
omega_variable_to_str (pb, var));
|
|
omega_print_term (dump_file, pb, sub, -c);
|
|
|
|
if (sub->color == omega_red)
|
|
fprintf (dump_file, "]");
|
|
|
|
fprintf (dump_file, "\n");
|
|
omega_print_vars (dump_file, pb);
|
|
}
|
|
|
|
for (e = pb->num_eqs - 1; e >= 0; e--)
|
|
{
|
|
eqn eqn = &(pb->eqs[e]);
|
|
|
|
omega_substitute_red_1 (eqn, sub, var, c, found_black, top_var);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
omega_print_eq (dump_file, pb, eqn);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
}
|
|
|
|
for (e = pb->num_geqs - 1; e >= 0; e--)
|
|
{
|
|
eqn eqn = &(pb->geqs[e]);
|
|
|
|
omega_substitute_red_1 (eqn, sub, var, c, found_black, top_var);
|
|
|
|
if (eqn->coef[var] && eqn->color == omega_red)
|
|
eqn->touched = 1;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
omega_print_geq (dump_file, pb, eqn);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
}
|
|
|
|
for (e = pb->num_subs - 1; e >= 0; e--)
|
|
{
|
|
eqn eqn = &(pb->subs[e]);
|
|
|
|
omega_substitute_red_1 (eqn, sub, var, c, found_black, top_var);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "%s := ", omega_var_to_str (eqn->key));
|
|
omega_print_term (dump_file, pb, eqn, 1);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "---\n\n");
|
|
|
|
if (omega_safe_var_p (pb, var) && !omega_wildcard_p (pb, var))
|
|
*found_black = true;
|
|
}
|
|
|
|
/* Substitute in PB variable VAR with "C * SUB". */
|
|
|
|
static void
|
|
omega_substitute (omega_pb pb, eqn sub, int var, int c)
|
|
{
|
|
int e, j, j0;
|
|
int top_var = setup_packing (sub, pb->num_vars);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "substituting using %s := ",
|
|
omega_variable_to_str (pb, var));
|
|
omega_print_term (dump_file, pb, sub, -c);
|
|
fprintf (dump_file, "\n");
|
|
omega_print_vars (dump_file, pb);
|
|
}
|
|
|
|
if (top_var < 0)
|
|
{
|
|
for (e = pb->num_eqs - 1; e >= 0; e--)
|
|
pb->eqs[e].coef[var] = 0;
|
|
|
|
for (e = pb->num_geqs - 1; e >= 0; e--)
|
|
if (pb->geqs[e].coef[var] != 0)
|
|
{
|
|
pb->geqs[e].touched = 1;
|
|
pb->geqs[e].coef[var] = 0;
|
|
}
|
|
|
|
for (e = pb->num_subs - 1; e >= 0; e--)
|
|
pb->subs[e].coef[var] = 0;
|
|
|
|
if (omega_safe_var_p (pb, var) && !omega_wildcard_p (pb, var))
|
|
{
|
|
int k;
|
|
eqn eqn = &(pb->subs[pb->num_subs++]);
|
|
|
|
for (k = pb->num_vars; k >= 0; k--)
|
|
eqn->coef[k] = 0;
|
|
|
|
eqn->key = pb->var[var];
|
|
eqn->color = omega_black;
|
|
}
|
|
}
|
|
else if (top_var == 0 && packing[0] == 0)
|
|
{
|
|
c = -sub->coef[0] * c;
|
|
|
|
for (e = pb->num_eqs - 1; e >= 0; e--)
|
|
{
|
|
pb->eqs[e].coef[0] += pb->eqs[e].coef[var] * c;
|
|
pb->eqs[e].coef[var] = 0;
|
|
}
|
|
|
|
for (e = pb->num_geqs - 1; e >= 0; e--)
|
|
if (pb->geqs[e].coef[var] != 0)
|
|
{
|
|
pb->geqs[e].coef[0] += pb->geqs[e].coef[var] * c;
|
|
pb->geqs[e].coef[var] = 0;
|
|
pb->geqs[e].touched = 1;
|
|
}
|
|
|
|
for (e = pb->num_subs - 1; e >= 0; e--)
|
|
{
|
|
pb->subs[e].coef[0] += pb->subs[e].coef[var] * c;
|
|
pb->subs[e].coef[var] = 0;
|
|
}
|
|
|
|
if (omega_safe_var_p (pb, var) && !omega_wildcard_p (pb, var))
|
|
{
|
|
int k;
|
|
eqn eqn = &(pb->subs[pb->num_subs++]);
|
|
|
|
for (k = pb->num_vars; k >= 1; k--)
|
|
eqn->coef[k] = 0;
|
|
|
|
eqn->coef[0] = c;
|
|
eqn->key = pb->var[var];
|
|
eqn->color = omega_black;
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "---\n\n");
|
|
omega_print_problem (dump_file, pb);
|
|
fprintf (dump_file, "===\n\n");
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (e = pb->num_eqs - 1; e >= 0; e--)
|
|
{
|
|
eqn eqn = &(pb->eqs[e]);
|
|
int k = eqn->coef[var];
|
|
|
|
if (k != 0)
|
|
{
|
|
k = c * k;
|
|
eqn->coef[var] = 0;
|
|
|
|
for (j = top_var; j >= 0; j--)
|
|
{
|
|
j0 = packing[j];
|
|
eqn->coef[j0] -= sub->coef[j0] * k;
|
|
}
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
omega_print_eq (dump_file, pb, eqn);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
}
|
|
|
|
for (e = pb->num_geqs - 1; e >= 0; e--)
|
|
{
|
|
eqn eqn = &(pb->geqs[e]);
|
|
int k = eqn->coef[var];
|
|
|
|
if (k != 0)
|
|
{
|
|
k = c * k;
|
|
eqn->touched = 1;
|
|
eqn->coef[var] = 0;
|
|
|
|
for (j = top_var; j >= 0; j--)
|
|
{
|
|
j0 = packing[j];
|
|
eqn->coef[j0] -= sub->coef[j0] * k;
|
|
}
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
omega_print_geq (dump_file, pb, eqn);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
}
|
|
|
|
for (e = pb->num_subs - 1; e >= 0; e--)
|
|
{
|
|
eqn eqn = &(pb->subs[e]);
|
|
int k = eqn->coef[var];
|
|
|
|
if (k != 0)
|
|
{
|
|
k = c * k;
|
|
eqn->coef[var] = 0;
|
|
|
|
for (j = top_var; j >= 0; j--)
|
|
{
|
|
j0 = packing[j];
|
|
eqn->coef[j0] -= sub->coef[j0] * k;
|
|
}
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "%s := ", omega_var_to_str (eqn->key));
|
|
omega_print_term (dump_file, pb, eqn, 1);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "---\n\n");
|
|
omega_print_problem (dump_file, pb);
|
|
fprintf (dump_file, "===\n\n");
|
|
}
|
|
|
|
if (omega_safe_var_p (pb, var) && !omega_wildcard_p (pb, var))
|
|
{
|
|
int k;
|
|
eqn eqn = &(pb->subs[pb->num_subs++]);
|
|
c = -c;
|
|
|
|
for (k = pb->num_vars; k >= 0; k--)
|
|
eqn->coef[k] = c * (sub->coef[k]);
|
|
|
|
eqn->key = pb->var[var];
|
|
eqn->color = sub->color;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Solve e = factor alpha for x_j and substitute. */
|
|
|
|
static void
|
|
omega_do_mod (omega_pb pb, int factor, int e, int j)
|
|
{
|
|
int k, i;
|
|
eqn eq = omega_alloc_eqns (0, 1);
|
|
int nfactor;
|
|
bool kill_j = false;
|
|
|
|
omega_copy_eqn (eq, &pb->eqs[e], pb->num_vars);
|
|
|
|
for (k = pb->num_vars; k >= 0; k--)
|
|
{
|
|
eq->coef[k] = int_mod (eq->coef[k], factor);
|
|
|
|
if (2 * eq->coef[k] >= factor)
|
|
eq->coef[k] -= factor;
|
|
}
|
|
|
|
nfactor = eq->coef[j];
|
|
|
|
if (omega_safe_var_p (pb, j) && !omega_wildcard_p (pb, j))
|
|
{
|
|
i = omega_add_new_wild_card (pb);
|
|
eq->coef[pb->num_vars] = eq->coef[i];
|
|
eq->coef[j] = 0;
|
|
eq->coef[i] = -factor;
|
|
kill_j = true;
|
|
}
|
|
else
|
|
{
|
|
eq->coef[j] = -factor;
|
|
if (!omega_wildcard_p (pb, j))
|
|
omega_name_wild_card (pb, j);
|
|
}
|
|
|
|
omega_substitute (pb, eq, j, nfactor);
|
|
|
|
for (k = pb->num_vars; k >= 0; k--)
|
|
pb->eqs[e].coef[k] = pb->eqs[e].coef[k] / factor;
|
|
|
|
if (kill_j)
|
|
omega_delete_variable (pb, j);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Mod-ing and normalizing produces:\n");
|
|
omega_print_problem (dump_file, pb);
|
|
}
|
|
|
|
omega_free_eqns (eq, 1);
|
|
}
|
|
|
|
/* Multiplies by -1 inequality E. */
|
|
|
|
void
|
|
omega_negate_geq (omega_pb pb, int e)
|
|
{
|
|
int i;
|
|
|
|
for (i = pb->num_vars; i >= 0; i--)
|
|
pb->geqs[e].coef[i] *= -1;
|
|
|
|
pb->geqs[e].coef[0]--;
|
|
pb->geqs[e].touched = 1;
|
|
}
|
|
|
|
/* Returns OMEGA_TRUE when problem PB has a solution. */
|
|
|
|
static enum omega_result
|
|
verify_omega_pb (omega_pb pb)
|
|
{
|
|
enum omega_result result;
|
|
int e;
|
|
bool any_color = false;
|
|
omega_pb tmp_problem = XNEW (struct omega_pb_d);
|
|
|
|
omega_copy_problem (tmp_problem, pb);
|
|
tmp_problem->safe_vars = 0;
|
|
tmp_problem->num_subs = 0;
|
|
|
|
for (e = pb->num_geqs - 1; e >= 0; e--)
|
|
if (pb->geqs[e].color == omega_red)
|
|
{
|
|
any_color = true;
|
|
break;
|
|
}
|
|
|
|
if (please_no_equalities_in_simplified_problems)
|
|
any_color = true;
|
|
|
|
if (any_color)
|
|
original_problem = no_problem;
|
|
else
|
|
original_problem = pb;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "verifying problem");
|
|
|
|
if (any_color)
|
|
fprintf (dump_file, " (color mode)");
|
|
|
|
fprintf (dump_file, " :\n");
|
|
omega_print_problem (dump_file, pb);
|
|
}
|
|
|
|
result = omega_solve_problem (tmp_problem, omega_unknown);
|
|
original_problem = no_problem;
|
|
free (tmp_problem);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
if (result != omega_false)
|
|
fprintf (dump_file, "verified problem\n");
|
|
else
|
|
fprintf (dump_file, "disproved problem\n");
|
|
omega_print_problem (dump_file, pb);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Add a new equality to problem PB at last position E. */
|
|
|
|
static void
|
|
adding_equality_constraint (omega_pb pb, int e)
|
|
{
|
|
if (original_problem != no_problem
|
|
&& original_problem != pb
|
|
&& !conservative)
|
|
{
|
|
int i, j;
|
|
int e2 = original_problem->num_eqs++;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file,
|
|
"adding equality constraint %d to outer problem\n", e2);
|
|
omega_init_eqn_zero (&original_problem->eqs[e2],
|
|
original_problem->num_vars);
|
|
|
|
for (i = pb->num_vars; i >= 1; i--)
|
|
{
|
|
for (j = original_problem->num_vars; j >= 1; j--)
|
|
if (original_problem->var[j] == pb->var[i])
|
|
break;
|
|
|
|
if (j <= 0)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "retracting\n");
|
|
original_problem->num_eqs--;
|
|
return;
|
|
}
|
|
original_problem->eqs[e2].coef[j] = pb->eqs[e].coef[i];
|
|
}
|
|
|
|
original_problem->eqs[e2].coef[0] = pb->eqs[e].coef[0];
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
omega_print_problem (dump_file, original_problem);
|
|
}
|
|
}
|
|
|
|
static int *fast_lookup;
|
|
static int *fast_lookup_red;
|
|
|
|
typedef enum {
|
|
normalize_false,
|
|
normalize_uncoupled,
|
|
normalize_coupled
|
|
} normalize_return_type;
|
|
|
|
/* Normalizes PB by removing redundant constraints. Returns
|
|
normalize_false when the constraints system has no solution,
|
|
otherwise returns normalize_coupled or normalize_uncoupled. */
|
|
|
|
static normalize_return_type
|
|
normalize_omega_problem (omega_pb pb)
|
|
{
|
|
int e, i, j, k, n_vars;
|
|
int coupled_subscripts = 0;
|
|
|
|
n_vars = pb->num_vars;
|
|
|
|
for (e = 0; e < pb->num_geqs; e++)
|
|
{
|
|
if (!pb->geqs[e].touched)
|
|
{
|
|
if (!single_var_geq (&pb->geqs[e], n_vars))
|
|
coupled_subscripts = 1;
|
|
}
|
|
else
|
|
{
|
|
int g, top_var, i0, hashCode;
|
|
int *p = &packing[0];
|
|
|
|
for (k = 1; k <= n_vars; k++)
|
|
if (pb->geqs[e].coef[k])
|
|
*(p++) = k;
|
|
|
|
top_var = (p - &packing[0]) - 1;
|
|
|
|
if (top_var == -1)
|
|
{
|
|
if (pb->geqs[e].coef[0] < 0)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
omega_print_geq (dump_file, pb, &pb->geqs[e]);
|
|
fprintf (dump_file, "\nequations have no solution \n");
|
|
}
|
|
return normalize_false;
|
|
}
|
|
|
|
omega_delete_geq (pb, e, n_vars);
|
|
e--;
|
|
continue;
|
|
}
|
|
else if (top_var == 0)
|
|
{
|
|
int singlevar = packing[0];
|
|
|
|
g = pb->geqs[e].coef[singlevar];
|
|
|
|
if (g > 0)
|
|
{
|
|
pb->geqs[e].coef[singlevar] = 1;
|
|
pb->geqs[e].key = singlevar;
|
|
}
|
|
else
|
|
{
|
|
g = -g;
|
|
pb->geqs[e].coef[singlevar] = -1;
|
|
pb->geqs[e].key = -singlevar;
|
|
}
|
|
|
|
if (g > 1)
|
|
pb->geqs[e].coef[0] = int_div (pb->geqs[e].coef[0], g);
|
|
}
|
|
else
|
|
{
|
|
int g2;
|
|
int hash_key_multiplier = 31;
|
|
|
|
coupled_subscripts = 1;
|
|
i0 = top_var;
|
|
i = packing[i0--];
|
|
g = pb->geqs[e].coef[i];
|
|
hashCode = g * (i + 3);
|
|
|
|
if (g < 0)
|
|
g = -g;
|
|
|
|
for (; i0 >= 0; i0--)
|
|
{
|
|
int x;
|
|
|
|
i = packing[i0];
|
|
x = pb->geqs[e].coef[i];
|
|
hashCode = hashCode * hash_key_multiplier * (i + 3) + x;
|
|
|
|
if (x < 0)
|
|
x = -x;
|
|
|
|
if (x == 1)
|
|
{
|
|
g = 1;
|
|
i0--;
|
|
break;
|
|
}
|
|
else
|
|
g = gcd (x, g);
|
|
}
|
|
|
|
for (; i0 >= 0; i0--)
|
|
{
|
|
int x;
|
|
i = packing[i0];
|
|
x = pb->geqs[e].coef[i];
|
|
hashCode = hashCode * hash_key_multiplier * (i + 3) + x;
|
|
}
|
|
|
|
if (g > 1)
|
|
{
|
|
pb->geqs[e].coef[0] = int_div (pb->geqs[e].coef[0], g);
|
|
i0 = top_var;
|
|
i = packing[i0--];
|
|
pb->geqs[e].coef[i] = pb->geqs[e].coef[i] / g;
|
|
hashCode = pb->geqs[e].coef[i] * (i + 3);
|
|
|
|
for (; i0 >= 0; i0--)
|
|
{
|
|
i = packing[i0];
|
|
pb->geqs[e].coef[i] = pb->geqs[e].coef[i] / g;
|
|
hashCode = hashCode * hash_key_multiplier * (i + 3)
|
|
+ pb->geqs[e].coef[i];
|
|
}
|
|
}
|
|
|
|
g2 = abs (hashCode);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Hash code = %d, eqn = ", hashCode);
|
|
omega_print_geq (dump_file, pb, &pb->geqs[e]);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
j = g2 % HASH_TABLE_SIZE;
|
|
|
|
do {
|
|
eqn proto = &(hash_master[j]);
|
|
|
|
if (proto->touched == g2)
|
|
{
|
|
if (proto->coef[0] == top_var)
|
|
{
|
|
if (hashCode >= 0)
|
|
for (i0 = top_var; i0 >= 0; i0--)
|
|
{
|
|
i = packing[i0];
|
|
|
|
if (pb->geqs[e].coef[i] != proto->coef[i])
|
|
break;
|
|
}
|
|
else
|
|
for (i0 = top_var; i0 >= 0; i0--)
|
|
{
|
|
i = packing[i0];
|
|
|
|
if (pb->geqs[e].coef[i] != -proto->coef[i])
|
|
break;
|
|
}
|
|
|
|
if (i0 < 0)
|
|
{
|
|
if (hashCode >= 0)
|
|
pb->geqs[e].key = proto->key;
|
|
else
|
|
pb->geqs[e].key = -proto->key;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else if (proto->touched < 0)
|
|
{
|
|
omega_init_eqn_zero (proto, pb->num_vars);
|
|
if (hashCode >= 0)
|
|
for (i0 = top_var; i0 >= 0; i0--)
|
|
{
|
|
i = packing[i0];
|
|
proto->coef[i] = pb->geqs[e].coef[i];
|
|
}
|
|
else
|
|
for (i0 = top_var; i0 >= 0; i0--)
|
|
{
|
|
i = packing[i0];
|
|
proto->coef[i] = -pb->geqs[e].coef[i];
|
|
}
|
|
|
|
proto->coef[0] = top_var;
|
|
proto->touched = g2;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, " constraint key = %d\n",
|
|
next_key);
|
|
|
|
proto->key = next_key++;
|
|
|
|
/* Too many hash keys generated. */
|
|
gcc_assert (proto->key <= MAX_KEYS);
|
|
|
|
if (hashCode >= 0)
|
|
pb->geqs[e].key = proto->key;
|
|
else
|
|
pb->geqs[e].key = -proto->key;
|
|
|
|
break;
|
|
}
|
|
|
|
j = (j + 1) % HASH_TABLE_SIZE;
|
|
} while (1);
|
|
}
|
|
|
|
pb->geqs[e].touched = 0;
