66415c8b0e
off a ZERO_EXTEND. From-SVN: r8034
10809 lines
360 KiB
C
10809 lines
360 KiB
C
/* Optimize by combining instructions for GNU compiler.
|
||
Copyright (C) 1987, 1988, 1992, 1993, 1994 Free Software Foundation, Inc.
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
|
||
/* This module is essentially the "combiner" phase of the U. of Arizona
|
||
Portable Optimizer, but redone to work on our list-structured
|
||
representation for RTL instead of their string representation.
|
||
|
||
The LOG_LINKS of each insn identify the most recent assignment
|
||
to each REG used in the insn. It is a list of previous insns,
|
||
each of which contains a SET for a REG that is used in this insn
|
||
and not used or set in between. LOG_LINKs never cross basic blocks.
|
||
They were set up by the preceding pass (lifetime analysis).
|
||
|
||
We try to combine each pair of insns joined by a logical link.
|
||
We also try to combine triples of insns A, B and C when
|
||
C has a link back to B and B has a link back to A.
|
||
|
||
LOG_LINKS does not have links for use of the CC0. They don't
|
||
need to, because the insn that sets the CC0 is always immediately
|
||
before the insn that tests it. So we always regard a branch
|
||
insn as having a logical link to the preceding insn. The same is true
|
||
for an insn explicitly using CC0.
|
||
|
||
We check (with use_crosses_set_p) to avoid combining in such a way
|
||
as to move a computation to a place where its value would be different.
|
||
|
||
Combination is done by mathematically substituting the previous
|
||
insn(s) values for the regs they set into the expressions in
|
||
the later insns that refer to these regs. If the result is a valid insn
|
||
for our target machine, according to the machine description,
|
||
we install it, delete the earlier insns, and update the data flow
|
||
information (LOG_LINKS and REG_NOTES) for what we did.
|
||
|
||
There are a few exceptions where the dataflow information created by
|
||
flow.c aren't completely updated:
|
||
|
||
- reg_live_length is not updated
|
||
- reg_n_refs is not adjusted in the rare case when a register is
|
||
no longer required in a computation
|
||
- there are extremely rare cases (see distribute_regnotes) when a
|
||
REG_DEAD note is lost
|
||
- a LOG_LINKS entry that refers to an insn with multiple SETs may be
|
||
removed because there is no way to know which register it was
|
||
linking
|
||
|
||
To simplify substitution, we combine only when the earlier insn(s)
|
||
consist of only a single assignment. To simplify updating afterward,
|
||
we never combine when a subroutine call appears in the middle.
|
||
|
||
Since we do not represent assignments to CC0 explicitly except when that
|
||
is all an insn does, there is no LOG_LINKS entry in an insn that uses
|
||
the condition code for the insn that set the condition code.
|
||
Fortunately, these two insns must be consecutive.
|
||
Therefore, every JUMP_INSN is taken to have an implicit logical link
|
||
to the preceding insn. This is not quite right, since non-jumps can
|
||
also use the condition code; but in practice such insns would not
|
||
combine anyway. */
|
||
|
||
#include "config.h"
|
||
#ifdef __STDC__
|
||
#include <stdarg.h>
|
||
#else
|
||
#include <varargs.h>
|
||
#endif
|
||
|
||
/* Must precede rtl.h for FFS. */
|
||
#include <stdio.h>
|
||
|
||
#include "rtl.h"
|
||
#include "flags.h"
|
||
#include "regs.h"
|
||
#include "hard-reg-set.h"
|
||
#include "expr.h"
|
||
#include "basic-block.h"
|
||
#include "insn-config.h"
|
||
#include "insn-flags.h"
|
||
#include "insn-codes.h"
|
||
#include "insn-attr.h"
|
||
#include "recog.h"
|
||
#include "real.h"
|
||
|
||
/* It is not safe to use ordinary gen_lowpart in combine.
|
||
Use gen_lowpart_for_combine instead. See comments there. */
|
||
#define gen_lowpart dont_use_gen_lowpart_you_dummy
|
||
|
||
/* Number of attempts to combine instructions in this function. */
|
||
|
||
static int combine_attempts;
|
||
|
||
/* Number of attempts that got as far as substitution in this function. */
|
||
|
||
static int combine_merges;
|
||
|
||
/* Number of instructions combined with added SETs in this function. */
|
||
|
||
static int combine_extras;
|
||
|
||
/* Number of instructions combined in this function. */
|
||
|
||
static int combine_successes;
|
||
|
||
/* Totals over entire compilation. */
|
||
|
||
static int total_attempts, total_merges, total_extras, total_successes;
|
||
|
||
/* Define a defulat value for REVERSIBLE_CC_MODE.
|
||
We can never assume that a condition code mode is safe to reverse unless
|
||
the md tells us so. */
|
||
#ifndef REVERSIBLE_CC_MODE
|
||
#define REVERSIBLE_CC_MODE(MODE) 0
|
||
#endif
|
||
|
||
/* Vector mapping INSN_UIDs to cuids.
|
||
The cuids are like uids but increase monotonically always.
|
||
Combine always uses cuids so that it can compare them.
|
||
But actually renumbering the uids, which we used to do,
|
||
proves to be a bad idea because it makes it hard to compare
|
||
the dumps produced by earlier passes with those from later passes. */
|
||
|
||
static int *uid_cuid;
|
||
|
||
/* Get the cuid of an insn. */
|
||
|
||
#define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
|
||
|
||
/* Maximum register number, which is the size of the tables below. */
|
||
|
||
static int combine_max_regno;
|
||
|
||
/* Record last point of death of (hard or pseudo) register n. */
|
||
|
||
static rtx *reg_last_death;
|
||
|
||
/* Record last point of modification of (hard or pseudo) register n. */
|
||
|
||
static rtx *reg_last_set;
|
||
|
||
/* Record the cuid of the last insn that invalidated memory
|
||
(anything that writes memory, and subroutine calls, but not pushes). */
|
||
|
||
static int mem_last_set;
|
||
|
||
/* Record the cuid of the last CALL_INSN
|
||
so we can tell whether a potential combination crosses any calls. */
|
||
|
||
static int last_call_cuid;
|
||
|
||
/* When `subst' is called, this is the insn that is being modified
|
||
(by combining in a previous insn). The PATTERN of this insn
|
||
is still the old pattern partially modified and it should not be
|
||
looked at, but this may be used to examine the successors of the insn
|
||
to judge whether a simplification is valid. */
|
||
|
||
static rtx subst_insn;
|
||
|
||
/* This is the lowest CUID that `subst' is currently dealing with.
|
||
get_last_value will not return a value if the register was set at or
|
||
after this CUID. If not for this mechanism, we could get confused if
|
||
I2 or I1 in try_combine were an insn that used the old value of a register
|
||
to obtain a new value. In that case, we might erroneously get the
|
||
new value of the register when we wanted the old one. */
|
||
|
||
static int subst_low_cuid;
|
||
|
||
/* This contains any hard registers that are used in newpat; reg_dead_at_p
|
||
must consider all these registers to be always live. */
|
||
|
||
static HARD_REG_SET newpat_used_regs;
|
||
|
||
/* This is an insn to which a LOG_LINKS entry has been added. If this
|
||
insn is the earlier than I2 or I3, combine should rescan starting at
|
||
that location. */
|
||
|
||
static rtx added_links_insn;
|
||
|
||
/* This is the value of undobuf.num_undo when we started processing this
|
||
substitution. This will prevent gen_rtx_combine from re-used a piece
|
||
from the previous expression. Doing so can produce circular rtl
|
||
structures. */
|
||
|
||
static int previous_num_undos;
|
||
|
||
/* Basic block number of the block in which we are performing combines. */
|
||
static int this_basic_block;
|
||
|
||
/* The next group of arrays allows the recording of the last value assigned
|
||
to (hard or pseudo) register n. We use this information to see if a
|
||
operation being processed is redundant given a prior operation performed
|
||
on the register. For example, an `and' with a constant is redundant if
|
||
all the zero bits are already known to be turned off.
|
||
|
||
We use an approach similar to that used by cse, but change it in the
|
||
following ways:
|
||
|
||
(1) We do not want to reinitialize at each label.
|
||
(2) It is useful, but not critical, to know the actual value assigned
|
||
to a register. Often just its form is helpful.
|
||
|
||
Therefore, we maintain the following arrays:
|
||
|
||
reg_last_set_value the last value assigned
|
||
reg_last_set_label records the value of label_tick when the
|
||
register was assigned
|
||
reg_last_set_table_tick records the value of label_tick when a
|
||
value using the register is assigned
|
||
reg_last_set_invalid set to non-zero when it is not valid
|
||
to use the value of this register in some
|
||
register's value
|
||
|
||
To understand the usage of these tables, it is important to understand
|
||
the distinction between the value in reg_last_set_value being valid
|
||
and the register being validly contained in some other expression in the
|
||
table.
|
||
|
||
Entry I in reg_last_set_value is valid if it is non-zero, and either
|
||
reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
|
||
|
||
Register I may validly appear in any expression returned for the value
|
||
of another register if reg_n_sets[i] is 1. It may also appear in the
|
||
value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
|
||
reg_last_set_invalid[j] is zero.
|
||
|
||
If an expression is found in the table containing a register which may
|
||
not validly appear in an expression, the register is replaced by
|
||
something that won't match, (clobber (const_int 0)).
|
||
|
||
reg_last_set_invalid[i] is set non-zero when register I is being assigned
|
||
to and reg_last_set_table_tick[i] == label_tick. */
|
||
|
||
/* Record last value assigned to (hard or pseudo) register n. */
|
||
|
||
static rtx *reg_last_set_value;
|
||
|
||
/* Record the value of label_tick when the value for register n is placed in
|
||
reg_last_set_value[n]. */
|
||
|
||
static int *reg_last_set_label;
|
||
|
||
/* Record the value of label_tick when an expression involving register n
|
||
is placed in reg_last_set_value. */
|
||
|
||
static int *reg_last_set_table_tick;
|
||
|
||
/* Set non-zero if references to register n in expressions should not be
|
||
used. */
|
||
|
||
static char *reg_last_set_invalid;
|
||
|
||
/* Incremented for each label. */
|
||
|
||
static int label_tick;
|
||
|
||
/* Some registers that are set more than once and used in more than one
|
||
basic block are nevertheless always set in similar ways. For example,
|
||
a QImode register may be loaded from memory in two places on a machine
|
||
where byte loads zero extend.
|
||
|
||
We record in the following array what we know about the nonzero
|
||
bits of a register, specifically which bits are known to be zero.
|
||
|
||
If an entry is zero, it means that we don't know anything special. */
|
||
|
||
static unsigned HOST_WIDE_INT *reg_nonzero_bits;
|
||
|
||
/* Mode used to compute significance in reg_nonzero_bits. It is the largest
|
||
integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
|
||
|
||
static enum machine_mode nonzero_bits_mode;
|
||
|
||
/* Nonzero if we know that a register has some leading bits that are always
|
||
equal to the sign bit. */
|
||
|
||
static char *reg_sign_bit_copies;
|
||
|
||
/* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
|
||
It is zero while computing them and after combine has completed. This
|
||
former test prevents propagating values based on previously set values,
|
||
which can be incorrect if a variable is modified in a loop. */
|
||
|
||
static int nonzero_sign_valid;
|
||
|
||
/* These arrays are maintained in parallel with reg_last_set_value
|
||
and are used to store the mode in which the register was last set,
|
||
the bits that were known to be zero when it was last set, and the
|
||
number of sign bits copies it was known to have when it was last set. */
|
||
|
||
static enum machine_mode *reg_last_set_mode;
|
||
static unsigned HOST_WIDE_INT *reg_last_set_nonzero_bits;
|
||
static char *reg_last_set_sign_bit_copies;
|
||
|
||
/* Record one modification to rtl structure
|
||
to be undone by storing old_contents into *where.
|
||
is_int is 1 if the contents are an int. */
|
||
|
||
struct undo
|
||
{
|
||
int is_int;
|
||
union {rtx r; int i;} old_contents;
|
||
union {rtx *r; int *i;} where;
|
||
};
|
||
|
||
/* Record a bunch of changes to be undone, up to MAX_UNDO of them.
|
||
num_undo says how many are currently recorded.
|
||
|
||
storage is nonzero if we must undo the allocation of new storage.
|
||
The value of storage is what to pass to obfree.
|
||
|
||
other_insn is nonzero if we have modified some other insn in the process
|
||
of working on subst_insn. It must be verified too. */
|
||
|
||
#define MAX_UNDO 50
|
||
|
||
struct undobuf
|
||
{
|
||
int num_undo;
|
||
char *storage;
|
||
struct undo undo[MAX_UNDO];
|
||
rtx other_insn;
|
||
};
|
||
|
||
static struct undobuf undobuf;
|
||
|
||
/* Substitute NEWVAL, an rtx expression, into INTO, a place in some
|
||
insn. The substitution can be undone by undo_all. If INTO is already
|
||
set to NEWVAL, do not record this change. Because computing NEWVAL might
|
||
also call SUBST, we have to compute it before we put anything into
|
||
the undo table. */
|
||
|
||
#define SUBST(INTO, NEWVAL) \
|
||
do { rtx _new = (NEWVAL); \
|
||
if (undobuf.num_undo < MAX_UNDO) \
|
||
{ \
|
||
undobuf.undo[undobuf.num_undo].is_int = 0; \
|
||
undobuf.undo[undobuf.num_undo].where.r = &INTO; \
|
||
undobuf.undo[undobuf.num_undo].old_contents.r = INTO; \
|
||
INTO = _new; \
|
||
if (undobuf.undo[undobuf.num_undo].old_contents.r != INTO) \
|
||
undobuf.num_undo++; \
|
||
} \
|
||
} while (0)
|
||
|
||
/* Similar to SUBST, but NEWVAL is an int. INTO will normally be an XINT
|
||
expression.
|
||
Note that substitution for the value of a CONST_INT is not safe. */
|
||
|
||
#define SUBST_INT(INTO, NEWVAL) \
|
||
do { if (undobuf.num_undo < MAX_UNDO) \
|
||
{ \
|
||
undobuf.undo[undobuf.num_undo].is_int = 1; \
|
||
undobuf.undo[undobuf.num_undo].where.i = (int *) &INTO; \
|
||
undobuf.undo[undobuf.num_undo].old_contents.i = INTO; \
|
||
INTO = NEWVAL; \
|
||
if (undobuf.undo[undobuf.num_undo].old_contents.i != INTO) \
|
||
undobuf.num_undo++; \
|
||
} \
|
||
} while (0)
|
||
|
||
/* Number of times the pseudo being substituted for
|
||
was found and replaced. */
|
||
|
||
static int n_occurrences;
|
||
|
||
static void init_reg_last_arrays PROTO(());
|
||
static void setup_incoming_promotions PROTO(());
|
||
static void set_nonzero_bits_and_sign_copies PROTO((rtx, rtx));
|
||
static int can_combine_p PROTO((rtx, rtx, rtx, rtx, rtx *, rtx *));
|
||
static int combinable_i3pat PROTO((rtx, rtx *, rtx, rtx, int, rtx *));
|
||
static rtx try_combine PROTO((rtx, rtx, rtx));
|
||
static void undo_all PROTO((void));
|
||
static rtx *find_split_point PROTO((rtx *, rtx));
|
||
static rtx subst PROTO((rtx, rtx, rtx, int, int));
|
||
static rtx simplify_rtx PROTO((rtx, enum machine_mode, int, int));
|
||
static rtx simplify_if_then_else PROTO((rtx));
|
||
static rtx simplify_set PROTO((rtx));
|
||
static rtx simplify_logical PROTO((rtx, int));
|
||
static rtx expand_compound_operation PROTO((rtx));
|
||
static rtx expand_field_assignment PROTO((rtx));
|
||
static rtx make_extraction PROTO((enum machine_mode, rtx, int, rtx, int,
|
||
int, int, int));
|
||
static rtx extract_left_shift PROTO((rtx, int));
|
||
static rtx make_compound_operation PROTO((rtx, enum rtx_code));
|
||
static int get_pos_from_mask PROTO((unsigned HOST_WIDE_INT, int *));
|
||
static rtx force_to_mode PROTO((rtx, enum machine_mode,
|
||
unsigned HOST_WIDE_INT, rtx, int));
|
||
static rtx if_then_else_cond PROTO((rtx, rtx *, rtx *));
|
||
static rtx known_cond PROTO((rtx, enum rtx_code, rtx, rtx));
|
||
static rtx make_field_assignment PROTO((rtx));
|
||
static rtx apply_distributive_law PROTO((rtx));
|
||
static rtx simplify_and_const_int PROTO((rtx, enum machine_mode, rtx,
|
||
unsigned HOST_WIDE_INT));
|
||
static unsigned HOST_WIDE_INT nonzero_bits PROTO((rtx, enum machine_mode));
|
||
static int num_sign_bit_copies PROTO((rtx, enum machine_mode));
|
||
static int merge_outer_ops PROTO((enum rtx_code *, HOST_WIDE_INT *,
|
||
enum rtx_code, HOST_WIDE_INT,
|
||
enum machine_mode, int *));
|
||
static rtx simplify_shift_const PROTO((rtx, enum rtx_code, enum machine_mode,
|
||
rtx, int));
|
||
static int recog_for_combine PROTO((rtx *, rtx, rtx *));
|
||
static rtx gen_lowpart_for_combine PROTO((enum machine_mode, rtx));
|
||
static rtx gen_rtx_combine PVPROTO((enum rtx_code code, enum machine_mode mode,
|
||
...));
|
||
static rtx gen_binary PROTO((enum rtx_code, enum machine_mode,
|
||
rtx, rtx));
|
||
static rtx gen_unary PROTO((enum rtx_code, enum machine_mode,
|
||
enum machine_mode, rtx));
|
||
static enum rtx_code simplify_comparison PROTO((enum rtx_code, rtx *, rtx *));
|
||
static int reversible_comparison_p PROTO((rtx));
|
||
static void update_table_tick PROTO((rtx));
|
||
static void record_value_for_reg PROTO((rtx, rtx, rtx));
|
||
static void record_dead_and_set_regs_1 PROTO((rtx, rtx));
|
||
static void record_dead_and_set_regs PROTO((rtx));
|
||
static int get_last_value_validate PROTO((rtx *, int, int));
|
||
static rtx get_last_value PROTO((rtx));
|
||
static int use_crosses_set_p PROTO((rtx, int));
|
||
static void reg_dead_at_p_1 PROTO((rtx, rtx));
|
||
static int reg_dead_at_p PROTO((rtx, rtx));
|
||
static void move_deaths PROTO((rtx, int, rtx, rtx *));
|
||
static int reg_bitfield_target_p PROTO((rtx, rtx));
|
||
static void distribute_notes PROTO((rtx, rtx, rtx, rtx, rtx, rtx));
|
||
static void distribute_links PROTO((rtx));
|
||
static void mark_used_regs_combine PROTO((rtx));
|
||
|
||
/* Main entry point for combiner. F is the first insn of the function.
|
||
NREGS is the first unused pseudo-reg number. */
|
||
|
||
void
|
||
combine_instructions (f, nregs)
|
||
rtx f;
|
||
int nregs;
|
||
{
|
||
register rtx insn, next, prev;
|
||
register int i;
|
||
register rtx links, nextlinks;
|
||
|
||
combine_attempts = 0;
|
||
combine_merges = 0;
|
||
combine_extras = 0;
|
||
combine_successes = 0;
|
||
undobuf.num_undo = previous_num_undos = 0;
|
||
|
||
combine_max_regno = nregs;
|
||
|
||
reg_nonzero_bits
|
||
= (unsigned HOST_WIDE_INT *) alloca (nregs * sizeof (HOST_WIDE_INT));
|
||
reg_sign_bit_copies = (char *) alloca (nregs * sizeof (char));
|
||
|
||
bzero ((char *) reg_nonzero_bits, nregs * sizeof (HOST_WIDE_INT));
|
||
bzero (reg_sign_bit_copies, nregs * sizeof (char));
|
||
|
||
reg_last_death = (rtx *) alloca (nregs * sizeof (rtx));
|
||
reg_last_set = (rtx *) alloca (nregs * sizeof (rtx));
|
||
reg_last_set_value = (rtx *) alloca (nregs * sizeof (rtx));
|
||
reg_last_set_table_tick = (int *) alloca (nregs * sizeof (int));
|
||
reg_last_set_label = (int *) alloca (nregs * sizeof (int));
|
||
reg_last_set_invalid = (char *) alloca (nregs * sizeof (char));
|
||
reg_last_set_mode
|
||
= (enum machine_mode *) alloca (nregs * sizeof (enum machine_mode));
|
||
reg_last_set_nonzero_bits
|
||
= (unsigned HOST_WIDE_INT *) alloca (nregs * sizeof (HOST_WIDE_INT));
|
||
reg_last_set_sign_bit_copies
|
||
= (char *) alloca (nregs * sizeof (char));
|
||
|
||
init_reg_last_arrays ();
|
||
|
||
init_recog_no_volatile ();
|
||
|
||
/* Compute maximum uid value so uid_cuid can be allocated. */
|
||
|
||
for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
|
||
if (INSN_UID (insn) > i)
|
||
i = INSN_UID (insn);
|
||
|
||
uid_cuid = (int *) alloca ((i + 1) * sizeof (int));
|
||
|
||
nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
|
||
|
||
/* Don't use reg_nonzero_bits when computing it. This can cause problems
|
||
when, for example, we have j <<= 1 in a loop. */
|
||
|
||
nonzero_sign_valid = 0;
|
||
|
||
/* Compute the mapping from uids to cuids.
|
||
Cuids are numbers assigned to insns, like uids,
|
||
except that cuids increase monotonically through the code.
|
||
|
||
Scan all SETs and see if we can deduce anything about what
|
||
bits are known to be zero for some registers and how many copies
|
||
of the sign bit are known to exist for those registers.
|
||
|
||
Also set any known values so that we can use it while searching
|
||
for what bits are known to be set. */
|
||
|
||
label_tick = 1;
|
||
|
||
setup_incoming_promotions ();
|
||
|
||
for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
|
||
{
|
||
INSN_CUID (insn) = ++i;
|
||
subst_low_cuid = i;
|
||
subst_insn = insn;
|
||
|
||
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
|
||
{
|
||
note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies);
|
||
record_dead_and_set_regs (insn);
|
||
}
|
||
|
||
if (GET_CODE (insn) == CODE_LABEL)
|
||
label_tick++;
|
||
}
|
||
|
||
nonzero_sign_valid = 1;
|
||
|
||
/* Now scan all the insns in forward order. */
|
||
|
||
this_basic_block = -1;
|
||
label_tick = 1;
|
||
last_call_cuid = 0;
|
||
mem_last_set = 0;
|
||
init_reg_last_arrays ();
|
||
setup_incoming_promotions ();
|
||
|
||
for (insn = f; insn; insn = next ? next : NEXT_INSN (insn))
|
||
{
|
||
next = 0;
|
||
|
||
/* If INSN starts a new basic block, update our basic block number. */
|
||
if (this_basic_block + 1 < n_basic_blocks
|
||
&& basic_block_head[this_basic_block + 1] == insn)
|
||
this_basic_block++;
|
||
|
||
if (GET_CODE (insn) == CODE_LABEL)
|
||
label_tick++;
|
||
|
||
else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
|
||
{
|
||
/* Try this insn with each insn it links back to. */
|
||
|
||
for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
|
||
if ((next = try_combine (insn, XEXP (links, 0), NULL_RTX)) != 0)
|
||
goto retry;
|
||
|
||
/* Try each sequence of three linked insns ending with this one. */
|
||
|
||
for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
|
||
for (nextlinks = LOG_LINKS (XEXP (links, 0)); nextlinks;
|
||
nextlinks = XEXP (nextlinks, 1))
|
||
if ((next = try_combine (insn, XEXP (links, 0),
|
||
XEXP (nextlinks, 0))) != 0)
|
||
goto retry;
|
||
|
||
#ifdef HAVE_cc0
|
||
/* Try to combine a jump insn that uses CC0
|
||
with a preceding insn that sets CC0, and maybe with its
|
||
logical predecessor as well.
|
||
This is how we make decrement-and-branch insns.
|
||
We need this special code because data flow connections
|
||
via CC0 do not get entered in LOG_LINKS. */
|
||
|
||
if (GET_CODE (insn) == JUMP_INSN
|
||
&& (prev = prev_nonnote_insn (insn)) != 0
|
||
&& GET_CODE (prev) == INSN
|
||
&& sets_cc0_p (PATTERN (prev)))
|
||
{
|
||
if ((next = try_combine (insn, prev, NULL_RTX)) != 0)
|
||
goto retry;
|
||
|
||
for (nextlinks = LOG_LINKS (prev); nextlinks;
|
||
nextlinks = XEXP (nextlinks, 1))
|
||
if ((next = try_combine (insn, prev,
|
||
XEXP (nextlinks, 0))) != 0)
|
||
goto retry;
|
||
}
|
||
|
||
/* Do the same for an insn that explicitly references CC0. */
|
||
if (GET_CODE (insn) == INSN
|
||
&& (prev = prev_nonnote_insn (insn)) != 0
|
||
&& GET_CODE (prev) == INSN
|
||
&& sets_cc0_p (PATTERN (prev))
|
||
&& GET_CODE (PATTERN (insn)) == SET
|
||
&& reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
|
||
{
|
||
if ((next = try_combine (insn, prev, NULL_RTX)) != 0)
|
||
goto retry;
|
||
|
||
for (nextlinks = LOG_LINKS (prev); nextlinks;
|
||
nextlinks = XEXP (nextlinks, 1))
|
||
if ((next = try_combine (insn, prev,
|
||
XEXP (nextlinks, 0))) != 0)
|
||
goto retry;
|
||
}
|
||
|
||
/* Finally, see if any of the insns that this insn links to
|
||
explicitly references CC0. If so, try this insn, that insn,
|
||
and its predecessor if it sets CC0. */
|
||
for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
|
||
if (GET_CODE (XEXP (links, 0)) == INSN
|
||
&& GET_CODE (PATTERN (XEXP (links, 0))) == SET
|
||
&& reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
|
||
&& (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
|
||
&& GET_CODE (prev) == INSN
|
||
&& sets_cc0_p (PATTERN (prev))
|
||
&& (next = try_combine (insn, XEXP (links, 0), prev)) != 0)
|
||
goto retry;
|
||
#endif
|
||
|
||
/* Try combining an insn with two different insns whose results it
|
||
uses. */
|
||
for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
|
||
for (nextlinks = XEXP (links, 1); nextlinks;
|
||
nextlinks = XEXP (nextlinks, 1))
|
||
if ((next = try_combine (insn, XEXP (links, 0),
|
||
XEXP (nextlinks, 0))) != 0)
|
||
goto retry;
|
||
|
||
if (GET_CODE (insn) != NOTE)
|
||
record_dead_and_set_regs (insn);
|
||
|
||
retry:
|
||
;
|
||
}
|
||
}
|
||
|
||
total_attempts += combine_attempts;
|
||
total_merges += combine_merges;
|
||
total_extras += combine_extras;
|
||
total_successes += combine_successes;
|
||
|
||
nonzero_sign_valid = 0;
|
||
}
|
||
|
||
/* Wipe the reg_last_xxx arrays in preparation for another pass. */
|
||
|
||
static void
|
||
init_reg_last_arrays ()
|
||
{
|
||
int nregs = combine_max_regno;
|
||
|
||
bzero ((char *) reg_last_death, nregs * sizeof (rtx));
|
||
bzero ((char *) reg_last_set, nregs * sizeof (rtx));
|
||
bzero ((char *) reg_last_set_value, nregs * sizeof (rtx));
|
||
bzero ((char *) reg_last_set_table_tick, nregs * sizeof (int));
|
||
bzero ((char *) reg_last_set_label, nregs * sizeof (int));
|
||
bzero (reg_last_set_invalid, nregs * sizeof (char));
|
||
bzero ((char *) reg_last_set_mode, nregs * sizeof (enum machine_mode));
|
||
bzero ((char *) reg_last_set_nonzero_bits, nregs * sizeof (HOST_WIDE_INT));
|
||
bzero (reg_last_set_sign_bit_copies, nregs * sizeof (char));
|
||
}
|
||
|
||
/* Set up any promoted values for incoming argument registers. */
|
||
|
||
static void
|
||
setup_incoming_promotions ()
|
||
{
|
||
#ifdef PROMOTE_FUNCTION_ARGS
|
||
int regno;
|
||
rtx reg;
|
||
enum machine_mode mode;
|
||
int unsignedp;
|
||
rtx first = get_insns ();
|
||
|
||
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
|
||
if (FUNCTION_ARG_REGNO_P (regno)
|
||
&& (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
|
||
record_value_for_reg (reg, first,
|
||
gen_rtx (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
|
||
GET_MODE (reg),
|
||
gen_rtx (CLOBBER, mode, const0_rtx)));
|
||
#endif
|
||
}
|
||
|
||
/* Called via note_stores. If X is a pseudo that is used in more than
|
||
one basic block, is narrower that HOST_BITS_PER_WIDE_INT, and is being
|
||
set, record what bits are known zero. If we are clobbering X,
|
||
ignore this "set" because the clobbered value won't be used.
|
||
|
||
If we are setting only a portion of X and we can't figure out what
|
||
portion, assume all bits will be used since we don't know what will
|
||
be happening.