|
|
}
|
|
|
|
{
|
|
int eKey = pb->geqs[e].key;
|
|
int e2;
|
|
if (e > 0)
|
|
{
|
|
int cTerm = pb->geqs[e].coef[0];
|
|
e2 = fast_lookup[MAX_KEYS - eKey];
|
|
|
|
if (e2 < e && pb->geqs[e2].key == -eKey
|
|
&& pb->geqs[e2].color == omega_black)
|
|
{
|
|
if (pb->geqs[e2].coef[0] < -cTerm)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
omega_print_geq (dump_file, pb, &pb->geqs[e]);
|
|
fprintf (dump_file, "\n");
|
|
omega_print_geq (dump_file, pb, &pb->geqs[e2]);
|
|
fprintf (dump_file,
|
|
"\nequations have no solution \n");
|
|
}
|
|
return normalize_false;
|
|
}
|
|
|
|
if (pb->geqs[e2].coef[0] == -cTerm
|
|
&& (create_color
|
|
|| pb->geqs[e].color == omega_black))
|
|
{
|
|
omega_copy_eqn (&pb->eqs[pb->num_eqs], &pb->geqs[e],
|
|
pb->num_vars);
|
|
if (pb->geqs[e].color == omega_black)
|
|
adding_equality_constraint (pb, pb->num_eqs);
|
|
pb->num_eqs++;
|
|
gcc_assert (pb->num_eqs <= OMEGA_MAX_EQS);
|
|
}
|
|
}
|
|
|
|
e2 = fast_lookup_red[MAX_KEYS - eKey];
|
|
|
|
if (e2 < e && pb->geqs[e2].key == -eKey
|
|
&& pb->geqs[e2].color == omega_red)
|
|
{
|
|
if (pb->geqs[e2].coef[0] < -cTerm)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
omega_print_geq (dump_file, pb, &pb->geqs[e]);
|
|
fprintf (dump_file, "\n");
|
|
omega_print_geq (dump_file, pb, &pb->geqs[e2]);
|
|
fprintf (dump_file,
|
|
"\nequations have no solution \n");
|
|
}
|
|
return normalize_false;
|
|
}
|
|
|
|
if (pb->geqs[e2].coef[0] == -cTerm && create_color)
|
|
{
|
|
omega_copy_eqn (&pb->eqs[pb->num_eqs], &pb->geqs[e],
|
|
pb->num_vars);
|
|
pb->eqs[pb->num_eqs].color = omega_red;
|
|
pb->num_eqs++;
|
|
gcc_assert (pb->num_eqs <= OMEGA_MAX_EQS);
|
|
}
|
|
}
|
|
|
|
e2 = fast_lookup[MAX_KEYS + eKey];
|
|
|
|
if (e2 < e && pb->geqs[e2].key == eKey
|
|
&& pb->geqs[e2].color == omega_black)
|
|
{
|
|
if (pb->geqs[e2].coef[0] > cTerm)
|
|
{
|
|
if (pb->geqs[e].color == omega_black)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file,
|
|
"Removing Redundant Equation: ");
|
|
omega_print_geq (dump_file, pb, &(pb->geqs[e2]));
|
|
fprintf (dump_file, "\n");
|
|
fprintf (dump_file,
|
|
"[a] Made Redundant by: ");
|
|
omega_print_geq (dump_file, pb, &(pb->geqs[e]));
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
pb->geqs[e2].coef[0] = cTerm;
|
|
omega_delete_geq (pb, e, n_vars);
|
|
e--;
|
|
continue;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Removing Redundant Equation: ");
|
|
omega_print_geq (dump_file, pb, &(pb->geqs[e]));
|
|
fprintf (dump_file, "\n");
|
|
fprintf (dump_file, "[b] Made Redundant by: ");
|
|
omega_print_geq (dump_file, pb, &(pb->geqs[e2]));
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
omega_delete_geq (pb, e, n_vars);
|
|
e--;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
e2 = fast_lookup_red[MAX_KEYS + eKey];
|
|
|
|
if (e2 < e && pb->geqs[e2].key == eKey
|
|
&& pb->geqs[e2].color == omega_red)
|
|
{
|
|
if (pb->geqs[e2].coef[0] >= cTerm)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Removing Redundant Equation: ");
|
|
omega_print_geq (dump_file, pb, &(pb->geqs[e2]));
|
|
fprintf (dump_file, "\n");
|
|
fprintf (dump_file, "[c] Made Redundant by: ");
|
|
omega_print_geq (dump_file, pb, &(pb->geqs[e]));
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
pb->geqs[e2].coef[0] = cTerm;
|
|
pb->geqs[e2].color = pb->geqs[e].color;
|
|
}
|
|
else if (pb->geqs[e].color == omega_red)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Removing Redundant Equation: ");
|
|
omega_print_geq (dump_file, pb, &(pb->geqs[e]));
|
|
fprintf (dump_file, "\n");
|
|
fprintf (dump_file, "[d] Made Redundant by: ");
|
|
omega_print_geq (dump_file, pb, &(pb->geqs[e2]));
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
}
|
|
omega_delete_geq (pb, e, n_vars);
|
|
e--;
|
|
continue;
|
|
|
|
}
|
|
}
|
|
|
|
if (pb->geqs[e].color == omega_red)
|
|
fast_lookup_red[MAX_KEYS + eKey] = e;
|
|
else
|
|
fast_lookup[MAX_KEYS + eKey] = e;
|
|
}
|
|
}
|
|
|
|
create_color = false;
|
|
return coupled_subscripts ? normalize_coupled : normalize_uncoupled;
|
|
}
|
|
|
|
/* Divide the coefficients of EQN by their gcd. N_VARS is the number
|
|
of variables in EQN. */
|
|
|
|
static inline void
|
|
divide_eqn_by_gcd (eqn eqn, int n_vars)
|
|
{
|
|
int var, g = 0;
|
|
|
|
for (var = n_vars; var >= 0; var--)
|
|
g = gcd (abs (eqn->coef[var]), g);
|
|
|
|
if (g)
|
|
for (var = n_vars; var >= 0; var--)
|
|
eqn->coef[var] = eqn->coef[var] / g;
|
|
}
|
|
|
|
/* Rewrite some non-safe variables in function of protected
|
|
wildcard variables. */
|
|
|
|
static void
|
|
cleanout_wildcards (omega_pb pb)
|
|
{
|
|
int e, i, j;
|
|
int n_vars = pb->num_vars;
|
|
bool renormalize = false;
|
|
|
|
for (e = pb->num_eqs - 1; e >= 0; e--)
|
|
for (i = n_vars; !omega_safe_var_p (pb, i); i--)
|
|
if (pb->eqs[e].coef[i] != 0)
|
|
{
|
|
/* i is the last nonzero non-safe variable. */
|
|
|
|
for (j = i - 1; !omega_safe_var_p (pb, j); j--)
|
|
if (pb->eqs[e].coef[j] != 0)
|
|
break;
|
|
|
|
/* j is the next nonzero non-safe variable, or points
|
|
to a safe variable: it is then a wildcard variable. */
|
|
|
|
/* Clean it out. */
|
|
if (omega_safe_var_p (pb, j))
|
|
{
|
|
eqn sub = &(pb->eqs[e]);
|
|
int c = pb->eqs[e].coef[i];
|
|
int a = abs (c);
|
|
int e2;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file,
|
|
"Found a single wild card equality: ");
|
|
omega_print_eq (dump_file, pb, &pb->eqs[e]);
|
|
fprintf (dump_file, "\n");
|
|
omega_print_problem (dump_file, pb);
|
|
}
|
|
|
|
for (e2 = pb->num_eqs - 1; e2 >= 0; e2--)
|
|
if (e != e2 && pb->eqs[e2].coef[i]
|
|
&& (pb->eqs[e2].color == omega_red
|
|
|| (pb->eqs[e2].color == omega_black
|
|
&& pb->eqs[e].color == omega_black)))
|
|
{
|
|
eqn eqn = &(pb->eqs[e2]);
|
|
int var, k;
|
|
|
|
for (var = n_vars; var >= 0; var--)
|
|
eqn->coef[var] *= a;
|
|
|
|
k = eqn->coef[i];
|
|
|
|
for (var = n_vars; var >= 0; var--)
|
|
eqn->coef[var] -= sub->coef[var] * k / c;
|
|
|
|
eqn->coef[i] = 0;
|
|
divide_eqn_by_gcd (eqn, n_vars);
|
|
}
|
|
|
|
for (e2 = pb->num_geqs - 1; e2 >= 0; e2--)
|
|
if (pb->geqs[e2].coef[i]
|
|
&& (pb->geqs[e2].color == omega_red
|
|
|| (pb->eqs[e].color == omega_black
|
|
&& pb->geqs[e2].color == omega_black)))
|
|
{
|
|
eqn eqn = &(pb->geqs[e2]);
|
|
int var, k;
|
|
|
|
for (var = n_vars; var >= 0; var--)
|
|
eqn->coef[var] *= a;
|
|
|
|
k = eqn->coef[i];
|
|
|
|
for (var = n_vars; var >= 0; var--)
|
|
eqn->coef[var] -= sub->coef[var] * k / c;
|
|
|
|
eqn->coef[i] = 0;
|
|
eqn->touched = 1;
|
|
renormalize = true;
|
|
}
|
|
|
|
for (e2 = pb->num_subs - 1; e2 >= 0; e2--)
|
|
if (pb->subs[e2].coef[i]
|
|
&& (pb->subs[e2].color == omega_red
|
|
|| (pb->subs[e2].color == omega_black
|
|
&& pb->eqs[e].color == omega_black)))
|
|
{
|
|
eqn eqn = &(pb->subs[e2]);
|
|
int var, k;
|
|
|
|
for (var = n_vars; var >= 0; var--)
|
|
eqn->coef[var] *= a;
|
|
|
|
k = eqn->coef[i];
|
|
|
|
for (var = n_vars; var >= 0; var--)
|
|
eqn->coef[var] -= sub->coef[var] * k / c;
|
|
|
|
eqn->coef[i] = 0;
|
|
divide_eqn_by_gcd (eqn, n_vars);
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "cleaned-out wildcard: ");
|
|
omega_print_problem (dump_file, pb);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (renormalize)
|
|
normalize_omega_problem (pb);
|
|
}
|
|
|
|
/* Swap values contained in I and J. */
|
|
|
|
static inline void
|
|
swap (int *i, int *j)
|
|
{
|
|
int tmp;
|
|
tmp = *i;
|
|
*i = *j;
|
|
*j = tmp;
|
|
}
|
|
|
|
/* Swap values contained in I and J. */
|
|
|
|
static inline void
|
|
bswap (bool *i, bool *j)
|
|
{
|
|
bool tmp;
|
|
tmp = *i;
|
|
*i = *j;
|
|
*j = tmp;
|
|
}
|
|
|
|
/* Make variable IDX unprotected in PB, by swapping its index at the
|
|
PB->safe_vars rank. */
|
|
|
|
static inline void
|
|
omega_unprotect_1 (omega_pb pb, int *idx, bool *unprotect)
|
|
{
|
|
/* If IDX is protected... */
|
|
if (*idx < pb->safe_vars)
|
|
{
|
|
/* ... swap its index with the last non protected index. */
|
|
int j = pb->safe_vars;
|
|
int e;
|
|
|
|
for (e = pb->num_geqs - 1; e >= 0; e--)
|
|
{
|
|
pb->geqs[e].touched = 1;
|
|
swap (&pb->geqs[e].coef[*idx], &pb->geqs[e].coef[j]);
|
|
}
|
|
|
|
for (e = pb->num_eqs - 1; e >= 0; e--)
|
|
swap (&pb->eqs[e].coef[*idx], &pb->eqs[e].coef[j]);
|
|
|
|
for (e = pb->num_subs - 1; e >= 0; e--)
|
|
swap (&pb->subs[e].coef[*idx], &pb->subs[e].coef[j]);
|
|
|
|
if (unprotect)
|
|
bswap (&unprotect[*idx], &unprotect[j]);
|
|
|
|
swap (&pb->var[*idx], &pb->var[j]);
|
|
pb->forwarding_address[pb->var[*idx]] = *idx;
|
|
pb->forwarding_address[pb->var[j]] = j;
|
|
(*idx)--;
|
|
}
|
|
|
|
/* The variable at pb->safe_vars is also unprotected now. */
|
|
pb->safe_vars--;
|
|
}
|
|
|
|
/* During the Fourier-Motzkin elimination some variables are
|
|
substituted with other variables. This function resurrects the
|
|
substituted variables in PB. */
|
|
|
|
static void
|
|
resurrect_subs (omega_pb pb)
|
|
{
|
|
if (pb->num_subs > 0
|
|
&& please_no_equalities_in_simplified_problems == 0)
|
|
{
|
|
int i, e, m;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file,
|
|
"problem reduced, bringing variables back to life\n");
|
|
omega_print_problem (dump_file, pb);
|
|
}
|
|
|
|
for (i = 1; omega_safe_var_p (pb, i); i++)
|
|
if (omega_wildcard_p (pb, i))
|
|
omega_unprotect_1 (pb, &i, NULL);
|
|
|
|
m = pb->num_subs;
|
|
|
|
for (e = pb->num_geqs - 1; e >= 0; e--)
|
|
if (single_var_geq (&pb->geqs[e], pb->num_vars))
|
|
{
|
|
if (!omega_safe_var_p (pb, abs (pb->geqs[e].key)))
|
|
pb->geqs[e].key += (pb->geqs[e].key > 0 ? m : -m);
|
|
}
|
|
else
|
|
{
|
|
pb->geqs[e].touched = 1;
|
|
pb->geqs[e].key = 0;
|
|
}
|
|
|
|
for (i = pb->num_vars; !omega_safe_var_p (pb, i); i--)
|
|
{
|
|
pb->var[i + m] = pb->var[i];
|
|
|
|
for (e = pb->num_geqs - 1; e >= 0; e--)
|
|
pb->geqs[e].coef[i + m] = pb->geqs[e].coef[i];
|
|
|
|
for (e = pb->num_eqs - 1; e >= 0; e--)
|
|
pb->eqs[e].coef[i + m] = pb->eqs[e].coef[i];
|
|
|
|
for (e = pb->num_subs - 1; e >= 0; e--)
|
|
pb->subs[e].coef[i + m] = pb->subs[e].coef[i];
|
|
}
|
|
|
|
for (i = pb->safe_vars + m; !omega_safe_var_p (pb, i); i--)
|
|
{
|
|
for (e = pb->num_geqs - 1; e >= 0; e--)
|
|
pb->geqs[e].coef[i] = 0;
|
|
|
|
for (e = pb->num_eqs - 1; e >= 0; e--)
|
|
pb->eqs[e].coef[i] = 0;
|
|
|
|
for (e = pb->num_subs - 1; e >= 0; e--)
|
|
pb->subs[e].coef[i] = 0;
|
|
}
|
|
|
|
pb->num_vars += m;
|
|
|
|
for (e = pb->num_subs - 1; e >= 0; e--)
|
|
{
|
|
pb->var[pb->safe_vars + 1 + e] = pb->subs[e].key;
|
|
omega_copy_eqn (&(pb->eqs[pb->num_eqs]), &(pb->subs[e]),
|
|
pb->num_vars);
|
|
pb->eqs[pb->num_eqs].coef[pb->safe_vars + 1 + e] = -1;
|
|
pb->eqs[pb->num_eqs].color = omega_black;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "brought back: ");
|
|
omega_print_eq (dump_file, pb, &pb->eqs[pb->num_eqs]);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
pb->num_eqs++;
|
|
gcc_assert (pb->num_eqs <= OMEGA_MAX_EQS);
|
|
}
|
|
|
|
pb->safe_vars += m;
|
|
pb->num_subs = 0;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "variables brought back to life\n");
|
|
omega_print_problem (dump_file, pb);
|
|
}
|
|
|
|
cleanout_wildcards (pb);
|
|
}
|
|
}
|
|
|
|
static inline bool
|
|
implies (unsigned int a, unsigned int b)
|
|
{
|
|
return (a == (a & b));
|
|
}
|
|
|
|
/* Eliminate redundant equations in PB. When EXPENSIVE is true, an
|
|
extra step is performed. Returns omega_false when there exist no
|
|
solution, omega_true otherwise. */
|
|
|
|
enum omega_result
|
|
omega_eliminate_redundant (omega_pb pb, bool expensive)
|
|
{
|
|
int c, e, e1, e2, e3, p, q, i, k, alpha, alpha1, alpha2, alpha3;
|
|
bool *is_dead = XNEWVEC (bool, OMEGA_MAX_GEQS);
|
|
omega_pb tmp_problem;
|
|
|
|
/* {P,Z,N}EQS = {Positive,Zero,Negative} Equations. */
|
|
unsigned int *peqs = XNEWVEC (unsigned int, OMEGA_MAX_GEQS);
|
|
unsigned int *zeqs = XNEWVEC (unsigned int, OMEGA_MAX_GEQS);
|
|
unsigned int *neqs = XNEWVEC (unsigned int, OMEGA_MAX_GEQS);
|
|
|
|
/* PP = Possible Positives, PZ = Possible Zeros, PN = Possible Negatives */
|
|
unsigned int pp, pz, pn;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "in eliminate Redundant:\n");
|
|
omega_print_problem (dump_file, pb);
|
|
}
|
|
|
|
for (e = pb->num_geqs - 1; e >= 0; e--)
|
|
{
|
|
int tmp = 1;
|
|
|
|
is_dead[e] = false;
|
|
peqs[e] = zeqs[e] = neqs[e] = 0;
|
|
|
|
for (i = pb->num_vars; i >= 1; i--)
|
|
{
|
|
if (pb->geqs[e].coef[i] > 0)
|
|
peqs[e] |= tmp;
|
|
else if (pb->geqs[e].coef[i] < 0)
|
|
neqs[e] |= tmp;
|
|
else
|
|
zeqs[e] |= tmp;
|
|
|
|
tmp <<= 1;
|
|
}
|
|
}
|
|
|
|
|
|
for (e1 = pb->num_geqs - 1; e1 >= 0; e1--)
|
|
if (!is_dead[e1])
|
|
for (e2 = e1 - 1; e2 >= 0; e2--)
|
|
if (!is_dead[e2])
|
|
{
|
|
for (p = pb->num_vars; p > 1; p--)
|
|
for (q = p - 1; q > 0; q--)
|
|
if ((alpha = pb->geqs[e1].coef[p] * pb->geqs[e2].coef[q]
|
|
- pb->geqs[e2].coef[p] * pb->geqs[e1].coef[q]) != 0)
|
|
goto foundPQ;
|
|
|
|
continue;
|
|
|
|
foundPQ:
|
|
pz = ((zeqs[e1] & zeqs[e2]) | (peqs[e1] & neqs[e2])
|
|
| (neqs[e1] & peqs[e2]));
|
|
pp = peqs[e1] | peqs[e2];
|
|
pn = neqs[e1] | neqs[e2];
|
|
|
|
for (e3 = pb->num_geqs - 1; e3 >= 0; e3--)
|
|
if (e3 != e1 && e3 != e2)
|
|
{
|
|
if (!implies (zeqs[e3], pz))
|
|
goto nextE3;
|
|
|
|
alpha1 = (pb->geqs[e2].coef[q] * pb->geqs[e3].coef[p]
|
|
- pb->geqs[e2].coef[p] * pb->geqs[e3].coef[q]);
|
|
alpha2 = -(pb->geqs[e1].coef[q] * pb->geqs[e3].coef[p]
|
|
- pb->geqs[e1].coef[p] * pb->geqs[e3].coef[q]);
|
|
alpha3 = alpha;
|
|
|
|
if (alpha1 * alpha2 <= 0)
|
|
goto nextE3;
|
|
|
|
if (alpha1 < 0)
|
|
{
|
|
alpha1 = -alpha1;
|
|
alpha2 = -alpha2;
|
|
alpha3 = -alpha3;
|
|
}
|
|