|
||
|
||
Similarly, set how many bits of X are known to be copies of the sign bit
|
||
at all locations in the function. This is the smallest number implied
|
||
by any set of X. */
|
||
|
||
static void
|
||
set_nonzero_bits_and_sign_copies (x, set)
|
||
rtx x;
|
||
rtx set;
|
||
{
|
||
int num;
|
||
|
||
if (GET_CODE (x) == REG
|
||
&& REGNO (x) >= FIRST_PSEUDO_REGISTER
|
||
&& reg_n_sets[REGNO (x)] > 1
|
||
&& reg_basic_block[REGNO (x)] < 0
|
||
/* If this register is undefined at the start of the file, we can't
|
||
say what its contents were. */
|
||
&& ! (basic_block_live_at_start[0][REGNO (x) / REGSET_ELT_BITS]
|
||
& ((REGSET_ELT_TYPE) 1 << (REGNO (x) % REGSET_ELT_BITS)))
|
||
&& GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
if (GET_CODE (set) == CLOBBER)
|
||
{
|
||
reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
|
||
reg_sign_bit_copies[REGNO (x)] = 0;
|
||
return;
|
||
}
|
||
|
||
/* If this is a complex assignment, see if we can convert it into a
|
||
simple assignment. */
|
||
set = expand_field_assignment (set);
|
||
|
||
/* If this is a simple assignment, or we have a paradoxical SUBREG,
|
||
set what we know about X. */
|
||
|
||
if (SET_DEST (set) == x
|
||
|| (GET_CODE (SET_DEST (set)) == SUBREG
|
||
&& (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
|
||
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
|
||
&& SUBREG_REG (SET_DEST (set)) == x))
|
||
{
|
||
rtx src = SET_SRC (set);
|
||
|
||
#ifdef SHORT_IMMEDIATES_SIGN_EXTEND
|
||
/* If X is narrower than a word and SRC is a non-negative
|
||
constant that would appear negative in the mode of X,
|
||
sign-extend it for use in reg_nonzero_bits because some
|
||
machines (maybe most) will actually do the sign-extension
|
||
and this is the conservative approach.
|
||
|
||
??? For 2.5, try to tighten up the MD files in this regard
|
||
instead of this kludge. */
|
||
|
||
if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
|
||
&& GET_CODE (src) == CONST_INT
|
||
&& INTVAL (src) > 0
|
||
&& 0 != (INTVAL (src)
|
||
& ((HOST_WIDE_INT) 1
|
||
<< (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
|
||
src = GEN_INT (INTVAL (src)
|
||
| ((HOST_WIDE_INT) (-1)
|
||
<< GET_MODE_BITSIZE (GET_MODE (x))));
|
||
#endif
|
||
|
||
reg_nonzero_bits[REGNO (x)]
|
||
|= nonzero_bits (src, nonzero_bits_mode);
|
||
num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
|
||
if (reg_sign_bit_copies[REGNO (x)] == 0
|
||
|| reg_sign_bit_copies[REGNO (x)] > num)
|
||
reg_sign_bit_copies[REGNO (x)] = num;
|
||
}
|
||
else
|
||
{
|
||
reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
|
||
reg_sign_bit_copies[REGNO (x)] = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* See if INSN can be combined into I3. PRED and SUCC are optionally
|
||
insns that were previously combined into I3 or that will be combined
|
||
into the merger of INSN and I3.
|
||
|
||
Return 0 if the combination is not allowed for any reason.
|
||
|
||
If the combination is allowed, *PDEST will be set to the single
|
||
destination of INSN and *PSRC to the single source, and this function
|
||
will return 1. */
|
||
|
||
static int
|
||
can_combine_p (insn, i3, pred, succ, pdest, psrc)
|
||
rtx insn;
|
||
rtx i3;
|
||
rtx pred, succ;
|
||
rtx *pdest, *psrc;
|
||
{
|
||
int i;
|
||
rtx set = 0, src, dest;
|
||
rtx p, link;
|
||
int all_adjacent = (succ ? (next_active_insn (insn) == succ
|
||
&& next_active_insn (succ) == i3)
|
||
: next_active_insn (insn) == i3);
|
||
|
||
/* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
|
||
or a PARALLEL consisting of such a SET and CLOBBERs.
|
||
|
||
If INSN has CLOBBER parallel parts, ignore them for our processing.
|
||
By definition, these happen during the execution of the insn. When it
|
||
is merged with another insn, all bets are off. If they are, in fact,
|
||
needed and aren't also supplied in I3, they may be added by
|
||
recog_for_combine. Otherwise, it won't match.
|
||
|
||
We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
|
||
note.
|
||
|
||
Get the source and destination of INSN. If more than one, can't
|
||
combine. */
|
||
|
||
if (GET_CODE (PATTERN (insn)) == SET)
|
||
set = PATTERN (insn);
|
||
else if (GET_CODE (PATTERN (insn)) == PARALLEL
|
||
&& GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
|
||
{
|
||
for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
|
||
{
|
||
rtx elt = XVECEXP (PATTERN (insn), 0, i);
|
||
|
||
switch (GET_CODE (elt))
|
||
{
|
||
/* We can ignore CLOBBERs. */
|
||
case CLOBBER:
|
||
break;
|
||
|
||
case SET:
|
||
/* Ignore SETs whose result isn't used but not those that
|
||
have side-effects. */
|
||
if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
|
||
&& ! side_effects_p (elt))
|
||
break;
|
||
|
||
/* If we have already found a SET, this is a second one and
|
||
so we cannot combine with this insn. */
|
||
if (set)
|
||
return 0;
|
||
|
||
set = elt;
|
||
break;
|
||
|
||
default:
|
||
/* Anything else means we can't combine. */
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
if (set == 0
|
||
/* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
|
||
so don't do anything with it. */
|
||
|| GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
|
||
return 0;
|
||
}
|
||
else
|
||
return 0;
|
||
|
||
if (set == 0)
|
||
return 0;
|
||
|
||
set = expand_field_assignment (set);
|
||
src = SET_SRC (set), dest = SET_DEST (set);
|
||
|
||
/* Don't eliminate a store in the stack pointer. */
|
||
if (dest == stack_pointer_rtx
|
||
/* If we couldn't eliminate a field assignment, we can't combine. */
|
||
|| GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == STRICT_LOW_PART
|
||
/* Don't combine with an insn that sets a register to itself if it has
|
||
a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
|
||
|| (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
|
||
/* Can't merge a function call. */
|
||
|| GET_CODE (src) == CALL
|
||
/* Don't eliminate a function call argument. */
|
||
|| (GET_CODE (i3) == CALL_INSN && find_reg_fusage (i3, USE, dest))
|
||
/* Don't substitute into an incremented register. */
|
||
|| FIND_REG_INC_NOTE (i3, dest)
|
||
|| (succ && FIND_REG_INC_NOTE (succ, dest))
|
||
/* Don't combine the end of a libcall into anything. */
|
||
|| find_reg_note (insn, REG_RETVAL, NULL_RTX)
|
||
/* Make sure that DEST is not used after SUCC but before I3. */
|
||
|| (succ && ! all_adjacent
|
||
&& reg_used_between_p (dest, succ, i3))
|
||
/* Make sure that the value that is to be substituted for the register
|
||
does not use any registers whose values alter in between. However,
|
||
If the insns are adjacent, a use can't cross a set even though we
|
||
think it might (this can happen for a sequence of insns each setting
|
||
the same destination; reg_last_set of that register might point to
|
||
a NOTE). If INSN has a REG_EQUIV note, the register is always
|
||
equivalent to the memory so the substitution is valid even if there
|
||
are intervening stores. Also, don't move a volatile asm or
|
||
UNSPEC_VOLATILE across any other insns. */
|
||
|| (! all_adjacent
|
||
&& (((GET_CODE (src) != MEM
|
||
|| ! find_reg_note (insn, REG_EQUIV, src))
|
||
&& use_crosses_set_p (src, INSN_CUID (insn)))
|
||
|| (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
|
||
|| GET_CODE (src) == UNSPEC_VOLATILE))
|
||
/* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
|
||
better register allocation by not doing the combine. */
|
||
|| find_reg_note (i3, REG_NO_CONFLICT, dest)
|
||
|| (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
|
||
/* Don't combine across a CALL_INSN, because that would possibly
|
||
change whether the life span of some REGs crosses calls or not,
|
||
and it is a pain to update that information.
|
||
Exception: if source is a constant, moving it later can't hurt.
|
||
Accept that special case, because it helps -fforce-addr a lot. */
|
||
|| (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
|
||
return 0;
|
||
|
||
/* DEST must either be a REG or CC0. */
|
||
if (GET_CODE (dest) == REG)
|
||
{
|
||
/* If register alignment is being enforced for multi-word items in all
|
||
cases except for parameters, it is possible to have a register copy
|
||
insn referencing a hard register that is not allowed to contain the
|
||
mode being copied and which would not be valid as an operand of most
|
||
insns. Eliminate this problem by not combining with such an insn.
|
||
|
||
Also, on some machines we don't want to extend the life of a hard
|
||
register. */
|
||
|
||
if (GET_CODE (src) == REG
|
||
&& ((REGNO (dest) < FIRST_PSEUDO_REGISTER
|
||
&& ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
|
||
/* Don't extend the life of a hard register unless it is
|
||
user variable (if we have few registers) or it can't
|
||
fit into the desired register (meaning something special
|
||
is going on). */
|
||
|| (REGNO (src) < FIRST_PSEUDO_REGISTER
|
||
&& (! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src))
|
||
#ifdef SMALL_REGISTER_CLASSES
|
||
|| ! REG_USERVAR_P (src)
|
||
#endif
|
||
))))
|
||
return 0;
|
||
}
|
||
else if (GET_CODE (dest) != CC0)
|
||
return 0;
|
||
|
||
/* Don't substitute for a register intended as a clobberable operand.
|
||
Similarly, don't substitute an expression containing a register that
|
||
will be clobbered in I3. */
|
||
if (GET_CODE (PATTERN (i3)) == PARALLEL)
|
||
for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
|
||
if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
|
||
&& (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0),
|
||
src)
|
||
|| rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest)))
|
||
return 0;
|
||
|
||
/* If INSN contains anything volatile, or is an `asm' (whether volatile
|
||
or not), reject, unless nothing volatile comes between it and I3,
|
||
with the exception of SUCC. */
|
||
|
||
if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
|
||
for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
|
||
if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
|
||
&& p != succ && volatile_refs_p (PATTERN (p)))
|
||
return 0;
|
||
|
||
/* If there are any volatile insns between INSN and I3, reject, because
|
||
they might affect machine state. */
|
||
|
||
for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
|
||
if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
|
||
&& p != succ && volatile_insn_p (PATTERN (p)))
|
||
return 0;
|
||
|
||
/* If INSN or I2 contains an autoincrement or autodecrement,
|
||
make sure that register is not used between there and I3,
|
||
and not already used in I3 either.
|
||
Also insist that I3 not be a jump; if it were one
|
||
and the incremented register were spilled, we would lose. */
|
||
|
||
#ifdef AUTO_INC_DEC
|
||
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
|
||
if (REG_NOTE_KIND (link) == REG_INC
|
||
&& (GET_CODE (i3) == JUMP_INSN
|
||
|| reg_used_between_p (XEXP (link, 0), insn, i3)
|
||
|| reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
|
||
return 0;
|
||
#endif
|
||
|
||
#ifdef HAVE_cc0
|
||
/* Don't combine an insn that follows a CC0-setting insn.
|
||
An insn that uses CC0 must not be separated from the one that sets it.
|
||
We do, however, allow I2 to follow a CC0-setting insn if that insn
|
||
is passed as I1; in that case it will be deleted also.
|
||
We also allow combining in this case if all the insns are adjacent
|
||
because that would leave the two CC0 insns adjacent as well.
|
||
It would be more logical to test whether CC0 occurs inside I1 or I2,
|
||
but that would be much slower, and this ought to be equivalent. */
|
||
|
||
p = prev_nonnote_insn (insn);
|
||
if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
|
||
&& ! all_adjacent)
|
||
return 0;
|
||
#endif
|
||
|
||
/* If we get here, we have passed all the tests and the combination is
|
||
to be allowed. */
|
||
|
||
*pdest = dest;
|
||
*psrc = src;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* LOC is the location within I3 that contains its pattern or the component
|
||
of a PARALLEL of the pattern. We validate that it is valid for combining.
|
||
|
||
One problem is if I3 modifies its output, as opposed to replacing it
|
||
entirely, we can't allow the output to contain I2DEST or I1DEST as doing
|
||
so would produce an insn that is not equivalent to the original insns.
|
||
|
||
Consider:
|
||
|
||
(set (reg:DI 101) (reg:DI 100))
|
||
(set (subreg:SI (reg:DI 101) 0) <foo>)
|
||
|
||
This is NOT equivalent to:
|
||
|
||
(parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
|
||
(set (reg:DI 101) (reg:DI 100))])
|
||
|
||
Not only does this modify 100 (in which case it might still be valid
|
||
if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
|
||
|
||
We can also run into a problem if I2 sets a register that I1
|
||
uses and I1 gets directly substituted into I3 (not via I2). In that
|
||
case, we would be getting the wrong value of I2DEST into I3, so we
|
||
must reject the combination. This case occurs when I2 and I1 both
|
||
feed into I3, rather than when I1 feeds into I2, which feeds into I3.
|
||
If I1_NOT_IN_SRC is non-zero, it means that finding I1 in the source
|
||
of a SET must prevent combination from occurring.
|
||
|
||
On machines where SMALL_REGISTER_CLASSES is defined, we don't combine
|
||
if the destination of a SET is a hard register that isn't a user
|
||
variable.
|
||
|
||
Before doing the above check, we first try to expand a field assignment
|
||
into a set of logical operations.
|
||
|
||
If PI3_DEST_KILLED is non-zero, it is a pointer to a location in which
|
||
we place a register that is both set and used within I3. If more than one
|
||
such register is detected, we fail.
|
||
|
||
Return 1 if the combination is valid, zero otherwise. */
|
||
|
||
static int
|
||
combinable_i3pat (i3, loc, i2dest, i1dest, i1_not_in_src, pi3dest_killed)
|
||
rtx i3;
|
||
rtx *loc;
|
||
rtx i2dest;
|
||
rtx i1dest;
|
||
int i1_not_in_src;
|
||
rtx *pi3dest_killed;
|
||
{
|
||
rtx x = *loc;
|
||
|
||
if (GET_CODE (x) == SET)
|
||
{
|
||
rtx set = expand_field_assignment (x);
|
||
rtx dest = SET_DEST (set);
|
||
rtx src = SET_SRC (set);
|
||
rtx inner_dest = dest, inner_src = src;
|
||
|
||
SUBST (*loc, set);
|
||
|
||
while (GET_CODE (inner_dest) == STRICT_LOW_PART
|
||
|| GET_CODE (inner_dest) == SUBREG
|
||
|| GET_CODE (inner_dest) == ZERO_EXTRACT)
|
||
inner_dest = XEXP (inner_dest, 0);
|
||
|
||
/* We probably don't need this any more now that LIMIT_RELOAD_CLASS
|
||
was added. */
|
||
#if 0
|
||
while (GET_CODE (inner_src) == STRICT_LOW_PART
|
||
|| GET_CODE (inner_src) == SUBREG
|
||
|| GET_CODE (inner_src) == ZERO_EXTRACT)
|
||
inner_src = XEXP (inner_src, 0);
|
||
|
||
/* If it is better that two different modes keep two different pseudos,
|
||
avoid combining them. This avoids producing the following pattern
|
||
on a 386:
|
||
(set (subreg:SI (reg/v:QI 21) 0)
|
||
(lshiftrt:SI (reg/v:SI 20)
|
||
(const_int 24)))
|
||
If that were made, reload could not handle the pair of
|
||
reg 20/21, since it would try to get any GENERAL_REGS
|
||
but some of them don't handle QImode. */
|
||
|
||
if (rtx_equal_p (inner_src, i2dest)
|
||
&& GET_CODE (inner_dest) == REG
|
||
&& ! MODES_TIEABLE_P (GET_MODE (i2dest), GET_MODE (inner_dest)))
|
||
return 0;
|
||
#endif
|
||
|
||
/* Check for the case where I3 modifies its output, as
|
||
discussed above. */
|
||
if ((inner_dest != dest
|
||
&& (reg_overlap_mentioned_p (i2dest, inner_dest)
|
||
|| (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
|
||
/* This is the same test done in can_combine_p except that we
|
||
allow a hard register with SMALL_REGISTER_CLASSES if SRC is a
|
||
CALL operation. */
|
||
|| (GET_CODE (inner_dest) == REG
|
||
&& REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
|
||
&& (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
|
||
GET_MODE (inner_dest))
|
||
#ifdef SMALL_REGISTER_CLASSES
|
||
|| (GET_CODE (src) != CALL && ! REG_USERVAR_P (inner_dest))
|
||
#endif
|
||
))
|
||
|| (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
|
||
return 0;
|
||
|
||
/* If DEST is used in I3, it is being killed in this insn,
|
||
so record that for later.
|
||
Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
|
||
STACK_POINTER_REGNUM, since these are always considered to be
|
||
live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
|
||
if (pi3dest_killed && GET_CODE (dest) == REG
|
||
&& reg_referenced_p (dest, PATTERN (i3))
|
||
&& REGNO (dest) != FRAME_POINTER_REGNUM
|
||
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
|
||
&& REGNO (dest) != HARD_FRAME_POINTER_REGNUM
|
||
#endif
|
||
#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
|
||
&& (REGNO (dest) != ARG_POINTER_REGNUM
|
||
|| ! fixed_regs [REGNO (dest)])
|
||
#endif
|
||
&& REGNO (dest) != STACK_POINTER_REGNUM)
|
||
{
|
||
if (*pi3dest_killed)
|
||
return 0;
|
||
|
||
*pi3dest_killed = dest;
|
||
}
|
||
}
|
||
|
||
else if (GET_CODE (x) == PARALLEL)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < XVECLEN (x, 0); i++)
|
||
if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
|
||
i1_not_in_src, pi3dest_killed))
|
||
return 0;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Try to combine the insns I1 and I2 into I3.
|
||
Here I1 and I2 appear earlier than I3.
|
||
I1 can be zero; then we combine just I2 into I3.
|
||
|
||
It we are combining three insns and the resulting insn is not recognized,
|
||
try splitting it into two insns. If that happens, I2 and I3 are retained
|
||
and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
|
||
are pseudo-deleted.
|
||
|
||
Return 0 if the combination does not work. Then nothing is changed.
|
||
If we did the combination, return the insn at which combine should
|
||
resume scanning. */
|
||
|
||
static rtx
|
||
try_combine (i3, i2, i1)
|
||
register rtx i3, i2, i1;
|
||
{
|
||
/* New patterns for I3 and I3, respectively. */
|
||
rtx newpat, newi2pat = 0;
|
||
/* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
|
||
int added_sets_1, added_sets_2;
|
||
/* Total number of SETs to put into I3. */
|
||
int total_sets;
|
||
/* Nonzero is I2's body now appears in I3. */
|
||
int i2_is_used;
|
||
/* INSN_CODEs for new I3, new I2, and user of condition code. */
|
||
int insn_code_number, i2_code_number, other_code_number;
|
||
/* Contains I3 if the destination of I3 is used in its source, which means
|
||
that the old life of I3 is being killed. If that usage is placed into
|
||
I2 and not in I3, a REG_DEAD note must be made. */
|
||
rtx i3dest_killed = 0;
|
||
/* SET_DEST and SET_SRC of I2 and I1. */
|
||
rtx i2dest, i2src, i1dest = 0, i1src = 0;
|
||
/* PATTERN (I2), or a copy of it in certain cases. */
|
||
rtx i2pat;
|
||
/* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
|
||
int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
|
||
int i1_feeds_i3 = 0;
|
||
/* Notes that must be added to REG_NOTES in I3 and I2. */
|
||
rtx new_i3_notes, new_i2_notes;
|
||
/* Notes that we substituted I3 into I2 instead of the normal case. */
|
||
int i3_subst_into_i2 = 0;
|
||
/* Notes that I1, I2 or I3 is a MULT operation. */
|
||
int have_mult = 0;
|
||
|
||
int maxreg;
|
||
rtx temp;
|
||
register rtx link;
|
||
int i;
|
||
|
||
/* If any of I1, I2, and I3 isn't really an insn, we can't do anything.
|
||
This can occur when flow deletes an insn that it has merged into an
|
||
auto-increment address. We also can't do anything if I3 has a
|
||
REG_LIBCALL note since we don't want to disrupt the contiguity of a
|
||
libcall. */
|
||
|
||
if (GET_RTX_CLASS (GET_CODE (i3)) != 'i'
|
||
|| GET_RTX_CLASS (GET_CODE (i2)) != 'i'
|
||
|| (i1 && GET_RTX_CLASS (GET_CODE (i1)) != 'i')
|
||
|| find_reg_note (i3, REG_LIBCALL, NULL_RTX))
|
||
return 0;
|
||
|
||
combine_attempts++;
|
||
|
||
undobuf.num_undo = previous_num_undos = 0;
|
||
undobuf.other_insn = 0;
|
||
|
||
/* Save the current high-water-mark so we can free storage if we didn't
|
||
accept this combination. */
|
||
undobuf.storage = (char *) oballoc (0);
|
||
|
||
/* Reset the hard register usage information. */
|
||
CLEAR_HARD_REG_SET (newpat_used_regs);
|
||
|
||
/* If I1 and I2 both feed I3, they can be in any order. To simplify the
|
||
code below, set I1 to be the earlier of the two insns. */
|
||
if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
|
||
temp = i1, i1 = i2, i2 = temp;
|
||
|
||
added_links_insn = 0;
|
||
|
||
/* First check for one important special-case that the code below will
|
||
not handle. Namely, the case where I1 is zero, I2 has multiple sets,
|
||
and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
|
||
we may be able to replace that destination with the destination of I3.
|
||
This occurs in the common code where we compute both a quotient and
|
||
remainder into a structure, in which case we want to do the computation
|
||
directly into the structure to avoid register-register copies.
|
||
|
||
We make very conservative checks below and only try to handle the
|
||
most common cases of this. For example, we only handle the case
|
||
where I2 and I3 are adjacent to avoid making difficult register
|
||
usage tests. */
|
||
|
||
if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
|
||
&& GET_CODE (SET_SRC (PATTERN (i3))) == REG
|
||
&& REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
|
||
#ifdef SMALL_REGISTER_CLASSES
|
||
&& (GET_CODE (SET_DEST (PATTERN (i3))) != REG
|
||
|| REGNO (SET_DEST (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
|
||
|| REG_USERVAR_P (SET_DEST (PATTERN (i3))))
|
||
#endif
|
||
&& find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
|
||
&& GET_CODE (PATTERN (i2)) == PARALLEL
|
||
&& ! side_effects_p (SET_DEST (PATTERN (i3)))
|
||
/* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
|
||
below would need to check what is inside (and reg_overlap_mentioned_p
|
||
doesn't support those codes anyway). Don't allow those destinations;
|
||
the resulting insn isn't likely to be recognized anyway. */
|
||
&& GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
|
||
&& GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
|
||
&& ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
|
||
SET_DEST (PATTERN (i3)))
|
||
&& next_real_insn (i2) == i3)
|
||
{
|
||
rtx p2 = PATTERN (i2);
|
||
|
||
/* Make sure that the destination of I3,
|
||
which we are going to substitute into one output of I2,
|
||
is not used within another output of I2. We must avoid making this:
|
||
(parallel [(set (mem (reg 69)) ...)
|
||
(set (reg 69) ...)])
|
||
which is not well-defined as to order of actions.
|
||
(Besides, reload can't handle output reloads for this.)
|
||
|
||
The problem can also happen if the dest of I3 is a memory ref,
|
||
if another dest in I2 is an indirect memory ref. */
|
||
for (i = 0; i < XVECLEN (p2, 0); i++)
|
||
if (GET_CODE (XVECEXP (p2, 0, i)) == SET
|
||
&& reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
|
||
SET_DEST (XVECEXP (p2, 0, i))))
|
||
break;
|
||
|
||
if (i == XVECLEN (p2, 0))
|
||
for (i = 0; i < XVECLEN (p2, 0); i++)
|
||
if (SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
|
||
{
|
||
combine_merges++;
|
||
|
||
subst_insn = i3;
|
||
subst_low_cuid = INSN_CUID (i2);
|
||
|
||
added_sets_2 = added_sets_1 = 0;
|
||
i2dest = SET_SRC (PATTERN (i3));
|
||
|
||
/* Replace the dest in I2 with our dest and make the resulting
|
||
insn the new pattern for I3. Then skip to where we
|
||
validate the pattern. Everything was set up above. */
|
||
SUBST (SET_DEST (XVECEXP (p2, 0, i)),
|
||
SET_DEST (PATTERN (i3)));
|
||
|
||
newpat = p2;
|
||
i3_subst_into_i2 = 1;
|
||
goto validate_replacement;
|
||
}
|
||
}
|
||
|
||
#ifndef HAVE_cc0
|
||
/* If we have no I1 and I2 looks like:
|
||
(parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
|
||
(set Y OP)])
|
||
make up a dummy I1 that is
|
||
(set Y OP)
|
||
and change I2 to be
|
||
(set (reg:CC X) (compare:CC Y (const_int 0)))
|
||
|
||
(We can ignore any trailing CLOBBERs.)
|
||
|
||
This undoes a previous combination and allows us to match a branch-and-
|
||
decrement insn. */
|
||
|
||
if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
|
||
&& XVECLEN (PATTERN (i2), 0) >= 2
|
||
&& GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
|
||
&& (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
|
||
== MODE_CC)
|
||
&& GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
|
||
&& XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
|
||
&& GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
|
||
&& GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
|
||
&& rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
|
||
SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
|
||
{
|
||
for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
|
||
if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
|
||
break;
|
||
|
||
if (i == 1)
|
||
{
|
||
/* We make I1 with the same INSN_UID as I2. This gives it
|
||
the same INSN_CUID for value tracking. Our fake I1 will
|
||
never appear in the insn stream so giving it the same INSN_UID
|
||
as I2 will not cause a problem. */
|
||
|
||
i1 = gen_rtx (INSN, VOIDmode, INSN_UID (i2), 0, i2,
|
||
XVECEXP (PATTERN (i2), 0, 1), -1, 0, 0);
|
||
|
||
SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
|
||
SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
|
||
SET_DEST (PATTERN (i1)));
|
||
}
|
||
}
|
||
#endif
|
||
|
||
/* Verify that I2 and I1 are valid for combining. */
|
||
if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
|
||
|| (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
|
||
{
|
||
undo_all ();
|
||
return 0;
|
||
}
|
||
|
||
/* Record whether I2DEST is used in I2SRC and similarly for the other
|
||
cases. Knowing this will help in register status updating below. */
|
||
i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
|
||
i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
|
||
i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
|
||
|
||
/* See if I1 directly feeds into I3. It does if I1DEST is not used
|
||
in I2SRC. */
|
||
i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
|
||
|
||
/* Ensure that I3's pattern can be the destination of combines. */
|
||
if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
|
||
i1 && i2dest_in_i1src && i1_feeds_i3,
|
||
&i3dest_killed))
|
||
{
|
||
undo_all ();
|
||
return 0;
|
||
}
|
||
|
||
/* See if any of the insns is a MULT operation. Unless one is, we will
|
||
reject a combination that is, since it must be slower. Be conservative
|
||
here. */
|
||
if (GET_CODE (i2src) == MULT
|
||
|| (i1 != 0 && GET_CODE (i1src) == MULT)
|
||
|| (GET_CODE (PATTERN (i3)) == SET
|
||
&& GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
|
||
have_mult = 1;
|
||
|
||
/* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
|
||
We used to do this EXCEPT in one case: I3 has a post-inc in an
|
||
output operand. However, that exception can give rise to insns like
|
||
mov r3,(r3)+
|
||
which is a famous insn on the PDP-11 where the value of r3 used as the
|
||
source was model-dependent. Avoid this sort of thing. */
|
||
|
||
#if 0
|
||
if (!(GET_CODE (PATTERN (i3)) == SET
|
||
&& GET_CODE (SET_SRC (PATTERN (i3))) == REG
|
||
&& GET_CODE (SET_DEST (PATTERN (i3))) == MEM
|
||
&& (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
|
||
|| GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
|
||
/* It's not the exception. */
|
||
#endif
|
||
#ifdef AUTO_INC_DEC
|
||
for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
|
||
if (REG_NOTE_KIND (link) == REG_INC
|
||
&& (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
|
||
|| (i1 != 0
|
||
&& reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
|
||
{
|
||
undo_all ();
|
||
return 0;
|
||
}
|
||
#endif
|
||
|
||
/* See if the SETs in I1 or I2 need to be kept around in the merged
|
||
instruction: whenever the value set there is still needed past I3.
|
||
For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
|
||
|
||
For the SET in I1, we have two cases: If I1 and I2 independently
|
||
feed into I3, the set in I1 needs to be kept around if I1DEST dies
|
||
or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
|
||
in I1 needs to be kept around unless I1DEST dies or is set in either
|
||
I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
|
||
I1DEST. If so, we know I1 feeds into I2. */
|
||
|
||
added_sets_2 = ! dead_or_set_p (i3, i2dest);
|
||
|
||
added_sets_1
|
||
= i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
|
||
: (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
|
||
|
||
/* If the set in I2 needs to be kept around, we must make a copy of
|
||
PATTERN (I2), so that when we substitute I1SRC for I1DEST in
|
||
PATTERN (I2), we are only substituting for the original I1DEST, not into
|
||
an already-substituted copy. This also prevents making self-referential
|
||
rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
|
||
I2DEST. */
|
||
|
||
i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
|
||
? gen_rtx (SET, VOIDmode, i2dest, i2src)
|
||
: PATTERN (i2));
|
||
|
||
if (added_sets_2)
|
||
i2pat = copy_rtx (i2pat);
|
||
|
||
combine_merges++;
|
||
|
||
/* Substitute in the latest insn for the regs set by the earlier ones. */
|
||
|
||
maxreg = max_reg_num ();
|
||
|
||
subst_insn = i3;
|
||
|
||
/* It is possible that the source of I2 or I1 may be performing an
|
||
unneeded operation, such as a ZERO_EXTEND of something that is known
|
||
to have the high part zero. Handle that case by letting subst look at
|
||
the innermost one of them.
|
||
|
||
Another way to do this would be to have a function that tries to
|
||
simplify a single insn instead of merging two or more insns. We don't
|
||
do this because of the potential of infinite loops and because
|
||
of the potential extra memory required. However, doing it the way
|
||
we are is a bit of a kludge and doesn't catch all cases.
|
||
|
||
But only do this if -fexpensive-optimizations since it slows things down
|
||
and doesn't usually win. */
|
||
|
||
if (flag_expensive_optimizations)
|
||
{
|
||
/* Pass pc_rtx so no substitutions are done, just simplifications.
|
||
The cases that we are interested in here do not involve the few
|
||
cases were is_replaced is checked. */
|
||
if (i1)
|
||
{
|
||
subst_low_cuid = INSN_CUID (i1);
|
||
i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
|
||
}
|
||
else
|
||
{
|
||
subst_low_cuid = INSN_CUID (i2);
|
||
i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
|
||
}
|
||
|
||
previous_num_undos = undobuf.num_undo;
|
||
}
|
||
|
||
#ifndef HAVE_cc0
|
||
/* Many machines that don't use CC0 have insns that can both perform an
|
||
arithmetic operation and set the condition code. These operations will
|
||
be represented as a PARALLEL with the first element of the vector
|
||
being a COMPARE of an arithmetic operation with the constant zero.
|
||
The second element of the vector will set some pseudo to the result
|
||
of the same arithmetic operation. If we simplify the COMPARE, we won't
|
||
match such a pattern and so will generate an extra insn. Here we test
|
||
for this case, where both the comparison and the operation result are
|
||
needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
|
||
I2SRC. Later we will make the PARALLEL that contains I2. */
|
||
|
||
if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
|
||
&& GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
|
||
&& XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
|
||
&& rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
|
||
{
|
||
rtx *cc_use;
|
||
enum machine_mode compare_mode;
|
||
|
||
newpat = PATTERN (i3);
|
||
SUBST (XEXP (SET_SRC (newpat), 0), i2src);
|
||
|
||
i2_is_used = 1;
|
||
|
||
#ifdef EXTRA_CC_MODES
|
||
/* See if a COMPARE with the operand we substituted in should be done
|
||
with the mode that is currently being used. If not, do the same
|
||
processing we do in `subst' for a SET; namely, if the destination
|
||
is used only once, try to replace it with a register of the proper
|
||
mode and also replace the COMPARE. */
|
||
if (undobuf.other_insn == 0
|
||
&& (cc_use = find_single_use (SET_DEST (newpat), i3,
|
||
&undobuf.other_insn))
|
||
&& ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
|
||
i2src, const0_rtx))
|
||
!= GET_MODE (SET_DEST (newpat))))
|
||
{
|
||
int regno = REGNO (SET_DEST (newpat));
|
||
rtx new_dest = gen_rtx (REG, compare_mode, regno);
|
||
|
||
if (regno < FIRST_PSEUDO_REGISTER
|
||
|| (reg_n_sets[regno] == 1 && ! added_sets_2
|
||
&& ! REG_USERVAR_P (SET_DEST (newpat))))
|
||
{
|
||
if (regno >= FIRST_PSEUDO_REGISTER)
|
||
SUBST (regno_reg_rtx[regno], new_dest);
|
||
|
||
SUBST (SET_DEST (newpat), new_dest);
|
||
SUBST (XEXP (*cc_use, 0), new_dest);
|
||
SUBST (SET_SRC (newpat),
|
||
gen_rtx_combine (COMPARE, compare_mode,
|
||
i2src, const0_rtx));
|
||
}
|
||
else
|
||
undobuf.other_insn = 0;
|
||
}
|
||
#endif
|
||
}
|
||
else
|
||
#endif
|
||
{
|
||
n_occurrences = 0; /* `subst' counts here */
|
||
|
||
/* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
|
||
need to make a unique copy of I2SRC each time we substitute it
|
||
to avoid self-referential rtl. */
|
||
|
||
subst_low_cuid = INSN_CUID (i2);
|
||
newpat = subst (PATTERN (i3), i2dest, i2src, 0,
|
||
! i1_feeds_i3 && i1dest_in_i1src);
|
||
previous_num_undos = undobuf.num_undo;
|
||
|
||
/* Record whether i2's body now appears within i3's body. */
|
||
i2_is_used = n_occurrences;
|
||
}
|
||
|
||
/* If we already got a failure, don't try to do more. Otherwise,
|
||
try to substitute in I1 if we have it. */
|
||
|
||
if (i1 && GET_CODE (newpat) != CLOBBER)
|
||
{
|
||
/* Before we can do this substitution, we must redo the test done
|
||
above (see detailed comments there) that ensures that I1DEST
|
||
isn't mentioned in any SETs in NEWPAT that are field assignments. */
|
||
|
||
if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
|
||
0, NULL_PTR))
|
||
{
|
||
undo_all ();
|
||
return 0;
|
||
}
|
||
|
||
n_occurrences = 0;
|
||
subst_low_cuid = INSN_CUID (i1);
|
||
newpat = subst (newpat, i1dest, i1src, 0, 0);
|
||
previous_num_undos = undobuf.num_undo;
|
||
}
|
||
|
||
/* Fail if an autoincrement side-effect has been duplicated. Be careful
|
||
to count all the ways that I2SRC and I1SRC can be used. */
|
||
if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
|
||
&& i2_is_used + added_sets_2 > 1)
|
||
|| (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
|
||
&& (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
|
||
> 1))
|
||
/* Fail if we tried to make a new register (we used to abort, but there's
|
||
really no reason to). */
|
||
|| max_reg_num () != maxreg
|
||
/* Fail if we couldn't do something and have a CLOBBER. */
|
||
|| GET_CODE (newpat) == CLOBBER
|
||
/* Fail if this new pattern is a MULT and we didn't have one before
|
||
at the outer level. */
|
||
|| (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
|
||
&& ! have_mult))
|
||
{
|
||
undo_all ();
|
||
return 0;
|
||
}
|
||
|
||
/* If the actions of the earlier insns must be kept
|
||
in addition to substituting them into the latest one,
|
||
we must make a new PARALLEL for the latest insn
|
||
to hold additional the SETs. */
|
||
|
||
if (added_sets_1 || added_sets_2)
|
||
{
|
||
combine_extras++;
|
||
|
||
if (GET_CODE (newpat) == PARALLEL)
|
||
{
|
||
rtvec old = XVEC (newpat, 0);
|
||
total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
|
||
newpat = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (total_sets));
|
||
bcopy ((char *) &old->elem[0], (char *) &XVECEXP (newpat, 0, 0),
|
||
sizeof (old->elem[0]) * old->num_elem);
|
||
}
|
||
else
|
||
{
|
||
rtx old = newpat;
|
||
total_sets = 1 + added_sets_1 + added_sets_2;
|
||
newpat = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (total_sets));
|
||
XVECEXP (newpat, 0, 0) = old;
|
||
}
|
||
|
||
if (added_sets_1)
|
||
XVECEXP (newpat, 0, --total_sets)
|
||
= (GET_CODE (PATTERN (i1)) == PARALLEL
|
||
? gen_rtx (SET, VOIDmode, i1dest, i1src) : PATTERN (i1));
|
||
|
||
if (added_sets_2)
|
||
{
|
||
/* If there is no I1, use I2's body as is. We used to also not do
|
||
the subst call below if I2 was substituted into I3,
|
||
but that could lose a simplification. */
|
||
if (i1 == 0)
|
||
XVECEXP (newpat, 0, --total_sets) = i2pat;
|
||
else
|
||
/* See comment where i2pat is assigned. */
|
||
XVECEXP (newpat, 0, --total_sets)
|
||
= subst (i2pat, i1dest, i1src, 0, 0);
|
||
}
|
||
}
|
||
|
||
/* We come here when we are replacing a destination in I2 with the
|
||
destination of I3. */
|
||
validate_replacement:
|
||
|
||
/* Note which hard regs this insn has as inputs. */
|
||
mark_used_regs_combine (newpat);
|
||
|
||
/* Is the result of combination a valid instruction? */
|
||
insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
|
||
|
||
/* If the result isn't valid, see if it is a PARALLEL of two SETs where
|
||
the second SET's destination is a register that is unused. In that case,
|
||
we just need the first SET. This can occur when simplifying a divmod
|
||
insn. We *must* test for this case here because the code below that
|
||
splits two independent SETs doesn't handle this case correctly when it
|
||
updates the register status. Also check the case where the first
|
||
SET's destination is unused. That would not cause incorrect code, but
|
||
does cause an unneeded insn to remain. */
|
||
|
||
if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
|
||
&& XVECLEN (newpat, 0) == 2
|
||
&& GET_CODE (XVECEXP (newpat, 0, 0)) == SET
|
||
&& GET_CODE (XVECEXP (newpat, 0, 1)) == SET
|
||
&& GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == REG
|
||
&& find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 1)))
|
||
&& ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 1)))
|
||
&& asm_noperands (newpat) < 0)
|
||
{
|
||
newpat = XVECEXP (newpat, 0, 0);
|
||
insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
|
||
}
|
||
|
||
else if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
|
||
&& XVECLEN (newpat, 0) == 2
|
||
&& GET_CODE (XVECEXP (newpat, 0, 0)) == SET
|
||
&& GET_CODE (XVECEXP (newpat, 0, 1)) == SET
|
||
&& GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) == REG
|
||
&& find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 0)))
|
||
&& ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 0)))
|
||
&& asm_noperands (newpat) < 0)
|
||
{
|
||
newpat = XVECEXP (newpat, 0, 1);
|
||
insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
|
||
}
|
||
|
||
/* If we were combining three insns and the result is a simple SET
|
||
with no ASM_OPERANDS that wasn't recognized, try to split it into two
|
||
insns. There are two ways to do this. It can be split using a
|
||
machine-specific method (like when you have an addition of a large
|
||
constant) or by combine in the function find_split_point. */
|
||
|
||
if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
|
||
&& asm_noperands (newpat) < 0)
|
||
{
|
||
rtx m_split, *split;
|
||
rtx ni2dest = i2dest;
|
||
|
||
/* See if the MD file can split NEWPAT. If it can't, see if letting it
|
||
use I2DEST as a scratch register will help. In the latter case,
|
||
convert I2DEST to the mode of the source of NEWPAT if we can. */
|
||
|
||
m_split = split_insns (newpat, i3);
|
||
|
||
/* We can only use I2DEST as a scratch reg if it doesn't overlap any
|
||
inputs of NEWPAT. */
|
||
|
||
/* ??? If I2DEST is not safe, and I1DEST exists, then it would be
|
||
possible to try that as a scratch reg. This would require adding
|
||
more code to make it work though. */
|
||
|
||
if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
|
||
{
|
||
/* If I2DEST is a hard register or the only use of a pseudo,
|
||
we can change its mode. */
|
||
if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
|
||
&& GET_MODE (SET_DEST (newpat)) != VOIDmode
|
||
&& GET_CODE (i2dest) == REG
|
||
&& (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
|
||
|| (reg_n_sets[REGNO (i2dest)] == 1 && ! added_sets_2
|
||
&& ! REG_USERVAR_P (i2dest))))
|
||
ni2dest = gen_rtx (REG, GET_MODE (SET_DEST (newpat)),
|
||
REGNO (i2dest));
|
||
|
||
m_split = split_insns (gen_rtx (PARALLEL, VOIDmode,
|
||
gen_rtvec (2, newpat,
|
||
gen_rtx (CLOBBER,
|
||
VOIDmode,
|
||
ni2dest))),
|
||
i3);
|
||
}
|
||
|
||
if (m_split && GET_CODE (m_split) == SEQUENCE
|
||
&& XVECLEN (m_split, 0) == 2
|
||
&& (next_real_insn (i2) == i3
|
||
|| ! use_crosses_set_p (PATTERN (XVECEXP (m_split, 0, 0)),
|
||
INSN_CUID (i2))))
|
||
{
|
||
rtx i2set, i3set;
|
||
rtx newi3pat = PATTERN (XVECEXP (m_split, 0, 1));
|
||
newi2pat = PATTERN (XVECEXP (m_split, 0, 0));
|
||
|
||
i3set = single_set (XVECEXP (m_split, 0, 1));
|
||
i2set = single_set (XVECEXP (m_split, 0, 0));
|
||
|
||
/* In case we changed the mode of I2DEST, replace it in the
|
||
pseudo-register table here. We can't do it above in case this
|
||
code doesn't get executed and we do a split the other way. */
|
||
|
||
if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
|
||
SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
|
||
|
||
i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
|
||
|
||
/* If I2 or I3 has multiple SETs, we won't know how to track
|
||
register status, so don't use these insns. */
|
||
|
||
if (i2_code_number >= 0 && i2set && i3set)
|
||
insn_code_number = recog_for_combine (&newi3pat, i3,
|
||
&new_i3_notes);
|
||
|
||
if (insn_code_number >= 0)
|
||
newpat = newi3pat;
|
||
|
||
/* It is possible that both insns now set the destination of I3.
|
||
If so, we must show an extra use of it. */
|
||
|
||
if (insn_code_number >= 0 && GET_CODE (SET_DEST (i3set)) == REG
|
||
&& GET_CODE (SET_DEST (i2set)) == REG
|
||
&& REGNO (SET_DEST (i3set)) == REGNO (SET_DEST (i2set)))
|
||
reg_n_sets[REGNO (SET_DEST (i2set))]++;
|
||
}
|
||
|
||
/* If we can split it and use I2DEST, go ahead and see if that
|
||
helps things be recognized. Verify that none of the registers
|
||
are set between I2 and I3. */
|
||
if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
|
||
#ifdef HAVE_cc0
|
||
&& GET_CODE (i2dest) == REG
|
||
#endif
|
||
/* We need I2DEST in the proper mode. If it is a hard register
|
||
or the only use of a pseudo, we can change its mode. */
|
||
&& (GET_MODE (*split) == GET_MODE (i2dest)
|
||
|| GET_MODE (*split) == VOIDmode
|
||
|| REGNO (i2dest) < FIRST_PSEUDO_REGISTER
|
||
|| (reg_n_sets[REGNO (i2dest)] == 1 && ! added_sets_2
|
||
&& ! REG_USERVAR_P (i2dest)))
|
||
&& (next_real_insn (i2) == i3
|
||
|| ! use_crosses_set_p (*split, INSN_CUID (i2)))
|
||
/* We can't overwrite I2DEST if its value is still used by
|
||
NEWPAT. */
|
||
&& ! reg_referenced_p (i2dest, newpat))
|
||
{
|
||
rtx newdest = i2dest;
|
||
enum rtx_code split_code = GET_CODE (*split);
|
||
enum machine_mode split_mode = GET_MODE (*split);
|
||
|
||
/* Get NEWDEST as a register in the proper mode. We have already
|
||
validated that we can do this. */
|
||
if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
|
||
{
|
||
newdest = gen_rtx (REG, split_mode, REGNO (i2dest));
|
||
|
||
if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
|
||
SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
|
||
}
|
||
|
||
/* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
|
||
an ASHIFT. This can occur if it was inside a PLUS and hence
|
||
appeared to be a memory address. This is a kludge. */
|
||
if (split_code == MULT
|
||
&& GET_CODE (XEXP (*split, 1)) == CONST_INT
|
||
&& (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
|
||
SUBST (*split, gen_rtx_combine (ASHIFT, split_mode,
|
||
XEXP (*split, 0), GEN_INT (i)));
|
||
|
||
#ifdef INSN_SCHEDULING
|
||
/* If *SPLIT is a paradoxical SUBREG, when we split it, it should
|
||
be written as a ZERO_EXTEND. */
|
||
if (split_code == SUBREG && GET_CODE (SUBREG_REG (*split)) == MEM)
|
||
SUBST (*split, gen_rtx_combine (ZERO_EXTEND, split_mode,
|
||
XEXP (*split, 0)));
|
||
#endif
|
||
|
||
newi2pat = gen_rtx_combine (SET, VOIDmode, newdest, *split);
|
||
SUBST (*split, newdest);
|
||
i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
|
||
|
||
/* If the split point was a MULT and we didn't have one before,
|
||
don't use one now. */
|
||
if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
|
||
insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
|
||
}
|
||
}
|
||
|
||
/* Check for a case where we loaded from memory in a narrow mode and
|
||
then sign extended it, but we need both registers. In that case,
|
||
we have a PARALLEL with both loads from the same memory location.
|
||
We can split this into a load from memory followed by a register-register
|
||
copy. This saves at least one insn, more if register allocation can
|
||
eliminate the copy.
|
||
|
||
We cannot do this if the destination of the second assignment is
|
||
a register that we have already assumed is zero-extended. Similarly
|
||
for a SUBREG of such a register. */
|
||
|
||
else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
|
||
&& GET_CODE (newpat) == PARALLEL
|
||
&& XVECLEN (newpat, 0) == 2
|
||
&& GET_CODE (XVECEXP (newpat, 0, 0)) == SET
|
||
&& GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
|
||
&& GET_CODE (XVECEXP (newpat, 0, 1)) == SET
|
||
&& rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
|
||
XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
|
||
&& ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
|
||
INSN_CUID (i2))
|
||
&& GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
|
||
&& GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
|
||
&& ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
|
||
(GET_CODE (temp) == REG
|
||
&& reg_nonzero_bits[REGNO (temp)] != 0
|
||
&& GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
|
||
&& GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
|
||
&& (reg_nonzero_bits[REGNO (temp)]
|
||
!= GET_MODE_MASK (word_mode))))
|
||
&& ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
|
||
&& (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
|
||
(GET_CODE (temp) == REG
|
||
&& reg_nonzero_bits[REGNO (temp)] != 0
|
||
&& GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
|
||
&& GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
|
||
&& (reg_nonzero_bits[REGNO (temp)]
|
||
!= GET_MODE_MASK (word_mode)))))
|
||
&& ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
|
||
SET_SRC (XVECEXP (newpat, 0, 1)))
|
||
&& ! find_reg_note (i3, REG_UNUSED,
|
||
SET_DEST (XVECEXP (newpat, 0, 0))))
|
||
{
|
||
rtx ni2dest;
|
||
|
||
newi2pat = XVECEXP (newpat, 0, 0);
|
||
ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
|
||
newpat = XVECEXP (newpat, 0, 1);
|
||
SUBST (SET_SRC (newpat),
|
||
gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat)), ni2dest));
|
||
i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
|
||
if (i2_code_number >= 0)
|
||
insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
|
||
|
||
if (insn_code_number >= 0)
|
||
{
|
||
rtx insn;
|
||
rtx link;
|
||
|
||
/* If we will be able to accept this, we have made a change to the
|
||
destination of I3. This can invalidate a LOG_LINKS pointing
|
||
to I3. No other part of combine.c makes such a transformation.
|
||
|
||
The new I3 will have a destination that was previously the
|
||
destination of I1 or I2 and which was used in i2 or I3. Call
|
||
distribute_links to make a LOG_LINK from the next use of
|
||
that destination. */
|
||
|
||
PATTERN (i3) = newpat;
|
||
distribute_links (gen_rtx (INSN_LIST, VOIDmode, i3, NULL_RTX));
|
||
|
||
/* I3 now uses what used to be its destination and which is
|
||
now I2's destination. That means we need a LOG_LINK from
|
||
I3 to I2. But we used to have one, so we still will.
|
||
|
||
However, some later insn might be using I2's dest and have
|
||
a LOG_LINK pointing at I3. We must remove this link.
|
||
The simplest way to remove the link is to point it at I1,
|
||
which we know will be a NOTE. */
|
||
|
||
for (insn = NEXT_INSN (i3);
|
||
insn && (this_basic_block == n_basic_blocks - 1
|
||
|| insn != basic_block_head[this_basic_block + 1]);
|
||
insn = NEXT_INSN (insn))
|
||
{
|
||
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
|
||
&& reg_referenced_p (ni2dest, PATTERN (insn)))
|
||
{
|
||
for (link = LOG_LINKS (insn); link;
|
||
link = XEXP (link, 1))
|
||
if (XEXP (link, 0) == i3)
|
||
XEXP (link, 0) = i1;
|
||
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Similarly, check for a case where we have a PARALLEL of two independent
|
||
SETs but we started with three insns. In this case, we can do the sets
|
||
as two separate insns. This case occurs when some SET allows two
|
||
other insns to combine, but the destination of that SET is still live. */
|
||
|
||
else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
|
||
&& GET_CODE (newpat) == PARALLEL
|
||
&& XVECLEN (newpat, 0) == 2
|
||
&& GET_CODE (XVECEXP (newpat, 0, 0)) == SET
|
||
&& GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
|
||
&& GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
|
||
&& GET_CODE (XVECEXP (newpat, 0, 1)) == SET
|
||
&& GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
|
||
&& GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
|
||
&& ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
|
||
INSN_CUID (i2))
|
||
/* Don't pass sets with (USE (MEM ...)) dests to the following. */
|
||
&& GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
|
||
&& GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
|
||
&& ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
|
||
XVECEXP (newpat, 0, 0))
|
||
&& ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
|
||
XVECEXP (newpat, 0, 1)))
|
||
{
|
||
newi2pat = XVECEXP (newpat, 0, 1);
|
||
newpat = XVECEXP (newpat, 0, 0);
|
||
|
||
i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
|
||
if (i2_code_number >= 0)
|
||
insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
|
||
}
|
||
|
||
/* If it still isn't recognized, fail and change things back the way they
|
||
were. */
|
||
if ((insn_code_number < 0
|
||
/* Is the result a reasonable ASM_OPERANDS? */
|
||
&& (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
|
||
{
|
||
undo_all ();
|
||
return 0;
|
||
}
|
||
|
||
/* If we had to change another insn, make sure it is valid also. */
|
||
if (undobuf.other_insn)
|
||
{
|
||
rtx other_pat = PATTERN (undobuf.other_insn);
|
||
rtx new_other_notes;
|
||
rtx note, next;
|
||
|
||
CLEAR_HARD_REG_SET (newpat_used_regs);
|
||
|
||
other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
|
||
&new_other_notes);
|
||
|
||
if (other_code_number < 0 && ! check_asm_operands (other_pat))
|
||
{
|
||
undo_all ();
|
||
return 0;
|
||
}
|
||
|
||
PATTERN (undobuf.other_insn) = other_pat;
|
||
|
||
/* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
|
||
are still valid. Then add any non-duplicate notes added by
|
||
recog_for_combine. */
|
||
for (note = REG_NOTES (undobuf.other_insn); note; note = next)
|
||
{
|
||
next = XEXP (note, 1);
|
||
|
||
if (REG_NOTE_KIND (note) == REG_UNUSED
|
||
&& ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
|
||
{
|
||
if (GET_CODE (XEXP (note, 0)) == REG)
|
||
reg_n_deaths[REGNO (XEXP (note, 0))]--;
|
||
|
||
remove_note (undobuf.other_insn, note);
|
||
}
|
||
}
|
||
|
||
for (note = new_other_notes; note; note = XEXP (note, 1))
|
||
if (GET_CODE (XEXP (note, 0)) == REG)
|
||
reg_n_deaths[REGNO (XEXP (note, 0))]++;
|
||
|
||
distribute_notes (new_other_notes, undobuf.other_insn,
|
||
undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
|
||
}
|
||
|
||
/* We now know that we can do this combination. Merge the insns and
|
||
update the status of registers and LOG_LINKS. */
|
||
|
||
{
|
||
rtx i3notes, i2notes, i1notes = 0;
|
||
rtx i3links, i2links, i1links = 0;
|
||
rtx midnotes = 0;
|
||
register int regno;
|
||
/* Compute which registers we expect to eliminate. */
|
||
rtx elim_i2 = (newi2pat || i2dest_in_i2src || i2dest_in_i1src
|
||
? 0 : i2dest);
|
||
rtx elim_i1 = i1 == 0 || i1dest_in_i1src ? 0 : i1dest;
|
||
|
||
/* Get the old REG_NOTES and LOG_LINKS from all our insns and
|
||
clear them. */
|
||
i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
|
||
i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
|
||
if (i1)
|
||
i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
|
||
|
||
/* Ensure that we do not have something that should not be shared but
|
||
occurs multiple times in the new insns. Check this by first
|
||
resetting all the `used' flags and then copying anything is shared. */
|
||
|
||
reset_used_flags (i3notes);
|
||
reset_used_flags (i2notes);
|
||
reset_used_flags (i1notes);
|
||
reset_used_flags (newpat);
|
||
reset_used_flags (newi2pat);
|
||
if (undobuf.other_insn)
|
||
reset_used_flags (PATTERN (undobuf.other_insn));
|
||
|
||
i3notes = copy_rtx_if_shared (i3notes);
|
||
i2notes = copy_rtx_if_shared (i2notes);
|
||
i1notes = copy_rtx_if_shared (i1notes);
|
||
newpat = copy_rtx_if_shared (newpat);
|
||
newi2pat = copy_rtx_if_shared (newi2pat);
|
||
if (undobuf.other_insn)
|
||
reset_used_flags (PATTERN (undobuf.other_insn));
|
||
|
||
INSN_CODE (i3) = insn_code_number;
|
||
PATTERN (i3) = newpat;
|
||
if (undobuf.other_insn)
|
||
INSN_CODE (undobuf.other_insn) = other_code_number;
|
||
|
||
/* We had one special case above where I2 had more than one set and
|
||
we replaced a destination of one of those sets with the destination
|
||
of I3. In that case, we have to update LOG_LINKS of insns later
|
||
in this basic block. Note that this (expensive) case is rare.
|
||
|
||
Also, in this case, we must pretend that all REG_NOTEs for I2
|
||
actually came from I3, so that REG_UNUSED notes from I2 will be
|
||
properly handled. */
|
||
|
||
if (i3_subst_into_i2)
|
||
{
|
||
for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
|
||
if (GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
|
||
&& SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
|
||
&& ! find_reg_note (i2, REG_UNUSED,
|
||
SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
|
||
for (temp = NEXT_INSN (i2);
|
||
temp && (this_basic_block == n_basic_blocks - 1
|
||
|| basic_block_head[this_basic_block] != temp);
|
||
temp = NEXT_INSN (temp))
|
||
if (temp != i3 && GET_RTX_CLASS (GET_CODE (temp)) == 'i')
|
||
for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
|
||
if (XEXP (link, 0) == i2)
|
||
XEXP (link, 0) = i3;
|
||
|
||
if (i3notes)
|
||
{
|
||
rtx link = i3notes;
|
||
while (XEXP (link, 1))
|
||
link = XEXP (link, 1);
|
||
XEXP (link, 1) = i2notes;
|
||
}
|
||
else
|
||
i3notes = i2notes;
|
||
i2notes = 0;
|
||
}
|
||
|
||
LOG_LINKS (i3) = 0;
|
||
REG_NOTES (i3) = 0;
|
||
LOG_LINKS (i2) = 0;
|
||
REG_NOTES (i2) = 0;
|
||
|
||
if (newi2pat)
|
||
{
|
||
INSN_CODE (i2) = i2_code_number;
|
||
PATTERN (i2) = newi2pat;
|
||
}
|
||
else
|
||
{
|
||
PUT_CODE (i2, NOTE);
|
||
NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
|
||
NOTE_SOURCE_FILE (i2) = 0;
|
||
}
|
||
|
||
if (i1)
|
||
{
|
||
LOG_LINKS (i1) = 0;
|
||
REG_NOTES (i1) = 0;
|
||
PUT_CODE (i1, NOTE);
|
||
NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
|
||
NOTE_SOURCE_FILE (i1) = 0;
|
||
}
|
||
|
||
/* Get death notes for everything that is now used in either I3 or
|
||
I2 and used to die in a previous insn. */
|
||
|
||
move_deaths (newpat, i1 ? INSN_CUID (i1) : INSN_CUID (i2), i3, &midnotes);
|
||
if (newi2pat)
|
||
move_deaths (newi2pat, INSN_CUID (i1), i2, &midnotes);
|
||
|
||
/* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
|
||
if (i3notes)
|
||
distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
|
||
elim_i2, elim_i1);
|
||
if (i2notes)
|
||
distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
|
||
elim_i2, elim_i1);
|
||
if (i1notes)
|
||
distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
|
||
elim_i2, elim_i1);
|
||
if (midnotes)
|
||
distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
|
||
elim_i2, elim_i1);
|
||
|
||
/* Distribute any notes added to I2 or I3 by recog_for_combine. We
|
||
know these are REG_UNUSED and want them to go to the desired insn,
|
||
so we always pass it as i3. We have not counted the notes in
|
||
reg_n_deaths yet, so we need to do so now. */
|
||
|
||
if (newi2pat && new_i2_notes)
|
||
{
|
||
for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
|
||
if (GET_CODE (XEXP (temp, 0)) == REG)
|
||
reg_n_deaths[REGNO (XEXP (temp, 0))]++;
|
||
|
||
distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
|
||
}
|
||
|
||
if (new_i3_notes)
|
||
{
|
||
for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
|
||
if (GET_CODE (XEXP (temp, 0)) == REG)
|
||
reg_n_deaths[REGNO (XEXP (temp, 0))]++;
|
||
|
||
distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
|
||
}
|
||
|
||
/* If I3DEST was used in I3SRC, it really died in I3. We may need to
|
||
put a REG_DEAD note for it somewhere. Similarly for I2 and I1.