|
|
if (alpha3 > 0)
|
|
{
|
|
/* Trying to prove e3 is redundant. */
|
|
if (!implies (peqs[e3], pp)
|
|
|| !implies (neqs[e3], pn))
|
|
goto nextE3;
|
|
|
|
if (pb->geqs[e3].color == omega_black
|
|
&& (pb->geqs[e1].color == omega_red
|
|
|| pb->geqs[e2].color == omega_red))
|
|
goto nextE3;
|
|
|
|
for (k = pb->num_vars; k >= 1; k--)
|
|
if (alpha3 * pb->geqs[e3].coef[k]
|
|
!= (alpha1 * pb->geqs[e1].coef[k]
|
|
+ alpha2 * pb->geqs[e2].coef[k]))
|
|
goto nextE3;
|
|
|
|
c = (alpha1 * pb->geqs[e1].coef[0]
|
|
+ alpha2 * pb->geqs[e2].coef[0]);
|
|
|
|
if (c < alpha3 * (pb->geqs[e3].coef[0] + 1))
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file,
|
|
"found redundant inequality\n");
|
|
fprintf (dump_file,
|
|
"alpha1, alpha2, alpha3 = %d,%d,%d\n",
|
|
alpha1, alpha2, alpha3);
|
|
|
|
omega_print_geq (dump_file, pb, &(pb->geqs[e1]));
|
|
fprintf (dump_file, "\n");
|
|
omega_print_geq (dump_file, pb, &(pb->geqs[e2]));
|
|
fprintf (dump_file, "\n=> ");
|
|
omega_print_geq (dump_file, pb, &(pb->geqs[e3]));
|
|
fprintf (dump_file, "\n\n");
|
|
}
|
|
|
|
is_dead[e3] = true;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Trying to prove e3 <= 0 and therefore e3 = 0,
|
|
or trying to prove e3 < 0, and therefore the
|
|
problem has no solutions. */
|
|
if (!implies (peqs[e3], pn)
|
|
|| !implies (neqs[e3], pp))
|
|
goto nextE3;
|
|
|
|
if (pb->geqs[e1].color == omega_red
|
|
|| pb->geqs[e2].color == omega_red
|
|
|| pb->geqs[e3].color == omega_red)
|
|
goto nextE3;
|
|
|
|
/* verify alpha1*v1+alpha2*v2 = alpha3*v3 */
|
|
for (k = pb->num_vars; k >= 1; k--)
|
|
if (alpha3 * pb->geqs[e3].coef[k]
|
|
!= (alpha1 * pb->geqs[e1].coef[k]
|
|
+ alpha2 * pb->geqs[e2].coef[k]))
|
|
goto nextE3;
|
|
|
|
c = (alpha1 * pb->geqs[e1].coef[0]
|
|
+ alpha2 * pb->geqs[e2].coef[0]);
|
|
|
|
if (c < alpha3 * (pb->geqs[e3].coef[0]))
|
|
{
|
|
/* We just proved e3 < 0, so no solutions exist. */
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file,
|
|
"found implied over tight inequality\n");
|
|
fprintf (dump_file,
|
|
"alpha1, alpha2, alpha3 = %d,%d,%d\n",
|
|
alpha1, alpha2, -alpha3);
|
|
omega_print_geq (dump_file, pb, &(pb->geqs[e1]));
|
|
fprintf (dump_file, "\n");
|
|
omega_print_geq (dump_file, pb, &(pb->geqs[e2]));
|
|
fprintf (dump_file, "\n=> not ");
|
|
omega_print_geq (dump_file, pb, &(pb->geqs[e3]));
|
|
fprintf (dump_file, "\n\n");
|
|
}
|
|
free (is_dead);
|
|
free (peqs);
|
|
free (zeqs);
|
|
free (neqs);
|
|
return omega_false;
|
|
}
|
|
else if (c < alpha3 * (pb->geqs[e3].coef[0] - 1))
|
|
{
|
|
/* We just proved that e3 <=0, so e3 = 0. */
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file,
|
|
"found implied tight inequality\n");
|
|
fprintf (dump_file,
|
|
"alpha1, alpha2, alpha3 = %d,%d,%d\n",
|
|
alpha1, alpha2, -alpha3);
|
|
omega_print_geq (dump_file, pb, &(pb->geqs[e1]));
|
|
fprintf (dump_file, "\n");
|
|
omega_print_geq (dump_file, pb, &(pb->geqs[e2]));
|
|
fprintf (dump_file, "\n=> inverse ");
|
|
omega_print_geq (dump_file, pb, &(pb->geqs[e3]));
|
|
fprintf (dump_file, "\n\n");
|
|
}
|
|
|
|
omega_copy_eqn (&pb->eqs[pb->num_eqs++],
|
|
&pb->geqs[e3], pb->num_vars);
|
|
gcc_assert (pb->num_eqs <= OMEGA_MAX_EQS);
|
|
adding_equality_constraint (pb, pb->num_eqs - 1);
|
|
is_dead[e3] = true;
|
|
}
|
|
}
|
|
nextE3:;
|
|
}
|
|
}
|
|
|
|
/* Delete the inequalities that were marked as dead. */
|
|
for (e = pb->num_geqs - 1; e >= 0; e--)
|
|
if (is_dead[e])
|
|
omega_delete_geq (pb, e, pb->num_vars);
|
|
|
|
if (!expensive)
|
|
goto eliminate_redundant_done;
|
|
|
|
tmp_problem = XNEW (struct omega_pb_d);
|
|
conservative++;
|
|
|
|
for (e = pb->num_geqs - 1; e >= 0; e--)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file,
|
|
"checking equation %d to see if it is redundant: ", e);
|
|
omega_print_geq (dump_file, pb, &(pb->geqs[e]));
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
omega_copy_problem (tmp_problem, pb);
|
|
omega_negate_geq (tmp_problem, e);
|
|
tmp_problem->safe_vars = 0;
|
|
tmp_problem->variables_freed = false;
|
|
|
|
if (omega_solve_problem (tmp_problem, omega_false) == omega_false)
|
|
omega_delete_geq (pb, e, pb->num_vars);
|
|
}
|
|
|
|
free (tmp_problem);
|
|
conservative--;
|
|
|
|
if (!omega_reduce_with_subs)
|
|
{
|
|
resurrect_subs (pb);
|
|
gcc_assert (please_no_equalities_in_simplified_problems
|
|
|| pb->num_subs == 0);
|
|
}
|
|
|
|
eliminate_redundant_done:
|
|
free (is_dead);
|
|
free (peqs);
|
|
free (zeqs);
|
|
free (neqs);
|
|
return omega_true;
|
|
}
|
|
|
|
/* For each inequality that has coefficients bigger than 20, try to
|
|
create a new constraint that cannot be derived from the original
|
|
constraint and that has smaller coefficients. Add the new
|
|
constraint at the end of geqs. Return the number of inequalities
|
|
that have been added to PB. */
|
|
|
|
static int
|
|
smooth_weird_equations (omega_pb pb)
|
|
{
|
|
int e1, e2, e3, p, q, k, alpha, alpha1, alpha2, alpha3;
|
|
int c;
|
|
int v;
|
|
int result = 0;
|
|
|
|
for (e1 = pb->num_geqs - 1; e1 >= 0; e1--)
|
|
if (pb->geqs[e1].color == omega_black)
|
|
{
|
|
int g = 999999;
|
|
|
|
for (v = pb->num_vars; v >= 1; v--)
|
|
if (pb->geqs[e1].coef[v] != 0 && abs (pb->geqs[e1].coef[v]) < g)
|
|
g = abs (pb->geqs[e1].coef[v]);
|
|
|
|
/* Magic number. */
|
|
if (g > 20)
|
|
{
|
|
e3 = pb->num_geqs;
|
|
|
|
for (v = pb->num_vars; v >= 1; v--)
|
|
pb->geqs[e3].coef[v] = int_div (6 * pb->geqs[e1].coef[v] + g / 2,
|
|
g);
|
|
|
|
pb->geqs[e3].color = omega_black;
|
|
pb->geqs[e3].touched = 1;
|
|
/* Magic number. */
|
|
pb->geqs[e3].coef[0] = 9997;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Checking to see if we can derive: ");
|
|
omega_print_geq (dump_file, pb, &pb->geqs[e3]);
|
|
fprintf (dump_file, "\n from: ");
|
|
omega_print_geq (dump_file, pb, &pb->geqs[e1]);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
for (e2 = pb->num_geqs - 1; e2 >= 0; e2--)
|
|
if (e1 != e2 && pb->geqs[e2].color == omega_black)
|
|
{
|
|
for (p = pb->num_vars; p > 1; p--)
|
|
{
|
|
for (q = p - 1; q > 0; q--)
|
|
{
|
|
alpha =
|
|
(pb->geqs[e1].coef[p] * pb->geqs[e2].coef[q] -
|
|
pb->geqs[e2].coef[p] * pb->geqs[e1].coef[q]);
|
|
if (alpha != 0)
|
|
goto foundPQ;
|
|
}
|
|
}
|
|
continue;
|
|
|
|
foundPQ:
|
|
|
|
alpha1 = (pb->geqs[e2].coef[q] * pb->geqs[e3].coef[p]
|
|
- pb->geqs[e2].coef[p] * pb->geqs[e3].coef[q]);
|
|
alpha2 = -(pb->geqs[e1].coef[q] * pb->geqs[e3].coef[p]
|
|
- pb->geqs[e1].coef[p] * pb->geqs[e3].coef[q]);
|
|
alpha3 = alpha;
|
|
|
|
if (alpha1 * alpha2 <= 0)
|
|
continue;
|
|
|
|
if (alpha1 < 0)
|
|
{
|
|
alpha1 = -alpha1;
|
|
alpha2 = -alpha2;
|
|
alpha3 = -alpha3;
|
|
}
|
|
|
|
if (alpha3 > 0)
|
|
{
|
|
/* Try to prove e3 is redundant: verify
|
|
alpha1*v1 + alpha2*v2 = alpha3*v3. */
|
|
for (k = pb->num_vars; k >= 1; k--)
|
|
if (alpha3 * pb->geqs[e3].coef[k]
|
|
!= (alpha1 * pb->geqs[e1].coef[k]
|
|
+ alpha2 * pb->geqs[e2].coef[k]))
|
|
goto nextE2;
|
|
|
|
c = alpha1 * pb->geqs[e1].coef[0]
|
|
+ alpha2 * pb->geqs[e2].coef[0];
|
|
|
|
if (c < alpha3 * (pb->geqs[e3].coef[0] + 1))
|
|
pb->geqs[e3].coef[0] = int_div (c, alpha3);
|
|
}
|
|
nextE2:;
|
|
}
|
|
|
|
if (pb->geqs[e3].coef[0] < 9997)
|
|
{
|
|
result++;
|
|
pb->num_geqs++;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file,
|
|
"Smoothing weird equations; adding:\n");
|
|
omega_print_geq (dump_file, pb, &pb->geqs[e3]);
|
|
fprintf (dump_file, "\nto:\n");
|
|
omega_print_problem (dump_file, pb);
|
|
fprintf (dump_file, "\n\n");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/* Replace tuples of inequalities, that define upper and lower half
|
|
spaces, with an equation. */
|
|
|
|
static void
|
|
coalesce (omega_pb pb)
|
|
{
|
|
int e, e2;
|
|
int colors = 0;
|
|
bool *is_dead;
|
|
int found_something = 0;
|
|
|
|
for (e = 0; e < pb->num_geqs; e++)
|
|
if (pb->geqs[e].color == omega_red)
|
|
colors++;
|
|
|
|
if (colors < 2)
|
|
return;
|
|
|
|
is_dead = XNEWVEC (bool, OMEGA_MAX_GEQS);
|
|
|
|
for (e = 0; e < pb->num_geqs; e++)
|
|
is_dead[e] = false;
|
|
|
|
for (e = 0; e < pb->num_geqs; e++)
|
|
if (pb->geqs[e].color == omega_red
|
|
&& !pb->geqs[e].touched)
|
|
for (e2 = e + 1; e2 < pb->num_geqs; e2++)
|
|
if (!pb->geqs[e2].touched
|
|
&& pb->geqs[e].key == -pb->geqs[e2].key
|
|
&& pb->geqs[e].coef[0] == -pb->geqs[e2].coef[0]
|
|
&& pb->geqs[e2].color == omega_red)
|
|
{
|
|
omega_copy_eqn (&pb->eqs[pb->num_eqs++], &pb->geqs[e],
|
|
pb->num_vars);
|
|
gcc_assert (pb->num_eqs <= OMEGA_MAX_EQS);
|
|
found_something++;
|
|
is_dead[e] = true;
|
|
is_dead[e2] = true;
|
|
}
|
|
|
|
for (e = pb->num_geqs - 1; e >= 0; e--)
|
|
if (is_dead[e])
|
|
omega_delete_geq (pb, e, pb->num_vars);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS) && found_something)
|
|
{
|
|
fprintf (dump_file, "Coalesced pb->geqs into %d EQ's:\n",
|
|
found_something);
|
|
omega_print_problem (dump_file, pb);
|
|
}
|
|
|
|
free (is_dead);
|
|
}
|
|
|
|
/* Eliminate red inequalities from PB. When ELIMINATE_ALL is
|
|
true, continue to eliminate all the red inequalities. */
|
|
|
|
void
|
|
omega_eliminate_red (omega_pb pb, bool eliminate_all)
|
|
{
|
|
int e, e2, e3, i, j, k, a, alpha1, alpha2;
|
|
int c = 0;
|
|
bool *is_dead = XNEWVEC (bool, OMEGA_MAX_GEQS);
|
|
int dead_count = 0;
|
|
int red_found;
|
|
omega_pb tmp_problem;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "in eliminate RED:\n");
|
|
omega_print_problem (dump_file, pb);
|
|
}
|
|
|
|
if (pb->num_eqs > 0)
|
|
omega_simplify_problem (pb);
|
|
|
|
for (e = pb->num_geqs - 1; e >= 0; e--)
|
|
is_dead[e] = false;
|
|
|
|
for (e = pb->num_geqs - 1; e >= 0; e--)
|
|
if (pb->geqs[e].color == omega_black && !is_dead[e])
|
|
for (e2 = e - 1; e2 >= 0; e2--)
|
|
if (pb->geqs[e2].color == omega_black
|
|
&& !is_dead[e2])
|
|
{
|
|
a = 0;
|
|
|
|
for (i = pb->num_vars; i > 1; i--)
|
|
for (j = i - 1; j > 0; j--)
|
|
if ((a = (pb->geqs[e].coef[i] * pb->geqs[e2].coef[j]
|
|
- pb->geqs[e2].coef[i] * pb->geqs[e].coef[j])) != 0)
|
|
goto found_pair;
|
|
|
|
continue;
|
|
|
|
found_pair:
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file,
|
|
"found two equations to combine, i = %s, ",
|
|
omega_variable_to_str (pb, i));
|
|
fprintf (dump_file, "j = %s, alpha = %d\n",
|
|
omega_variable_to_str (pb, j), a);
|
|
omega_print_geq (dump_file, pb, &(pb->geqs[e]));
|
|
fprintf (dump_file, "\n");
|
|
omega_print_geq (dump_file, pb, &(pb->geqs[e2]));
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
for (e3 = pb->num_geqs - 1; e3 >= 0; e3--)
|
|
if (pb->geqs[e3].color == omega_red)
|
|
{
|
|
alpha1 = (pb->geqs[e2].coef[j] * pb->geqs[e3].coef[i]
|
|
- pb->geqs[e2].coef[i] * pb->geqs[e3].coef[j]);
|
|
alpha2 = -(pb->geqs[e].coef[j] * pb->geqs[e3].coef[i]
|
|
- pb->geqs[e].coef[i] * pb->geqs[e3].coef[j]);
|
|
|
|
if ((a > 0 && alpha1 > 0 && alpha2 > 0)
|
|
|| (a < 0 && alpha1 < 0 && alpha2 < 0))
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file,
|
|
"alpha1 = %d, alpha2 = %d;"
|
|
"comparing against: ",
|
|
alpha1, alpha2);
|
|
omega_print_geq (dump_file, pb, &(pb->geqs[e3]));
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
for (k = pb->num_vars; k >= 0; k--)
|
|
{
|
|
c = (alpha1 * pb->geqs[e].coef[k]
|
|
+ alpha2 * pb->geqs[e2].coef[k]);
|
|
|
|
if (c != a * pb->geqs[e3].coef[k])
|
|
break;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS) && k > 0)
|
|
fprintf (dump_file, " %s: %d, %d\n",
|
|
omega_variable_to_str (pb, k), c,
|
|
a * pb->geqs[e3].coef[k]);
|
|
}
|
|
|
|
if (k < 0
|
|
|| (k == 0 &&
|
|
((a > 0 && c < a * pb->geqs[e3].coef[k])
|
|
|| (a < 0 && c > a * pb->geqs[e3].coef[k]))))
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
dead_count++;
|
|
fprintf (dump_file,
|
|
"red equation#%d is dead "
|
|
"(%d dead so far, %d remain)\n",
|
|
e3, dead_count,
|
|
pb->num_geqs - dead_count);
|
|
omega_print_geq (dump_file, pb, &(pb->geqs[e]));
|
|
fprintf (dump_file, "\n");
|
|
omega_print_geq (dump_file, pb, &(pb->geqs[e2]));
|
|
fprintf (dump_file, "\n");
|
|
omega_print_geq (dump_file, pb, &(pb->geqs[e3]));
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
is_dead[e3] = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (e = pb->num_geqs - 1; e >= 0; e--)
|
|
if (is_dead[e])
|
|
omega_delete_geq (pb, e, pb->num_vars);
|
|
|
|
free (is_dead);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "in eliminate RED, easy tests done:\n");
|
|
omega_print_problem (dump_file, pb);
|
|
}
|
|
|
|
for (red_found = 0, e = pb->num_geqs - 1; e >= 0; e--)
|
|
if (pb->geqs[e].color == omega_red)
|
|
red_found = 1;
|
|
|
|
if (!red_found)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "fast checks worked\n");
|
|
|
|
if (!omega_reduce_with_subs)
|
|
gcc_assert (please_no_equalities_in_simplified_problems
|
|
|| pb->num_subs == 0);
|
|
|
|
return;
|
|
}
|
|
|
|
if (!omega_verify_simplification
|
|
&& verify_omega_pb (pb) == omega_false)
|
|
return;
|
|
|
|
conservative++;
|
|
tmp_problem = XNEW (struct omega_pb_d);
|
|
|
|
for (e = pb->num_geqs - 1; e >= 0; e--)
|
|
if (pb->geqs[e].color == omega_red)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file,
|
|
"checking equation %d to see if it is redundant: ", e);
|
|
omega_print_geq (dump_file, pb, &(pb->geqs[e]));
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
omega_copy_problem (tmp_problem, pb);
|
|
omega_negate_geq (tmp_problem, e);
|
|
tmp_problem->safe_vars = 0;
|
|
tmp_problem->variables_freed = false;
|
|
tmp_problem->num_subs = 0;
|
|
|
|
if (omega_solve_problem (tmp_problem, omega_false) == omega_false)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "it is redundant\n");