|
||
Show an additional death due to the REG_DEAD note we make here. If
|
||
we discard it in distribute_notes, we will decrement it again. */
|
||
|
||
if (i3dest_killed)
|
||
{
|
||
if (GET_CODE (i3dest_killed) == REG)
|
||
reg_n_deaths[REGNO (i3dest_killed)]++;
|
||
|
||
distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i3dest_killed,
|
||
NULL_RTX),
|
||
NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
|
||
NULL_RTX, NULL_RTX);
|
||
}
|
||
|
||
/* For I2 and I1, we have to be careful. If NEWI2PAT exists and sets
|
||
I2DEST or I1DEST, the death must be somewhere before I2, not I3. If
|
||
we passed I3 in that case, it might delete I2. */
|
||
|
||
if (i2dest_in_i2src)
|
||
{
|
||
if (GET_CODE (i2dest) == REG)
|
||
reg_n_deaths[REGNO (i2dest)]++;
|
||
|
||
if (newi2pat && reg_set_p (i2dest, newi2pat))
|
||
distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i2dest, NULL_RTX),
|
||
NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
|
||
else
|
||
distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i2dest, NULL_RTX),
|
||
NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
|
||
NULL_RTX, NULL_RTX);
|
||
}
|
||
|
||
if (i1dest_in_i1src)
|
||
{
|
||
if (GET_CODE (i1dest) == REG)
|
||
reg_n_deaths[REGNO (i1dest)]++;
|
||
|
||
if (newi2pat && reg_set_p (i1dest, newi2pat))
|
||
distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i1dest, NULL_RTX),
|
||
NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
|
||
else
|
||
distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i1dest, NULL_RTX),
|
||
NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
|
||
NULL_RTX, NULL_RTX);
|
||
}
|
||
|
||
distribute_links (i3links);
|
||
distribute_links (i2links);
|
||
distribute_links (i1links);
|
||
|
||
if (GET_CODE (i2dest) == REG)
|
||
{
|
||
rtx link;
|
||
rtx i2_insn = 0, i2_val = 0, set;
|
||
|
||
/* The insn that used to set this register doesn't exist, and
|
||
this life of the register may not exist either. See if one of
|
||
I3's links points to an insn that sets I2DEST. If it does,
|
||
that is now the last known value for I2DEST. If we don't update
|
||
this and I2 set the register to a value that depended on its old
|
||
contents, we will get confused. If this insn is used, thing
|
||
will be set correctly in combine_instructions. */
|
||
|
||
for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
|
||
if ((set = single_set (XEXP (link, 0))) != 0
|
||
&& rtx_equal_p (i2dest, SET_DEST (set)))
|
||
i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
|
||
|
||
record_value_for_reg (i2dest, i2_insn, i2_val);
|
||
|
||
/* If the reg formerly set in I2 died only once and that was in I3,
|
||
zero its use count so it won't make `reload' do any work. */
|
||
if (! added_sets_2 && newi2pat == 0 && ! i2dest_in_i2src)
|
||
{
|
||
regno = REGNO (i2dest);
|
||
reg_n_sets[regno]--;
|
||
if (reg_n_sets[regno] == 0
|
||
&& ! (basic_block_live_at_start[0][regno / REGSET_ELT_BITS]
|
||
& ((REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS))))
|
||
reg_n_refs[regno] = 0;
|
||
}
|
||
}
|
||
|
||
if (i1 && GET_CODE (i1dest) == REG)
|
||
{
|
||
rtx link;
|
||
rtx i1_insn = 0, i1_val = 0, set;
|
||
|
||
for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
|
||
if ((set = single_set (XEXP (link, 0))) != 0
|
||
&& rtx_equal_p (i1dest, SET_DEST (set)))
|
||
i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
|
||
|
||
record_value_for_reg (i1dest, i1_insn, i1_val);
|
||
|
||
regno = REGNO (i1dest);
|
||
if (! added_sets_1 && ! i1dest_in_i1src)
|
||
{
|
||
reg_n_sets[regno]--;
|
||
if (reg_n_sets[regno] == 0
|
||
&& ! (basic_block_live_at_start[0][regno / REGSET_ELT_BITS]
|
||
& ((REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS))))
|
||
reg_n_refs[regno] = 0;
|
||
}
|
||
}
|
||
|
||
/* Update reg_nonzero_bits et al for any changes that may have been made
|
||
to this insn. */
|
||
|
||
note_stores (newpat, set_nonzero_bits_and_sign_copies);
|
||
if (newi2pat)
|
||
note_stores (newi2pat, set_nonzero_bits_and_sign_copies);
|
||
|
||
/* If I3 is now an unconditional jump, ensure that it has a
|
||
BARRIER following it since it may have initially been a
|
||
conditional jump. It may also be the last nonnote insn. */
|
||
|
||
if ((GET_CODE (newpat) == RETURN || simplejump_p (i3))
|
||
&& ((temp = next_nonnote_insn (i3)) == NULL_RTX
|
||
|| GET_CODE (temp) != BARRIER))
|
||
emit_barrier_after (i3);
|
||
}
|
||
|
||
combine_successes++;
|
||
|
||
if (added_links_insn
|
||
&& (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
|
||
&& INSN_CUID (added_links_insn) < INSN_CUID (i3))
|
||
return added_links_insn;
|
||
else
|
||
return newi2pat ? i2 : i3;
|
||
}
|
||
|
||
/* Undo all the modifications recorded in undobuf. */
|
||
|
||
static void
|
||
undo_all ()
|
||
{
|
||
register int i;
|
||
if (undobuf.num_undo > MAX_UNDO)
|
||
undobuf.num_undo = MAX_UNDO;
|
||
for (i = undobuf.num_undo - 1; i >= 0; i--)
|
||
{
|
||
if (undobuf.undo[i].is_int)
|
||
*undobuf.undo[i].where.i = undobuf.undo[i].old_contents.i;
|
||
else
|
||
*undobuf.undo[i].where.r = undobuf.undo[i].old_contents.r;
|
||
|
||
}
|
||
|
||
obfree (undobuf.storage);
|
||
undobuf.num_undo = 0;
|
||
}
|
||
|
||
/* Find the innermost point within the rtx at LOC, possibly LOC itself,
|
||
where we have an arithmetic expression and return that point. LOC will
|
||
be inside INSN.
|
||
|
||
try_combine will call this function to see if an insn can be split into
|
||
two insns. */
|
||
|
||
static rtx *
|
||
find_split_point (loc, insn)
|
||
rtx *loc;
|
||
rtx insn;
|
||
{
|
||
rtx x = *loc;
|
||
enum rtx_code code = GET_CODE (x);
|
||
rtx *split;
|
||
int len = 0, pos, unsignedp;
|
||
rtx inner;
|
||
|
||
/* First special-case some codes. */
|
||
switch (code)
|
||
{
|
||
case SUBREG:
|
||
#ifdef INSN_SCHEDULING
|
||
/* If we are making a paradoxical SUBREG invalid, it becomes a split
|
||
point. */
|
||
if (GET_CODE (SUBREG_REG (x)) == MEM)
|
||
return loc;
|
||
#endif
|
||
return find_split_point (&SUBREG_REG (x), insn);
|
||
|
||
case MEM:
|
||
#ifdef HAVE_lo_sum
|
||
/* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
|
||
using LO_SUM and HIGH. */
|
||
if (GET_CODE (XEXP (x, 0)) == CONST
|
||
|| GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
|
||
{
|
||
SUBST (XEXP (x, 0),
|
||
gen_rtx_combine (LO_SUM, Pmode,
|
||
gen_rtx_combine (HIGH, Pmode, XEXP (x, 0)),
|
||
XEXP (x, 0)));
|
||
return &XEXP (XEXP (x, 0), 0);
|
||
}
|
||
#endif
|
||
|
||
/* If we have a PLUS whose second operand is a constant and the
|
||
address is not valid, perhaps will can split it up using
|
||
the machine-specific way to split large constants. We use
|
||
the first psuedo-reg (one of the virtual regs) as a placeholder;
|
||
it will not remain in the result. */
|
||
if (GET_CODE (XEXP (x, 0)) == PLUS
|
||
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
|
||
&& ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
|
||
{
|
||
rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
|
||
rtx seq = split_insns (gen_rtx (SET, VOIDmode, reg, XEXP (x, 0)),
|
||
subst_insn);
|
||
|
||
/* This should have produced two insns, each of which sets our
|
||
placeholder. If the source of the second is a valid address,
|
||
we can make put both sources together and make a split point
|
||
in the middle. */
|
||
|
||
if (seq && XVECLEN (seq, 0) == 2
|
||
&& GET_CODE (XVECEXP (seq, 0, 0)) == INSN
|
||
&& GET_CODE (PATTERN (XVECEXP (seq, 0, 0))) == SET
|
||
&& SET_DEST (PATTERN (XVECEXP (seq, 0, 0))) == reg
|
||
&& ! reg_mentioned_p (reg,
|
||
SET_SRC (PATTERN (XVECEXP (seq, 0, 0))))
|
||
&& GET_CODE (XVECEXP (seq, 0, 1)) == INSN
|
||
&& GET_CODE (PATTERN (XVECEXP (seq, 0, 1))) == SET
|
||
&& SET_DEST (PATTERN (XVECEXP (seq, 0, 1))) == reg
|
||
&& memory_address_p (GET_MODE (x),
|
||
SET_SRC (PATTERN (XVECEXP (seq, 0, 1)))))
|
||
{
|
||
rtx src1 = SET_SRC (PATTERN (XVECEXP (seq, 0, 0)));
|
||
rtx src2 = SET_SRC (PATTERN (XVECEXP (seq, 0, 1)));
|
||
|
||
/* Replace the placeholder in SRC2 with SRC1. If we can
|
||
find where in SRC2 it was placed, that can become our
|
||
split point and we can replace this address with SRC2.
|
||
Just try two obvious places. */
|
||
|
||
src2 = replace_rtx (src2, reg, src1);
|
||
split = 0;
|
||
if (XEXP (src2, 0) == src1)
|
||
split = &XEXP (src2, 0);
|
||
else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
|
||
&& XEXP (XEXP (src2, 0), 0) == src1)
|
||
split = &XEXP (XEXP (src2, 0), 0);
|
||
|
||
if (split)
|
||
{
|
||
SUBST (XEXP (x, 0), src2);
|
||
return split;
|
||
}
|
||
}
|
||
|
||
/* If that didn't work, perhaps the first operand is complex and
|
||
needs to be computed separately, so make a split point there.
|
||
This will occur on machines that just support REG + CONST
|
||
and have a constant moved through some previous computation. */
|
||
|
||
else if (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) != 'o'
|
||
&& ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
|
||
&& (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (XEXP (x, 0), 0))))
|
||
== 'o')))
|
||
return &XEXP (XEXP (x, 0), 0);
|
||
}
|
||
break;
|
||
|
||
case SET:
|
||
#ifdef HAVE_cc0
|
||
/* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
|
||
ZERO_EXTRACT, the most likely reason why this doesn't match is that
|
||
we need to put the operand into a register. So split at that
|
||
point. */
|
||
|
||
if (SET_DEST (x) == cc0_rtx
|
||
&& GET_CODE (SET_SRC (x)) != COMPARE
|
||
&& GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
|
||
&& GET_RTX_CLASS (GET_CODE (SET_SRC (x))) != 'o'
|
||
&& ! (GET_CODE (SET_SRC (x)) == SUBREG
|
||
&& GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) == 'o'))
|
||
return &SET_SRC (x);
|
||
#endif
|
||
|
||
/* See if we can split SET_SRC as it stands. */
|
||
split = find_split_point (&SET_SRC (x), insn);
|
||
if (split && split != &SET_SRC (x))
|
||
return split;
|
||
|
||
/* See if this is a bitfield assignment with everything constant. If
|
||
so, this is an IOR of an AND, so split it into that. */
|
||
if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
|
||
&& (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
|
||
<= HOST_BITS_PER_WIDE_INT)
|
||
&& GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
|
||
&& GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
|
||
&& GET_CODE (SET_SRC (x)) == CONST_INT
|
||
&& ((INTVAL (XEXP (SET_DEST (x), 1))
|
||
+ INTVAL (XEXP (SET_DEST (x), 2)))
|
||
<= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
|
||
&& ! side_effects_p (XEXP (SET_DEST (x), 0)))
|
||
{
|
||
int pos = INTVAL (XEXP (SET_DEST (x), 2));
|
||
int len = INTVAL (XEXP (SET_DEST (x), 1));
|
||
int src = INTVAL (SET_SRC (x));
|
||
rtx dest = XEXP (SET_DEST (x), 0);
|
||
enum machine_mode mode = GET_MODE (dest);
|
||
unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
|
||
|
||
#if BITS_BIG_ENDIAN
|
||
pos = GET_MODE_BITSIZE (mode) - len - pos;
|
||
#endif
|
||
|
||
if (src == mask)
|
||
SUBST (SET_SRC (x),
|
||
gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
|
||
else
|
||
SUBST (SET_SRC (x),
|
||
gen_binary (IOR, mode,
|
||
gen_binary (AND, mode, dest,
|
||
GEN_INT (~ (mask << pos)
|
||
& GET_MODE_MASK (mode))),
|
||
GEN_INT (src << pos)));
|
||
|
||
SUBST (SET_DEST (x), dest);
|
||
|
||
split = find_split_point (&SET_SRC (x), insn);
|
||
if (split && split != &SET_SRC (x))
|
||
return split;
|
||
}
|
||
|
||
/* Otherwise, see if this is an operation that we can split into two.
|
||
If so, try to split that. */
|
||
code = GET_CODE (SET_SRC (x));
|
||
|
||
switch (code)
|
||
{
|
||
case AND:
|
||
/* If we are AND'ing with a large constant that is only a single
|
||
bit and the result is only being used in a context where we
|
||
need to know if it is zero or non-zero, replace it with a bit
|
||
extraction. This will avoid the large constant, which might
|
||
have taken more than one insn to make. If the constant were
|
||
not a valid argument to the AND but took only one insn to make,
|
||
this is no worse, but if it took more than one insn, it will
|
||
be better. */
|
||
|
||
if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
|
||
&& GET_CODE (XEXP (SET_SRC (x), 0)) == REG
|
||
&& (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
|
||
&& GET_CODE (SET_DEST (x)) == REG
|
||
&& (split = find_single_use (SET_DEST (x), insn, NULL_PTR)) != 0
|
||
&& (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
|
||
&& XEXP (*split, 0) == SET_DEST (x)
|
||
&& XEXP (*split, 1) == const0_rtx)
|
||
{
|
||
SUBST (SET_SRC (x),
|
||
make_extraction (GET_MODE (SET_DEST (x)),
|
||
XEXP (SET_SRC (x), 0),
|
||
pos, NULL_RTX, 1, 1, 0, 0));
|
||
return find_split_point (loc, insn);
|
||
}
|
||
break;
|
||
|
||
case SIGN_EXTEND:
|
||
inner = XEXP (SET_SRC (x), 0);
|
||
pos = 0;
|
||
len = GET_MODE_BITSIZE (GET_MODE (inner));
|
||
unsignedp = 0;
|
||
break;
|
||
|
||
case SIGN_EXTRACT:
|
||
case ZERO_EXTRACT:
|
||
if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
|
||
&& GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
|
||
{
|
||
inner = XEXP (SET_SRC (x), 0);
|
||
len = INTVAL (XEXP (SET_SRC (x), 1));
|
||
pos = INTVAL (XEXP (SET_SRC (x), 2));
|
||
|
||
#if BITS_BIG_ENDIAN
|
||
pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
|
||
#endif
|
||
unsignedp = (code == ZERO_EXTRACT);
|
||
}
|
||
break;
|
||
}
|
||
|
||
if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
|
||
{
|
||
enum machine_mode mode = GET_MODE (SET_SRC (x));
|
||
|
||
/* For unsigned, we have a choice of a shift followed by an
|
||
AND or two shifts. Use two shifts for field sizes where the
|
||
constant might be too large. We assume here that we can
|
||
always at least get 8-bit constants in an AND insn, which is
|
||
true for every current RISC. */
|
||
|
||
if (unsignedp && len <= 8)
|
||
{
|
||
SUBST (SET_SRC (x),
|
||
gen_rtx_combine
|
||
(AND, mode,
|
||
gen_rtx_combine (LSHIFTRT, mode,
|
||
gen_lowpart_for_combine (mode, inner),
|
||
GEN_INT (pos)),
|
||
GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
|
||
|
||
split = find_split_point (&SET_SRC (x), insn);
|
||
if (split && split != &SET_SRC (x))
|
||
return split;
|
||
}
|
||
else
|
||
{
|
||
SUBST (SET_SRC (x),
|
||
gen_rtx_combine
|
||
(unsignedp ? LSHIFTRT : ASHIFTRT, mode,
|
||
gen_rtx_combine (ASHIFT, mode,
|
||
gen_lowpart_for_combine (mode, inner),
|
||
GEN_INT (GET_MODE_BITSIZE (mode)
|
||
- len - pos)),
|
||
GEN_INT (GET_MODE_BITSIZE (mode) - len)));
|
||
|
||
split = find_split_point (&SET_SRC (x), insn);
|
||
if (split && split != &SET_SRC (x))
|
||
return split;
|
||
}
|
||
}
|
||
|
||
/* See if this is a simple operation with a constant as the second
|
||
operand. It might be that this constant is out of range and hence
|
||
could be used as a split point. */
|
||
if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
|
||
|| GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
|
||
|| GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<')
|
||
&& CONSTANT_P (XEXP (SET_SRC (x), 1))
|
||
&& (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x), 0))) == 'o'
|
||
|| (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
|
||
&& (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x), 0))))
|
||
== 'o'))))
|
||
return &XEXP (SET_SRC (x), 1);
|
||
|
||
/* Finally, see if this is a simple operation with its first operand
|
||
not in a register. The operation might require this operand in a
|
||
register, so return it as a split point. We can always do this
|
||
because if the first operand were another operation, we would have
|
||
already found it as a split point. */
|
||
if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
|
||
|| GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
|
||
|| GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<'
|
||
|| GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '1')
|
||
&& ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
|
||
return &XEXP (SET_SRC (x), 0);
|
||
|
||
return 0;
|
||
|
||
case AND:
|
||
case IOR:
|
||
/* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
|
||
it is better to write this as (not (ior A B)) so we can split it.
|
||
Similarly for IOR. */
|
||
if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
|
||
{
|
||
SUBST (*loc,
|
||
gen_rtx_combine (NOT, GET_MODE (x),
|
||
gen_rtx_combine (code == IOR ? AND : IOR,
|
||
GET_MODE (x),
|
||
XEXP (XEXP (x, 0), 0),
|
||
XEXP (XEXP (x, 1), 0))));
|
||
return find_split_point (loc, insn);
|
||
}
|
||
|
||
/* Many RISC machines have a large set of logical insns. If the
|
||
second operand is a NOT, put it first so we will try to split the
|
||
other operand first. */
|
||
if (GET_CODE (XEXP (x, 1)) == NOT)
|
||
{
|
||
rtx tem = XEXP (x, 0);
|
||
SUBST (XEXP (x, 0), XEXP (x, 1));
|
||
SUBST (XEXP (x, 1), tem);
|
||
}
|
||
break;
|
||
}
|
||
|
||
/* Otherwise, select our actions depending on our rtx class. */
|
||
switch (GET_RTX_CLASS (code))
|
||
{
|
||
case 'b': /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
|
||
case '3':
|
||
split = find_split_point (&XEXP (x, 2), insn);
|
||
if (split)
|
||
return split;
|
||
/* ... fall through ... */
|
||
case '2':
|
||
case 'c':
|
||
case '<':
|
||
split = find_split_point (&XEXP (x, 1), insn);
|
||
if (split)
|
||
return split;
|
||
/* ... fall through ... */
|
||
case '1':
|
||
/* Some machines have (and (shift ...) ...) insns. If X is not
|
||
an AND, but XEXP (X, 0) is, use it as our split point. */
|
||
if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
|
||
return &XEXP (x, 0);
|
||
|
||
split = find_split_point (&XEXP (x, 0), insn);
|
||
if (split)
|
||
return split;
|
||
return loc;
|
||
}
|
||
|
||
/* Otherwise, we don't have a split point. */
|
||
return 0;
|
||
}
|
||
|
||
/* Throughout X, replace FROM with TO, and return the result.
|
||
The result is TO if X is FROM;
|
||
otherwise the result is X, but its contents may have been modified.
|
||
If they were modified, a record was made in undobuf so that
|
||
undo_all will (among other things) return X to its original state.
|
||
|
||
If the number of changes necessary is too much to record to undo,
|
||
the excess changes are not made, so the result is invalid.
|
||
The changes already made can still be undone.
|
||
undobuf.num_undo is incremented for such changes, so by testing that
|
||
the caller can tell whether the result is valid.
|
||
|
||
`n_occurrences' is incremented each time FROM is replaced.
|
||
|
||
IN_DEST is non-zero if we are processing the SET_DEST of a SET.
|
||
|
||
UNIQUE_COPY is non-zero if each substitution must be unique. We do this
|
||
by copying if `n_occurrences' is non-zero. */
|
||
|
||
static rtx
|
||
subst (x, from, to, in_dest, unique_copy)
|
||
register rtx x, from, to;
|
||
int in_dest;
|
||
int unique_copy;
|
||
{
|
||
register enum rtx_code code = GET_CODE (x);
|
||
enum machine_mode op0_mode = VOIDmode;
|
||
register char *fmt;
|
||
register int len, i;
|
||
rtx new;
|
||
|
||
/* Two expressions are equal if they are identical copies of a shared
|
||
RTX or if they are both registers with the same register number
|
||
and mode. */
|
||
|
||
#define COMBINE_RTX_EQUAL_P(X,Y) \
|
||
((X) == (Y) \
|
||
|| (GET_CODE (X) == REG && GET_CODE (Y) == REG \
|
||
&& REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
|
||
|
||
if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
|
||
{
|
||
n_occurrences++;
|
||
return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
|
||
}
|
||
|
||
/* If X and FROM are the same register but different modes, they will
|
||
not have been seen as equal above. However, flow.c will make a
|
||
LOG_LINKS entry for that case. If we do nothing, we will try to
|
||
rerecognize our original insn and, when it succeeds, we will
|
||
delete the feeding insn, which is incorrect.
|
||
|
||
So force this insn not to match in this (rare) case. */
|
||
if (! in_dest && code == REG && GET_CODE (from) == REG
|
||
&& REGNO (x) == REGNO (from))
|
||
return gen_rtx (CLOBBER, GET_MODE (x), const0_rtx);
|
||
|
||
/* If this is an object, we are done unless it is a MEM or LO_SUM, both
|
||
of which may contain things that can be combined. */
|
||
if (code != MEM && code != LO_SUM && GET_RTX_CLASS (code) == 'o')
|
||
return x;
|
||
|
||
/* It is possible to have a subexpression appear twice in the insn.
|
||
Suppose that FROM is a register that appears within TO.
|
||
Then, after that subexpression has been scanned once by `subst',
|
||
the second time it is scanned, TO may be found. If we were
|
||
to scan TO here, we would find FROM within it and create a
|
||
self-referent rtl structure which is completely wrong. */
|
||
if (COMBINE_RTX_EQUAL_P (x, to))
|
||
return to;
|
||
|
||
len = GET_RTX_LENGTH (code);
|
||
fmt = GET_RTX_FORMAT (code);
|
||
|
||
/* We don't need to process a SET_DEST that is a register, CC0, or PC, so
|
||
set up to skip this common case. All other cases where we want to
|
||
suppress replacing something inside a SET_SRC are handled via the
|
||
IN_DEST operand. */
|
||
if (code == SET
|
||
&& (GET_CODE (SET_DEST (x)) == REG
|
||
|| GET_CODE (SET_DEST (x)) == CC0
|
||
|| GET_CODE (SET_DEST (x)) == PC))
|
||
fmt = "ie";
|
||
|
||
/* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a constant. */
|
||
if (fmt[0] == 'e')
|
||
op0_mode = GET_MODE (XEXP (x, 0));
|
||
|
||
for (i = 0; i < len; i++)
|
||
{
|
||
if (fmt[i] == 'E')
|
||
{
|
||
register int j;
|
||
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
||
{
|
||
if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
|
||
{
|
||
new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
|
||
n_occurrences++;
|
||
}
|
||
else
|
||
{
|
||
new = subst (XVECEXP (x, i, j), from, to, 0, unique_copy);
|
||
|
||
/* If this substitution failed, this whole thing fails. */
|
||
if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
|
||
return new;
|
||
}
|
||
|
||
SUBST (XVECEXP (x, i, j), new);
|
||
}
|
||
}
|
||
else if (fmt[i] == 'e')
|
||
{
|
||
if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
|
||
{
|
||
/* In general, don't install a subreg involving two modes not
|
||
tieable. It can worsen register allocation, and can even
|
||
make invalid reload insns, since the reg inside may need to
|
||
be copied from in the outside mode, and that may be invalid
|
||
if it is an fp reg copied in integer mode.
|
||
|
||
We allow two exceptions to this: It is valid if it is inside
|
||
another SUBREG and the mode of that SUBREG and the mode of
|
||
the inside of TO is tieable and it is valid if X is a SET
|
||
that copies FROM to CC0. */
|
||
if (GET_CODE (to) == SUBREG
|
||
&& ! MODES_TIEABLE_P (GET_MODE (to),
|
||
GET_MODE (SUBREG_REG (to)))
|
||
&& ! (code == SUBREG
|
||
&& MODES_TIEABLE_P (GET_MODE (x),
|
||
GET_MODE (SUBREG_REG (to))))
|
||
#ifdef HAVE_cc0
|
||
&& ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
|
||
#endif
|
||
)
|
||
return gen_rtx (CLOBBER, VOIDmode, const0_rtx);
|
||
|
||
new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
|
||
n_occurrences++;
|
||
}
|
||
else
|
||
/* If we are in a SET_DEST, suppress most cases unless we
|
||
have gone inside a MEM, in which case we want to
|
||
simplify the address. We assume here that things that
|
||
are actually part of the destination have their inner
|
||
parts in the first expression. This is true for SUBREG,
|
||
STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
|
||
things aside from REG and MEM that should appear in a
|
||
SET_DEST. */
|
||
new = subst (XEXP (x, i), from, to,
|
||
(((in_dest
|
||
&& (code == SUBREG || code == STRICT_LOW_PART
|
||
|| code == ZERO_EXTRACT))
|
||
|| code == SET)
|
||
&& i == 0), unique_copy);
|
||
|
||
/* If we found that we will have to reject this combination,
|
||
indicate that by returning the CLOBBER ourselves, rather than
|
||
an expression containing it. This will speed things up as
|
||
well as prevent accidents where two CLOBBERs are considered
|
||
to be equal, thus producing an incorrect simplification. */
|
||
|
||
if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
|
||
return new;
|
||
|
||
SUBST (XEXP (x, i), new);
|
||
}
|
||
}
|
||
|
||
/* Try to simplify X. If the simplification changed the code, it is likely
|
||
that further simplification will help, so loop, but limit the number
|
||
of repetitions that will be performed. */
|
||
|
||
for (i = 0; i < 4; i++)
|
||
{
|
||
/* If X is sufficiently simple, don't bother trying to do anything
|
||
with it. */
|
||
if (code != CONST_INT && code != REG && code != CLOBBER)
|
||
x = simplify_rtx (x, op0_mode, i == 3, in_dest);
|
||
|
||
if (GET_CODE (x) == code)
|
||
break;
|
||
|
||
code = GET_CODE (x);
|
||
|
||
/* We no longer know the original mode of operand 0 since we
|
||
have changed the form of X) */
|
||
op0_mode = VOIDmode;
|
||
}
|
||
|
||
return x;
|
||
}
|
||
|
||
/* Simplify X, a piece of RTL. We just operate on the expression at the
|
||
outer level; call `subst' to simplify recursively. Return the new
|
||
expression.
|
||
|
||
OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this
|
||
will be the iteration even if an expression with a code different from
|
||
X is returned; IN_DEST is nonzero if we are inside a SET_DEST. */
|
||
|
||
static rtx
|
||
simplify_rtx (x, op0_mode, last, in_dest)
|
||
rtx x;
|
||
enum machine_mode op0_mode;
|
||
int last;
|
||
int in_dest;
|
||
{
|
||
enum rtx_code code = GET_CODE (x);
|
||
enum machine_mode mode = GET_MODE (x);
|
||
rtx temp;
|
||
int i;
|
||
|
||
/* If this is a commutative operation, put a constant last and a complex
|
||
expression first. We don't need to do this for comparisons here. */
|
||
if (GET_RTX_CLASS (code) == 'c'
|
||
&& ((CONSTANT_P (XEXP (x, 0)) && GET_CODE (XEXP (x, 1)) != CONST_INT)
|
||
|| (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'o'
|
||
&& GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o')
|
||
|| (GET_CODE (XEXP (x, 0)) == SUBREG
|
||
&& GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == 'o'
|
||
&& GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o')))
|
||
{
|
||
temp = XEXP (x, 0);
|
||
SUBST (XEXP (x, 0), XEXP (x, 1));
|
||
SUBST (XEXP (x, 1), temp);
|
||
}
|
||
|
||
/* If this is a PLUS, MINUS, or MULT, and the first operand is the
|
||
sign extension of a PLUS with a constant, reverse the order of the sign
|
||
extension and the addition. Note that this not the same as the original
|
||
code, but overflow is undefined for signed values. Also note that the
|
||
PLUS will have been partially moved "inside" the sign-extension, so that
|
||
the first operand of X will really look like:
|
||
(ashiftrt (plus (ashift A C4) C5) C4).