|
|
omega_delete_geq (pb, e, pb->num_vars);
|
|
}
|
|
else
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "it is not redundant\n");
|
|
|
|
if (!eliminate_all)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "no need to check other red equations\n");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
conservative--;
|
|
free (tmp_problem);
|
|
/* omega_simplify_problem (pb); */
|
|
|
|
if (!omega_reduce_with_subs)
|
|
gcc_assert (please_no_equalities_in_simplified_problems
|
|
|| pb->num_subs == 0);
|
|
}
|
|
|
|
/* Transform some wildcard variables to non-safe variables. */
|
|
|
|
static void
|
|
chain_unprotect (omega_pb pb)
|
|
{
|
|
int i, e;
|
|
bool *unprotect = XNEWVEC (bool, OMEGA_MAX_VARS);
|
|
|
|
for (i = 1; omega_safe_var_p (pb, i); i++)
|
|
{
|
|
unprotect[i] = omega_wildcard_p (pb, i);
|
|
|
|
for (e = pb->num_subs - 1; e >= 0; e--)
|
|
if (pb->subs[e].coef[i])
|
|
unprotect[i] = false;
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Doing chain reaction unprotection\n");
|
|
omega_print_problem (dump_file, pb);
|
|
|
|
for (i = 1; omega_safe_var_p (pb, i); i++)
|
|
if (unprotect[i])
|
|
fprintf (dump_file, "unprotecting %s\n",
|
|
omega_variable_to_str (pb, i));
|
|
}
|
|
|
|
for (i = 1; omega_safe_var_p (pb, i); i++)
|
|
if (unprotect[i])
|
|
omega_unprotect_1 (pb, &i, unprotect);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "After chain reactions\n");
|
|
omega_print_problem (dump_file, pb);
|
|
}
|
|
|
|
free (unprotect);
|
|
}
|
|
|
|
/* Reduce problem PB. */
|
|
|
|
static void
|
|
omega_problem_reduced (omega_pb pb)
|
|
{
|
|
if (omega_verify_simplification
|
|
&& !in_approximate_mode
|
|
&& verify_omega_pb (pb) == omega_false)
|
|
return;
|
|
|
|
if (PARAM_VALUE (PARAM_OMEGA_ELIMINATE_REDUNDANT_CONSTRAINTS)
|
|
&& !omega_eliminate_redundant (pb, true))
|
|
return;
|
|
|
|
omega_found_reduction = omega_true;
|
|
|
|
if (!please_no_equalities_in_simplified_problems)
|
|
coalesce (pb);
|
|
|
|
if (omega_reduce_with_subs
|
|
|| please_no_equalities_in_simplified_problems)
|
|
chain_unprotect (pb);
|
|
else
|
|
resurrect_subs (pb);
|
|
|
|
if (!return_single_result)
|
|
{
|
|
int i;
|
|
|
|
for (i = 1; omega_safe_var_p (pb, i); i++)
|
|
pb->forwarding_address[pb->var[i]] = i;
|
|
|
|
for (i = 0; i < pb->num_subs; i++)
|
|
pb->forwarding_address[pb->subs[i].key] = -i - 1;
|
|
|
|
(*omega_when_reduced) (pb);
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "-------------------------------------------\n");
|
|
fprintf (dump_file, "problem reduced:\n");
|
|
omega_print_problem (dump_file, pb);
|
|
fprintf (dump_file, "-------------------------------------------\n");
|
|
}
|
|
}
|
|
|
|
/* Eliminates all the free variables for problem PB, that is all the
|
|
variables from FV to PB->NUM_VARS. */
|
|
|
|
static void
|
|
omega_free_eliminations (omega_pb pb, int fv)
|
|
{
|
|
bool try_again = true;
|
|
int i, e, e2;
|
|
int n_vars = pb->num_vars;
|
|
|
|
while (try_again)
|
|
{
|
|
try_again = false;
|
|
|
|
for (i = n_vars; i > fv; i--)
|
|
{
|
|
for (e = pb->num_geqs - 1; e >= 0; e--)
|
|
if (pb->geqs[e].coef[i])
|
|
break;
|
|
|
|
if (e < 0)
|
|
e2 = e;
|
|
else if (pb->geqs[e].coef[i] > 0)
|
|
{
|
|
for (e2 = e - 1; e2 >= 0; e2--)
|
|
if (pb->geqs[e2].coef[i] < 0)
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
for (e2 = e - 1; e2 >= 0; e2--)
|
|
if (pb->geqs[e2].coef[i] > 0)
|
|
break;
|
|
}
|
|
|
|
if (e2 < 0)
|
|
{
|
|
int e3;
|
|
for (e3 = pb->num_subs - 1; e3 >= 0; e3--)
|
|
if (pb->subs[e3].coef[i])
|
|
break;
|
|
|
|
if (e3 >= 0)
|
|
continue;
|
|
|
|
for (e3 = pb->num_eqs - 1; e3 >= 0; e3--)
|
|
if (pb->eqs[e3].coef[i])
|
|
break;
|
|
|
|
if (e3 >= 0)
|
|
continue;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "a free elimination of %s\n",
|
|
omega_variable_to_str (pb, i));
|
|
|
|
if (e >= 0)
|
|
{
|
|
omega_delete_geq (pb, e, n_vars);
|
|
|
|
for (e--; e >= 0; e--)
|
|
if (pb->geqs[e].coef[i])
|
|
omega_delete_geq (pb, e, n_vars);
|
|
|
|
try_again = (i < n_vars);
|
|
}
|
|
|
|
omega_delete_variable (pb, i);
|
|
n_vars = pb->num_vars;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "\nafter free eliminations:\n");
|
|
omega_print_problem (dump_file, pb);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
}
|
|
|
|
/* Do free red eliminations. */
|
|
|
|
static void
|
|
free_red_eliminations (omega_pb pb)
|
|
{
|
|
bool try_again = true;
|
|
int i, e, e2;
|
|
int n_vars = pb->num_vars;
|
|
bool *is_red_var = XNEWVEC (bool, OMEGA_MAX_VARS);
|
|
bool *is_dead_var = XNEWVEC (bool, OMEGA_MAX_VARS);
|
|
bool *is_dead_geq = XNEWVEC (bool, OMEGA_MAX_GEQS);
|
|
|
|
for (i = n_vars; i > 0; i--)
|
|
{
|
|
is_red_var[i] = false;
|
|
is_dead_var[i] = false;
|
|
}
|
|
|
|
for (e = pb->num_geqs - 1; e >= 0; e--)
|
|
{
|
|
is_dead_geq[e] = false;
|
|
|
|
if (pb->geqs[e].color == omega_red)
|
|
for (i = n_vars; i > 0; i--)
|
|
if (pb->geqs[e].coef[i] != 0)
|
|
is_red_var[i] = true;
|
|
}
|
|
|
|
while (try_again)
|
|
{
|
|
try_again = false;
|
|
for (i = n_vars; i > 0; i--)
|
|
if (!is_red_var[i] && !is_dead_var[i])
|
|
{
|
|
for (e = pb->num_geqs - 1; e >= 0; e--)
|
|
if (!is_dead_geq[e] && pb->geqs[e].coef[i])
|
|
break;
|
|
|
|
if (e < 0)
|
|
e2 = e;
|
|
else if (pb->geqs[e].coef[i] > 0)
|
|
{
|
|
for (e2 = e - 1; e2 >= 0; e2--)
|
|
if (!is_dead_geq[e2] && pb->geqs[e2].coef[i] < 0)
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
for (e2 = e - 1; e2 >= 0; e2--)
|
|
if (!is_dead_geq[e2] && pb->geqs[e2].coef[i] > 0)
|
|
break;
|
|
}
|
|
|
|
if (e2 < 0)
|
|
{
|
|
int e3;
|
|
for (e3 = pb->num_subs - 1; e3 >= 0; e3--)
|
|
if (pb->subs[e3].coef[i])
|
|
break;
|
|
|
|
if (e3 >= 0)
|
|
continue;
|
|
|
|
for (e3 = pb->num_eqs - 1; e3 >= 0; e3--)
|
|
if (pb->eqs[e3].coef[i])
|
|
break;
|
|
|
|
if (e3 >= 0)
|
|
continue;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "a free red elimination of %s\n",
|
|
omega_variable_to_str (pb, i));
|
|
|
|
for (; e >= 0; e--)
|
|
if (pb->geqs[e].coef[i])
|
|
is_dead_geq[e] = true;
|
|
|
|
try_again = true;
|
|
is_dead_var[i] = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (e = pb->num_geqs - 1; e >= 0; e--)
|
|
if (is_dead_geq[e])
|
|
omega_delete_geq (pb, e, n_vars);
|
|
|
|
for (i = n_vars; i > 0; i--)
|
|
if (is_dead_var[i])
|
|
omega_delete_variable (pb, i);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "\nafter free red eliminations:\n");
|
|
omega_print_problem (dump_file, pb);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
free (is_red_var);
|
|
free (is_dead_var);
|
|
free (is_dead_geq);
|
|
}
|
|
|
|
/* For equation EQ of the form "0 = EQN", insert in PB two
|
|
inequalities "0 <= EQN" and "0 <= -EQN". */
|
|
|
|
void
|
|
omega_convert_eq_to_geqs (omega_pb pb, int eq)
|
|
{
|
|
int i;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "Converting Eq to Geqs\n");
|
|
|
|
/* Insert "0 <= EQN". */
|
|
omega_copy_eqn (&pb->geqs[pb->num_geqs], &pb->eqs[eq], pb->num_vars);
|
|
pb->geqs[pb->num_geqs].touched = 1;
|
|
pb->num_geqs++;
|
|
|
|
/* Insert "0 <= -EQN". */
|
|
omega_copy_eqn (&pb->geqs[pb->num_geqs], &pb->eqs[eq], pb->num_vars);
|
|
pb->geqs[pb->num_geqs].touched = 1;
|
|
|
|
for (i = 0; i <= pb->num_vars; i++)
|
|
pb->geqs[pb->num_geqs].coef[i] *= -1;
|
|
|
|
pb->num_geqs++;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
omega_print_problem (dump_file, pb);
|
|
}
|
|
|
|
/* Eliminates variable I from PB. */
|
|
|
|
static void
|
|
omega_do_elimination (omega_pb pb, int e, int i)
|
|
{
|
|
eqn sub = omega_alloc_eqns (0, 1);
|
|
int c;
|
|
int n_vars = pb->num_vars;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "eliminating variable %s\n",
|
|
omega_variable_to_str (pb, i));
|
|
|
|
omega_copy_eqn (sub, &pb->eqs[e], pb->num_vars);
|
|
c = sub->coef[i];
|
|
sub->coef[i] = 0;
|
|
if (c == 1 || c == -1)
|
|
{
|
|
if (pb->eqs[e].color == omega_red)
|
|
{
|
|
bool fB;
|
|
omega_substitute_red (pb, sub, i, c, &fB);
|
|
if (fB)
|
|
omega_convert_eq_to_geqs (pb, e);
|
|
else
|
|
omega_delete_variable (pb, i);
|
|
}
|
|
else
|
|
{
|
|
omega_substitute (pb, sub, i, c);
|
|
omega_delete_variable (pb, i);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
int a = abs (c);
|
|
int e2 = e;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "performing non-exact elimination, c = %d\n", c);
|
|
|
|
for (e = pb->num_eqs - 1; e >= 0; e--)
|
|
if (pb->eqs[e].coef[i])
|
|
{
|
|
eqn eqn = &(pb->eqs[e]);
|
|
int j, k;
|
|
for (j = n_vars; j >= 0; j--)
|
|
eqn->coef[j] *= a;
|
|
k = eqn->coef[i];
|
|
eqn->coef[i] = 0;
|
|
if (sub->color == omega_red)
|
|
eqn->color = omega_red;
|
|
for (j = n_vars; j >= 0; j--)
|
|
eqn->coef[j] -= sub->coef[j] * k / c;
|
|
}
|
|
|
|
for (e = pb->num_geqs - 1; e >= 0; e--)
|
|
if (pb->geqs[e].coef[i])
|
|
{
|
|
eqn eqn = &(pb->geqs[e]);
|
|
int j, k;
|
|
|
|
if (sub->color == omega_red)
|
|
eqn->color = omega_red;
|
|
|
|
for (j = n_vars; j >= 0; j--)
|
|
eqn->coef[j] *= a;
|
|
|
|
eqn->touched = 1;
|
|
k = eqn->coef[i];
|
|
eqn->coef[i] = 0;
|
|
|
|
for (j = n_vars; j >= 0; j--)
|
|
eqn->coef[j] -= sub->coef[j] * k / c;
|
|
|
|
}
|
|
|
|
for (e = pb->num_subs - 1; e >= 0; e--)
|
|
if (pb->subs[e].coef[i])
|
|
{
|
|
eqn eqn = &(pb->subs[e]);
|
|
int j, k;
|
|
gcc_assert (0);
|
|
gcc_assert (sub->color == omega_black);
|
|
for (j = n_vars; j >= 0; j--)
|
|
eqn->coef[j] *= a;
|
|
k = eqn->coef[i];
|
|
eqn->coef[i] = 0;
|
|
for (j = n_vars; j >= 0; j--)
|
|
eqn->coef[j] -= sub->coef[j] * k / c;
|
|
}
|
|
|
|
if (in_approximate_mode)
|
|
omega_delete_variable (pb, i);
|
|
else
|
|
omega_convert_eq_to_geqs (pb, e2);
|
|
}
|
|
|
|
omega_free_eqns (sub, 1);
|
|
}
|
|
|
|
/* Helper function for printing "sorry, no solution". */
|
|
|
|
static inline enum omega_result
|
|
omega_problem_has_no_solution (void)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "\nequations have no solution \n");
|
|
|
|
return omega_false;
|
|
}
|
|
|
|
/* Helper function: solve equations in PB one at a time, following the
|
|
DESIRED_RES result. */
|
|
|
|
static enum omega_result
|
|
omega_solve_eq (omega_pb pb, enum omega_result desired_res)
|
|
{
|
|
int i, j, e;
|
|
int g, g2;
|
|
g = 0;
|
|
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS) && pb->num_eqs > 0)
|
|
{
|
|
fprintf (dump_file, "\nomega_solve_eq (%d, %d)\n",
|
|
desired_res, may_be_red);
|
|
omega_print_problem (dump_file, pb);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
if (may_be_red)
|
|
{
|
|
i = 0;
|
|
j = pb->num_eqs - 1;
|
|
|
|
while (1)
|
|
{
|
|
eqn eq;
|
|
|
|
while (i <= j && pb->eqs[i].color == omega_red)
|
|
i++;
|
|
|
|
while (i <= j && pb->eqs[j].color == omega_black)
|
|
j--;
|
|
|
|
if (i >= j)
|
|
break;
|
|
|
|
eq = omega_alloc_eqns (0, 1);
|
|
omega_copy_eqn (eq, &pb->eqs[i], pb->num_vars);
|
|
omega_copy_eqn (&pb->eqs[i], &pb->eqs[j], pb->num_vars);
|
|
omega_copy_eqn (&pb->eqs[j], eq, pb->num_vars);
|
|
omega_free_eqns (eq, 1);
|
|
i++;
|
|
j--;
|
|
}
|
|
}
|
|
|
|
/* Eliminate all EQ equations */
|
|
for (e = pb->num_eqs - 1; e >= 0; e--)
|
|
{
|
|
eqn eqn = &(pb->eqs[e]);
|
|
int sv;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "----\n");
|
|
|
|
for (i = pb->num_vars; i > 0; i--)
|
|
if (eqn->coef[i])
|
|
break;
|
|
|
|
g = eqn->coef[i];
|
|
|
|
for (j = i - 1; j > 0; j--)
|
|
if (eqn->coef[j])
|
|
break;
|
|
|
|
/* i is the position of last nonzero coefficient,
|
|
g is the coefficient of i,
|
|
j is the position of next nonzero coefficient. */
|
|
|
|
if (j == 0)
|
|
{
|
|
if (eqn->coef[0] % g != 0)
|
|
return omega_problem_has_no_solution ();
|
|
|
|
eqn->coef[0] = eqn->coef[0] / g;
|
|
eqn->coef[i] = 1;
|
|
pb->num_eqs--;
|
|
omega_do_elimination (pb, e, i);
|
|
continue;
|
|
}
|
|
|
|
else if (j == -1)
|
|
{
|
|
if (eqn->coef[0] != 0)
|
|
return omega_problem_has_no_solution ();
|
|
|
|
pb->num_eqs--;
|
|
continue;
|
|
}
|
|
|
|
if (g < 0)
|
|
g = -g;
|
|
|
|
if (g == 1)
|
|
{
|
|
pb->num_eqs--;
|
|
omega_do_elimination (pb, e, i);
|
|
}
|
|
|
|
else
|
|
{
|
|
int k = j;
|
|
bool promotion_possible =
|
|
(omega_safe_var_p (pb, j)
|
|
&& pb->safe_vars + 1 == i
|
|
&& !omega_eqn_is_red (eqn, desired_res)
|
|
&& !in_approximate_mode);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS) && promotion_possible)
|
|
fprintf (dump_file, " Promotion possible\n");
|
|
|
|
normalizeEQ:
|
|
if (!omega_safe_var_p (pb, j))
|
|
{
|
|
for (; g != 1 && !omega_safe_var_p (pb, j); j--)
|
|
g = gcd (abs (eqn->coef[j]), g);
|
|
g2 = g;
|
|
}
|
|
else if (!omega_safe_var_p (pb, i))
|
|
g2 = g;
|
|
else
|
|
g2 = 0;
|
|
|
|
for (; g != 1 && j > 0; j--)
|
|
g = gcd (abs (eqn->coef[j]), g);
|
|
|
|
if (g > 1)
|
|
{
|
|
if (eqn->coef[0] % g != 0)
|
|
return omega_problem_has_no_solution ();
|
|
|
|
for (j = 0; j <= pb->num_vars; j++)
|
|
eqn->coef[j] /= g;
|
|
|
|
g2 = g2 / g;
|
|
}
|
|
|
|
if (g2 > 1)
|
|
{
|
|
int e2;
|
|
|
|
for (e2 = e - 1; e2 >= 0; e2--)
|
|
if (pb->eqs[e2].coef[i])
|
|
break;
|
|
|
|
if (e2 == -1)
|
|
for (e2 = pb->num_geqs - 1; e2 >= 0; e2--)
|
|
if (pb->geqs[e2].coef[i])
|
|
break;
|
|
|
|
if (e2 == -1)
|
|
for (e2 = pb->num_subs - 1; e2 >= 0; e2--)
|
|
if (pb->subs[e2].coef[i])
|
|
break;
|
|
|
|
if (e2 == -1)
|
|
{
|
|
bool change = false;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Ha! We own it! \n");
|
|
omega_print_eq (dump_file, pb, eqn);
|
|
fprintf (dump_file, " \n");
|
|
}
|
|
|
|
g = eqn->coef[i];
|
|
g = abs (g);
|
|
|
|
for (j = i - 1; j >= 0; j--)
|
|
{
|
|
int t = int_mod (eqn->coef[j], g);
|
|
|
|
if (2 * t >= g)
|
|
t -= g;
|
|
|
|
if (t != eqn->coef[j])
|
|
{
|
|
eqn->coef[j] = t;
|
|
change = true;
|
|
}
|
|
}
|
|
|
|
if (!change)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "So what?\n");
|
|
}
|
|
|
|
else
|
|
{
|
|
omega_name_wild_card (pb, i);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
omega_print_eq (dump_file, pb, eqn);
|
|
fprintf (dump_file, " \n");
|
|
}
|
|
|
|
e++;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (promotion_possible)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "promoting %s to safety\n",
|
|
omega_variable_to_str (pb, i));
|
|
omega_print_vars (dump_file, pb);
|
|
}
|
|
|
|
pb->safe_vars++;
|
|
|
|
if (!omega_wildcard_p (pb, i))
|
|
omega_name_wild_card (pb, i);
|
|
|
|
promotion_possible = false;
|
|
j = k;
|
|
goto normalizeEQ;
|
|
}
|
|
|
|
if (g2 > 1 && !in_approximate_mode)
|
|
{
|
|
if (pb->eqs[e].color == omega_red)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "handling red equality\n");
|
|
|
|
pb->num_eqs--;
|
|
omega_do_elimination (pb, e, i);
|
|
continue;
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file,
|
|
"adding equation to handle safe variable \n");
|
|
omega_print_eq (dump_file, pb, eqn);
|
|
fprintf (dump_file, "\n----\n");
|
|
omega_print_problem (dump_file, pb);
|
|
fprintf (dump_file, "\n----\n");
|
|
fprintf (dump_file, "\n----\n");
|
|
}
|
|
|
|
i = omega_add_new_wild_card (pb);
|
|
pb->num_eqs++;
|
|
gcc_assert (pb->num_eqs <= OMEGA_MAX_EQS);
|
|
omega_init_eqn_zero (&pb->eqs[e + 1], pb->num_vars);
|
|
omega_copy_eqn (&pb->eqs[e + 1], eqn, pb->safe_vars);
|
|
|
|
for (j = pb->num_vars; j >= 0; j--)
|
|
{
|
|
pb->eqs[e + 1].coef[j] = int_mod (pb->eqs[e + 1].coef[j], g2);
|
|
|
|
if (2 * pb->eqs[e + 1].coef[j] >= g2)
|
|
pb->eqs[e + 1].coef[j] -= g2;
|
|
}
|
|
|
|
pb->eqs[e + 1].coef[i] = g2;
|
|
e += 2;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
omega_print_problem (dump_file, pb);
|
|
|
|
continue;
|
|
}
|
|
|
|
sv = pb->safe_vars;
|
|
if (g2 == 0)
|
|
sv = 0;
|
|
|
|
/* Find variable to eliminate. */
|
|
if (g2 > 1)
|
|
{
|
|
gcc_assert (in_approximate_mode);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "non-exact elimination: ");
|
|
omega_print_eq (dump_file, pb, eqn);
|
|
fprintf (dump_file, "\n");
|
|
omega_print_problem (dump_file, pb);
|
|
}
|
|
|
|
for (i = pb->num_vars; i > sv; i--)
|
|
if (pb->eqs[e].coef[i] != 0)
|
|
break;
|
|
}
|
|
else
|
|
for (i = pb->num_vars; i > sv; i--)
|
|
if (pb->eqs[e].coef[i] == 1 || pb->eqs[e].coef[i] == -1)
|
|
break;
|
|
|
|
if (i > sv)
|
|
{
|
|
pb->num_eqs--;
|
|
omega_do_elimination (pb, e, i);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS) && g2 > 1)
|
|
{
|
|
fprintf (dump_file, "result of non-exact elimination:\n");
|
|
omega_print_problem (dump_file, pb);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
int factor = (INT_MAX);
|
|
j = 0;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "doing moding\n");
|
|
|
|
for (i = pb->num_vars; i != sv; i--)
|
|
if ((pb->eqs[e].coef[i] & 1) != 0)
|
|
{
|
|
j = i;
|
|
i--;
|
|
|
|
for (; i != sv; i--)
|
|
if ((pb->eqs[e].coef[i] & 1) != 0)
|
|
break;
|
|
|
|
break;
|
|
}
|
|
|
|
if (j != 0 && i == sv)
|
|
{
|
|
omega_do_mod (pb, 2, e, j);
|
|
e++;
|
|
continue;
|
|
}
|
|
|
|
j = 0;
|
|
for (i = pb->num_vars; i != sv; i--)
|
|
if (pb->eqs[e].coef[i] != 0
|
|
&& factor > abs (pb->eqs[e].coef[i]) + 1)
|
|
{
|
|
factor = abs (pb->eqs[e].coef[i]) + 1;
|
|
j = i;
|
|
}
|
|
|
|
if (j == sv)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "should not have happened\n");
|
|
gcc_assert (0);
|
|
}
|
|
|
|
omega_do_mod (pb, factor, e, j);
|
|
/* Go back and try this equation again. */
|
|
e++;
|
|
}
|
|
}
|
|
}
|
|
|
|
pb->num_eqs = 0;
|
|
return omega_unknown;
|
|
}
|
|
|
|
/* Transform an inequation E to an equality, then solve DIFF problems
|
|
based on PB, and only differing by the constant part that is
|
|
diminished by one, trying to figure out which of the constants
|
|
satisfies PB. */
|
|
|
|
static enum omega_result
|
|
parallel_splinter (omega_pb pb, int e, int diff,
|
|
enum omega_result desired_res)
|
|
{
|
|
omega_pb tmp_problem;
|
|
int i;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Using parallel splintering\n");
|
|
omega_print_problem (dump_file, pb);
|
|
}
|
|
|
|
tmp_problem = XNEW (struct omega_pb_d);
|
|
omega_copy_eqn (&pb->eqs[0], &pb->geqs[e], pb->num_vars);
|
|
pb->num_eqs = 1;
|
|
|
|
for (i = 0; i <= diff; i++)
|
|
{
|
|
omega_copy_problem (tmp_problem, pb);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Splinter # %i\n", i);
|
|
omega_print_problem (dump_file, pb);
|
|
}
|
|
|
|
if (omega_solve_problem (tmp_problem, desired_res) == omega_true)
|
|
{
|
|
free (tmp_problem);
|
|
return omega_true;
|
|
}
|
|
|
|
pb->eqs[0].coef[0]--;
|
|
}
|
|
|
|
free (tmp_problem);
|
|
return omega_false;
|
|
}
|
|
|
|
/* Helper function: solve equations one at a time. */
|
|
|
|
static enum omega_result
|
|
omega_solve_geq (omega_pb pb, enum omega_result desired_res)
|
|
{
|
|
int i, e;
|
|
int n_vars, fv;
|
|
enum omega_result result;
|
|
bool coupled_subscripts = false;
|
|
bool smoothed = false;
|
|
bool eliminate_again;
|
|
bool tried_eliminating_redundant = false;
|
|
|
|
if (desired_res != omega_simplify)
|
|
{
|
|
pb->num_subs = 0;
|
|
pb->safe_vars = 0;
|
|
}
|
|
|
|
solve_geq_start:
|
|
do {
|
|
gcc_assert (desired_res == omega_simplify || pb->num_subs == 0);
|
|
|
|
/* Verify that there are not too many inequalities. */
|
|
gcc_assert (pb->num_geqs <= OMEGA_MAX_GEQS);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "\nomega_solve_geq (%d,%d):\n",
|
|
desired_res, please_no_equalities_in_simplified_problems);
|
|
omega_print_problem (dump_file, pb);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
n_vars = pb->num_vars;
|
|
|
|
if (n_vars == 1)
|
|
{
|
|
enum omega_eqn_color u_color = omega_black;
|
|
enum omega_eqn_color l_color = omega_black;
|
|
int upper_bound = pos_infinity;
|
|
int lower_bound = neg_infinity;
|
|
|
|
for (e = pb->num_geqs - 1; e >= 0; e--)
|
|
{
|
|
int a = pb->geqs[e].coef[1];
|
|
int c = pb->geqs[e].coef[0];
|
|
|
|
/* Our equation is ax + c >= 0, or ax >= -c, or c >= -ax. */
|
|
if (a == 0)
|
|
{
|
|
if (c < 0)
|
|
return omega_problem_has_no_solution ();
|
|
}
|
|
else if (a > 0)
|
|
{
|
|
if (a != 1)
|
|
c = int_div (c, a);
|
|
|
|
if (lower_bound < -c
|
|
|| (lower_bound == -c
|
|
&& !omega_eqn_is_red (&pb->geqs[e], desired_res)))
|
|
{
|
|
lower_bound = -c;
|
|
l_color = pb->geqs[e].color;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (a != -1)
|
|
c = int_div (c, -a);
|
|
|
|
if (upper_bound > c
|
|
|| (upper_bound == c
|
|
&& !omega_eqn_is_red (&pb->geqs[e], desired_res)))
|
|
{
|
|
upper_bound = c;
|
|
u_color = pb->geqs[e].color;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "upper bound = %d\n", upper_bound);
|
|
fprintf (dump_file, "lower bound = %d\n", lower_bound);
|
|
}
|
|
|
|
if (lower_bound > upper_bound)
|
|
return omega_problem_has_no_solution ();
|
|
|
|
if (desired_res == omega_simplify)
|
|
{
|
|
pb->num_geqs = 0;
|
|
if (pb->safe_vars == 1)
|
|
{
|
|
|
|
if (lower_bound == upper_bound
|
|
&& u_color == omega_black
|
|
&& l_color == omega_black)
|
|
{
|
|
pb->eqs[0].coef[0] = -lower_bound;
|
|
pb->eqs[0].coef[1] = 1;
|
|
pb->eqs[0].color = omega_black;
|
|
pb->num_eqs = 1;
|
|
return omega_solve_problem (pb, desired_res);
|
|
}
|
|
else
|
|
{
|
|
if (lower_bound > neg_infinity)
|
|
{
|
|
pb->geqs[0].coef[0] = -lower_bound;
|
|
pb->geqs[0].coef[1] = 1;
|
|
pb->geqs[0].key = 1;
|
|
pb->geqs[0].color = l_color;
|
|
pb->geqs[0].touched = 0;
|
|
pb->num_geqs = 1;
|
|
}
|
|
|
|
if (upper_bound < pos_infinity)
|
|
{
|
|
pb->geqs[pb->num_geqs].coef[0] = upper_bound;
|
|
pb->geqs[pb->num_geqs].coef[1] = -1;
|
|
pb->geqs[pb->num_geqs].key = -1;
|
|
pb->geqs[pb->num_geqs].color = u_color;
|
|
pb->geqs[pb->num_geqs].touched = 0;
|
|
pb->num_geqs++;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
pb->num_vars = 0;
|
|
|
|
omega_problem_reduced (pb);
|
|
return omega_false;
|
|
}
|
|
|
|
if (original_problem != no_problem
|
|
&& l_color == omega_black
|
|
&& u_color == omega_black
|
|
&& !conservative
|
|
&& lower_bound == upper_bound)
|
|
{
|
|
pb->eqs[0].coef[0] = -lower_bound;
|
|
pb->eqs[0].coef[1] = 1;
|
|
pb->num_eqs = 1;
|
|
adding_equality_constraint (pb, 0);
|
|
}
|
|
|
|
return omega_true;
|
|
}
|
|
|
|
if (!pb->variables_freed)
|
|
{
|
|
pb->variables_freed = true;
|
|
|
|
if (desired_res != omega_simplify)
|
|
omega_free_eliminations (pb, 0);
|
|
else
|
|
omega_free_eliminations (pb, pb->safe_vars);
|
|
|
|
n_vars = pb->num_vars;
|
|
|
|
if (n_vars == 1)
|
|
continue;
|
|
}
|
|
|
|
switch (normalize_omega_problem (pb))
|
|
{
|
|
case normalize_false:
|
|
return omega_false;
|
|
break;
|
|
|
|
case normalize_coupled:
|
|
coupled_subscripts = true;
|
|
break;
|
|
|
|
case normalize_uncoupled:
|
|
coupled_subscripts = false;
|
|
break;
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
n_vars = pb->num_vars;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "\nafter normalization:\n");
|
|
omega_print_problem (dump_file, pb);
|
|
fprintf (dump_file, "\n");
|
|
fprintf (dump_file, "eliminating variable using Fourier-Motzkin.\n");
|
|
}
|
|
|
|
do {
|
|
int parallel_difference = INT_MAX;
|
|
int best_parallel_eqn = -1;
|
|
int minC, maxC, minCj = 0;
|
|
int lower_bound_count = 0;
|
|
int e2, Le = 0, Ue;
|
|
bool possible_easy_int_solution;
|
|
int max_splinters = 1;
|
|
bool exact = false;
|
|
bool lucky_exact = false;
|
|
int best = (INT_MAX);
|
|
int j = 0, jLe = 0, jLowerBoundCount = 0;
|
|
|
|
|
|
eliminate_again = false;
|
|
|
|
if (pb->num_eqs > 0)
|
|
return omega_solve_problem (pb, desired_res);
|
|
|
|
if (!coupled_subscripts)
|
|
{
|
|
if (pb->safe_vars == 0)
|
|
pb->num_geqs = 0;
|
|
else
|
|
for (e = pb->num_geqs - 1; e >= 0; e--)
|
|
if (!omega_safe_var_p (pb, abs (pb->geqs[e].key)))
|
|
omega_delete_geq (pb, e, n_vars);
|
|
|
|
pb->num_vars = pb->safe_vars;
|
|
|
|
if (desired_res == omega_simplify)
|
|
{
|
|
omega_problem_reduced (pb);
|
|
return omega_false;
|
|
}
|
|
|
|
return omega_true;
|
|
}
|
|
|
|
if (desired_res != omega_simplify)
|
|
fv = 0;
|
|
else
|
|
fv = pb->safe_vars;
|
|
|
|
if (pb->num_geqs == 0)
|
|
{
|
|
if (desired_res == omega_simplify)
|
|
{
|
|
pb->num_vars = pb->safe_vars;
|
|
omega_problem_reduced (pb);
|
|
return omega_false;
|
|
}
|
|
return omega_true;
|
|
}
|
|
|
|
if (desired_res == omega_simplify && n_vars == pb->safe_vars)
|
|
{
|
|
omega_problem_reduced (pb);
|
|
return omega_false;
|
|
}
|
|
|
|
if (pb->num_geqs > OMEGA_MAX_GEQS - 30
|
|
|| pb->num_geqs > 2 * n_vars * n_vars + 4 * n_vars + 10)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file,
|
|
"TOO MANY EQUATIONS; "
|
|
"%d equations, %d variables, "
|
|
"ELIMINATING REDUNDANT ONES\n",
|
|
pb->num_geqs, n_vars);
|
|
|
|
if (!omega_eliminate_redundant (pb, false))
|
|
return omega_false;
|
|
|
|
n_vars = pb->num_vars;
|
|
|
|
if (pb->num_eqs > 0)
|
|
return omega_solve_problem (pb, desired_res);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "END ELIMINATION OF REDUNDANT EQUATIONS\n");
|
|
}
|
|
|
|
if (desired_res != omega_simplify)
|
|
fv = 0;
|
|
else
|
|
fv = pb->safe_vars;
|
|
|
|
for (i = n_vars; i != fv; i--)
|
|
{
|
|
int score;
|
|
int ub = -2;
|
|
int lb = -2;
|
|
bool lucky = false;
|
|
int upper_bound_count = 0;
|
|
|
|
lower_bound_count = 0;
|
|
minC = maxC = 0;
|
|
|
|
for (e = pb->num_geqs - 1; e >= 0; e--)
|
|
if (pb->geqs[e].coef[i] < 0)
|
|
{
|
|
minC = MIN (minC, pb->geqs[e].coef[i]);
|
|
upper_bound_count++;
|
|
if (pb->geqs[e].coef[i] < -1)
|
|
{
|
|
if (ub == -2)
|
|
ub = e;
|
|
else
|
|
ub = -1;
|
|
}
|
|
}
|
|
else if (pb->geqs[e].coef[i] > 0)
|
|
{
|
|
maxC = MAX (maxC, pb->geqs[e].coef[i]);
|
|
lower_bound_count++;
|
|
Le = e;
|
|
if (pb->geqs[e].coef[i] > 1)
|
|
{
|
|
if (lb == -2)
|
|
lb = e;
|
|
else
|
|
lb = -1;
|
|
}
|
|
}
|
|
|
|
if (lower_bound_count == 0
|
|
|| upper_bound_count == 0)
|
|
{
|
|
lower_bound_count = 0;
|
|
break;
|
|
}
|
|
|
|
if (ub >= 0 && lb >= 0
|
|
&& pb->geqs[lb].key == -pb->geqs[ub].key)
|
|
{
|
|
int Lc = pb->geqs[lb].coef[i];
|
|
int Uc = -pb->geqs[ub].coef[i];
|
|
int diff =
|
|
Lc * pb->geqs[ub].coef[0] + Uc * pb->geqs[lb].coef[0];
|
|
lucky = (diff >= (Uc - 1) * (Lc - 1));
|
|
}
|
|
|
|
if (maxC == 1
|
|
|| minC == -1
|
|
|| lucky
|
|
|| in_approximate_mode)
|
|
{
|
|
score = upper_bound_count * lower_bound_count;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file,
|
|
"For %s, exact, score = %d*%d, range = %d ... %d,"
|
|
"\nlucky = %d, in_approximate_mode=%d \n",
|
|
omega_variable_to_str (pb, i),
|
|
upper_bound_count,
|
|
lower_bound_count, minC, maxC, lucky,
|
|
in_approximate_mode);
|
|
|
|
if (!exact
|
|
|| score < best)
|
|
{
|
|
|
|
best = score;
|
|
j = i;
|
|
minCj = minC;
|
|
jLe = Le;
|
|
jLowerBoundCount = lower_bound_count;
|
|
exact = true;
|
|
lucky_exact = lucky;
|
|
if (score == 1)
|
|
break;
|
|
}
|
|
}
|
|
else if (!exact)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file,
|
|
"For %s, non-exact, score = %d*%d,"
|
|
"range = %d ... %d \n",
|
|
omega_variable_to_str (pb, i),
|
|
upper_bound_count,
|
|
lower_bound_count, minC, maxC);
|
|
|
|
score = maxC - minC;
|
|
|
|
if (best > score)
|
|
{
|
|
best = score;
|
|
j = i;
|
|
minCj = minC;
|
|
jLe = Le;
|
|
jLowerBoundCount = lower_bound_count;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (lower_bound_count == 0)
|
|
{
|
|
omega_free_eliminations (pb, pb->safe_vars);
|
|
n_vars = pb->num_vars;
|
|
eliminate_again = true;
|
|
continue;
|
|
}
|
|
|
|
i = j;
|
|
minC = minCj;
|
|
Le = jLe;
|
|