|
||
We convert this to
|
||
(plus (ashiftrt (ashift A C4) C2) C4)
|
||
and replace the first operand of X with that expression. Later parts
|
||
of this function may simplify the expression further.
|
||
|
||
For example, if we start with (mult (sign_extend (plus A C1)) C2),
|
||
we swap the SIGN_EXTEND and PLUS. Later code will apply the
|
||
distributive law to produce (plus (mult (sign_extend X) C1) C3).
|
||
|
||
We do this to simplify address expressions. */
|
||
|
||
if ((code == PLUS || code == MINUS || code == MULT)
|
||
&& GET_CODE (XEXP (x, 0)) == ASHIFTRT
|
||
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
|
||
&& GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
|
||
&& GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
|
||
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
|
||
&& XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
|
||
&& GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
|
||
&& (temp = simplify_binary_operation (ASHIFTRT, mode,
|
||
XEXP (XEXP (XEXP (x, 0), 0), 1),
|
||
XEXP (XEXP (x, 0), 1))) != 0)
|
||
{
|
||
rtx new
|
||
= simplify_shift_const (NULL_RTX, ASHIFT, mode,
|
||
XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
|
||
INTVAL (XEXP (XEXP (x, 0), 1)));
|
||
|
||
new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
|
||
INTVAL (XEXP (XEXP (x, 0), 1)));
|
||
|
||
SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
|
||
}
|
||
|
||
/* If this is a simple operation applied to an IF_THEN_ELSE, try
|
||
applying it to the arms of the IF_THEN_ELSE. This often simplifies
|
||
things. Check for cases where both arms are testing the same
|
||
condition.
|
||
|
||
Don't do anything if all operands are very simple. */
|
||
|
||
if (((GET_RTX_CLASS (code) == '2' || GET_RTX_CLASS (code) == 'c'
|
||
|| GET_RTX_CLASS (code) == '<')
|
||
&& ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
|
||
&& ! (GET_CODE (XEXP (x, 0)) == SUBREG
|
||
&& (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
|
||
== 'o')))
|
||
|| (GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o'
|
||
&& ! (GET_CODE (XEXP (x, 1)) == SUBREG
|
||
&& (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 1))))
|
||
== 'o')))))
|
||
|| (GET_RTX_CLASS (code) == '1'
|
||
&& ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
|
||
&& ! (GET_CODE (XEXP (x, 0)) == SUBREG
|
||
&& (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
|
||
== 'o'))))))
|
||
{
|
||
rtx cond, true, false;
|
||
|
||
cond = if_then_else_cond (x, &true, &false);
|
||
if (cond != 0)
|
||
{
|
||
rtx cop1 = const0_rtx;
|
||
enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
|
||
|
||
/* Simplify the alternative arms; this may collapse the true and
|
||
false arms to store-flag values. */
|
||
true = subst (true, pc_rtx, pc_rtx, 0, 0);
|
||
false = subst (false, pc_rtx, pc_rtx, 0, 0);
|
||
|
||
/* Restarting if we generate a store-flag expression will cause
|
||
us to loop. Just drop through in this case. */
|
||
|
||
/* If the result values are STORE_FLAG_VALUE and zero, we can
|
||
just make the comparison operation. */
|
||
if (true == const_true_rtx && false == const0_rtx)
|
||
x = gen_binary (cond_code, mode, cond, cop1);
|
||
else if (true == const0_rtx && false == const_true_rtx)
|
||
x = gen_binary (reverse_condition (cond_code), mode, cond, cop1);
|
||
|
||
/* Likewise, we can make the negate of a comparison operation
|
||
if the result values are - STORE_FLAG_VALUE and zero. */
|
||
else if (GET_CODE (true) == CONST_INT
|
||
&& INTVAL (true) == - STORE_FLAG_VALUE
|
||
&& false == const0_rtx)
|
||
x = gen_unary (NEG, mode, mode,
|
||
gen_binary (cond_code, mode, cond, cop1));
|
||
else if (GET_CODE (false) == CONST_INT
|
||
&& INTVAL (false) == - STORE_FLAG_VALUE
|
||
&& true == const0_rtx)
|
||
x = gen_unary (NEG, mode, mode,
|
||
gen_binary (reverse_condition (cond_code),
|
||
mode, cond, cop1));
|
||
else
|
||
return gen_rtx (IF_THEN_ELSE, mode,
|
||
gen_binary (cond_code, VOIDmode, cond, cop1),
|
||
true, false);
|
||
|
||
code = GET_CODE (x);
|
||
op0_mode = VOIDmode;
|
||
}
|
||
}
|
||
|
||
/* Try to fold this expression in case we have constants that weren't
|
||
present before. */
|
||
temp = 0;
|
||
switch (GET_RTX_CLASS (code))
|
||
{
|
||
case '1':
|
||
temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
|
||
break;
|
||
case '<':
|
||
temp = simplify_relational_operation (code, op0_mode,
|
||
XEXP (x, 0), XEXP (x, 1));
|
||
#ifdef FLOAT_STORE_FLAG_VALUE
|
||
if (temp != 0 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
|
||
temp = ((temp == const0_rtx) ? CONST0_RTX (GET_MODE (x))
|
||
: immed_real_const_1 (FLOAT_STORE_FLAG_VALUE, GET_MODE (x)));
|
||
#endif
|
||
break;
|
||
case 'c':
|
||
case '2':
|
||
temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
|
||
break;
|
||
case 'b':
|
||
case '3':
|
||
temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
|
||
XEXP (x, 1), XEXP (x, 2));
|
||
break;
|
||
}
|
||
|
||
if (temp)
|
||
x = temp, code = GET_CODE (temp);
|
||
|
||
/* First see if we can apply the inverse distributive law. */
|
||
if (code == PLUS || code == MINUS
|
||
|| code == AND || code == IOR || code == XOR)
|
||
{
|
||
x = apply_distributive_law (x);
|
||
code = GET_CODE (x);
|
||
}
|
||
|
||
/* If CODE is an associative operation not otherwise handled, see if we
|
||
can associate some operands. This can win if they are constants or
|
||
if they are logically related (i.e. (a & b) & a. */
|
||
if ((code == PLUS || code == MINUS
|
||
|| code == MULT || code == AND || code == IOR || code == XOR
|
||
|| code == DIV || code == UDIV
|
||
|| code == SMAX || code == SMIN || code == UMAX || code == UMIN)
|
||
&& INTEGRAL_MODE_P (mode))
|
||
{
|
||
if (GET_CODE (XEXP (x, 0)) == code)
|
||
{
|
||
rtx other = XEXP (XEXP (x, 0), 0);
|
||
rtx inner_op0 = XEXP (XEXP (x, 0), 1);
|
||
rtx inner_op1 = XEXP (x, 1);
|
||
rtx inner;
|
||
|
||
/* Make sure we pass the constant operand if any as the second
|
||
one if this is a commutative operation. */
|
||
if (CONSTANT_P (inner_op0) && GET_RTX_CLASS (code) == 'c')
|
||
{
|
||
rtx tem = inner_op0;
|
||
inner_op0 = inner_op1;
|
||
inner_op1 = tem;
|
||
}
|
||
inner = simplify_binary_operation (code == MINUS ? PLUS
|
||
: code == DIV ? MULT
|
||
: code == UDIV ? MULT
|
||
: code,
|
||
mode, inner_op0, inner_op1);
|
||
|
||
/* For commutative operations, try the other pair if that one
|
||
didn't simplify. */
|
||
if (inner == 0 && GET_RTX_CLASS (code) == 'c')
|
||
{
|
||
other = XEXP (XEXP (x, 0), 1);
|
||
inner = simplify_binary_operation (code, mode,
|
||
XEXP (XEXP (x, 0), 0),
|
||
XEXP (x, 1));
|
||
}
|
||
|
||
if (inner)
|
||
return gen_binary (code, mode, other, inner);
|
||
}
|
||
}
|
||
|
||
/* A little bit of algebraic simplification here. */
|
||
switch (code)
|
||
{
|
||
case MEM:
|
||
/* Ensure that our address has any ASHIFTs converted to MULT in case
|
||
address-recognizing predicates are called later. */
|
||
temp = make_compound_operation (XEXP (x, 0), MEM);
|
||
SUBST (XEXP (x, 0), temp);
|
||
break;
|
||
|
||
case SUBREG:
|
||
/* (subreg:A (mem:B X) N) becomes a modified MEM unless the SUBREG
|
||
is paradoxical. If we can't do that safely, then it becomes
|
||
something nonsensical so that this combination won't take place. */
|
||
|
||
if (GET_CODE (SUBREG_REG (x)) == MEM
|
||
&& (GET_MODE_SIZE (mode)
|
||
<= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
|
||
{
|
||
rtx inner = SUBREG_REG (x);
|
||
int endian_offset = 0;
|
||
/* Don't change the mode of the MEM
|
||
if that would change the meaning of the address. */
|
||
if (MEM_VOLATILE_P (SUBREG_REG (x))
|
||
|| mode_dependent_address_p (XEXP (inner, 0)))
|
||
return gen_rtx (CLOBBER, mode, const0_rtx);
|
||
|
||
#if BYTES_BIG_ENDIAN
|
||
if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
|
||
endian_offset += UNITS_PER_WORD - GET_MODE_SIZE (mode);
|
||
if (GET_MODE_SIZE (GET_MODE (inner)) < UNITS_PER_WORD)
|
||
endian_offset -= UNITS_PER_WORD - GET_MODE_SIZE (GET_MODE (inner));
|
||
#endif
|
||
/* Note if the plus_constant doesn't make a valid address
|
||
then this combination won't be accepted. */
|
||
x = gen_rtx (MEM, mode,
|
||
plus_constant (XEXP (inner, 0),
|
||
(SUBREG_WORD (x) * UNITS_PER_WORD
|
||
+ endian_offset)));
|
||
MEM_VOLATILE_P (x) = MEM_VOLATILE_P (inner);
|
||
RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (inner);
|
||
MEM_IN_STRUCT_P (x) = MEM_IN_STRUCT_P (inner);
|
||
return x;
|
||
}
|
||
|
||
/* If we are in a SET_DEST, these other cases can't apply. */
|
||
if (in_dest)
|
||
return x;
|
||
|
||
/* Changing mode twice with SUBREG => just change it once,
|
||
or not at all if changing back to starting mode. */
|
||
if (GET_CODE (SUBREG_REG (x)) == SUBREG)
|
||
{
|
||
if (mode == GET_MODE (SUBREG_REG (SUBREG_REG (x)))
|
||
&& SUBREG_WORD (x) == 0 && SUBREG_WORD (SUBREG_REG (x)) == 0)
|
||
return SUBREG_REG (SUBREG_REG (x));
|
||
|
||
SUBST_INT (SUBREG_WORD (x),
|
||
SUBREG_WORD (x) + SUBREG_WORD (SUBREG_REG (x)));
|
||
SUBST (SUBREG_REG (x), SUBREG_REG (SUBREG_REG (x)));
|
||
}
|
||
|
||
/* SUBREG of a hard register => just change the register number
|
||
and/or mode. If the hard register is not valid in that mode,
|
||
suppress this combination. If the hard register is the stack,
|
||
frame, or argument pointer, leave this as a SUBREG. */
|
||
|
||
if (GET_CODE (SUBREG_REG (x)) == REG
|
||
&& REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
|
||
&& REGNO (SUBREG_REG (x)) != FRAME_POINTER_REGNUM
|
||
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
|
||
&& REGNO (SUBREG_REG (x)) != HARD_FRAME_POINTER_REGNUM
|
||
#endif
|
||
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
|
||
&& REGNO (SUBREG_REG (x)) != ARG_POINTER_REGNUM
|
||
#endif
|
||
&& REGNO (SUBREG_REG (x)) != STACK_POINTER_REGNUM)
|
||
{
|
||
if (HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (x)) + SUBREG_WORD (x),
|
||
mode))
|
||
return gen_rtx (REG, mode,
|
||
REGNO (SUBREG_REG (x)) + SUBREG_WORD (x));
|
||
else
|
||
return gen_rtx (CLOBBER, mode, const0_rtx);
|
||
}
|
||
|
||
/* For a constant, try to pick up the part we want. Handle a full
|
||
word and low-order part. Only do this if we are narrowing
|
||
the constant; if it is being widened, we have no idea what
|
||
the extra bits will have been set to. */
|
||
|
||
if (CONSTANT_P (SUBREG_REG (x)) && op0_mode != VOIDmode
|
||
&& GET_MODE_SIZE (mode) == UNITS_PER_WORD
|
||
&& GET_MODE_SIZE (op0_mode) < UNITS_PER_WORD
|
||
&& GET_MODE_CLASS (mode) == MODE_INT)
|
||
{
|
||
temp = operand_subword (SUBREG_REG (x), SUBREG_WORD (x),
|
||
0, op0_mode);
|
||
if (temp)
|
||
return temp;
|
||
}
|
||
|
||
/* If we want a subreg of a constant, at offset 0,
|
||
take the low bits. On a little-endian machine, that's
|
||
always valid. On a big-endian machine, it's valid
|
||
only if the constant's mode fits in one word. */
|
||
if (CONSTANT_P (SUBREG_REG (x)) && subreg_lowpart_p (x)
|
||
&& GET_MODE_SIZE (mode) < GET_MODE_SIZE (op0_mode)
|
||
#if WORDS_BIG_ENDIAN
|
||
&& GET_MODE_BITSIZE (op0_mode) <= BITS_PER_WORD
|
||
#endif
|
||
)
|
||
return gen_lowpart_for_combine (mode, SUBREG_REG (x));
|
||
|
||
/* A paradoxical SUBREG of a VOIDmode constant is the same constant,
|
||
since we are saying that the high bits don't matter. */
|
||
if (CONSTANT_P (SUBREG_REG (x)) && GET_MODE (SUBREG_REG (x)) == VOIDmode
|
||
&& GET_MODE_SIZE (mode) > GET_MODE_SIZE (op0_mode))
|
||
return SUBREG_REG (x);
|
||
|
||
/* Note that we cannot do any narrowing for non-constants since
|
||
we might have been counting on using the fact that some bits were
|
||
zero. We now do this in the SET. */
|
||
|
||
break;
|
||
|
||
case NOT:
|
||
/* (not (plus X -1)) can become (neg X). */
|
||
if (GET_CODE (XEXP (x, 0)) == PLUS
|
||
&& XEXP (XEXP (x, 0), 1) == constm1_rtx)
|
||
return gen_rtx_combine (NEG, mode, XEXP (XEXP (x, 0), 0));
|
||
|
||
/* Similarly, (not (neg X)) is (plus X -1). */
|
||
if (GET_CODE (XEXP (x, 0)) == NEG)
|
||
return gen_rtx_combine (PLUS, mode, XEXP (XEXP (x, 0), 0),
|
||
constm1_rtx);
|
||
|
||
/* (not (xor X C)) for C constant is (xor X D) with D = ~ C. */
|
||
if (GET_CODE (XEXP (x, 0)) == XOR
|
||
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
|
||
&& (temp = simplify_unary_operation (NOT, mode,
|
||
XEXP (XEXP (x, 0), 1),
|
||
mode)) != 0)
|
||
return gen_binary (XOR, mode, XEXP (XEXP (x, 0), 0), temp);
|
||
|
||
/* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for operands
|
||
other than 1, but that is not valid. We could do a similar
|
||
simplification for (not (lshiftrt C X)) where C is just the sign bit,
|
||
but this doesn't seem common enough to bother with. */
|
||
if (GET_CODE (XEXP (x, 0)) == ASHIFT
|
||
&& XEXP (XEXP (x, 0), 0) == const1_rtx)
|
||
return gen_rtx (ROTATE, mode, gen_unary (NOT, mode, mode, const1_rtx),
|
||
XEXP (XEXP (x, 0), 1));
|
||
|
||
if (GET_CODE (XEXP (x, 0)) == SUBREG
|
||
&& subreg_lowpart_p (XEXP (x, 0))
|
||
&& (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
|
||
< GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
|
||
&& GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
|
||
&& XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
|
||
{
|
||
enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
|
||
|
||
x = gen_rtx (ROTATE, inner_mode,
|
||
gen_unary (NOT, inner_mode, inner_mode, const1_rtx),
|
||
XEXP (SUBREG_REG (XEXP (x, 0)), 1));
|
||
return gen_lowpart_for_combine (mode, x);
|
||
}
|
||
|
||
#if STORE_FLAG_VALUE == -1
|
||
/* (not (comparison foo bar)) can be done by reversing the comparison
|
||
code if valid. */
|
||
if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
|
||
&& reversible_comparison_p (XEXP (x, 0)))
|
||
return gen_rtx_combine (reverse_condition (GET_CODE (XEXP (x, 0))),
|
||
mode, XEXP (XEXP (x, 0), 0),
|
||
XEXP (XEXP (x, 0), 1));
|
||
|
||
/* (ashiftrt foo C) where C is the number of bits in FOO minus 1
|
||
is (lt foo (const_int 0)), so we can perform the above
|
||
simplification. */
|
||
|
||
if (XEXP (x, 1) == const1_rtx
|
||
&& GET_CODE (XEXP (x, 0)) == ASHIFTRT
|
||
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
|
||
&& INTVAL (XEXP (XEXP (x, 0), 1)) == GET_MODE_BITSIZE (mode) - 1)
|
||
return gen_rtx_combine (GE, mode, XEXP (XEXP (x, 0), 0), const0_rtx);
|
||
#endif
|
||
|
||
/* Apply De Morgan's laws to reduce number of patterns for machines
|
||
with negating logical insns (and-not, nand, etc.). If result has
|
||
only one NOT, put it first, since that is how the patterns are
|
||
coded. */
|
||
|
||
if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
|
||
{
|
||
rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
|
||
|
||
if (GET_CODE (in1) == NOT)
|
||
in1 = XEXP (in1, 0);
|
||
else
|
||
in1 = gen_rtx_combine (NOT, GET_MODE (in1), in1);
|
||
|
||
if (GET_CODE (in2) == NOT)
|
||
in2 = XEXP (in2, 0);
|
||
else if (GET_CODE (in2) == CONST_INT
|
||
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
|
||
in2 = GEN_INT (GET_MODE_MASK (mode) & ~ INTVAL (in2));
|
||
else
|
||
in2 = gen_rtx_combine (NOT, GET_MODE (in2), in2);
|
||
|
||
if (GET_CODE (in2) == NOT)
|
||
{
|
||
rtx tem = in2;
|
||
in2 = in1; in1 = tem;
|
||
}
|
||
|
||
return gen_rtx_combine (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
|
||
mode, in1, in2);
|
||
}
|
||
break;
|
||
|
||
case NEG:
|
||
/* (neg (plus X 1)) can become (not X). */
|
||
if (GET_CODE (XEXP (x, 0)) == PLUS
|
||
&& XEXP (XEXP (x, 0), 1) == const1_rtx)
|
||
return gen_rtx_combine (NOT, mode, XEXP (XEXP (x, 0), 0));
|
||
|
||
/* Similarly, (neg (not X)) is (plus X 1). */
|
||
if (GET_CODE (XEXP (x, 0)) == NOT)
|
||
return plus_constant (XEXP (XEXP (x, 0), 0), 1);
|
||
|
||
/* (neg (minus X Y)) can become (minus Y X). */
|
||
if (GET_CODE (XEXP (x, 0)) == MINUS
|
||
&& (! FLOAT_MODE_P (mode)
|
||
/* x-y != -(y-x) with IEEE floating point. */
|
||
|| TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
|
||
|| flag_fast_math))
|
||
return gen_binary (MINUS, mode, XEXP (XEXP (x, 0), 1),
|
||
XEXP (XEXP (x, 0), 0));
|
||
|
||
/* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
|
||
if (GET_CODE (XEXP (x, 0)) == XOR && XEXP (XEXP (x, 0), 1) == const1_rtx
|
||
&& nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
|
||
return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
|
||
|
||
/* NEG commutes with ASHIFT since it is multiplication. Only do this
|
||
if we can then eliminate the NEG (e.g.,
|
||
if the operand is a constant). */
|
||
|
||
if (GET_CODE (XEXP (x, 0)) == ASHIFT)
|
||
{
|
||
temp = simplify_unary_operation (NEG, mode,
|
||
XEXP (XEXP (x, 0), 0), mode);
|
||
if (temp)
|
||
{
|
||
SUBST (XEXP (XEXP (x, 0), 0), temp);
|
||
return XEXP (x, 0);
|
||
}
|
||
}
|
||
|
||
temp = expand_compound_operation (XEXP (x, 0));
|
||
|
||
/* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
|
||
replaced by (lshiftrt X C). This will convert
|
||
(neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
|
||
|
||
if (GET_CODE (temp) == ASHIFTRT
|
||
&& GET_CODE (XEXP (temp, 1)) == CONST_INT
|
||
&& INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
|
||
return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
|
||
INTVAL (XEXP (temp, 1)));
|
||
|
||
/* If X has only a single bit that might be nonzero, say, bit I, convert
|
||
(neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
|
||
MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
|
||
(sign_extract X 1 Y). But only do this if TEMP isn't a register
|
||
or a SUBREG of one since we'd be making the expression more
|
||
complex if it was just a register. */
|
||
|
||
if (GET_CODE (temp) != REG
|
||
&& ! (GET_CODE (temp) == SUBREG
|
||
&& GET_CODE (SUBREG_REG (temp)) == REG)
|
||
&& (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
|
||
{
|
||
rtx temp1 = simplify_shift_const
|
||
(NULL_RTX, ASHIFTRT, mode,
|
||
simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
|
||
GET_MODE_BITSIZE (mode) - 1 - i),
|
||
GET_MODE_BITSIZE (mode) - 1 - i);
|
||
|
||
/* If all we did was surround TEMP with the two shifts, we
|
||
haven't improved anything, so don't use it. Otherwise,
|
||
we are better off with TEMP1. */
|
||
if (GET_CODE (temp1) != ASHIFTRT
|
||
|| GET_CODE (XEXP (temp1, 0)) != ASHIFT
|
||
|| XEXP (XEXP (temp1, 0), 0) != temp)
|
||
return temp1;
|
||
}
|
||
break;
|
||
|
||
case FLOAT_TRUNCATE:
|
||
/* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
|
||
if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
|
||
&& GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
|
||
return XEXP (XEXP (x, 0), 0);
|
||
|
||
/* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
|
||
(OP:SF foo:SF) if OP is NEG or ABS. */
|
||
if ((GET_CODE (XEXP (x, 0)) == ABS
|
||
|| GET_CODE (XEXP (x, 0)) == NEG)
|
||
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
|
||
&& GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
|
||
return gen_unary (GET_CODE (XEXP (x, 0)), mode, mode,
|
||
XEXP (XEXP (XEXP (x, 0), 0), 0));
|
||
|
||
/* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
|
||
is (float_truncate:SF x). */
|
||
if (GET_CODE (XEXP (x, 0)) == SUBREG
|
||
&& subreg_lowpart_p (XEXP (x, 0))
|
||
&& GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
|
||
return SUBREG_REG (XEXP (x, 0));
|
||
break;
|
||
|
||
#ifdef HAVE_cc0
|
||
case COMPARE:
|
||
/* Convert (compare FOO (const_int 0)) to FOO unless we aren't
|
||
using cc0, in which case we want to leave it as a COMPARE
|
||
so we can distinguish it from a register-register-copy. */
|
||
if (XEXP (x, 1) == const0_rtx)
|
||
return XEXP (x, 0);
|
||
|
||
/* In IEEE floating point, x-0 is not the same as x. */
|
||
if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
|
||
|| ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0)))
|
||
|| flag_fast_math)
|
||
&& XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
|
||
return XEXP (x, 0);
|
||
break;
|
||
#endif
|
||
|
||
case CONST:
|
||
/* (const (const X)) can become (const X). Do it this way rather than
|
||
returning the inner CONST since CONST can be shared with a
|
||
REG_EQUAL note. */
|
||
if (GET_CODE (XEXP (x, 0)) == CONST)
|
||
SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
|
||
break;
|
||
|
||
#ifdef HAVE_lo_sum
|
||
case LO_SUM:
|
||
/* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
|
||
can add in an offset. find_split_point will split this address up
|
||
again if it doesn't match. */
|
||
if (GET_CODE (XEXP (x, 0)) == HIGH
|
||
&& rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
|
||
return XEXP (x, 1);
|
||
break;
|
||
#endif
|
||
|
||
case PLUS:
|
||
/* If we have (plus (plus (A const) B)), associate it so that CONST is
|
||
outermost. That's because that's the way indexed addresses are
|
||
supposed to appear. This code used to check many more cases, but
|
||
they are now checked elsewhere. */
|
||
if (GET_CODE (XEXP (x, 0)) == PLUS
|
||
&& CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
|
||
return gen_binary (PLUS, mode,
|
||
gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
|
||
XEXP (x, 1)),
|
||
XEXP (XEXP (x, 0), 1));
|
||
|
||
/* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
|
||
when c is (const_int (pow2 + 1) / 2) is a sign extension of a
|
||
bit-field and can be replaced by either a sign_extend or a
|
||
sign_extract. The `and' may be a zero_extend. */
|
||
if (GET_CODE (XEXP (x, 0)) == XOR
|
||
&& GET_CODE (XEXP (x, 1)) == CONST_INT
|
||
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
|
||
&& INTVAL (XEXP (x, 1)) == - INTVAL (XEXP (XEXP (x, 0), 1))
|
||
&& (i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
|
||
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
|
||
&& ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
|
||
&& GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
|
||
&& (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
|
||
== ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
|
||
|| (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
|
||
&& (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
|
||
== i + 1))))
|
||
return simplify_shift_const
|
||
(NULL_RTX, ASHIFTRT, mode,
|
||
simplify_shift_const (NULL_RTX, ASHIFT, mode,
|
||
XEXP (XEXP (XEXP (x, 0), 0), 0),
|
||
GET_MODE_BITSIZE (mode) - (i + 1)),
|
||
GET_MODE_BITSIZE (mode) - (i + 1));
|
||
|
||
/* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
|
||
C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
|
||
is 1. This produces better code than the alternative immediately
|
||
below. */
|
||
if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
|
||
&& reversible_comparison_p (XEXP (x, 0))
|
||
&& ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
|
||
|| (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx)))
|
||
return
|
||
gen_unary (NEG, mode, mode,
|
||
gen_binary (reverse_condition (GET_CODE (XEXP (x, 0))),
|
||
mode, XEXP (XEXP (x, 0), 0),
|
||
XEXP (XEXP (x, 0), 1)));
|
||
|
||
/* If only the low-order bit of X is possibly nonzero, (plus x -1)
|
||
can become (ashiftrt (ashift (xor x 1) C) C) where C is
|
||
the bitsize of the mode - 1. This allows simplification of
|
||
"a = (b & 8) == 0;" */
|
||
if (XEXP (x, 1) == constm1_rtx
|
||
&& GET_CODE (XEXP (x, 0)) != REG
|
||
&& ! (GET_CODE (XEXP (x,0)) == SUBREG
|
||
&& GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG)
|
||
&& nonzero_bits (XEXP (x, 0), mode) == 1)
|
||
return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
|
||
simplify_shift_const (NULL_RTX, ASHIFT, mode,
|
||
gen_rtx_combine (XOR, mode,
|
||
XEXP (x, 0), const1_rtx),
|
||
GET_MODE_BITSIZE (mode) - 1),
|
||
GET_MODE_BITSIZE (mode) - 1);
|
||
|
||
/* If we are adding two things that have no bits in common, convert
|
||
the addition into an IOR. This will often be further simplified,
|
||
for example in cases like ((a & 1) + (a & 2)), which can
|
||
become a & 3. */
|
||
|
||
if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
|
||
&& (nonzero_bits (XEXP (x, 0), mode)
|
||
& nonzero_bits (XEXP (x, 1), mode)) == 0)
|
||
return gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
|
||
break;
|
||
|
||
case MINUS:
|
||
#if STORE_FLAG_VALUE == 1
|
||
/* (minus 1 (comparison foo bar)) can be done by reversing the comparison
|
||
code if valid. */
|
||
if (XEXP (x, 0) == const1_rtx
|
||
&& GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == '<'
|
||
&& reversible_comparison_p (XEXP (x, 1)))
|
||
return gen_binary (reverse_condition (GET_CODE (XEXP (x, 1))),
|
||
mode, XEXP (XEXP (x, 1), 0),
|
||
XEXP (XEXP (x, 1), 1));
|
||
#endif
|
||
|
||
/* (minus <foo> (and <foo> (const_int -pow2))) becomes
|
||
(and <foo> (const_int pow2-1)) */
|
||
if (GET_CODE (XEXP (x, 1)) == AND
|
||
&& GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
|
||
&& exact_log2 (- INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
|
||
&& rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
|
||
return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
|
||
- INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
|
||
|
||
/* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
|
||
integers. */
|
||
if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
|
||
return gen_binary (MINUS, mode,
|
||
gen_binary (MINUS, mode, XEXP (x, 0),
|
||
XEXP (XEXP (x, 1), 0)),
|
||
XEXP (XEXP (x, 1), 1));
|
||
break;
|
||
|
||
case MULT:
|
||
/* If we have (mult (plus A B) C), apply the distributive law and then
|
||
the inverse distributive law to see if things simplify. This
|
||
occurs mostly in addresses, often when unrolling loops. */
|
||
|
||
if (GET_CODE (XEXP (x, 0)) == PLUS)
|
||
{
|
||
x = apply_distributive_law
|
||
(gen_binary (PLUS, mode,
|
||
gen_binary (MULT, mode,
|
||
XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
|
||
gen_binary (MULT, mode,
|
||
XEXP (XEXP (x, 0), 1), XEXP (x, 1))));
|
||
|
||
if (GET_CODE (x) != MULT)
|
||
return x;
|
||
}
|
||
break;
|
||
|
||
case UDIV:
|
||
/* If this is a divide by a power of two, treat it as a shift if
|
||
its first operand is a shift. */
|
||
if (GET_CODE (XEXP (x, 1)) == CONST_INT
|
||
&& (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
|
||
&& (GET_CODE (XEXP (x, 0)) == ASHIFT
|
||
|| GET_CODE (XEXP (x, 0)) == LSHIFTRT
|
||
|| GET_CODE (XEXP (x, 0)) == ASHIFTRT
|
||
|| GET_CODE (XEXP (x, 0)) == ROTATE
|
||
|| GET_CODE (XEXP (x, 0)) == ROTATERT))
|
||
return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
|
||
break;
|
||
|
||
case EQ: case NE:
|
||
case GT: case GTU: case GE: case GEU:
|
||
case LT: case LTU: case LE: case LEU:
|
||
/* If the first operand is a condition code, we can't do anything
|
||
with it. */
|
||
if (GET_CODE (XEXP (x, 0)) == COMPARE
|
||
|| (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
|
||
#ifdef HAVE_cc0
|
||
&& XEXP (x, 0) != cc0_rtx
|
||
#endif
|
||
))
|
||
{
|
||
rtx op0 = XEXP (x, 0);
|
||
rtx op1 = XEXP (x, 1);
|
||
enum rtx_code new_code;
|
||
|
||
if (GET_CODE (op0) == COMPARE)
|
||
op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
|
||
|
||
/* Simplify our comparison, if possible. */
|
||
new_code = simplify_comparison (code, &op0, &op1);
|
||
|
||
#if STORE_FLAG_VALUE == 1
|
||
/* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
|
||
if only the low-order bit is possibly nonzero in X (such as when
|
||
X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
|
||
(xor X 1) or (minus 1 X); we use the former. Finally, if X is
|
||
known to be either 0 or -1, NE becomes a NEG and EQ becomes
|
||
(plus X 1).