lower_bound_count = jLowerBoundCount;
|
|
|
|
for (e = pb->num_geqs - 1; e >= 0; e--)
|
|
if (pb->geqs[e].coef[i] > 0)
|
|
{
|
|
if (pb->geqs[e].coef[i] == -minC)
|
|
max_splinters += -minC - 1;
|
|
else
|
|
max_splinters +=
|
|
check_pos_mul ((pb->geqs[e].coef[i] - 1),
|
|
(-minC - 1)) / (-minC) + 1;
|
|
}
|
|
|
|
/* #ifdef Omega3 */
|
|
/* Trying to produce exact elimination by finding redundant
|
|
constraints. */
|
|
if (!exact && !tried_eliminating_redundant)
|
|
{
|
|
omega_eliminate_redundant (pb, false);
|
|
tried_eliminating_redundant = true;
|
|
eliminate_again = true;
|
|
continue;
|
|
}
|
|
tried_eliminating_redundant = false;
|
|
/* #endif */
|
|
|
|
if (return_single_result && desired_res == omega_simplify && !exact)
|
|
{
|
|
omega_problem_reduced (pb);
|
|
return omega_true;
|
|
}
|
|
|
|
/* #ifndef Omega3 */
|
|
/* Trying to produce exact elimination by finding redundant
|
|
constraints. */
|
|
if (!exact && !tried_eliminating_redundant)
|
|
{
|
|
omega_eliminate_redundant (pb, false);
|
|
tried_eliminating_redundant = true;
|
|
continue;
|
|
}
|
|
tried_eliminating_redundant = false;
|
|
/* #endif */
|
|
|
|
if (!exact)
|
|
{
|
|
int e1, e2;
|
|
|
|
for (e1 = pb->num_geqs - 1; e1 >= 0; e1--)
|
|
if (pb->geqs[e1].color == omega_black)
|
|
for (e2 = e1 - 1; e2 >= 0; e2--)
|
|
if (pb->geqs[e2].color == omega_black
|
|
&& pb->geqs[e1].key == -pb->geqs[e2].key
|
|
&& ((pb->geqs[e1].coef[0] + pb->geqs[e2].coef[0])
|
|
* (3 - single_var_geq (&pb->geqs[e1], pb->num_vars))
|
|
/ 2 < parallel_difference))
|
|
{
|
|
parallel_difference =
|
|
(pb->geqs[e1].coef[0] + pb->geqs[e2].coef[0])
|
|
* (3 - single_var_geq (&pb->geqs[e1], pb->num_vars))
|
|
/ 2;
|
|
best_parallel_eqn = e1;
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS)
|
|
&& best_parallel_eqn >= 0)
|
|
{
|
|
fprintf (dump_file,
|
|
"Possible parallel projection, diff = %d, in ",
|
|
parallel_difference);
|
|
omega_print_geq (dump_file, pb, &(pb->geqs[best_parallel_eqn]));
|
|
fprintf (dump_file, "\n");
|
|
omega_print_problem (dump_file, pb);
|
|
}
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "going to eliminate %s, (%d,%d,%d)\n",
|
|
omega_variable_to_str (pb, i), i, minC,
|
|
lower_bound_count);
|
|
omega_print_problem (dump_file, pb);
|
|
|
|
if (lucky_exact)
|
|
fprintf (dump_file, "(a lucky exact elimination)\n");
|
|
|
|
else if (exact)
|
|
fprintf (dump_file, "(an exact elimination)\n");
|
|
|
|
fprintf (dump_file, "Max # of splinters = %d\n", max_splinters);
|
|
}
|
|
|
|
gcc_assert (max_splinters >= 1);
|
|
|
|
if (!exact && desired_res == omega_simplify && best_parallel_eqn >= 0
|
|
&& parallel_difference <= max_splinters)
|
|
return parallel_splinter (pb, best_parallel_eqn, parallel_difference,
|
|
desired_res);
|
|
|
|
smoothed = false;
|
|
|
|
if (i != n_vars)
|
|
{
|
|
int t;
|
|
int j = pb->num_vars;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Swapping %d and %d\n", i, j);
|
|
omega_print_problem (dump_file, pb);
|
|
}
|
|
|
|
swap (&pb->var[i], &pb->var[j]);
|
|
|
|
for (e = pb->num_geqs - 1; e >= 0; e--)
|
|
if (pb->geqs[e].coef[i] != pb->geqs[e].coef[j])
|
|
{
|
|
pb->geqs[e].touched = 1;
|
|
t = pb->geqs[e].coef[i];
|
|
pb->geqs[e].coef[i] = pb->geqs[e].coef[j];
|
|
pb->geqs[e].coef[j] = t;
|
|
}
|
|
|
|
for (e = pb->num_subs - 1; e >= 0; e--)
|
|
if (pb->subs[e].coef[i] != pb->subs[e].coef[j])
|
|
{
|
|
t = pb->subs[e].coef[i];
|
|
pb->subs[e].coef[i] = pb->subs[e].coef[j];
|
|
pb->subs[e].coef[j] = t;
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Swapping complete \n");
|
|
omega_print_problem (dump_file, pb);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
i = j;
|
|
}
|
|
|
|
else if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "No swap needed\n");
|
|
omega_print_problem (dump_file, pb);
|
|
}
|
|
|
|
pb->num_vars--;
|
|
n_vars = pb->num_vars;
|
|
|
|
if (exact)
|
|
{
|
|
if (n_vars == 1)
|
|
{
|
|
int upper_bound = pos_infinity;
|
|
int lower_bound = neg_infinity;
|
|
enum omega_eqn_color ub_color = omega_black;
|
|
enum omega_eqn_color lb_color = omega_black;
|
|
int topeqn = pb->num_geqs - 1;
|
|
int Lc = pb->geqs[Le].coef[i];
|
|
|
|
for (Le = topeqn; Le >= 0; Le--)
|
|
if ((Lc = pb->geqs[Le].coef[i]) == 0)
|
|
{
|
|
if (pb->geqs[Le].coef[1] == 1)
|
|
{
|
|
int constantTerm = -pb->geqs[Le].coef[0];
|
|
|
|
if (constantTerm > lower_bound ||
|
|
(constantTerm == lower_bound &&
|
|
!omega_eqn_is_red (&pb->geqs[Le], desired_res)))
|
|
{
|
|
lower_bound = constantTerm;
|
|
lb_color = pb->geqs[Le].color;
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
if (pb->geqs[Le].color == omega_black)
|
|
fprintf (dump_file, " :::=> %s >= %d\n",
|
|
omega_variable_to_str (pb, 1),
|
|
constantTerm);
|
|
else
|
|
fprintf (dump_file,
|
|
" :::=> [%s >= %d]\n",
|
|
omega_variable_to_str (pb, 1),
|
|
constantTerm);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
int constantTerm = pb->geqs[Le].coef[0];
|
|
if (constantTerm < upper_bound ||
|
|
(constantTerm == upper_bound
|
|
&& !omega_eqn_is_red (&pb->geqs[Le],
|
|
desired_res)))
|
|
{
|
|
upper_bound = constantTerm;
|
|
ub_color = pb->geqs[Le].color;
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
if (pb->geqs[Le].color == omega_black)
|
|
fprintf (dump_file, " :::=> %s <= %d\n",
|
|
omega_variable_to_str (pb, 1),
|
|
constantTerm);
|
|
else
|
|
fprintf (dump_file,
|
|
" :::=> [%s <= %d]\n",
|
|
omega_variable_to_str (pb, 1),
|
|
constantTerm);
|
|
}
|
|
}
|
|
}
|
|
else if (Lc > 0)
|
|
for (Ue = topeqn; Ue >= 0; Ue--)
|
|
if (pb->geqs[Ue].coef[i] < 0
|
|
&& pb->geqs[Le].key != -pb->geqs[Ue].key)
|
|
{
|
|
int Uc = -pb->geqs[Ue].coef[i];
|
|
int coefficient = pb->geqs[Ue].coef[1] * Lc
|
|
+ pb->geqs[Le].coef[1] * Uc;
|
|
int constantTerm = pb->geqs[Ue].coef[0] * Lc
|
|
+ pb->geqs[Le].coef[0] * Uc;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
omega_print_geq_extra (dump_file, pb,
|
|
&(pb->geqs[Ue]));
|
|
fprintf (dump_file, "\n");
|
|
omega_print_geq_extra (dump_file, pb,
|
|
&(pb->geqs[Le]));
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
if (coefficient > 0)
|
|
{
|
|
constantTerm = -int_div (constantTerm, coefficient);
|
|
|
|
if (constantTerm > lower_bound
|
|
|| (constantTerm == lower_bound
|
|
&& (desired_res != omega_simplify
|
|
|| (pb->geqs[Ue].color == omega_black
|
|
&& pb->geqs[Le].color == omega_black))))
|
|
{
|
|
lower_bound = constantTerm;
|
|
lb_color = (pb->geqs[Ue].color == omega_red
|
|
|| pb->geqs[Le].color == omega_red)
|
|
? omega_red : omega_black;
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
if (pb->geqs[Ue].color == omega_red
|
|
|| pb->geqs[Le].color == omega_red)
|
|
fprintf (dump_file,
|
|
" ::=> [%s >= %d]\n",
|
|
omega_variable_to_str (pb, 1),
|
|
constantTerm);
|
|
else
|
|
fprintf (dump_file,
|
|
" ::=> %s >= %d\n",
|
|
omega_variable_to_str (pb, 1),
|
|
constantTerm);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
constantTerm = int_div (constantTerm, -coefficient);
|
|
if (constantTerm < upper_bound
|
|
|| (constantTerm == upper_bound
|
|
&& pb->geqs[Ue].color == omega_black
|
|
&& pb->geqs[Le].color == omega_black))
|
|
{
|
|
upper_bound = constantTerm;
|
|
ub_color = (pb->geqs[Ue].color == omega_red
|
|
|| pb->geqs[Le].color == omega_red)
|
|
? omega_red : omega_black;
|
|
}
|
|
|
|
if (dump_file
|
|
&& (dump_flags & TDF_DETAILS))
|
|
{
|
|
if (pb->geqs[Ue].color == omega_red
|
|
|| pb->geqs[Le].color == omega_red)
|
|
fprintf (dump_file,
|
|
" ::=> [%s <= %d]\n",
|
|
omega_variable_to_str (pb, 1),
|
|
constantTerm);
|
|
else
|
|
fprintf (dump_file,
|
|
" ::=> %s <= %d\n",
|
|
omega_variable_to_str (pb, 1),
|
|
constantTerm);
|
|
}
|
|
}
|
|
}
|
|
|
|
pb->num_geqs = 0;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file,
|
|
" therefore, %c%d <= %c%s%c <= %d%c\n",
|
|
lb_color == omega_red ? '[' : ' ', lower_bound,
|
|
(lb_color == omega_red && ub_color == omega_black)
|
|
? ']' : ' ',
|
|
omega_variable_to_str (pb, 1),
|
|
(lb_color == omega_black && ub_color == omega_red)
|
|
? '[' : ' ',
|
|
upper_bound, ub_color == omega_red ? ']' : ' ');
|
|
|
|
if (lower_bound > upper_bound)
|
|
return omega_false;
|
|
|
|
if (pb->safe_vars == 1)
|
|
{
|
|
if (upper_bound == lower_bound
|
|
&& !(ub_color == omega_red || lb_color == omega_red)
|
|
&& !please_no_equalities_in_simplified_problems)
|
|
{
|
|
pb->num_eqs++;
|
|
pb->eqs[0].coef[1] = -1;
|
|
pb->eqs[0].coef[0] = upper_bound;
|
|
|
|
if (ub_color == omega_red
|
|
|| lb_color == omega_red)
|
|
pb->eqs[0].color = omega_red;
|
|
|
|
if (desired_res == omega_simplify
|
|
&& pb->eqs[0].color == omega_black)
|
|
return omega_solve_problem (pb, desired_res);
|
|
}
|
|
|
|
if (upper_bound != pos_infinity)
|
|
{
|
|
pb->geqs[0].coef[1] = -1;
|
|
pb->geqs[0].coef[0] = upper_bound;
|
|
pb->geqs[0].color = ub_color;
|
|
pb->geqs[0].key = -1;
|
|
pb->geqs[0].touched = 0;
|
|
pb->num_geqs++;
|
|
}
|
|
|
|
if (lower_bound != neg_infinity)
|
|
{
|
|
pb->geqs[pb->num_geqs].coef[1] = 1;
|
|
pb->geqs[pb->num_geqs].coef[0] = -lower_bound;
|
|
pb->geqs[pb->num_geqs].color = lb_color;
|
|
pb->geqs[pb->num_geqs].key = 1;
|
|
pb->geqs[pb->num_geqs].touched = 0;
|
|
pb->num_geqs++;
|
|
}
|
|
}
|
|
|
|
if (desired_res == omega_simplify)
|
|
{
|
|
omega_problem_reduced (pb);
|
|
return omega_false;
|
|
}
|
|
else
|
|
{
|
|
if (!conservative
|
|
&& (desired_res != omega_simplify
|
|
|| (lb_color == omega_black
|
|
&& ub_color == omega_black))
|
|
&& original_problem != no_problem
|
|
&& lower_bound == upper_bound)
|
|
{
|
|
for (i = original_problem->num_vars; i >= 0; i--)
|
|
if (original_problem->var[i] == pb->var[1])
|
|
break;
|
|
|
|
if (i == 0)
|
|
break;
|
|
|
|
e = original_problem->num_eqs++;
|
|
omega_init_eqn_zero (&original_problem->eqs[e],
|
|
original_problem->num_vars);
|
|
original_problem->eqs[e].coef[i] = -1;
|
|
original_problem->eqs[e].coef[0] = upper_bound;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file,
|
|
"adding equality %d to outer problem\n", e);
|
|
omega_print_problem (dump_file, original_problem);
|
|
}
|
|
}
|
|
return omega_true;
|
|
}
|
|
}
|
|
|
|
eliminate_again = true;
|
|
|
|
if (lower_bound_count == 1)
|
|
{
|
|
eqn lbeqn = omega_alloc_eqns (0, 1);
|
|
int Lc = pb->geqs[Le].coef[i];
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "an inplace elimination\n");
|
|
|
|
omega_copy_eqn (lbeqn, &pb->geqs[Le], (n_vars + 1));
|
|
omega_delete_geq_extra (pb, Le, n_vars + 1);
|
|
|
|
for (Ue = pb->num_geqs - 1; Ue >= 0; Ue--)
|
|
if (pb->geqs[Ue].coef[i] < 0)
|
|
{
|
|
if (lbeqn->key == -pb->geqs[Ue].key)
|
|
omega_delete_geq_extra (pb, Ue, n_vars + 1);
|
|
else
|
|
{
|
|
int k;
|
|
int Uc = -pb->geqs[Ue].coef[i];
|
|
pb->geqs[Ue].touched = 1;
|
|
eliminate_again = false;
|
|
|
|
if (lbeqn->color == omega_red)
|
|
pb->geqs[Ue].color = omega_red;
|
|
|
|
for (k = 0; k <= n_vars; k++)
|
|
pb->geqs[Ue].coef[k] =
|
|
check_mul (pb->geqs[Ue].coef[k], Lc) +
|
|
check_mul (lbeqn->coef[k], Uc);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
omega_print_geq (dump_file, pb,
|
|
&(pb->geqs[Ue]));
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
omega_free_eqns (lbeqn, 1);
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
int *dead_eqns = XNEWVEC (int, OMEGA_MAX_GEQS);
|
|
bool *is_dead = XNEWVEC (bool, OMEGA_MAX_GEQS);
|
|
int num_dead = 0;
|
|
int top_eqn = pb->num_geqs - 1;
|
|
lower_bound_count--;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "lower bound count = %d\n",
|
|
lower_bound_count);
|
|
|
|
for (Le = top_eqn; Le >= 0; Le--)
|
|
if (pb->geqs[Le].coef[i] > 0)
|
|
{
|
|
int Lc = pb->geqs[Le].coef[i];
|
|
for (Ue = top_eqn; Ue >= 0; Ue--)
|
|
if (pb->geqs[Ue].coef[i] < 0)
|
|
{
|
|
if (pb->geqs[Le].key != -pb->geqs[Ue].key)
|
|
{
|
|
int k;
|
|
int Uc = -pb->geqs[Ue].coef[i];
|
|
|
|
if (num_dead == 0)
|
|
e2 = pb->num_geqs++;
|
|
else
|
|
e2 = dead_eqns[--num_dead];
|
|
|
|
gcc_assert (e2 < OMEGA_MAX_GEQS);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file,
|
|
"Le = %d, Ue = %d, gen = %d\n",
|
|
Le, Ue, e2);
|
|
omega_print_geq_extra (dump_file, pb,
|
|
&(pb->geqs[Le]));
|
|
fprintf (dump_file, "\n");
|
|
omega_print_geq_extra (dump_file, pb,
|
|
&(pb->geqs[Ue]));
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
eliminate_again = false;
|
|
|
|
for (k = n_vars; k >= 0; k--)
|
|
pb->geqs[e2].coef[k] =
|
|
check_mul (pb->geqs[Ue].coef[k], Lc) +
|
|
check_mul (pb->geqs[Le].coef[k], Uc);
|
|
|
|
pb->geqs[e2].coef[n_vars + 1] = 0;
|
|
pb->geqs[e2].touched = 1;
|
|
|
|
if (pb->geqs[Ue].color == omega_red
|
|
|| pb->geqs[Le].color == omega_red)
|
|
pb->geqs[e2].color = omega_red;
|
|
else
|
|
pb->geqs[e2].color = omega_black;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
omega_print_geq (dump_file, pb,
|
|
&(pb->geqs[e2]));
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
}
|
|
|
|
if (lower_bound_count == 0)
|
|
{
|
|
dead_eqns[num_dead++] = Ue;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "Killed %d\n", Ue);
|
|
}
|
|
}
|
|
|
|
lower_bound_count--;
|
|
dead_eqns[num_dead++] = Le;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "Killed %d\n", Le);
|
|
}
|
|
|
|
for (e = pb->num_geqs - 1; e >= 0; e--)
|
|
is_dead[e] = false;
|
|
|
|
while (num_dead > 0)
|
|
is_dead[dead_eqns[--num_dead]] = true;
|
|
|
|
for (e = pb->num_geqs - 1; e >= 0; e--)
|
|
if (is_dead[e])
|
|
omega_delete_geq_extra (pb, e, n_vars + 1);
|
|
|
|
free (dead_eqns);
|
|
free (is_dead);
|
|
continue;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
omega_pb rS, iS;
|
|
|
|
rS = omega_alloc_problem (0, 0);
|
|
iS = omega_alloc_problem (0, 0);
|
|
e2 = 0;
|
|
possible_easy_int_solution = true;
|
|
|
|
for (e = 0; e < pb->num_geqs; e++)
|
|
if (pb->geqs[e].coef[i] == 0)
|
|
{
|
|
omega_copy_eqn (&(rS->geqs[e2]), &pb->geqs[e],
|
|
pb->num_vars);
|
|
omega_copy_eqn (&(iS->geqs[e2]), &pb->geqs[e],
|
|
pb->num_vars);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
int t;
|
|
fprintf (dump_file, "Copying (%d, %d): ", i,
|
|
pb->geqs[e].coef[i]);
|
|
omega_print_geq_extra (dump_file, pb, &pb->geqs[e]);
|
|
fprintf (dump_file, "\n");
|
|
for (t = 0; t <= n_vars + 1; t++)
|
|
fprintf (dump_file, "%d ", pb->geqs[e].coef[t]);
|
|
fprintf (dump_file, "\n");
|
|
|
|
}
|
|
e2++;
|
|
gcc_assert (e2 < OMEGA_MAX_GEQS);
|
|
}
|
|
|
|
for (Le = pb->num_geqs - 1; Le >= 0; Le--)
|
|
if (pb->geqs[Le].coef[i] > 0)
|
|
for (Ue = pb->num_geqs - 1; Ue >= 0; Ue--)
|
|
if (pb->geqs[Ue].coef[i] < 0)
|
|
{
|
|
int k;
|
|
int Lc = pb->geqs[Le].coef[i];
|
|
int Uc = -pb->geqs[Ue].coef[i];
|
|
|
|
if (pb->geqs[Le].key != -pb->geqs[Ue].key)
|
|
{
|
|
|
|
rS->geqs[e2].touched = iS->geqs[e2].touched = 1;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "---\n");
|
|
fprintf (dump_file,
|
|
"Le(Lc) = %d(%d_, Ue(Uc) = %d(%d), gen = %d\n",
|
|
Le, Lc, Ue, Uc, e2);
|
|
omega_print_geq_extra (dump_file, pb, &pb->geqs[Le]);
|
|
fprintf (dump_file, "\n");
|
|
omega_print_geq_extra (dump_file, pb, &pb->geqs[Ue]);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
if (Uc == Lc)
|
|
{
|
|
for (k = n_vars; k >= 0; k--)
|
|
iS->geqs[e2].coef[k] = rS->geqs[e2].coef[k] =
|
|
pb->geqs[Ue].coef[k] + pb->geqs[Le].coef[k];
|
|
|
|
iS->geqs[e2].coef[0] -= (Uc - 1);
|
|
}
|
|
else
|
|
{
|
|
for (k = n_vars; k >= 0; k--)
|
|
iS->geqs[e2].coef[k] = rS->geqs[e2].coef[k] =
|
|
check_mul (pb->geqs[Ue].coef[k], Lc) +
|
|
check_mul (pb->geqs[Le].coef[k], Uc);
|
|
|
|
iS->geqs[e2].coef[0] -= (Uc - 1) * (Lc - 1);
|
|
}
|
|
|
|
if (pb->geqs[Ue].color == omega_red
|
|
|| pb->geqs[Le].color == omega_red)
|
|
iS->geqs[e2].color = rS->geqs[e2].color = omega_red;
|
|
else
|
|
iS->geqs[e2].color = rS->geqs[e2].color = omega_black;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
omega_print_geq (dump_file, pb, &(rS->geqs[e2]));
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
e2++;
|
|
gcc_assert (e2 < OMEGA_MAX_GEQS);
|
|
}
|
|
else if (pb->geqs[Ue].coef[0] * Lc +
|
|
pb->geqs[Le].coef[0] * Uc -
|
|
(Uc - 1) * (Lc - 1) < 0)
|
|
possible_easy_int_solution = false;
|
|
}
|
|
|
|
iS->variables_initialized = rS->variables_initialized = true;
|
|
iS->num_vars = rS->num_vars = pb->num_vars;
|
|
iS->num_geqs = rS->num_geqs = e2;
|
|
iS->num_eqs = rS->num_eqs = 0;
|
|
iS->num_subs = rS->num_subs = pb->num_subs;
|
|
iS->safe_vars = rS->safe_vars = pb->safe_vars;
|
|
|
|
for (e = n_vars; e >= 0; e--)
|
|
rS->var[e] = pb->var[e];
|
|
|
|
for (e = n_vars; e >= 0; e--)
|
|
iS->var[e] = pb->var[e];
|
|
|
|
for (e = pb->num_subs - 1; e >= 0; e--)
|
|
{
|
|
omega_copy_eqn (&(rS->subs[e]), &(pb->subs[e]), pb->num_vars);
|
|
omega_copy_eqn (&(iS->subs[e]), &(pb->subs[e]), pb->num_vars);
|
|
}
|
|
|
|
pb->num_vars++;
|
|
n_vars = pb->num_vars;
|
|
|
|
if (desired_res != omega_true)
|
|
{
|
|
if (original_problem == no_problem)
|
|
{
|
|
original_problem = pb;
|
|
result = omega_solve_geq (rS, omega_false);
|
|
original_problem = no_problem;
|
|
}
|
|
else
|
|
result = omega_solve_geq (rS, omega_false);
|
|
|
|
if (result == omega_false)
|
|
{
|
|
free (rS);
|
|
free (iS);
|
|
return result;
|
|
}
|
|
|
|
if (pb->num_eqs > 0)
|
|
{
|
|
/* An equality constraint must have been found */
|
|
free (rS);
|
|
free (iS);
|
|
return omega_solve_problem (pb, desired_res);
|
|
}
|
|
}
|
|
|
|
if (desired_res != omega_false)
|
|
{
|
|
int j;
|
|
int lower_bounds = 0;
|
|
int *lower_bound = XNEWVEC (int, OMEGA_MAX_GEQS);
|
|
|
|
if (possible_easy_int_solution)
|
|
{
|
|
conservative++;
|
|
result = omega_solve_geq (iS, desired_res);
|
|
conservative--;
|
|
|
|
if (result != omega_false)
|
|
{
|
|
free (rS);
|
|
free (iS);
|
|
free (lower_bound);
|
|
return result;
|
|
}
|
|
}
|
|
|
|
if (!exact && best_parallel_eqn >= 0
|
|
&& parallel_difference <= max_splinters)
|
|
{
|
|
free (rS);
|
|
free (iS);
|
|
free (lower_bound);
|
|
return parallel_splinter (pb, best_parallel_eqn,
|
|
parallel_difference,
|
|
desired_res);
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "have to do exact analysis\n");
|
|
|
|
conservative++;
|
|
|
|
for (e = 0; e < pb->num_geqs; e++)
|
|
if (pb->geqs[e].coef[i] > 1)
|
|
lower_bound[lower_bounds++] = e;
|
|
|
|
/* Sort array LOWER_BOUND. */
|
|
for (j = 0; j < lower_bounds; j++)
|
|
{
|
|
int k, smallest = j;
|
|
|
|
for (k = j + 1; k < lower_bounds; k++)
|
|
if (pb->geqs[lower_bound[smallest]].coef[i] >
|
|
pb->geqs[lower_bound[k]].coef[i])
|
|
smallest = k;
|
|
|
|
k = lower_bound[smallest];
|
|
lower_bound[smallest] = lower_bound[j];
|
|
lower_bound[j] = k;
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "lower bound coefficients = ");
|
|
|
|
for (j = 0; j < lower_bounds; j++)
|
|
fprintf (dump_file, " %d",
|
|
pb->geqs[lower_bound[j]].coef[i]);
|
|
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
for (j = 0; j < lower_bounds; j++)
|
|
{
|
|
int max_incr;
|
|
int c;
|
|
int worst_lower_bound_constant = -minC;
|
|
|
|
e = lower_bound[j];
|
|
max_incr = (((pb->geqs[e].coef[i] - 1) *
|
|
(worst_lower_bound_constant - 1) - 1)
|
|
/ worst_lower_bound_constant);
|
|
/* max_incr += 2; */
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "for equation ");
|
|
omega_print_geq (dump_file, pb, &pb->geqs[e]);
|
|
fprintf (dump_file,
|
|
"\ntry decrements from 0 to %d\n",
|
|
max_incr);
|
|
omega_print_problem (dump_file, pb);
|
|
}
|
|
|
|
if (max_incr > 50 && !smoothed
|
|
&& smooth_weird_equations (pb))
|
|
{
|
|
conservative--;
|
|
free (rS);
|
|
free (iS);
|
|
smoothed = true;
|
|
goto solve_geq_start;
|
|
}
|
|
|
|
omega_copy_eqn (&pb->eqs[0], &pb->geqs[e],
|
|
pb->num_vars);
|
|
pb->eqs[0].color = omega_black;
|
|
omega_init_eqn_zero (&pb->geqs[e], pb->num_vars);
|
|
pb->geqs[e].touched = 1;
|
|
pb->num_eqs = 1;
|
|
|
|
for (c = max_incr; c >= 0; c--)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file,
|
|
"trying next decrement of %d\n",
|
|
max_incr - c);
|
|
omega_print_problem (dump_file, pb);
|
|
}
|
|
|
|
omega_copy_problem (rS, pb);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
omega_print_problem (dump_file, rS);
|
|
|
|
result = omega_solve_problem (rS, desired_res);
|
|
|
|
if (result == omega_true)
|
|
{
|
|
free (rS);
|
|
free (iS);
|
|
free (lower_bound);
|
|
conservative--;
|
|
return omega_true;
|
|
}
|
|
|
|
pb->eqs[0].coef[0]--;
|
|
}
|
|
|
|
if (j + 1 < lower_bounds)
|
|
{
|
|
pb->num_eqs = 0;
|
|
omega_copy_eqn (&pb->geqs[e], &pb->eqs[0],
|
|
pb->num_vars);
|
|
pb->geqs[e].touched = 1;
|
|
pb->geqs[e].color = omega_black;
|
|
omega_copy_problem (rS, pb);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file,
|
|
"exhausted lower bound, "
|
|
"checking if still feasible ");
|
|
|
|
result = omega_solve_problem (rS, omega_false);
|
|
|
|
if (result == omega_false)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "fall-off the end\n");
|
|
|
|
free (rS);
|
|
free (iS);
|
|
free (lower_bound);
|
|
conservative--;
|
|
return omega_false;
|
|
}
|
|
|
|
free (rS);
|
|
free (iS);
|
|
}
|
|
return omega_unknown;
|
|
} while (eliminate_again);
|
|
} while (1);
|
|
}
|
|
|
|
/* Because the omega solver is recursive, this counter limits the
|
|
recursion depth. */
|
|
static int omega_solve_depth = 0;
|
|
|
|
/* Return omega_true when the problem PB has a solution following the
|
|
DESIRED_RES. */
|
|
|
|
enum omega_result
|
|
omega_solve_problem (omega_pb pb, enum omega_result desired_res)
|
|
{
|
|
enum omega_result result;
|
|
|
|
gcc_assert (pb->num_vars >= pb->safe_vars);
|
|
omega_solve_depth++;
|
|
|
|
if (desired_res != omega_simplify)
|
|
pb->safe_vars = 0;
|
|
|
|
if (omega_solve_depth > 50)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file,
|
|
"Solve depth = %d, in_approximate_mode = %d, aborting\n",
|
|
omega_solve_depth, in_approximate_mode);
|
|
omega_print_problem (dump_file, pb);
|
|
}
|
|
gcc_assert (0);
|
|
}
|
|
|
|
if (omega_solve_eq (pb, desired_res) == omega_false)
|
|
{
|
|
omega_solve_depth--;
|
|
return omega_false;
|
|
}
|
|
|
|
if (in_approximate_mode && !pb->num_geqs)
|
|
{
|
|
result = omega_true;
|
|
pb->num_vars = pb->safe_vars;
|
|
omega_problem_reduced (pb);
|
|
}
|
|
else
|
|
result = omega_solve_geq (pb, desired_res);
|
|
|
|
omega_solve_depth--;
|
|
|
|
if (!omega_reduce_with_subs)
|
|
{
|
|
resurrect_subs (pb);
|
|
gcc_assert (please_no_equalities_in_simplified_problems
|
|
|| !result || pb->num_subs == 0);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Return true if red equations constrain the set of possible solutions.
|
|
We assume that there are solutions to the black equations by
|
|
themselves, so if there is no solution to the combined problem, we
|
|
return true. */
|
|
|
|
bool
|
|
omega_problem_has_red_equations (omega_pb pb)
|
|
{
|
|
bool result;
|
|
int e;
|
|
int i;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Checking for red equations:\n");
|
|
omega_print_problem (dump_file, pb);
|
|
}
|
|
|
|
please_no_equalities_in_simplified_problems++;
|
|
may_be_red++;
|
|
|
|
if (omega_single_result)
|
|
return_single_result++;
|
|
|
|
create_color = true;
|
|
result = (omega_simplify_problem (pb) == omega_false);
|
|
|
|
if (omega_single_result)
|
|
return_single_result--;
|
|
|
|
may_be_red--;
|
|
please_no_equalities_in_simplified_problems--;
|
|
|
|
if (result)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "Gist is FALSE\n");
|
|
|
|
pb->num_subs = 0;
|
|
pb->num_geqs = 0;
|
|
pb->num_eqs = 1;
|
|
pb->eqs[0].color = omega_red;
|
|
|
|
for (i = pb->num_vars; i > 0; i--)
|
|
pb->eqs[0].coef[i] = 0;
|
|
|
|
pb->eqs[0].coef[0] = 1;
|
|
return true;
|
|
}
|
|
|
|
free_red_eliminations (pb);
|
|
gcc_assert (pb->num_eqs == 0);
|
|
|
|
for (e = pb->num_geqs - 1; e >= 0; e--)
|
|
if (pb->geqs[e].color == omega_red)
|
|
result = true;
|
|
|
|
if (!result)
|
|
return false;
|
|
|
|
for (i = pb->safe_vars; i >= 1; i--)
|
|
{
|
|
int ub = 0;
|
|
int lb = 0;
|
|
|
|
for (e = pb->num_geqs - 1; e >= 0; e--)
|
|
{
|
|
if (pb->geqs[e].coef[i])
|
|
{
|
|
if (pb->geqs[e].coef[i] > 0)
|
|
lb |= (1 + (pb->geqs[e].color == omega_red ? 1 : 0));
|
|
|
|
else
|
|
ub |= (1 + (pb->geqs[e].color == omega_red ? 1 : 0));
|
|
}
|
|
}
|
|
|
|
if (ub == 2 || lb == 2)
|
|
{
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "checks for upper/lower bounds worked!\n");
|
|
|
|
if (!omega_reduce_with_subs)
|
|
{
|
|
resurrect_subs (pb);
|
|
gcc_assert (pb->num_subs == 0);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file,
|
|
"*** Doing potentially expensive elimination tests "
|
|
"for red equations\n");
|
|
|
|
please_no_equalities_in_simplified_problems++;
|
|
omega_eliminate_red (pb, true);
|
|
please_no_equalities_in_simplified_problems--;
|
|
|
|
result = false;
|
|
gcc_assert (pb->num_eqs == 0);
|
|
|
|
for (e = pb->num_geqs - 1; e >= 0; e--)
|
|
if (pb->geqs[e].color == omega_red)
|
|
result = true;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
if (!result)
|
|
fprintf (dump_file,
|
|
"******************** Redundant Red Equations eliminated!!\n");
|
|
else
|
|
fprintf (dump_file,
|
|
"******************** Red Equations remain\n");
|
|
|
|
omega_print_problem (dump_file, pb);
|
|
}
|
|
|
|
if (!omega_reduce_with_subs)
|
|
{
|
|
normalize_return_type r;
|
|
|
|
resurrect_subs (pb);
|
|
r = normalize_omega_problem (pb);
|
|
gcc_assert (r != normalize_false);
|
|
|
|
coalesce (pb);
|
|
cleanout_wildcards (pb);
|
|
gcc_assert (pb->num_subs == 0);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Calls omega_simplify_problem in approximate mode. */
|
|
|
|
enum omega_result
|
|
omega_simplify_approximate (omega_pb pb)
|
|
{
|
|
enum omega_result result;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "(Entering approximate mode\n");
|
|
|
|
in_approximate_mode = true;
|
|
result = omega_simplify_problem (pb);
|
|
in_approximate_mode = false;
|
|
|
|
gcc_assert (pb->num_vars == pb->safe_vars);
|
|
if (!omega_reduce_with_subs)
|
|
gcc_assert (pb->num_subs == 0);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "Leaving approximate mode)\n");
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/* Simplifies problem PB by eliminating redundant constraints and
|
|
reducing the constraints system to a minimal form. Returns
|
|
omega_true when the problem was successfully reduced, omega_unknown
|
|
when the solver is unable to determine an answer. */
|
|
|
|
enum omega_result
|
|
omega_simplify_problem (omega_pb pb)
|
|
{
|
|
int i;
|
|
|
|
omega_found_reduction = omega_false;
|
|
|
|
if (!pb->variables_initialized)
|
|
omega_initialize_variables (pb);
|
|
|
|
if (next_key * 3 > MAX_KEYS)
|
|
{
|
|
int e;
|
|
|
|
hash_version++;
|
|
next_key = OMEGA_MAX_VARS + 1;
|
|
|
|
for (e = pb->num_geqs - 1; e >= 0; e--)
|
|
pb->geqs[e].touched = 1;
|
|
|
|
for (i = 0; i < HASH_TABLE_SIZE; i++)
|
|
hash_master[i].touched = -1;
|
|
|
|
pb->hash_version = hash_version;
|
|
}
|
|
|
|
else if (pb->hash_version != hash_version)
|
|
{
|
|
int e;
|
|
|
|
for (e = pb->num_geqs - 1; e >= 0; e--)
|
|
pb->geqs[e].touched = 1;
|
|
|
|
pb->hash_version = hash_version;
|
|
}
|
|
|
|
if (pb->num_vars > pb->num_eqs + 3 * pb->safe_vars)
|
|
omega_free_eliminations (pb, pb->safe_vars);
|
|
|
|
if (!may_be_red && pb->num_subs == 0 && pb->safe_vars == 0)
|
|
{
|
|
omega_found_reduction = omega_solve_problem (pb, omega_unknown);