|
||
|
||
Remove any ZERO_EXTRACT we made when thinking this was a
|
||
comparison. It may now be simpler to use, e.g., an AND. If a
|
||
ZERO_EXTRACT is indeed appropriate, it will be placed back by
|
||
the call to make_compound_operation in the SET case. */
|
||
|
||
if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
|
||
&& op1 == const0_rtx
|
||
&& nonzero_bits (op0, mode) == 1)
|
||
return gen_lowpart_for_combine (mode,
|
||
expand_compound_operation (op0));
|
||
|
||
else if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
|
||
&& op1 == const0_rtx
|
||
&& (num_sign_bit_copies (op0, mode)
|
||
== GET_MODE_BITSIZE (mode)))
|
||
{
|
||
op0 = expand_compound_operation (op0);
|
||
return gen_unary (NEG, mode, mode,
|
||
gen_lowpart_for_combine (mode, op0));
|
||
}
|
||
|
||
else if (new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
|
||
&& op1 == const0_rtx
|
||
&& nonzero_bits (op0, mode) == 1)
|
||
{
|
||
op0 = expand_compound_operation (op0);
|
||
return gen_binary (XOR, mode,
|
||
gen_lowpart_for_combine (mode, op0),
|
||
const1_rtx);
|
||
}
|
||
|
||
else if (new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
|
||
&& op1 == const0_rtx
|
||
&& (num_sign_bit_copies (op0, mode)
|
||
== GET_MODE_BITSIZE (mode)))
|
||
{
|
||
op0 = expand_compound_operation (op0);
|
||
return plus_constant (gen_lowpart_for_combine (mode, op0), 1);
|
||
}
|
||
#endif
|
||
|
||
#if STORE_FLAG_VALUE == -1
|
||
/* If STORE_FLAG_VALUE is -1, we have cases similar to
|
||
those above. */
|
||
if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
|
||
&& op1 == const0_rtx
|
||
&& (num_sign_bit_copies (op0, mode)
|
||
== GET_MODE_BITSIZE (mode)))
|
||
return gen_lowpart_for_combine (mode,
|
||
expand_compound_operation (op0));
|
||
|
||
else if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
|
||
&& op1 == const0_rtx
|
||
&& nonzero_bits (op0, mode) == 1)
|
||
{
|
||
op0 = expand_compound_operation (op0);
|
||
return gen_unary (NEG, mode, mode,
|
||
gen_lowpart_for_combine (mode, op0));
|
||
}
|
||
|
||
else if (new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
|
||
&& op1 == const0_rtx
|
||
&& (num_sign_bit_copies (op0, mode)
|
||
== GET_MODE_BITSIZE (mode)))
|
||
{
|
||
op0 = expand_compound_operation (op0);
|
||
return gen_unary (NOT, mode, mode,
|
||
gen_lowpart_for_combine (mode, op0));
|
||
}
|
||
|
||
/* If X is 0/1, (eq X 0) is X-1. */
|
||
else if (new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
|
||
&& op1 == const0_rtx
|
||
&& nonzero_bits (op0, mode) == 1)
|
||
{
|
||
op0 = expand_compound_operation (op0);
|
||
return plus_constant (gen_lowpart_for_combine (mode, op0), -1);
|
||
}
|
||
#endif
|
||
|
||
/* If STORE_FLAG_VALUE says to just test the sign bit and X has just
|
||
one bit that might be nonzero, we can convert (ne x 0) to
|
||
(ashift x c) where C puts the bit in the sign bit. Remove any
|
||
AND with STORE_FLAG_VALUE when we are done, since we are only
|
||
going to test the sign bit. */
|
||
if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
|
||
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
|
||
&& (STORE_FLAG_VALUE
|
||
== (HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
|
||
&& op1 == const0_rtx
|
||
&& mode == GET_MODE (op0)
|
||
&& (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
|
||
{
|
||
x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
|
||
expand_compound_operation (op0),
|
||
GET_MODE_BITSIZE (mode) - 1 - i);
|
||
if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
|
||
return XEXP (x, 0);
|
||
else
|
||
return x;
|
||
}
|
||
|
||
/* If the code changed, return a whole new comparison. */
|
||
if (new_code != code)
|
||
return gen_rtx_combine (new_code, mode, op0, op1);
|
||
|
||
/* Otherwise, keep this operation, but maybe change its operands.
|
||
This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
|
||
SUBST (XEXP (x, 0), op0);
|
||
SUBST (XEXP (x, 1), op1);
|
||
}
|
||
break;
|
||
|
||
case IF_THEN_ELSE:
|
||
return simplify_if_then_else (x);
|
||
|
||
case ZERO_EXTRACT:
|
||
case SIGN_EXTRACT:
|
||
case ZERO_EXTEND:
|
||
case SIGN_EXTEND:
|
||
/* If we are processing SET_DEST, we are done. */
|
||
if (in_dest)
|
||
return x;
|
||
|
||
return expand_compound_operation (x);
|
||
|
||
case SET:
|
||
return simplify_set (x);
|
||
|
||
case AND:
|
||
case IOR:
|
||
case XOR:
|
||
return simplify_logical (x, last);
|
||
|
||
case ABS:
|
||
/* (abs (neg <foo>)) -> (abs <foo>) */
|
||
if (GET_CODE (XEXP (x, 0)) == NEG)
|
||
SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
|
||
|
||
/* If operand is something known to be positive, ignore the ABS. */
|
||
if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
|
||
|| ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
|
||
<= HOST_BITS_PER_WIDE_INT)
|
||
&& ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
|
||
& ((HOST_WIDE_INT) 1
|
||
<< (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
|
||
== 0)))
|
||
return XEXP (x, 0);
|
||
|
||
|
||
/* If operand is known to be only -1 or 0, convert ABS to NEG. */
|
||
if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
|
||
return gen_rtx_combine (NEG, mode, XEXP (x, 0));
|
||
|
||
break;
|
||
|
||
case FFS:
|
||
/* (ffs (*_extend <X>)) = (ffs <X>) */
|
||
if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
|
||
|| GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
|
||
SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
|
||
break;
|
||
|
||
case FLOAT:
|
||
/* (float (sign_extend <X>)) = (float <X>). */
|
||
if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
|
||
SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
|
||
break;
|
||
|
||
case ASHIFT:
|
||
case LSHIFTRT:
|
||
case ASHIFTRT:
|
||
case ROTATE:
|
||
case ROTATERT:
|
||
/* If this is a shift by a constant amount, simplify it. */
|
||
if (GET_CODE (XEXP (x, 1)) == CONST_INT)
|
||
return simplify_shift_const (x, code, mode, XEXP (x, 0),
|
||
INTVAL (XEXP (x, 1)));
|
||
|
||
#ifdef SHIFT_COUNT_TRUNCATED
|
||
else if (SHIFT_COUNT_TRUNCATED && GET_CODE (XEXP (x, 1)) != REG)
|
||
SUBST (XEXP (x, 1),
|
||
force_to_mode (XEXP (x, 1), GET_MODE (x),
|
||
((HOST_WIDE_INT) 1
|
||
<< exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
|
||
- 1,
|
||
NULL_RTX, 0));
|
||
#endif
|
||
|
||
break;
|
||
}
|
||
|
||
return x;
|
||
}
|
||
|
||
/* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
|
||
|
||
static rtx
|
||
simplify_if_then_else (x)
|
||
rtx x;
|
||
{
|
||
enum machine_mode mode = GET_MODE (x);
|
||
rtx cond = XEXP (x, 0);
|
||
rtx true = XEXP (x, 1);
|
||
rtx false = XEXP (x, 2);
|
||
enum rtx_code true_code = GET_CODE (cond);
|
||
int comparison_p = GET_RTX_CLASS (true_code) == '<';
|
||
rtx temp;
|
||
int i;
|
||
|
||
/* Simplify storing of the truth value. */
|
||
if (comparison_p && true == const_true_rtx && false == const0_rtx)
|
||
return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
|
||
|
||
/* Also when the truth value has to be reversed. */
|
||
if (comparison_p && reversible_comparison_p (cond)
|
||
&& true == const0_rtx && false == const_true_rtx)
|
||
return gen_binary (reverse_condition (true_code),
|
||
mode, XEXP (cond, 0), XEXP (cond, 1));
|
||
|
||
/* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
|
||
in it is being compared against certain values. Get the true and false
|
||
comparisons and see if that says anything about the value of each arm. */
|
||
|
||
if (comparison_p && reversible_comparison_p (cond)
|
||
&& GET_CODE (XEXP (cond, 0)) == REG)
|
||
{
|
||
HOST_WIDE_INT nzb;
|
||
rtx from = XEXP (cond, 0);
|
||
enum rtx_code false_code = reverse_condition (true_code);
|
||
rtx true_val = XEXP (cond, 1);
|
||
rtx false_val = true_val;
|
||
int swapped = 0;
|
||
|
||
/* If FALSE_CODE is EQ, swap the codes and arms. */
|
||
|
||
if (false_code == EQ)
|
||
{
|
||
swapped = 1, true_code = EQ, false_code = NE;
|
||
temp = true, true = false, false = temp;
|
||
}
|
||
|
||
/* If we are comparing against zero and the expression being tested has
|
||
only a single bit that might be nonzero, that is its value when it is
|
||
not equal to zero. Similarly if it is known to be -1 or 0. */
|
||
|
||
if (true_code == EQ && true_val == const0_rtx
|
||
&& exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
|
||
false_code = EQ, false_val = GEN_INT (nzb);
|
||
else if (true_code == EQ && true_val == const0_rtx
|
||
&& (num_sign_bit_copies (from, GET_MODE (from))
|
||
== GET_MODE_BITSIZE (GET_MODE (from))))
|
||
false_code = EQ, false_val = constm1_rtx;
|
||
|
||
/* Now simplify an arm if we know the value of the register in the
|
||
branch and it is used in the arm. Be careful due to the potential
|
||
of locally-shared RTL. */
|
||
|
||
if (reg_mentioned_p (from, true))
|
||
true = subst (known_cond (copy_rtx (true), true_code, from, true_val),
|
||
pc_rtx, pc_rtx, 0, 0);
|
||
if (reg_mentioned_p (from, false))
|
||
false = subst (known_cond (copy_rtx (false), false_code,
|
||
from, false_val),
|
||
pc_rtx, pc_rtx, 0, 0);
|
||
|
||
SUBST (XEXP (x, 1), swapped ? false : true);
|
||
SUBST (XEXP (x, 2), swapped ? true : false);
|
||
|
||
true = XEXP (x, 1), false = XEXP (x, 2), true_code = GET_CODE (cond);
|
||
}
|
||
|
||
/* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
|
||
reversed, do so to avoid needing two sets of patterns for
|
||
subtract-and-branch insns. Similarly if we have a constant in the true
|
||
arm, the false arm is the same as the first operand of the comparison, or
|
||
the false arm is more complicated than the true arm. */
|
||
|
||
if (comparison_p && reversible_comparison_p (cond)
|
||
&& (true == pc_rtx
|
||
|| (CONSTANT_P (true)
|
||
&& GET_CODE (false) != CONST_INT && false != pc_rtx)
|
||
|| true == const0_rtx
|
||
|| (GET_RTX_CLASS (GET_CODE (true)) == 'o'
|
||
&& GET_RTX_CLASS (GET_CODE (false)) != 'o')
|
||
|| (GET_CODE (true) == SUBREG
|
||
&& GET_RTX_CLASS (GET_CODE (SUBREG_REG (true))) == 'o'
|
||
&& GET_RTX_CLASS (GET_CODE (false)) != 'o')
|
||
|| reg_mentioned_p (true, false)
|
||
|| rtx_equal_p (false, XEXP (cond, 0))))
|
||
{
|
||
true_code = reverse_condition (true_code);
|
||
SUBST (XEXP (x, 0),
|
||
gen_binary (true_code, GET_MODE (cond), XEXP (cond, 0),
|
||
XEXP (cond, 1)));
|
||
|
||
SUBST (XEXP (x, 1), false);
|
||
SUBST (XEXP (x, 2), true);
|
||
|
||
temp = true, true = false, false = temp, cond = XEXP (x, 0);
|
||
}
|
||
|
||
/* If the two arms are identical, we don't need the comparison. */
|
||
|
||
if (rtx_equal_p (true, false) && ! side_effects_p (cond))
|
||
return true;
|
||
|
||
/* Look for cases where we have (abs x) or (neg (abs X)). */
|
||
|
||
if (GET_MODE_CLASS (mode) == MODE_INT
|
||
&& GET_CODE (false) == NEG
|
||
&& rtx_equal_p (true, XEXP (false, 0))
|
||
&& comparison_p
|
||
&& rtx_equal_p (true, XEXP (cond, 0))
|
||
&& ! side_effects_p (true))
|
||
switch (true_code)
|
||
{
|
||
case GT:
|
||
case GE:
|
||
return gen_unary (ABS, mode, mode, true);
|
||
case LT:
|
||
case LE:
|
||
return gen_unary (NEG, mode, mode, gen_unary (ABS, mode, mode, true));
|
||
}
|
||
|
||
/* Look for MIN or MAX. */
|
||
|
||
if ((! FLOAT_MODE_P (mode) | flag_fast_math)
|
||
&& comparison_p
|
||
&& rtx_equal_p (XEXP (cond, 0), true)
|
||
&& rtx_equal_p (XEXP (cond, 1), false)
|
||
&& ! side_effects_p (cond))
|
||
switch (true_code)
|
||
{
|
||
case GE:
|
||
case GT:
|
||
return gen_binary (SMAX, mode, true, false);
|
||
case LE:
|
||
case LT:
|
||
return gen_binary (SMIN, mode, true, false);
|
||
case GEU:
|
||
case GTU:
|
||
return gen_binary (UMAX, mode, true, false);
|
||
case LEU:
|
||
case LTU:
|
||
return gen_binary (UMIN, mode, true, false);
|
||
}
|
||
|
||
#if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
|
||
|
||
/* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
|
||
second operand is zero, this can be done as (OP Z (mult COND C2)) where
|
||
C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
|
||
SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
|
||
We can do this kind of thing in some cases when STORE_FLAG_VALUE is
|
||
neither of the above, but it isn't worth checking for. */
|
||
|
||
if (comparison_p && mode != VOIDmode && ! side_effects_p (x))
|
||
{
|
||
rtx t = make_compound_operation (true, SET);
|
||
rtx f = make_compound_operation (false, SET);
|
||
rtx cond_op0 = XEXP (cond, 0);
|
||
rtx cond_op1 = XEXP (cond, 1);
|
||
enum rtx_code op, extend_op = NIL;
|
||
enum machine_mode m = mode;
|
||
rtx z = 0, c1;
|
||
|
||
if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
|
||
|| GET_CODE (t) == IOR || GET_CODE (t) == XOR
|
||
|| GET_CODE (t) == ASHIFT
|
||
|| GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
|
||
&& rtx_equal_p (XEXP (t, 0), f))
|
||
c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
|
||
|
||
/* If an identity-zero op is commutative, check whether there
|
||
would be a match if we swapped the operands. */
|
||
else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
|
||
|| GET_CODE (t) == XOR)
|
||
&& rtx_equal_p (XEXP (t, 1), f))
|
||
c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
|
||
else if (GET_CODE (t) == SIGN_EXTEND
|
||
&& (GET_CODE (XEXP (t, 0)) == PLUS
|
||
|| GET_CODE (XEXP (t, 0)) == MINUS
|
||
|| GET_CODE (XEXP (t, 0)) == IOR
|
||
|| GET_CODE (XEXP (t, 0)) == XOR
|
||
|| GET_CODE (XEXP (t, 0)) == ASHIFT
|
||
|| GET_CODE (XEXP (t, 0)) == LSHIFTRT
|
||
|| GET_CODE (XEXP (t, 0)) == ASHIFTRT)
|
||
&& GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
|
||
&& subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
|
||
&& rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
|
||
&& (num_sign_bit_copies (f, GET_MODE (f))
|
||
> (GET_MODE_BITSIZE (mode)
|
||
- GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
|
||
{
|
||
c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
|
||
extend_op = SIGN_EXTEND;
|
||
m = GET_MODE (XEXP (t, 0));
|
||
}
|
||
else if (GET_CODE (t) == SIGN_EXTEND
|
||
&& (GET_CODE (XEXP (t, 0)) == PLUS
|
||
|| GET_CODE (XEXP (t, 0)) == IOR
|
||
|| GET_CODE (XEXP (t, 0)) == XOR)
|
||
&& GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
|
||
&& subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
|
||
&& rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
|
||
&& (num_sign_bit_copies (f, GET_MODE (f))
|
||
> (GET_MODE_BITSIZE (mode)
|
||
- GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
|
||
{
|
||
c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
|
||
extend_op = SIGN_EXTEND;
|
||
m = GET_MODE (XEXP (t, 0));
|
||
}
|
||
else if (GET_CODE (t) == ZERO_EXTEND
|
||
&& (GET_CODE (XEXP (t, 0)) == PLUS
|
||
|| GET_CODE (XEXP (t, 0)) == MINUS
|
||
|| GET_CODE (XEXP (t, 0)) == IOR
|
||
|| GET_CODE (XEXP (t, 0)) == XOR
|
||
|| GET_CODE (XEXP (t, 0)) == ASHIFT
|
||
|| GET_CODE (XEXP (t, 0)) == LSHIFTRT
|
||
|| GET_CODE (XEXP (t, 0)) == ASHIFTRT)
|
||
&& GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
|
||
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
|
||
&& subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
|
||
&& rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
|
||
&& ((nonzero_bits (f, GET_MODE (f))
|
||
& ~ GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
|
||
== 0))
|
||
{
|
||
c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
|
||
extend_op = ZERO_EXTEND;
|
||
m = GET_MODE (XEXP (t, 0));
|
||
}
|
||
else if (GET_CODE (t) == ZERO_EXTEND
|
||
&& (GET_CODE (XEXP (t, 0)) == PLUS
|
||
|| GET_CODE (XEXP (t, 0)) == IOR
|
||
|| GET_CODE (XEXP (t, 0)) == XOR)
|
||
&& GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
|
||
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
|
||
&& subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
|
||
&& rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
|
||
&& ((nonzero_bits (f, GET_MODE (f))
|
||
& ~ GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
|
||
== 0))
|
||
{
|
||
c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
|
||
extend_op = ZERO_EXTEND;
|
||
m = GET_MODE (XEXP (t, 0));
|
||
}
|
||
|
||
if (z)
|
||
{
|
||
temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
|
||
pc_rtx, pc_rtx, 0, 0);
|
||
temp = gen_binary (MULT, m, temp,
|
||
gen_binary (MULT, m, c1, const_true_rtx));
|
||
temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
|
||
temp = gen_binary (op, m, gen_lowpart_for_combine (m, z), temp);
|
||
|
||
if (extend_op != NIL)
|
||
temp = gen_unary (extend_op, mode, m, temp);
|
||
|
||
return temp;
|
||
}
|
||
}
|
||
#endif
|
||
|
||
/* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
|
||
1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
|
||
negation of a single bit, we can convert this operation to a shift. We
|
||
can actually do this more generally, but it doesn't seem worth it. */
|
||
|
||
if (true_code == NE && XEXP (cond, 1) == const0_rtx
|
||
&& false == const0_rtx && GET_CODE (true) == CONST_INT
|
||
&& ((1 == nonzero_bits (XEXP (cond, 0), mode)
|
||
&& (i = exact_log2 (INTVAL (true))) >= 0)
|
||
|| ((num_sign_bit_copies (XEXP (cond, 0), mode)
|
||
== GET_MODE_BITSIZE (mode))
|
||
&& (i = exact_log2 (- INTVAL (true))) >= 0)))
|
||
return
|
||
simplify_shift_const (NULL_RTX, ASHIFT, mode,
|
||
gen_lowpart_for_combine (mode, XEXP (cond, 0)), i);
|
||
|
||
return x;
|
||
}
|
||
|
||
/* Simplify X, a SET expression. Return the new expression. */
|
||
|
||
static rtx
|
||
simplify_set (x)
|
||
rtx x;
|
||
{
|
||
rtx src = SET_SRC (x);
|
||
rtx dest = SET_DEST (x);
|
||
enum machine_mode mode
|
||
= GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
|
||
rtx other_insn;
|
||
rtx *cc_use;
|
||
|
||
/* (set (pc) (return)) gets written as (return). */
|
||
if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
|
||
return src;
|
||
|
||
/* Now that we know for sure which bits of SRC we are using, see if we can
|
||
simplify the expression for the object knowing that we only need the
|
||
low-order bits. */
|
||
|
||
if (GET_MODE_CLASS (mode) == MODE_INT)
|
||
src = force_to_mode (src, mode, GET_MODE_MASK (mode), NULL_RTX, 0);
|
||
|
||
/* If we are setting CC0 or if the source is a COMPARE, look for the use of
|
||
the comparison result and try to simplify it unless we already have used
|
||
undobuf.other_insn. */
|
||
if ((GET_CODE (src) == COMPARE
|
||
#ifdef HAVE_cc0
|
||
|| dest == cc0_rtx
|
||
#endif
|
||
)
|
||
&& (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
|
||
&& (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
|
||
&& GET_RTX_CLASS (GET_CODE (*cc_use)) == '<'
|
||
&& rtx_equal_p (XEXP (*cc_use, 0), dest))
|
||
{
|
||
enum rtx_code old_code = GET_CODE (*cc_use);
|
||
enum rtx_code new_code;
|
||
rtx op0, op1;
|
||
int other_changed = 0;
|
||
enum machine_mode compare_mode = GET_MODE (dest);
|
||
|
||
if (GET_CODE (src) == COMPARE)
|
||
op0 = XEXP (src, 0), op1 = XEXP (src, 1);
|
||
else
|
||
op0 = src, op1 = const0_rtx;
|
||
|
||
/* Simplify our comparison, if possible. */
|
||
new_code = simplify_comparison (old_code, &op0, &op1);
|
||
|
||
#ifdef EXTRA_CC_MODES
|
||
/* If this machine has CC modes other than CCmode, check to see if we
|
||
need to use a different CC mode here. */
|
||
compare_mode = SELECT_CC_MODE (new_code, op0, op1);
|
||
#endif /* EXTRA_CC_MODES */
|
||
|
||
#if !defined (HAVE_cc0) && defined (EXTRA_CC_MODES)
|
||
/* If the mode changed, we have to change SET_DEST, the mode in the
|
||
compare, and the mode in the place SET_DEST is used. If SET_DEST is
|
||
a hard register, just build new versions with the proper mode. If it
|
||
is a pseudo, we lose unless it is only time we set the pseudo, in
|
||
which case we can safely change its mode. */
|
||
if (compare_mode != GET_MODE (dest))
|
||
{
|
||
int regno = REGNO (dest);
|
||
rtx new_dest = gen_rtx (REG, compare_mode, regno);
|
||
|
||
if (regno < FIRST_PSEUDO_REGISTER
|
||
|| (reg_n_sets[regno] == 1 && ! REG_USERVAR_P (dest)))
|
||
{
|
||
if (regno >= FIRST_PSEUDO_REGISTER)
|
||
SUBST (regno_reg_rtx[regno], new_dest);
|
||
|
||
SUBST (SET_DEST (x), new_dest);
|
||
SUBST (XEXP (*cc_use, 0), new_dest);
|
||
other_changed = 1;
|
||
|
||
dest = new_dest;
|
||
}
|
||
}
|
||
#endif
|
||
|
||
/* If the code changed, we have to build a new comparison in
|
||
undobuf.other_insn. */
|
||
if (new_code != old_code)
|
||
{
|
||
unsigned HOST_WIDE_INT mask;
|
||
|
||
SUBST (*cc_use, gen_rtx_combine (new_code, GET_MODE (*cc_use),
|
||
dest, const0_rtx));
|
||
|
||
/* If the only change we made was to change an EQ into an NE or
|
||
vice versa, OP0 has only one bit that might be nonzero, and OP1
|
||
is zero, check if changing the user of the condition code will
|
||
produce a valid insn. If it won't, we can keep the original code
|
||
in that insn by surrounding our operation with an XOR. */
|
||
|
||
if (((old_code == NE && new_code == EQ)
|
||
|| (old_code == EQ && new_code == NE))
|
||
&& ! other_changed && op1 == const0_rtx
|
||
&& GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
|
||
&& exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
|
||
{
|
||
rtx pat = PATTERN (other_insn), note = 0;
|
||
|
||
if ((recog_for_combine (&pat, other_insn, ¬e) < 0
|
||
&& ! check_asm_operands (pat)))
|
||
{
|
||
PUT_CODE (*cc_use, old_code);
|
||
other_insn = 0;
|
||
|
||
op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
|
||
}
|
||
}
|
||
|
||
other_changed = 1;
|
||
}
|
||
|
||
if (other_changed)
|
||
undobuf.other_insn = other_insn;
|
||
|
||
#ifdef HAVE_cc0
|
||
/* If we are now comparing against zero, change our source if
|
||
needed. If we do not use cc0, we always have a COMPARE. */
|
||
if (op1 == const0_rtx && dest == cc0_rtx)
|
||
{
|
||
SUBST (SET_SRC (x), op0);
|
||
src = op0;
|
||
}
|
||
else
|
||
#endif
|
||
|
||
/* Otherwise, if we didn't previously have a COMPARE in the
|
||
correct mode, we need one. */
|
||
if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
|
||
{
|
||
SUBST (SET_SRC (x),
|
||
gen_rtx_combine (COMPARE, compare_mode, op0, op1));
|
||
src = SET_SRC (x);
|
||
}
|
||
else
|
||
{
|
||
/* Otherwise, update the COMPARE if needed. */
|
||
SUBST (XEXP (src, 0), op0);
|
||
SUBST (XEXP (src, 1), op1);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Get SET_SRC in a form where we have placed back any
|
||
compound expressions. Then do the checks below. */
|
||
src = make_compound_operation (src, SET);
|
||
SUBST (SET_SRC (x), src);
|
||
}
|
||
|
||
/* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
|
||
and X being a REG or (subreg (reg)), we may be able to convert this to
|
||
(set (subreg:m2 x) (op)).
|
||
|
||
We can always do this if M1 is narrower than M2 because that means that
|
||
we only care about the low bits of the result.