|
|
|
|
if (omega_found_reduction != omega_false
|
|
&& !return_single_result)
|
|
{
|
|
pb->num_geqs = 0;
|
|
pb->num_eqs = 0;
|
|
(*omega_when_reduced) (pb);
|
|
}
|
|
|
|
return omega_found_reduction;
|
|
}
|
|
|
|
omega_solve_problem (pb, omega_simplify);
|
|
|
|
if (omega_found_reduction != omega_false)
|
|
{
|
|
for (i = 1; omega_safe_var_p (pb, i); i++)
|
|
pb->forwarding_address[pb->var[i]] = i;
|
|
|
|
for (i = 0; i < pb->num_subs; i++)
|
|
pb->forwarding_address[pb->subs[i].key] = -i - 1;
|
|
}
|
|
|
|
if (!omega_reduce_with_subs)
|
|
gcc_assert (please_no_equalities_in_simplified_problems
|
|
|| omega_found_reduction == omega_false
|
|
|| pb->num_subs == 0);
|
|
|
|
return omega_found_reduction;
|
|
}
|
|
|
|
/* Make variable VAR unprotected: it then can be eliminated. */
|
|
|
|
void
|
|
omega_unprotect_variable (omega_pb pb, int var)
|
|
{
|
|
int e, idx;
|
|
idx = pb->forwarding_address[var];
|
|
|
|
if (idx < 0)
|
|
{
|
|
idx = -1 - idx;
|
|
pb->num_subs--;
|
|
|
|
if (idx < pb->num_subs)
|
|
{
|
|
omega_copy_eqn (&pb->subs[idx], &pb->subs[pb->num_subs],
|
|
pb->num_vars);
|
|
pb->forwarding_address[pb->subs[idx].key] = -idx - 1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
int *bring_to_life = XNEWVEC (int, OMEGA_MAX_VARS);
|
|
int e2;
|
|
|
|
for (e = pb->num_subs - 1; e >= 0; e--)
|
|
bring_to_life[e] = (pb->subs[e].coef[idx] != 0);
|
|
|
|
for (e2 = pb->num_subs - 1; e2 >= 0; e2--)
|
|
if (bring_to_life[e2])
|
|
{
|
|
pb->num_vars++;
|
|
pb->safe_vars++;
|
|
|
|
if (pb->safe_vars < pb->num_vars)
|
|
{
|
|
for (e = pb->num_geqs - 1; e >= 0; e--)
|
|
{
|
|
pb->geqs[e].coef[pb->num_vars] =
|
|
pb->geqs[e].coef[pb->safe_vars];
|
|
|
|
pb->geqs[e].coef[pb->safe_vars] = 0;
|
|
}
|
|
|
|
for (e = pb->num_eqs - 1; e >= 0; e--)
|
|
{
|
|
pb->eqs[e].coef[pb->num_vars] =
|
|
pb->eqs[e].coef[pb->safe_vars];
|
|
|
|
pb->eqs[e].coef[pb->safe_vars] = 0;
|
|
}
|
|
|
|
for (e = pb->num_subs - 1; e >= 0; e--)
|
|
{
|
|
pb->subs[e].coef[pb->num_vars] =
|
|
pb->subs[e].coef[pb->safe_vars];
|
|
|
|
pb->subs[e].coef[pb->safe_vars] = 0;
|
|
}
|
|
|
|
pb->var[pb->num_vars] = pb->var[pb->safe_vars];
|
|
pb->forwarding_address[pb->var[pb->num_vars]] =
|
|
pb->num_vars;
|
|
}
|
|
else
|
|
{
|
|
for (e = pb->num_geqs - 1; e >= 0; e--)
|
|
pb->geqs[e].coef[pb->safe_vars] = 0;
|
|
|
|
for (e = pb->num_eqs - 1; e >= 0; e--)
|
|
pb->eqs[e].coef[pb->safe_vars] = 0;
|
|
|
|
for (e = pb->num_subs - 1; e >= 0; e--)
|
|
pb->subs[e].coef[pb->safe_vars] = 0;
|
|
}
|
|
|
|
pb->var[pb->safe_vars] = pb->subs[e2].key;
|
|
pb->forwarding_address[pb->subs[e2].key] = pb->safe_vars;
|
|
|
|
omega_copy_eqn (&(pb->eqs[pb->num_eqs]), &(pb->subs[e2]),
|
|
pb->num_vars);
|
|
pb->eqs[pb->num_eqs++].coef[pb->safe_vars] = -1;
|
|
gcc_assert (pb->num_eqs <= OMEGA_MAX_EQS);
|
|
|
|
if (e2 < pb->num_subs - 1)
|
|
omega_copy_eqn (&(pb->subs[e2]), &(pb->subs[pb->num_subs - 1]),
|
|
pb->num_vars);
|
|
|
|
pb->num_subs--;
|
|
}
|
|
|
|
omega_unprotect_1 (pb, &idx, NULL);
|
|
free (bring_to_life);
|
|
}
|
|
|
|
chain_unprotect (pb);
|
|
}
|
|
|
|
/* Unprotects VAR and simplifies PB. */
|
|
|
|
enum omega_result
|
|
omega_constrain_variable_sign (omega_pb pb, enum omega_eqn_color color,
|
|
int var, int sign)
|
|
{
|
|
int n_vars = pb->num_vars;
|
|
int e, j;
|
|
int k = pb->forwarding_address[var];
|
|
|
|
if (k < 0)
|
|
{
|
|
k = -1 - k;
|
|
|
|
if (sign != 0)
|
|
{
|
|
e = pb->num_geqs++;
|
|
omega_copy_eqn (&pb->geqs[e], &pb->subs[k], pb->num_vars);
|
|
|
|
for (j = 0; j <= n_vars; j++)
|
|
pb->geqs[e].coef[j] *= sign;
|
|
|
|
pb->geqs[e].coef[0]--;
|
|
pb->geqs[e].touched = 1;
|
|
pb->geqs[e].color = color;
|
|
}
|
|
else
|
|
{
|
|
e = pb->num_eqs++;
|
|
gcc_assert (pb->num_eqs <= OMEGA_MAX_EQS);
|
|
omega_copy_eqn (&pb->eqs[e], &pb->subs[k], pb->num_vars);
|
|
pb->eqs[e].color = color;
|
|
}
|
|
}
|
|
else if (sign != 0)
|
|
{
|
|
e = pb->num_geqs++;
|
|
omega_init_eqn_zero (&pb->geqs[e], pb->num_vars);
|
|
pb->geqs[e].coef[k] = sign;
|
|
pb->geqs[e].coef[0] = -1;
|
|
pb->geqs[e].touched = 1;
|
|
pb->geqs[e].color = color;
|
|
}
|
|
else
|
|
{
|
|
e = pb->num_eqs++;
|
|
gcc_assert (pb->num_eqs <= OMEGA_MAX_EQS);
|
|
omega_init_eqn_zero (&pb->eqs[e], pb->num_vars);
|
|
pb->eqs[e].coef[k] = 1;
|
|
pb->eqs[e].color = color;
|
|
}
|
|
|
|
omega_unprotect_variable (pb, var);
|
|
return omega_simplify_problem (pb);
|
|
}
|
|
|
|
/* Add an equation "VAR = VALUE" with COLOR to PB. */
|
|
|
|
void
|
|
omega_constrain_variable_value (omega_pb pb, enum omega_eqn_color color,
|
|
int var, int value)
|
|
{
|
|
int e;
|
|
int k = pb->forwarding_address[var];
|
|
|
|
if (k < 0)
|
|
{
|
|
k = -1 - k;
|
|
e = pb->num_eqs++;
|
|
gcc_assert (pb->num_eqs <= OMEGA_MAX_EQS);
|
|
omega_copy_eqn (&pb->eqs[e], &pb->subs[k], pb->num_vars);
|
|
pb->eqs[e].coef[0] -= value;
|
|
}
|
|
else
|
|
{
|
|
e = pb->num_eqs++;
|
|
omega_init_eqn_zero (&pb->eqs[e], pb->num_vars);
|
|
pb->eqs[e].coef[k] = 1;
|
|
pb->eqs[e].coef[0] = -value;
|
|
}
|
|
|
|
pb->eqs[e].color = color;
|
|
}
|
|
|
|
/* Return false when the upper and lower bounds are not coupled.
|
|
Initialize the bounds LOWER_BOUND and UPPER_BOUND for the values of
|
|
variable I. */
|
|
|
|
bool
|
|
omega_query_variable (omega_pb pb, int i, int *lower_bound, int *upper_bound)
|
|
{
|
|
int n_vars = pb->num_vars;
|
|
int e, j;
|
|
bool is_simple;
|
|
bool coupled = false;
|
|
|
|
*lower_bound = neg_infinity;
|
|
*upper_bound = pos_infinity;
|
|
i = pb->forwarding_address[i];
|
|
|
|
if (i < 0)
|
|
{
|
|
i = -i - 1;
|
|
|
|
for (j = 1; j <= n_vars; j++)
|
|
if (pb->subs[i].coef[j] != 0)
|
|
return true;
|
|
|
|
*upper_bound = *lower_bound = pb->subs[i].coef[0];
|
|
return false;
|
|
}
|
|
|
|
for (e = pb->num_subs - 1; e >= 0; e--)
|
|
if (pb->subs[e].coef[i] != 0)
|
|
coupled = true;
|
|
|
|
for (e = pb->num_eqs - 1; e >= 0; e--)
|
|
if (pb->eqs[e].coef[i] != 0)
|
|
{
|
|
is_simple = true;
|
|
|
|
for (j = 1; j <= n_vars; j++)
|
|
if (i != j && pb->eqs[e].coef[j] != 0)
|
|
{
|
|
is_simple = false;
|
|
coupled = true;
|
|
break;
|
|
}
|
|
|
|
if (!is_simple)
|
|
continue;
|
|
else
|
|
{
|
|
*lower_bound = *upper_bound =
|
|
-pb->eqs[e].coef[i] * pb->eqs[e].coef[0];
|
|
return false;
|
|
}
|
|
}
|
|
|
|
for (e = pb->num_geqs - 1; e >= 0; e--)
|
|
if (pb->geqs[e].coef[i] != 0)
|
|
{
|
|
if (pb->geqs[e].key == i)
|
|
*lower_bound = MAX (*lower_bound, -pb->geqs[e].coef[0]);
|
|
|
|
else if (pb->geqs[e].key == -i)
|
|
*upper_bound = MIN (*upper_bound, pb->geqs[e].coef[0]);
|
|
|
|
else
|
|
coupled = true;
|
|
}
|
|
|
|
return coupled;
|
|
}
|
|
|
|
/* Sets the lower bound L and upper bound U for the values of variable
|
|
I, and sets COULD_BE_ZERO to true if variable I might take value
|
|
zero. LOWER_BOUND and UPPER_BOUND are bounds on the values of
|
|
variable I. */
|
|
|
|
static void
|
|
query_coupled_variable (omega_pb pb, int i, int *l, int *u,
|
|
bool *could_be_zero, int lower_bound, int upper_bound)
|
|
{
|
|
int e, b1, b2;
|
|
eqn eqn;
|
|
int sign;
|
|
int v;
|
|
|
|
/* Preconditions. */
|
|
gcc_assert (abs (pb->forwarding_address[i]) == 1
|
|
&& pb->num_vars + pb->num_subs == 2
|
|
&& pb->num_eqs + pb->num_subs == 1);
|
|
|
|
/* Define variable I in terms of variable V. */
|
|
if (pb->forwarding_address[i] == -1)
|
|
{
|
|
eqn = &pb->subs[0];
|
|
sign = 1;
|
|
v = 1;
|
|
}
|
|
else
|
|
{
|
|
eqn = &pb->eqs[0];
|
|
sign = -eqn->coef[1];
|
|
v = 2;
|
|
}
|
|
|
|
for (e = pb->num_geqs - 1; e >= 0; e--)
|
|
if (pb->geqs[e].coef[v] != 0)
|
|
{
|
|
if (pb->geqs[e].coef[v] == 1)
|
|
lower_bound = MAX (lower_bound, -pb->geqs[e].coef[0]);
|
|
|
|
else
|
|
upper_bound = MIN (upper_bound, pb->geqs[e].coef[0]);
|
|
}
|
|
|
|
if (lower_bound > upper_bound)
|
|
{
|
|
*l = pos_infinity;
|
|
*u = neg_infinity;
|
|
*could_be_zero = 0;
|
|
return;
|
|
}
|
|
|
|
if (lower_bound == neg_infinity)
|
|
{
|
|
if (eqn->coef[v] > 0)
|
|
b1 = sign * neg_infinity;
|
|
|
|
else
|
|
b1 = -sign * neg_infinity;
|
|
}
|
|
else
|
|
b1 = sign * (eqn->coef[0] + eqn->coef[v] * lower_bound);
|
|
|
|
if (upper_bound == pos_infinity)
|
|
{
|
|
if (eqn->coef[v] > 0)
|
|
b2 = sign * pos_infinity;
|
|
|
|
else
|
|
b2 = -sign * pos_infinity;
|
|
}
|
|
else
|
|
b2 = sign * (eqn->coef[0] + eqn->coef[v] * upper_bound);
|
|
|
|
*l = MAX (*l, b1 <= b2 ? b1 : b2);
|
|
*u = MIN (*u, b1 <= b2 ? b2 : b1);
|
|
|
|
*could_be_zero = (*l <= 0 && 0 <= *u
|
|
&& int_mod (eqn->coef[0], abs (eqn->coef[v])) == 0);
|
|
}
|
|
|
|
/* Return false when a lower bound L and an upper bound U for variable
|
|
I in problem PB have been initialized. */
|
|
|
|
bool
|
|
omega_query_variable_bounds (omega_pb pb, int i, int *l, int *u)
|
|
{
|
|
*l = neg_infinity;
|
|
*u = pos_infinity;
|
|
|
|
if (!omega_query_variable (pb, i, l, u)
|
|
|| (pb->num_vars == 1 && pb->forwarding_address[i] == 1))
|
|
return false;
|
|
|
|
if (abs (pb->forwarding_address[i]) == 1
|
|
&& pb->num_vars + pb->num_subs == 2
|
|
&& pb->num_eqs + pb->num_subs == 1)
|
|
{
|
|
bool could_be_zero;
|
|
query_coupled_variable (pb, i, l, u, &could_be_zero, neg_infinity,
|
|
pos_infinity);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* For problem PB, return an integer that represents the classic data
|
|
dependence direction in function of the DD_LT, DD_EQ and DD_GT bit
|
|
masks that are added to the result. When DIST_KNOWN is true, DIST
|
|
is set to the classic data dependence distance. LOWER_BOUND and
|
|
UPPER_BOUND are bounds on the value of variable I, for example, it
|
|
is possible to narrow the iteration domain with safe approximations
|
|
of loop counts, and thus discard some data dependences that cannot
|
|
occur. */
|
|
|
|
int
|
|
omega_query_variable_signs (omega_pb pb, int i, int dd_lt,
|
|
int dd_eq, int dd_gt, int lower_bound,
|
|
int upper_bound, bool *dist_known, int *dist)
|
|
{
|
|
int result;
|
|
int l, u;
|
|
bool could_be_zero;
|
|
|
|
l = neg_infinity;
|
|
u = pos_infinity;
|
|
|
|
omega_query_variable (pb, i, &l, &u);
|
|
query_coupled_variable (pb, i, &l, &u, &could_be_zero, lower_bound,
|
|
upper_bound);
|
|
result = 0;
|
|
|
|
if (l < 0)
|
|
result |= dd_gt;
|
|
|
|
if (u > 0)
|
|
result |= dd_lt;
|
|
|
|
if (could_be_zero)
|
|
result |= dd_eq;
|
|
|
|
if (l == u)
|
|
{
|
|
*dist_known = true;
|
|
*dist = l;
|
|
}
|
|
else
|
|
*dist_known = false;
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Initialize PB as an Omega problem with NVARS variables and NPROT
|
|
safe variables. Safe variables are not eliminated during the
|
|
Fourier-Motzkin elimination. Safe variables are all those
|
|
variables that are placed at the beginning of the array of
|
|
variables: P->var[0, ..., NPROT - 1]. */
|
|
|
|
omega_pb
|
|
omega_alloc_problem (int nvars, int nprot)
|
|
{
|
|
omega_pb pb;
|
|
|
|
gcc_assert (nvars <= OMEGA_MAX_VARS);
|
|
omega_initialize ();
|
|
|
|
/* Allocate and initialize PB. */
|
|
pb = XCNEW (struct omega_pb_d);
|
|
pb->var = XCNEWVEC (int, OMEGA_MAX_VARS + 2);
|
|
pb->forwarding_address = XCNEWVEC (int, OMEGA_MAX_VARS + 2);
|
|
pb->geqs = omega_alloc_eqns (0, OMEGA_MAX_GEQS);
|
|
pb->eqs = omega_alloc_eqns (0, OMEGA_MAX_EQS);
|
|
pb->subs = omega_alloc_eqns (0, OMEGA_MAX_VARS + 1);
|
|
|
|
pb->hash_version = hash_version;
|
|
pb->num_vars = nvars;
|
|
pb->safe_vars = nprot;
|
|
pb->variables_initialized = false;
|
|
pb->variables_freed = false;
|
|
pb->num_eqs = 0;
|
|
pb->num_geqs = 0;
|
|
pb->num_subs = 0;
|
|
return pb;
|
|
}
|
|
|
|
/* Keeps the state of the initialization. */
|
|
static bool omega_initialized = false;
|
|
|
|
/* Initialization of the Omega solver. */
|
|
|
|
void
|
|
omega_initialize (void)
|
|
{
|
|
int i;
|
|
|
|
if (omega_initialized)
|
|
return;
|
|
|
|
next_wild_card = 0;
|
|
next_key = OMEGA_MAX_VARS + 1;
|
|
packing = XCNEWVEC (int, OMEGA_MAX_VARS);
|
|
fast_lookup = XCNEWVEC (int, MAX_KEYS * 2);
|
|
fast_lookup_red = XCNEWVEC (int, MAX_KEYS * 2);
|
|
hash_master = omega_alloc_eqns (0, HASH_TABLE_SIZE);
|
|
|
|
for (i = 0; i < HASH_TABLE_SIZE; i++)
|
|
hash_master[i].touched = -1;
|
|
|
|
sprintf (wild_name[0], "1");
|
|
sprintf (wild_name[1], "a");
|
|
sprintf (wild_name[2], "b");
|
|
sprintf (wild_name[3], "c");
|
|
sprintf (wild_name[4], "d");
|
|
sprintf (wild_name[5], "e");
|
|
sprintf (wild_name[6], "f");
|
|
sprintf (wild_name[7], "g");
|
|
sprintf (wild_name[8], "h");
|
|
sprintf (wild_name[9], "i");
|
|
sprintf (wild_name[10], "j");
|
|
sprintf (wild_name[11], "k");
|
|
sprintf (wild_name[12], "l");
|
|
sprintf (wild_name[13], "m");
|
|
sprintf (wild_name[14], "n");
|
|
sprintf (wild_name[15], "o");
|
|
sprintf (wild_name[16], "p");
|
|
sprintf (wild_name[17], "q");
|
|
sprintf (wild_name[18], "r");
|
|
sprintf (wild_name[19], "s");
|
|
sprintf (wild_name[20], "t");
|
|
sprintf (wild_name[40 - 1], "alpha");
|
|
sprintf (wild_name[40 - 2], "beta");
|
|
sprintf (wild_name[40 - 3], "gamma");
|
|
sprintf (wild_name[40 - 4], "delta");
|
|
sprintf (wild_name[40 - 5], "tau");
|
|
sprintf (wild_name[40 - 6], "sigma");
|
|
sprintf (wild_name[40 - 7], "chi");
|
|
sprintf (wild_name[40 - 8], "omega");
|
|
sprintf (wild_name[40 - 9], "pi");
|
|
sprintf (wild_name[40 - 10], "ni");
|
|
sprintf (wild_name[40 - 11], "Alpha");
|
|
sprintf (wild_name[40 - 12], "Beta");
|
|
sprintf (wild_name[40 - 13], "Gamma");
|
|
sprintf (wild_name[40 - 14], "Delta");
|
|
sprintf (wild_name[40 - 15], "Tau");
|
|
sprintf (wild_name[40 - 16], "Sigma");
|
|
sprintf (wild_name[40 - 17], "Chi");
|
|
sprintf (wild_name[40 - 18], "Omega");
|
|
sprintf (wild_name[40 - 19], "xxx");
|
|
|
|
omega_initialized = true;
|
|
}
|