|
||
|
||
However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
|
||
perform a narrower operation that requested since the high-order bits will
|
||
be undefined. On machine where it is defined, this transformation is safe
|
||
as long as M1 and M2 have the same number of words. */
|
||
|
||
if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
|
||
&& GET_RTX_CLASS (GET_CODE (SUBREG_REG (src))) != 'o'
|
||
&& (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
|
||
/ UNITS_PER_WORD)
|
||
== ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
|
||
+ (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
|
||
#ifndef WORD_REGISTER_OPERATIONS
|
||
&& (GET_MODE_SIZE (GET_MODE (src))
|
||
< GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
|
||
#endif
|
||
&& (GET_CODE (dest) == REG
|
||
|| (GET_CODE (dest) == SUBREG
|
||
&& GET_CODE (SUBREG_REG (dest)) == REG)))
|
||
{
|
||
SUBST (SET_DEST (x),
|
||
gen_lowpart_for_combine (GET_MODE (SUBREG_REG (src)),
|
||
dest));
|
||
SUBST (SET_SRC (x), SUBREG_REG (src));
|
||
|
||
src = SET_SRC (x), dest = SET_DEST (x);
|
||
}
|
||
|
||
#ifdef LOAD_EXTEND_OP
|
||
/* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
|
||
would require a paradoxical subreg. Replace the subreg with a
|
||
zero_extend to avoid the reload that would otherwise be required. */
|
||
|
||
if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
|
||
&& LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != NIL
|
||
&& SUBREG_WORD (src) == 0
|
||
&& (GET_MODE_SIZE (GET_MODE (src))
|
||
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
|
||
&& GET_CODE (SUBREG_REG (src)) == MEM)
|
||
{
|
||
SUBST (SET_SRC (x),
|
||
gen_rtx_combine (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
|
||
GET_MODE (src), XEXP (src, 0)));
|
||
|
||
src = SET_SRC (x);
|
||
}
|
||
#endif
|
||
|
||
/* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
|
||
are comparing an item known to be 0 or -1 against 0, use a logical
|
||
operation instead. Check for one of the arms being an IOR of the other
|
||
arm with some value. We compute three terms to be IOR'ed together. In
|
||
practice, at most two will be nonzero. Then we do the IOR's. */
|
||
|
||
if (GET_CODE (dest) != PC
|
||
&& GET_CODE (src) == IF_THEN_ELSE
|
||
#ifdef HAVE_conditional_move
|
||
&& ! HAVE_conditional_move
|
||
#endif
|
||
&& GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
|
||
&& (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
|
||
&& XEXP (XEXP (src, 0), 1) == const0_rtx
|
||
&& GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
|
||
&& (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
|
||
GET_MODE (XEXP (XEXP (src, 0), 0)))
|
||
== GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
|
||
&& ! side_effects_p (src))
|
||
{
|
||
rtx true = (GET_CODE (XEXP (src, 0)) == NE
|
||
? XEXP (src, 1) : XEXP (src, 2));
|
||
rtx false = (GET_CODE (XEXP (src, 0)) == NE
|
||
? XEXP (src, 2) : XEXP (src, 1));
|
||
rtx term1 = const0_rtx, term2, term3;
|
||
|
||
if (GET_CODE (true) == IOR && rtx_equal_p (XEXP (true, 0), false))
|
||
term1 = false, true = XEXP (true, 1), false = const0_rtx;
|
||
else if (GET_CODE (true) == IOR
|
||
&& rtx_equal_p (XEXP (true, 1), false))
|
||
term1 = false, true = XEXP (true, 0), false = const0_rtx;
|
||
else if (GET_CODE (false) == IOR
|
||
&& rtx_equal_p (XEXP (false, 0), true))
|
||
term1 = true, false = XEXP (false, 1), true = const0_rtx;
|
||
else if (GET_CODE (false) == IOR
|
||
&& rtx_equal_p (XEXP (false, 1), true))
|
||
term1 = true, false = XEXP (false, 0), true = const0_rtx;
|
||
|
||
term2 = gen_binary (AND, GET_MODE (src), XEXP (XEXP (src, 0), 0), true);
|
||
term3 = gen_binary (AND, GET_MODE (src),
|
||
gen_unary (NOT, GET_MODE (src), GET_MODE (src),
|
||
XEXP (XEXP (src, 0), 0)),
|
||
false);
|
||
|
||
SUBST (SET_SRC (x),
|
||
gen_binary (IOR, GET_MODE (src),
|
||
gen_binary (IOR, GET_MODE (src), term1, term2),
|
||
term3));
|
||
|
||
src = SET_SRC (x);
|
||
}
|
||
|
||
/* If either SRC or DEST is a CLOBBER of (const_int 0), make this
|
||
whole thing fail. */
|
||
if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
|
||
return src;
|
||
else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
|
||
return dest;
|
||
else
|
||
/* Convert this into a field assignment operation, if possible. */
|
||
return make_field_assignment (x);
|
||
}
|
||
|
||
/* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
|
||
result. LAST is nonzero if this is the last retry. */
|
||
|
||
static rtx
|
||
simplify_logical (x, last)
|
||
rtx x;
|
||
int last;
|
||
{
|
||
enum machine_mode mode = GET_MODE (x);
|
||
rtx op0 = XEXP (x, 0);
|
||
rtx op1 = XEXP (x, 1);
|
||
|
||
switch (GET_CODE (x))
|
||
{
|
||
case AND:
|
||
/* Convert (A ^ B) & A to A & (~ B) since the latter is often a single
|
||
insn (and may simplify more). */
|
||
if (GET_CODE (op0) == XOR
|
||
&& rtx_equal_p (XEXP (op0, 0), op1)
|
||
&& ! side_effects_p (op1))
|
||
x = gen_binary (AND, mode,
|
||
gen_unary (NOT, mode, mode, XEXP (op0, 1)), op1);
|
||
|
||
if (GET_CODE (op0) == XOR
|
||
&& rtx_equal_p (XEXP (op0, 1), op1)
|
||
&& ! side_effects_p (op1))
|
||
x = gen_binary (AND, mode,
|
||
gen_unary (NOT, mode, mode, XEXP (op0, 0)), op1);
|
||
|
||
/* Similarly for (~ (A ^ B)) & A. */
|
||
if (GET_CODE (op0) == NOT
|
||
&& GET_CODE (XEXP (op0, 0)) == XOR
|
||
&& rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
|
||
&& ! side_effects_p (op1))
|
||
x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
|
||
|
||
if (GET_CODE (op0) == NOT
|
||
&& GET_CODE (XEXP (op0, 0)) == XOR
|
||
&& rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
|
||
&& ! side_effects_p (op1))
|
||
x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
|
||
|
||
if (GET_CODE (op1) == CONST_INT)
|
||
{
|
||
x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
|
||
|
||
/* If we have (ior (and (X C1) C2)) and the next restart would be
|
||
the last, simplify this by making C1 as small as possible
|
||
and then exit. */
|
||
if (last
|
||
&& GET_CODE (x) == IOR && GET_CODE (op0) == AND
|
||
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
|
||
&& GET_CODE (op1) == CONST_INT)
|
||
return gen_binary (IOR, mode,
|
||
gen_binary (AND, mode, XEXP (op0, 0),
|
||
GEN_INT (INTVAL (XEXP (op0, 1))
|
||
& ~ INTVAL (op1))), op1);
|
||
|
||
if (GET_CODE (x) != AND)
|
||
return x;
|
||
}
|
||
|
||
/* Convert (A | B) & A to A. */
|
||
if (GET_CODE (op0) == IOR
|
||
&& (rtx_equal_p (XEXP (op0, 0), op1)
|
||
|| rtx_equal_p (XEXP (op0, 1), op1))
|
||
&& ! side_effects_p (XEXP (op0, 0))
|
||
&& ! side_effects_p (XEXP (op0, 1)))
|
||
return op1;
|
||
|
||
/* In the following group of tests (and those in case IOR below),
|
||
we start with some combination of logical operations and apply
|
||
the distributive law followed by the inverse distributive law.
|
||
Most of the time, this results in no change. However, if some of
|
||
the operands are the same or inverses of each other, simplifications
|
||
will result.
|
||
|
||
For example, (and (ior A B) (not B)) can occur as the result of
|
||
expanding a bit field assignment. When we apply the distributive
|
||
law to this, we get (ior (and (A (not B))) (and (B (not B)))),
|
||
which then simplifies to (and (A (not B))).
|
||
|
||
If we have (and (ior A B) C), apply the distributive law and then
|
||
the inverse distributive law to see if things simplify. */
|
||
|
||
if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
|
||
{
|
||
x = apply_distributive_law
|
||
(gen_binary (GET_CODE (op0), mode,
|
||
gen_binary (AND, mode, XEXP (op0, 0), op1),
|
||
gen_binary (AND, mode, XEXP (op0, 1), op1)));
|
||
if (GET_CODE (x) != AND)
|
||
return x;
|
||
}
|
||
|
||
if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
|
||
return apply_distributive_law
|
||
(gen_binary (GET_CODE (op1), mode,
|
||
gen_binary (AND, mode, XEXP (op1, 0), op0),
|
||
gen_binary (AND, mode, XEXP (op1, 1), op0)));
|
||
|
||
/* Similarly, taking advantage of the fact that
|
||
(and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
|
||
|
||
if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
|
||
return apply_distributive_law
|
||
(gen_binary (XOR, mode,
|
||
gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
|
||
gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 1))));
|
||
|
||
else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
|
||
return apply_distributive_law
|
||
(gen_binary (XOR, mode,
|
||
gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
|
||
gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 1))));
|
||
break;
|
||
|
||
case IOR:
|
||
/* (ior A C) is C if all bits of A that might be nonzero are on in C. */
|
||
if (GET_CODE (op1) == CONST_INT
|
||
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
|
||
&& (nonzero_bits (op0, mode) & ~ INTVAL (op1)) == 0)
|
||
return op1;
|
||
|
||
/* Convert (A & B) | A to A. */
|
||
if (GET_CODE (op0) == AND
|
||
&& (rtx_equal_p (XEXP (op0, 0), op1)
|
||
|| rtx_equal_p (XEXP (op0, 1), op1))
|
||
&& ! side_effects_p (XEXP (op0, 0))
|
||
&& ! side_effects_p (XEXP (op0, 1)))
|
||
return op1;
|
||
|
||
/* If we have (ior (and A B) C), apply the distributive law and then
|
||
the inverse distributive law to see if things simplify. */
|
||
|
||
if (GET_CODE (op0) == AND)
|
||
{
|
||
x = apply_distributive_law
|
||
(gen_binary (AND, mode,
|
||
gen_binary (IOR, mode, XEXP (op0, 0), op1),
|
||
gen_binary (IOR, mode, XEXP (op0, 1), op1)));
|
||
|
||
if (GET_CODE (x) != IOR)
|
||
return x;
|
||
}
|
||
|
||
if (GET_CODE (op1) == AND)
|
||
{
|
||
x = apply_distributive_law
|
||
(gen_binary (AND, mode,
|
||
gen_binary (IOR, mode, XEXP (op1, 0), op0),
|
||
gen_binary (IOR, mode, XEXP (op1, 1), op0)));
|
||
|
||
if (GET_CODE (x) != IOR)
|
||
return x;
|
||
}
|
||
|
||
/* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
|
||
mode size to (rotate A CX). */
|
||
|
||
if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
|
||
|| (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
|
||
&& rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
|
||
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
|
||
&& GET_CODE (XEXP (op1, 1)) == CONST_INT
|
||
&& (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
|
||
== GET_MODE_BITSIZE (mode)))
|
||
return gen_rtx (ROTATE, mode, XEXP (op0, 0),
|
||
(GET_CODE (op0) == ASHIFT
|
||
? XEXP (op0, 1) : XEXP (op1, 1)));
|
||
|
||
/* If OP0 is (ashiftrt (plus ...) C), it might actually be
|
||
a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
|
||
does not affect any of the bits in OP1, it can really be done
|
||
as a PLUS and we can associate. We do this by seeing if OP1
|
||
can be safely shifted left C bits. */
|
||
if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
|
||
&& GET_CODE (XEXP (op0, 0)) == PLUS
|
||
&& GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
|
||
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
|
||
&& INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
int count = INTVAL (XEXP (op0, 1));
|
||
HOST_WIDE_INT mask = INTVAL (op1) << count;
|
||
|
||
if (mask >> count == INTVAL (op1)
|
||
&& (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
|
||
{
|
||
SUBST (XEXP (XEXP (op0, 0), 1),
|
||
GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
|
||
return op0;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case XOR:
|
||
/* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
|
||
Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
|
||
(NOT y). */
|
||
{
|
||
int num_negated = 0;
|
||
|
||
if (GET_CODE (op0) == NOT)
|
||
num_negated++, op0 = XEXP (op0, 0);
|
||
if (GET_CODE (op1) == NOT)
|
||
num_negated++, op1 = XEXP (op1, 0);
|
||
|
||
if (num_negated == 2)
|
||
{
|
||
SUBST (XEXP (x, 0), op0);
|
||
SUBST (XEXP (x, 1), op1);
|
||
}
|
||
else if (num_negated == 1)
|
||
return gen_unary (NOT, mode, mode, gen_binary (XOR, mode, op0, op1));
|
||
}
|
||
|
||
/* Convert (xor (and A B) B) to (and (not A) B). The latter may
|
||
correspond to a machine insn or result in further simplifications
|
||
if B is a constant. */
|
||
|
||
if (GET_CODE (op0) == AND
|
||
&& rtx_equal_p (XEXP (op0, 1), op1)
|
||
&& ! side_effects_p (op1))
|
||
return gen_binary (AND, mode,
|
||
gen_unary (NOT, mode, mode, XEXP (op0, 0)),
|
||
op1);
|
||
|
||
else if (GET_CODE (op0) == AND
|
||
&& rtx_equal_p (XEXP (op0, 0), op1)
|
||
&& ! side_effects_p (op1))
|
||
return gen_binary (AND, mode,
|
||
gen_unary (NOT, mode, mode, XEXP (op0, 1)),
|
||
op1);
|
||
|
||
#if STORE_FLAG_VALUE == 1
|
||
/* (xor (comparison foo bar) (const_int 1)) can become the reversed
|
||
comparison. */
|
||
if (op1 == const1_rtx
|
||
&& GET_RTX_CLASS (GET_CODE (op0)) == '<'
|
||
&& reversible_comparison_p (op0))
|
||
return gen_rtx_combine (reverse_condition (GET_CODE (op0)),
|
||
mode, XEXP (op0, 0), XEXP (op0, 1));
|
||
|
||
/* (lshiftrt foo C) where C is the number of bits in FOO minus 1
|
||
is (lt foo (const_int 0)), so we can perform the above
|
||
simplification. */
|
||
|
||
if (op1 == const1_rtx
|
||
&& GET_CODE (op0) == LSHIFTRT
|
||
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
|
||
&& INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
|
||
return gen_rtx_combine (GE, mode, XEXP (op0, 0), const0_rtx);
|
||
#endif
|
||
|
||
/* (xor (comparison foo bar) (const_int sign-bit))
|
||
when STORE_FLAG_VALUE is the sign bit. */
|
||
if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
|
||
&& (STORE_FLAG_VALUE
|
||
== (HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
|
||
&& op1 == const_true_rtx
|
||
&& GET_RTX_CLASS (GET_CODE (op0)) == '<'
|
||
&& reversible_comparison_p (op0))
|
||
return gen_rtx_combine (reverse_condition (GET_CODE (op0)),
|
||
mode, XEXP (op0, 0), XEXP (op0, 1));
|
||
break;
|
||
}
|
||
|
||
return x;
|
||
}
|
||
|
||
/* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
|
||
operations" because they can be replaced with two more basic operations.
|
||
ZERO_EXTEND is also considered "compound" because it can be replaced with
|
||
an AND operation, which is simpler, though only one operation.
|
||
|
||
The function expand_compound_operation is called with an rtx expression
|
||
and will convert it to the appropriate shifts and AND operations,
|
||
simplifying at each stage.
|
||
|
||
The function make_compound_operation is called to convert an expression
|
||
consisting of shifts and ANDs into the equivalent compound expression.
|
||
It is the inverse of this function, loosely speaking. */
|
||
|
||
static rtx
|
||
expand_compound_operation (x)
|
||
rtx x;
|
||
{
|
||
int pos = 0, len;
|
||
int unsignedp = 0;
|
||
int modewidth;
|
||
rtx tem;
|
||
|
||
switch (GET_CODE (x))
|
||
{
|
||
case ZERO_EXTEND:
|
||
unsignedp = 1;
|
||
case SIGN_EXTEND:
|
||
/* We can't necessarily use a const_int for a multiword mode;
|
||
it depends on implicitly extending the value.
|
||
Since we don't know the right way to extend it,
|
||
we can't tell whether the implicit way is right.
|
||
|
||
Even for a mode that is no wider than a const_int,
|
||
we can't win, because we need to sign extend one of its bits through
|
||
the rest of it, and we don't know which bit. */
|
||
if (GET_CODE (XEXP (x, 0)) == CONST_INT)
|
||
return x;
|
||
|
||
/* Return if (subreg:MODE FROM 0) is not a safe replacement for
|
||
(zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
|
||
because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
|
||
reloaded. If not for that, MEM's would very rarely be safe.
|
||
|
||
Reject MODEs bigger than a word, because we might not be able
|
||
to reference a two-register group starting with an arbitrary register
|
||
(and currently gen_lowpart might crash for a SUBREG). */
|
||
|
||
if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
|
||
return x;
|
||
|
||
len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
|
||
/* If the inner object has VOIDmode (the only way this can happen
|
||
is if it is a ASM_OPERANDS), we can't do anything since we don't
|
||
know how much masking to do. */
|
||
if (len == 0)
|
||
return x;
|
||
|
||
break;
|
||
|
||
case ZERO_EXTRACT:
|
||
unsignedp = 1;
|
||
case SIGN_EXTRACT:
|
||
/* If the operand is a CLOBBER, just return it. */
|
||
if (GET_CODE (XEXP (x, 0)) == CLOBBER)
|
||
return XEXP (x, 0);
|
||
|
||
if (GET_CODE (XEXP (x, 1)) != CONST_INT
|
||
|| GET_CODE (XEXP (x, 2)) != CONST_INT
|
||
|| GET_MODE (XEXP (x, 0)) == VOIDmode)
|
||
return x;
|
||
|
||
len = INTVAL (XEXP (x, 1));
|
||
pos = INTVAL (XEXP (x, 2));
|
||
|
||
/* If this goes outside the object being extracted, replace the object
|
||
with a (use (mem ...)) construct that only combine understands
|
||
and is used only for this purpose. */
|
||
if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
|
||
SUBST (XEXP (x, 0), gen_rtx (USE, GET_MODE (x), XEXP (x, 0)));
|
||
|
||
#if BITS_BIG_ENDIAN
|
||
pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
|
||
#endif
|
||
break;
|
||
|
||
default:
|
||
return x;
|
||
}
|
||
|
||
/* If we reach here, we want to return a pair of shifts. The inner
|
||
shift is a left shift of BITSIZE - POS - LEN bits. The outer
|
||
shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
|
||
logical depending on the value of UNSIGNEDP.
|
||
|
||
If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
|
||
converted into an AND of a shift.
|
||
|
||
We must check for the case where the left shift would have a negative
|
||
count. This can happen in a case like (x >> 31) & 255 on machines
|
||
that can't shift by a constant. On those machines, we would first
|
||
combine the shift with the AND to produce a variable-position
|
||
extraction. Then the constant of 31 would be substituted in to produce
|
||
a such a position. */
|
||
|
||
modewidth = GET_MODE_BITSIZE (GET_MODE (x));
|
||
if (modewidth >= pos - len)
|
||
tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
|
||
GET_MODE (x),
|
||
simplify_shift_const (NULL_RTX, ASHIFT,
|
||
GET_MODE (x),
|
||
XEXP (x, 0),
|
||
modewidth - pos - len),
|
||
modewidth - len);
|
||
|
||
else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
|
||
tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
|
||
simplify_shift_const (NULL_RTX, LSHIFTRT,
|
||
GET_MODE (x),
|
||
XEXP (x, 0), pos),
|
||
((HOST_WIDE_INT) 1 << len) - 1);
|
||
else
|
||
/* Any other cases we can't handle. */
|
||
return x;
|
||
|
||
|
||
/* If we couldn't do this for some reason, return the original
|
||
expression. */
|
||
if (GET_CODE (tem) == CLOBBER)
|
||
return x;
|
||
|
||
return tem;
|
||
}
|
||
|
||
/* X is a SET which contains an assignment of one object into
|
||
a part of another (such as a bit-field assignment, STRICT_LOW_PART,
|
||
or certain SUBREGS). If possible, convert it into a series of
|
||
logical operations.
|
||
|
||
We half-heartedly support variable positions, but do not at all
|
||
support variable lengths. */
|
||
|
||
static rtx
|
||
expand_field_assignment (x)
|
||
rtx x;
|
||
{
|
||
rtx inner;
|
||
rtx pos; /* Always counts from low bit. */
|
||
int len;
|
||
rtx mask;
|
||
enum machine_mode compute_mode;
|
||
|
||
/* Loop until we find something we can't simplify. */
|
||
while (1)
|
||
{
|
||
if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
|
||
&& GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
|
||
{
|
||
inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
|
||
len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
|
||
pos = const0_rtx;
|
||
}
|
||
else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
|
||
&& GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
|
||
{
|
||
inner = XEXP (SET_DEST (x), 0);
|
||
len = INTVAL (XEXP (SET_DEST (x), 1));
|
||
pos = XEXP (SET_DEST (x), 2);
|
||
|
||
/* If the position is constant and spans the width of INNER,
|
||
surround INNER with a USE to indicate this. */
|
||
if (GET_CODE (pos) == CONST_INT
|
||
&& INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
|
||
inner = gen_rtx (USE, GET_MODE (SET_DEST (x)), inner);
|
||
|
||
#if BITS_BIG_ENDIAN
|
||
if (GET_CODE (pos) == CONST_INT)
|
||
pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
|
||
- INTVAL (pos));
|
||
else if (GET_CODE (pos) == MINUS
|
||
&& GET_CODE (XEXP (pos, 1)) == CONST_INT
|
||
&& (INTVAL (XEXP (pos, 1))
|
||
== GET_MODE_BITSIZE (GET_MODE (inner)) - len))
|
||
/* If position is ADJUST - X, new position is X. */
|
||
pos = XEXP (pos, 0);
|
||
else
|
||
pos = gen_binary (MINUS, GET_MODE (pos),
|
||
GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
|
||
- len),
|
||
pos);
|
||
#endif
|
||
}
|
||
|
||
/* A SUBREG between two modes that occupy the same numbers of words
|
||
can be done by moving the SUBREG to the source. */
|
||
else if (GET_CODE (SET_DEST (x)) == SUBREG
|
||
&& (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
|
||
+ (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
|
||
== ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
|
||
+ (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
|
||
{
|
||
x = gen_rtx (SET, VOIDmode, SUBREG_REG (SET_DEST (x)),
|
||
gen_lowpart_for_combine (GET_MODE (SUBREG_REG (SET_DEST (x))),
|
||
SET_SRC (x)));
|
||
continue;
|
||
}
|
||
else
|
||
break;
|
||
|
||
while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
|
||
inner = SUBREG_REG (inner);
|
||
|
||
compute_mode = GET_MODE (inner);
|
||
|
||
/* Compute a mask of LEN bits, if we can do this on the host machine. */
|
||
if (len < HOST_BITS_PER_WIDE_INT)
|
||
mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
|
||
else
|
||
break;
|
||
|
||
/* Now compute the equivalent expression. Make a copy of INNER
|
||
for the SET_DEST in case it is a MEM into which we will substitute;
|
||
we don't want shared RTL in that case. */
|
||
x = gen_rtx (SET, VOIDmode, copy_rtx (inner),
|
||
gen_binary (IOR, compute_mode,
|
||
gen_binary (AND, compute_mode,
|
||
gen_unary (NOT, compute_mode,
|
||
compute_mode,
|
||
gen_binary (ASHIFT,
|
||
compute_mode,
|
||
mask, pos)),
|
||
inner),
|
||
gen_binary (ASHIFT, compute_mode,
|
||
gen_binary (AND, compute_mode,
|
||
gen_lowpart_for_combine
|
||
(compute_mode,
|
||
SET_SRC (x)),
|
||
mask),
|
||
pos)));
|
||
}
|
||
|
||
return x;
|
||
}
|
||
|
||
/* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
|
||
it is an RTX that represents a variable starting position; otherwise,
|
||
POS is the (constant) starting bit position (counted from the LSB).
|
||
|
||
INNER may be a USE. This will occur when we started with a bitfield
|
||
that went outside the boundary of the object in memory, which is
|
||
allowed on most machines. To isolate this case, we produce a USE
|
||
whose mode is wide enough and surround the MEM with it. The only
|
||
code that understands the USE is this routine. If it is not removed,
|
||
it will cause the resulting insn not to match.
|
||
|
||
UNSIGNEDP is non-zero for an unsigned reference and zero for a
|
||
signed reference.
|
||
|
||
IN_DEST is non-zero if this is a reference in the destination of a
|
||
SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If non-zero,
|
||
a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
|
||
be used.
|
||
|
||
IN_COMPARE is non-zero if we are in a COMPARE. This means that a
|
||
ZERO_EXTRACT should be built even for bits starting at bit 0.
|
||
|
||
MODE is the desired mode of the result (if IN_DEST == 0). */
|
||
|
||
static rtx
|
||
make_extraction (mode, inner, pos, pos_rtx, len,
|
||
unsignedp, in_dest, in_compare)
|
||
enum machine_mode mode;
|
||
rtx inner;
|
||
int pos;
|
||
rtx pos_rtx;
|
||
int len;
|
||
int unsignedp;
|
||
int in_dest, in_compare;
|
||
{
|
||
/* This mode describes the size of the storage area
|
||
to fetch the overall value from. Within that, we
|
||
ignore the POS lowest bits, etc. */
|
||
enum machine_mode is_mode = GET_MODE (inner);
|
||
enum machine_mode inner_mode;
|
||
enum machine_mode wanted_mem_mode = byte_mode;
|
||
enum machine_mode pos_mode = word_mode;
|
||
enum machine_mode extraction_mode = word_mode;
|
||
enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
|
||
int spans_byte = 0;
|
||
rtx new = 0;
|
||
rtx orig_pos_rtx = pos_rtx;
|
||
int orig_pos;
|
||
|
||
/* Get some information about INNER and get the innermost object. */
|
||
if (GET_CODE (inner) == USE)
|
||
/* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
|
||
/* We don't need to adjust the position because we set up the USE
|
||
to pretend that it was a full-word object. */
|
||
spans_byte = 1, inner = XEXP (inner, 0);
|
||
else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
|
||
{
|
||
/* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
|
||
consider just the QI as the memory to extract from.
|
||
The subreg adds or removes high bits; its mode is
|
||
irrelevant to the meaning of this extraction,
|
||
since POS and LEN count from the lsb. */
|
||
if (GET_CODE (SUBREG_REG (inner)) == MEM)
|
||
is_mode = GET_MODE (SUBREG_REG (inner));
|
||
inner = SUBREG_REG (inner);
|
||
}
|
||
|
||
inner_mode = GET_MODE (inner);
|
||
|
||
if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
|
||
pos = INTVAL (pos_rtx), pos_rtx = 0;
|
||
|
||
/* See if this can be done without an extraction. We never can if the
|
||
width of the field is not the same as that of some integer mode. For
|
||
registers, we can only avoid the extraction if the position is at the
|
||
low-order bit and this is either not in the destination or we have the
|
||
appropriate STRICT_LOW_PART operation available.
|
||
|
||
For MEM, we can avoid an extract if the field starts on an appropriate
|
||
boundary and we can change the mode of the memory reference. However,
|
||
we cannot directly access the MEM if we have a USE and the underlying
|
||
MEM is not TMODE. This combination means that MEM was being used in a
|
||
context where bits outside its mode were being referenced; that is only
|
||
valid in bit-field insns. */
|
||
|
||
if (tmode != BLKmode
|
||
&& ! (spans_byte && inner_mode != tmode)
|
||
&& ((pos_rtx == 0 && pos == 0 && GET_CODE (inner) != MEM
|
||
&& (! in_dest
|
||
|| (GET_CODE (inner) == REG
|
||
&& (movstrict_optab->handlers[(int) tmode].insn_code
|
||
!= CODE_FOR_nothing))))
|
||
|| (GET_CODE (inner) == MEM && pos_rtx == 0
|
||
&& (pos
|
||
% (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
|
||
: BITS_PER_UNIT)) == 0
|
||
/* We can't do this if we are widening INNER_MODE (it
|
||
may not be aligned, for one thing). */
|
||
&& GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
|
||
&& (inner_mode == tmode
|
||
|| (! mode_dependent_address_p (XEXP (inner, 0))
|
||
&& ! MEM_VOLATILE_P (inner))))))
|
||
{
|
||
/* If INNER is a MEM, make a new MEM that encompasses just the desired
|
||
field. If the original and current mode are the same, we need not
|
||
adjust the offset. Otherwise, we do if bytes big endian.
|
||
|
||
If INNER is not a MEM, get a piece consisting of the just the field
|
||
of interest (in this case POS must be 0). */
|
||
|
||
if (GET_CODE (inner) == MEM)
|
||
{
|
||
int offset;
|
||
/* POS counts from lsb, but make OFFSET count in memory order. */
|
||
if (BYTES_BIG_ENDIAN)
|
||
offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
|
||
else
|
||
offset = pos / BITS_PER_UNIT;
|
||
|
||
new = gen_rtx (MEM, tmode, plus_constant (XEXP (inner, 0), offset));
|
||
RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (inner);
|
||
MEM_VOLATILE_P (new) = MEM_VOLATILE_P (inner);
|
||
MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (inner);
|
||
}
|
||
else if (GET_CODE (inner) == REG)
|
||
{
|
||
/* We can't call gen_lowpart_for_combine here since we always want
|
||
a SUBREG and it would sometimes return a new hard register. */
|
||
if (tmode != inner_mode)
|
||
new = gen_rtx (SUBREG, tmode, inner,
|
||
(WORDS_BIG_ENDIAN
|
||
&& GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD
|
||
? ((GET_MODE_SIZE (inner_mode)
|
||
- GET_MODE_SIZE (tmode))
|
||
/ UNITS_PER_WORD)
|
||
: 0));
|
||
else
|
||
new = inner;
|
||
}
|
||
else
|
||
new = force_to_mode (inner, tmode,
|
||
len >= HOST_BITS_PER_WIDE_INT
|
||
? GET_MODE_MASK (tmode)
|
||
: ((HOST_WIDE_INT) 1 << len) - 1,
|
||
NULL_RTX, 0);
|
||
|
||
/* If this extraction is going into the destination of a SET,
|
||
make a STRICT_LOW_PART unless we made a MEM. */
|
||
|
||
if (in_dest)
|
||
return (GET_CODE (new) == MEM ? new
|
||
: (GET_CODE (new) != SUBREG
|
||
? gen_rtx (CLOBBER, tmode, const0_rtx)
|
||
: gen_rtx_combine (STRICT_LOW_PART, VOIDmode, new)));
|
||
|
||
/* Otherwise, sign- or zero-extend unless we already are in the
|
||
proper mode. */
|
||
|
||
return (mode == tmode ? new
|
||
: gen_rtx_combine (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
|
||
mode, new));
|
||
}
|
||
|
||
/* Unless this is a COMPARE or we have a funny memory reference,
|
||
don't do anything with zero-extending field extracts starting at
|
||
the low-order bit since they are simple AND operations. */
|
||
if (pos_rtx == 0 && pos == 0 && ! in_dest
|
||
&& ! in_compare && ! spans_byte && unsignedp)
|
||
return 0;
|
||
|
||
/* Unless we are allowed to span bytes, reject this if we would be
|
||
spanning bytes or if the position is not a constant and the length
|
||
is not 1. In all other cases, we would only be going outside
|
||
out object in cases when an original shift would have been
|
||
undefined. */
|
||
if (! spans_byte
|
||
&& ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
|
||
|| (pos_rtx != 0 && len != 1)))
|
||
return 0;
|
||
|
||
/* Get the mode to use should INNER be a MEM, the mode for the position,
|
||
and the mode for the result. */
|
||
#ifdef HAVE_insv
|
||
if (in_dest)
|
||
{
|
||
wanted_mem_mode = insn_operand_mode[(int) CODE_FOR_insv][0];
|
||
pos_mode = insn_operand_mode[(int) CODE_FOR_insv][2];
|
||
extraction_mode = insn_operand_mode[(int) CODE_FOR_insv][3];
|
||
}
|
||
#endif
|
||
|
||
#ifdef HAVE_extzv
|
||
if (! in_dest && unsignedp)
|
||
{
|
||
wanted_mem_mode = insn_operand_mode[(int) CODE_FOR_extzv][1];
|
||
pos_mode = insn_operand_mode[(int) CODE_FOR_extzv][3];
|
||
extraction_mode = insn_operand_mode[(int) CODE_FOR_extzv][0];
|
||
}
|
||
#endif
|
||
|
||
#ifdef HAVE_extv
|
||
if (! in_dest && ! unsignedp)
|
||
{
|
||
wanted_mem_mode = insn_operand_mode[(int) CODE_FOR_extv][1];
|
||
pos_mode = insn_operand_mode[(int) CODE_FOR_extv][3];
|
||
extraction_mode = insn_operand_mode[(int) CODE_FOR_extv][0];
|
||
}
|
||
#endif
|
||
|
||
/* Never narrow an object, since that might not be safe. */
|
||
|
||
if (mode != VOIDmode
|
||
&& GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
|
||
extraction_mode = mode;
|
||
|
||
if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
|
||
&& GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
|
||
pos_mode = GET_MODE (pos_rtx);
|
||
|
||
/* If this is not from memory or we have to change the mode of memory and
|
||
cannot, the desired mode is EXTRACTION_MODE. */
|
||
if (GET_CODE (inner) != MEM
|
||
|| (inner_mode != wanted_mem_mode
|
||
&& (mode_dependent_address_p (XEXP (inner, 0))
|
||
|| MEM_VOLATILE_P (inner))))
|
||
wanted_mem_mode = extraction_mode;
|
||
|
||
orig_pos = pos;
|
||
|
||
#if BITS_BIG_ENDIAN
|
||
/* If position is constant, compute new position. Otherwise, build
|
||
subtraction. */
|
||
if (pos_rtx == 0)
|
||
pos = (MAX (GET_MODE_BITSIZE (is_mode), GET_MODE_BITSIZE (wanted_mem_mode))
|
||
- len - pos);
|
||
else
|
||
pos_rtx
|
||
= gen_rtx_combine (MINUS, GET_MODE (pos_rtx),
|
||
GEN_INT (MAX (GET_MODE_BITSIZE (is_mode),
|
||
GET_MODE_BITSIZE (wanted_mem_mode))
|
||
- len),
|
||
pos_rtx);
|
||
#endif
|
||
|
||
/* If INNER has a wider mode, make it smaller. If this is a constant
|
||
extract, try to adjust the byte to point to the byte containing
|
||
the value. */
|
||
if (wanted_mem_mode != VOIDmode
|
||
&& GET_MODE_SIZE (wanted_mem_mode) < GET_MODE_SIZE (is_mode)
|
||
&& ((GET_CODE (inner) == MEM
|
||
&& (inner_mode == wanted_mem_mode
|
||
|| (! mode_dependent_address_p (XEXP (inner, 0))
|
||
&& ! MEM_VOLATILE_P (inner))))))
|
||
{
|
||
int offset = 0;
|
||
|
||
/* The computations below will be correct if the machine is big
|
||
endian in both bits and bytes or little endian in bits and bytes.
|
||
If it is mixed, we must adjust. */
|
||
|
||
/* If bytes are big endian and we had a paradoxical SUBREG, we must
|
||
adjust OFFSET to compensate. */
|
||
#if BYTES_BIG_ENDIAN
|
||
if (! spans_byte
|
||
&& GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
|
||
offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
|
||
#endif
|
||
|
||
/* If this is a constant position, we can move to the desired byte. */
|
||
if (pos_rtx == 0)
|
||
{
|
||
offset += pos / BITS_PER_UNIT;
|
||
pos %= GET_MODE_BITSIZE (wanted_mem_mode);
|
||
}
|
||
|
||
#if BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
|
||
if (! spans_byte && is_mode != wanted_mem_mode)
|
||
offset = (GET_MODE_SIZE (is_mode)
|
||
- GET_MODE_SIZE (wanted_mem_mode) - offset);
|
||
#endif
|
||
|
||
if (offset != 0 || inner_mode != wanted_mem_mode)
|
||
{
|
||
rtx newmem = gen_rtx (MEM, wanted_mem_mode,
|
||
plus_constant (XEXP (inner, 0), offset));
|
||
RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (inner);
|
||
MEM_VOLATILE_P (newmem) = MEM_VOLATILE_P (inner);
|
||
MEM_IN_STRUCT_P (newmem) = MEM_IN_STRUCT_P (inner);
|
||
inner = newmem;
|
||
}
|
||
}
|
||
|
||
/* If INNER is not memory, we can always get it into the proper mode. */
|
||
else if (GET_CODE (inner) != MEM)
|
||
inner = force_to_mode (inner, extraction_mode,
|
||
pos_rtx || len + orig_pos >= HOST_BITS_PER_WIDE_INT
|
||
? GET_MODE_MASK (extraction_mode)
|
||
: (((HOST_WIDE_INT) 1 << len) - 1) << orig_pos,
|
||
NULL_RTX, 0);
|
||
|
||
/* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
|
||
have to zero extend. Otherwise, we can just use a SUBREG. */
|
||
if (pos_rtx != 0
|
||
&& GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
|
||
pos_rtx = gen_rtx_combine (ZERO_EXTEND, pos_mode, pos_rtx);
|
||
else if (pos_rtx != 0
|
||
&& GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
|
||
pos_rtx = gen_lowpart_for_combine (pos_mode, pos_rtx);
|
||
|
||
/* Make POS_RTX unless we already have it and it is correct. If we don't
|
||
have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
|
||
be a CONST_INT. */
|
||
if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
|
||
pos_rtx = orig_pos_rtx;
|
||
|
||
else if (pos_rtx == 0)
|
||
pos_rtx = GEN_INT (pos);
|
||
|
||
/* Make the required operation. See if we can use existing rtx. */
|
||
new = gen_rtx_combine (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
|
||
extraction_mode, inner, GEN_INT (len), pos_rtx);
|
||
if (! in_dest)
|
||
new = gen_lowpart_for_combine (mode, new);
|
||
|
||
return new;
|
||
}
|
||
|
||
/* See if X contains an ASHIFT of COUNT or more bits that can be commuted
|
||
with any other operations in X. Return X without that shift if so. */
|
||
|
||
static rtx
|
||
extract_left_shift (x, count)
|
||
rtx x;
|
||
int count;
|
||
{
|
||
enum rtx_code code = GET_CODE (x);
|
||
enum machine_mode mode = GET_MODE (x);
|
||
rtx tem;
|
||
|
||
switch (code)
|
||
{
|
||
case ASHIFT:
|
||
/* This is the shift itself. If it is wide enough, we will return
|
||
either the value being shifted if the shift count is equal to
|
||
COUNT or a shift for the difference. */
|
||
if (GET_CODE (XEXP (x, 1)) == CONST_INT
|
||
&& INTVAL (XEXP (x, 1)) >= count)
|
||
return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
|
||
INTVAL (XEXP (x, 1)) - count);
|
||
break;
|
||
|
||
case NEG: case NOT:
|
||
if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
|
||
return gen_unary (code, mode, mode, tem);
|
||
|
||
break;
|
||
|
||
case PLUS: case IOR: case XOR: case AND:
|
||
/* If we can safely shift this constant and we find the inner shift,
|
||
make a new operation. */
|
||
if (GET_CODE (XEXP (x,1)) == CONST_INT
|
||
&& (INTVAL (XEXP (x, 1)) & (((HOST_WIDE_INT) 1 << count)) - 1) == 0
|
||
&& (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
|
||
return gen_binary (code, mode, tem,
|
||
GEN_INT (INTVAL (XEXP (x, 1)) >> count));
|
||
|
||
break;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Look at the expression rooted at X. Look for expressions
|
||
equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
|
||
Form these expressions.
|
||
|
||
Return the new rtx, usually just X.
|
||
|
||
Also, for machines like the Vax that don't have logical shift insns,
|
||
try to convert logical to arithmetic shift operations in cases where
|
||
they are equivalent. This undoes the canonicalizations to logical
|
||
shifts done elsewhere.
|
||
|
||
We try, as much as possible, to re-use rtl expressions to save memory.
|
||
|
||
IN_CODE says what kind of expression we are processing. Normally, it is
|
||
SET. In a memory address (inside a MEM, PLUS or minus, the latter two
|
||
being kludges), it is MEM. When processing the arguments of a comparison
|
||
or a COMPARE against zero, it is COMPARE. */
|
||
|
||
static rtx
|
||
make_compound_operation (x, in_code)
|
||
rtx x;
|
||
enum rtx_code in_code;
|
||
{
|
||
enum rtx_code code = GET_CODE (x);
|
||
enum machine_mode mode = GET_MODE (x);
|
||
int mode_width = GET_MODE_BITSIZE (mode);
|
||
rtx rhs, lhs;
|
||
enum rtx_code next_code;
|
||
int i;
|
||
rtx new = 0;
|
||
rtx tem;
|
||
char *fmt;
|
||
|
||
/* Select the code to be used in recursive calls. Once we are inside an
|
||
address, we stay there. If we have a comparison, set to COMPARE,
|
||
but once inside, go back to our default of SET. */
|
||
|
||
next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
|
||
: ((code == COMPARE || GET_RTX_CLASS (code) == '<')
|
||
&& XEXP (x, 1) == const0_rtx) ? COMPARE
|
||
: in_code == COMPARE ? SET : in_code);
|
||
|
||
/* Process depending on the code of this operation. If NEW is set
|
||
non-zero, it will be returned. */
|
||
|
||
switch (code)
|
||
{
|
||
case ASHIFT:
|
||
/* Convert shifts by constants into multiplications if inside
|
||
an address. */
|
||
if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
|
||
&& INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
|
||
&& INTVAL (XEXP (x, 1)) >= 0)
|
||
{
|
||
new = make_compound_operation (XEXP (x, 0), next_code);
|
||
new = gen_rtx_combine (MULT, mode, new,
|
||
GEN_INT ((HOST_WIDE_INT) 1
|
||
<< INTVAL (XEXP (x, 1))));
|
||
}
|
||
break;
|
||
|
||
case AND:
|
||
/* If the second operand is not a constant, we can't do anything
|
||
with it. */
|
||
if (GET_CODE (XEXP (x, 1)) != CONST_INT)
|
||
break;
|
||
|
||
/* If the constant is a power of two minus one and the first operand
|
||
is a logical right shift, make an extraction. */
|
||
if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
|
||
&& (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
|
||
{
|
||
new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
|
||
new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
|
||
0, in_code == COMPARE);
|
||
}
|
||
|
||
/* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
|
||
else if (GET_CODE (XEXP (x, 0)) == SUBREG
|
||
&& subreg_lowpart_p (XEXP (x, 0))
|
||
&& GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
|
||
&& (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
|
||
{
|
||
new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
|
||
next_code);
|
||
new = make_extraction (mode, new, 0,
|
||
XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
|
||
0, in_code == COMPARE);
|
||
}
|
||
/* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
|
||
else if ((GET_CODE (XEXP (x, 0)) == XOR
|
||
|| GET_CODE (XEXP (x, 0)) == IOR)
|
||
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
|
||
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
|
||
&& (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
|
||
{
|
||
/* Apply the distributive law, and then try to make extractions. */
|
||
new = gen_rtx_combine (GET_CODE (XEXP (x, 0)), mode,
|
||
gen_rtx (AND, mode, XEXP (XEXP (x, 0), 0),
|
||
XEXP (x, 1)),
|
||
gen_rtx (AND, mode, XEXP (XEXP (x, 0), 1),
|
||
XEXP (x, 1)));
|
||
new = make_compound_operation (new, in_code);
|
||
}
|
||
|
||
/* If we are have (and (rotate X C) M) and C is larger than the number
|
||
of bits in M, this is an extraction. */
|
||
|
||
else if (GET_CODE (XEXP (x, 0)) == ROTATE
|
||
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
|
||
&& (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
|
||
&& i <= INTVAL (XEXP (XEXP (x, 0), 1)))
|
||
{
|
||
new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
|
||
new = make_extraction (mode, new,
|
||
(GET_MODE_BITSIZE (mode)
|
||
- INTVAL (XEXP (XEXP (x, 0), 1))),
|
||
NULL_RTX, i, 1, 0, in_code == COMPARE);
|
||
}
|
||
|
||
/* On machines without logical shifts, if the operand of the AND is
|
||
a logical shift and our mask turns off all the propagated sign
|
||
bits, we can replace the logical shift with an arithmetic shift. */
|
||
else if (ashr_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
|
||
&& (lshr_optab->handlers[(int) mode].insn_code
|
||
== CODE_FOR_nothing)
|
||
&& GET_CODE (XEXP (x, 0)) == LSHIFTRT
|
||
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
|
||
&& INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
|
||
&& INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
|
||
&& mode_width <= HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
|
||
|
||
mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
|
||
if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
|
||
SUBST (XEXP (x, 0),
|
||
gen_rtx_combine (ASHIFTRT, mode,
|
||
make_compound_operation (XEXP (XEXP (x, 0), 0),
|
||
next_code),
|
||
XEXP (XEXP (x, 0), 1)));
|
||
}
|
||
|
||
/* If the constant is one less than a power of two, this might be
|
||
representable by an extraction even if no shift is present.
|
||
If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
|
||
we are in a COMPARE. */
|
||
else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
|
||
new = make_extraction (mode,
|
||
make_compound_operation (XEXP (x, 0),
|
||
next_code),
|
||
0, NULL_RTX, i, 1, 0, in_code == COMPARE);
|
||
|
||
/* If we are in a comparison and this is an AND with a power of two,
|
||
convert this into the appropriate bit extract. */
|
||
else if (in_code == COMPARE
|
||
&& (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
|
||
new = make_extraction (mode,
|
||
make_compound_operation (XEXP (x, 0),
|
||
next_code),
|
||
i, NULL_RTX, 1, 1, 0, 1);
|
||
|
||
break;
|
||
|
||
case LSHIFTRT:
|
||
/* If the sign bit is known to be zero, replace this with an
|
||
arithmetic shift. */
|
||
if (ashr_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing
|
||
&& lshr_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
|
||
&& mode_width <= HOST_BITS_PER_WIDE_INT
|
||
&& (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
|
||
{
|
||
new = gen_rtx_combine (ASHIFTRT, mode,
|
||
make_compound_operation (XEXP (x, 0),
|
||
next_code),
|
||
XEXP (x, 1));
|
||
break;
|
||
}
|
||
|
||
/* ... fall through ... */
|
||
|
||
case ASHIFTRT:
|
||
lhs = XEXP (x, 0);
|
||
rhs = XEXP (x, 1);
|
||
|
||
/* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
|
||
this is a SIGN_EXTRACT. */
|
||
if (GET_CODE (rhs) == CONST_INT
|
||
&& GET_CODE (lhs) == ASHIFT
|
||
&& GET_CODE (XEXP (lhs, 1)) == CONST_INT
|
||
&& INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
|
||
{
|
||
new = make_compound_operation (XEXP (lhs, 0), next_code);
|
||
new = make_extraction (mode, new,
|
||
INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
|
||
NULL_RTX, mode_width - INTVAL (rhs),
|
||
code == LSHIFTRT, 0, in_code == COMPARE);
|
||
}
|
||
|
||
/* See if we have operations between an ASHIFTRT and an ASHIFT.
|
||
If so, try to merge the shifts into a SIGN_EXTEND. We could
|
||
also do this for some cases of SIGN_EXTRACT, but it doesn't
|
||
seem worth the effort; the case checked for occurs on Alpha. */
|
||
|
||
if (GET_RTX_CLASS (GET_CODE (lhs)) != 'o'
|
||
&& ! (GET_CODE (lhs) == SUBREG
|
||
&& (GET_RTX_CLASS (GET_CODE (SUBREG_REG (lhs))) == 'o'))
|
||
&& GET_CODE (rhs) == CONST_INT
|
||
&& INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
|
||
&& (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
|
||
new = make_extraction (mode, make_compound_operation (new, next_code),
|
||
0, NULL_RTX, mode_width - INTVAL (rhs),
|
||
code == LSHIFTRT, 0, in_code == COMPARE);
|
||
|
||
break;
|
||
|
||
case SUBREG:
|
||
/* Call ourselves recursively on the inner expression. If we are
|
||
narrowing the object and it has a different RTL code from
|
||
what it originally did, do this SUBREG as a force_to_mode. */
|
||
|
||
tem = make_compound_operation (SUBREG_REG (x), in_code);
|
||
if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
|
||
&& GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
|
||
&& subreg_lowpart_p (x))
|
||
{
|
||
rtx newer = force_to_mode (tem, mode,
|
||
GET_MODE_MASK (mode), NULL_RTX, 0);
|
||
|
||
/* If we have something other than a SUBREG, we might have
|
||
done an expansion, so rerun outselves. */
|
||
if (GET_CODE (newer) != SUBREG)
|
||
newer = make_compound_operation (newer, in_code);
|
||
|
||
return newer;
|
||
}
|
||
}
|
||
|
||
if (new)
|
||
{
|
||
x = gen_lowpart_for_combine (mode, new);
|
||
code = GET_CODE (x);
|
||
}
|
||
|
||
/* Now recursively process each operand of this operation. */
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = 0; i < GET_RTX_LENGTH (code); i++)
|
||
if (fmt[i] == 'e')
|
||
{
|
||
new = make_compound_operation (XEXP (x, i), next_code);
|
||
SUBST (XEXP (x, i), new);
|
||
}
|
||
|
||
return x;
|
||
}
|
||
|
||
/* Given M see if it is a value that would select a field of bits
|
||
within an item, but not the entire word. Return -1 if not.
|
||
Otherwise, return the starting position of the field, where 0 is the
|
||
low-order bit.
|
||
|
||
*PLEN is set to the length of the field. */
|
||
|
||
static int
|
||
get_pos_from_mask (m, plen)
|
||
unsigned HOST_WIDE_INT m;
|
||
int *plen;
|
||
{
|
||
/* Get the bit number of the first 1 bit from the right, -1 if none. */
|
||
int pos = exact_log2 (m & - m);
|
||
|
||
if (pos < 0)
|
||
return -1;
|
||
|
||
/* Now shift off the low-order zero bits and see if we have a power of
|
||
two minus 1. */
|
||
*plen = exact_log2 ((m >> pos) + 1);
|
||
|
||
if (*plen <= 0)
|
||
return -1;
|
||
|
||
return pos;
|
||
}
|
||
|
||
/* See if X can be simplified knowing that we will only refer to it in
|
||
MODE and will only refer to those bits that are nonzero in MASK.
|
||
If other bits are being computed or if masking operations are done
|
||
that select a superset of the bits in MASK, they can sometimes be
|
||
ignored.
|
||
|
||
Return a possibly simplified expression, but always convert X to
|
||
MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
|
||
|
||
Also, if REG is non-zero and X is a register equal in value to REG,
|
||
replace X with REG.
|
||
|
||
If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
|
||
are all off in X. This is used when X will be complemented, by either
|
||
NOT, NEG, or XOR. */
|
||
|
||
static rtx
|
||
force_to_mode (x, mode, mask, reg, just_select)
|
||
rtx x;
|
||
enum machine_mode mode;
|
||
unsigned HOST_WIDE_INT mask;
|
||
rtx reg;
|
||
int just_select;
|
||
{
|
||
enum rtx_code code = GET_CODE (x);
|
||
int next_select = just_select || code == XOR || code == NOT || code == NEG;
|
||
enum machine_mode op_mode;
|
||
unsigned HOST_WIDE_INT fuller_mask, nonzero;
|
||
rtx op0, op1, temp;
|
||
|
||
/* If this is a CALL, don't do anything. Some of the code below
|
||
will do the wrong thing since the mode of a CALL is VOIDmode. */
|
||
if (code == CALL)
|
||
return x;
|
||
|
||
/* We want to perform the operation is its present mode unless we know
|
||
that the operation is valid in MODE, in which case we do the operation
|
||
in MODE. */
|
||
op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
|
||
&& code_to_optab[(int) code] != 0
|
||
&& (code_to_optab[(int) code]->handlers[(int) mode].insn_code
|
||
!= CODE_FOR_nothing))
|
||
? mode : GET_MODE (x));
|
||
|
||
/* It is not valid to do a right-shift in a narrower mode
|
||
than the one it came in with. */
|
||
if ((code == LSHIFTRT || code == ASHIFTRT)
|
||
&& GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
|
||
op_mode = GET_MODE (x);
|
||
|
||
/* Truncate MASK to fit OP_MODE. */
|
||
if (op_mode)
|
||
mask &= GET_MODE_MASK (op_mode);
|
||
|
||
/* When we have an arithmetic operation, or a shift whose count we
|
||
do not know, we need to assume that all bit the up to the highest-order
|
||
bit in MASK will be needed. This is how we form such a mask. */
|
||
if (op_mode)
|
||
fuller_mask = (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT
|
||
? GET_MODE_MASK (op_mode)
|
||
: ((HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1)) - 1);
|
||
else
|
||
fuller_mask = ~ (HOST_WIDE_INT) 0;
|
||
|
||
/* Determine what bits of X are guaranteed to be (non)zero. */
|
||
nonzero = nonzero_bits (x, mode);
|
||
|
||
/* If none of the bits in X are needed, return a zero. */
|
||
if (! just_select && (nonzero & mask) == 0)
|
||
return const0_rtx;
|
||
|
||
/* If X is a CONST_INT, return a new one. Do this here since the
|
||
test below will fail. */
|
||
if (GET_CODE (x) == CONST_INT)
|
||
{
|
||
HOST_WIDE_INT cval = INTVAL (x) & mask;
|
||
int width = GET_MODE_BITSIZE (mode);
|
||
|
||
/* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
|
||
number, sign extend it. */
|
||
if (width > 0 && width < HOST_BITS_PER_WIDE_INT
|
||
&& (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
|
||
cval |= (HOST_WIDE_INT) -1 << width;
|
||
|
||
return GEN_INT (cval);
|
||
}
|
||
|
||
/* If X is narrower than MODE and we want all the bits in X's mode, just
|
||
get X in the proper mode. */
|
||
if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
|
||
&& (GET_MODE_MASK (GET_MODE (x)) & ~ mask) == 0)
|
||
return gen_lowpart_for_combine (mode, x);
|
||
|
||
/* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
|
||
MASK are already known to be zero in X, we need not do anything. */
|
||
if (GET_MODE (x) == mode && code != SUBREG && (~ mask & nonzero) == 0)
|
||
return x;
|
||
|
||
switch (code)
|
||
{
|
||
case CLOBBER:
|
||
/* If X is a (clobber (const_int)), return it since we know we are
|
||
generating something that won't match. */
|
||
return x;
|
||
|
||
#if ! BITS_BIG_ENDIAN
|
||
case USE:
|
||
/* X is a (use (mem ..)) that was made from a bit-field extraction that
|
||
spanned the boundary of the MEM. If we are now masking so it is
|
||
within that boundary, we don't need the USE any more. */
|
||
if ((mask & ~ GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
|
||
return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
|
||
#endif
|
||
|
||
case SIGN_EXTEND:
|
||
case ZERO_EXTEND:
|
||
case ZERO_EXTRACT:
|
||
case SIGN_EXTRACT:
|
||
x = expand_compound_operation (x);
|
||
if (GET_CODE (x) != code)
|
||
return force_to_mode (x, mode, mask, reg, next_select);
|
||
break;
|
||
|
||
case REG:
|
||
if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
|
||
|| rtx_equal_p (reg, get_last_value (x))))
|
||
x = reg;
|
||
break;
|
||
|
||
case SUBREG:
|
||
if (subreg_lowpart_p (x)
|
||
/* We can ignore the effect of this SUBREG if it narrows the mode or
|
||
if the constant masks to zero all the bits the mode doesn't
|
||
have. */
|
||
&& ((GET_MODE_SIZE (GET_MODE (x))
|
||
< GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
|
||
|| (0 == (mask
|
||
& GET_MODE_MASK (GET_MODE (x))
|
||
& ~ GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
|
||
return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
|
||
break;
|
||
|
||
case AND:
|
||
/* If this is an AND with a constant, convert it into an AND
|
||
whose constant is the AND of that constant with MASK. If it
|
||
remains an AND of MASK, delete it since it is redundant. */
|
||
|
||
if (GET_CODE (XEXP (x, 1)) == CONST_INT
|
||
&& GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
|
||
mask & INTVAL (XEXP (x, 1)));
|
||
|
||
/* If X is still an AND, see if it is an AND with a mask that
|
||
is just some low-order bits. If so, and it is MASK, we don't
|
||
need it. */
|
||
|
||
if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
|
||
&& INTVAL (XEXP (x, 1)) == mask)
|
||
x = XEXP (x, 0);
|
||
|
||
/* If it remains an AND, try making another AND with the bits
|
||
in the mode mask that aren't in MASK turned on. If the
|
||
constant in the AND is wide enough, this might make a
|
||
cheaper constant. */
|
||
|
||
if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
|
||
&& GET_MODE_MASK (GET_MODE (x)) != mask)
|
||
{
|
||
HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
|
||
| (GET_MODE_MASK (GET_MODE (x)) & ~ mask));
|
||
int width = GET_MODE_BITSIZE (GET_MODE (x));
|
||
rtx y;
|
||
|
||
/* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
|
||
number, sign extend it. */
|
||
if (width > 0 && width < HOST_BITS_PER_WIDE_INT
|
||
&& (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
|
||
cval |= (HOST_WIDE_INT) -1 << width;
|
||
|
||
y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
|
||
if (rtx_cost (y, SET) < rtx_cost (x, SET))
|
||
x = y;
|
||
}
|
||
|
||
break;
|
||
}
|
||
|
||
goto binop;
|
||
|
||
case PLUS:
|
||
/* In (and (plus FOO C1) M), if M is a mask that just turns off
|
||
low-order bits (as in an alignment operation) and FOO is already
|
||
aligned to that boundary, mask C1 to that boundary as well.
|
||
This may eliminate that PLUS and, later, the AND. */
|
||
if (GET_CODE (XEXP (x, 1)) == CONST_INT
|
||
&& exact_log2 (- mask) >= 0
|
||
&& (nonzero_bits (XEXP (x, 0), mode) & ~ mask) == 0
|
||
&& (INTVAL (XEXP (x, 1)) & ~ mask) != 0)
|
||
return force_to_mode (plus_constant (XEXP (x, 0),
|
||
INTVAL (XEXP (x, 1)) & mask),
|
||
mode, mask, reg, next_select);
|
||
|
||
/* ... fall through ... */
|
||
|
||
case MINUS:
|
||
case MULT:
|
||
/* For PLUS, MINUS and MULT, we need any bits less significant than the
|
||
most significant bit in MASK since carries from those bits will
|
||
affect the bits we are interested in. */
|
||
mask = fuller_mask;
|
||
goto binop;
|
||
|
||
case IOR:
|
||
case XOR:
|
||
/* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
|
||
LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
|
||
operation which may be a bitfield extraction. Ensure that the
|
||
constant we form is not wider than the mode of X. */
|
||
|
||
if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
|
||
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
|
||
&& INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
|
||
&& INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
|
||
&& GET_CODE (XEXP (x, 1)) == CONST_INT
|
||
&& ((INTVAL (XEXP (XEXP (x, 0), 1))
|
||
+ floor_log2 (INTVAL (XEXP (x, 1))))
|
||
< GET_MODE_BITSIZE (GET_MODE (x)))
|
||
&& (INTVAL (XEXP (x, 1))
|
||
& ~ nonzero_bits (XEXP (x, 0), GET_MODE (x)) == 0))
|
||
{
|
||
temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
|
||
<< INTVAL (XEXP (XEXP (x, 0), 1)));
|
||
temp = gen_binary (GET_CODE (x), GET_MODE (x),
|
||
XEXP (XEXP (x, 0), 0), temp);
|
||
x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (x, 1));
|
||
return force_to_mode (x, mode, mask, reg, next_select);
|
||
}
|
||
|
||
binop:
|
||
/* For most binary operations, just propagate into the operation and
|
||
change the mode if we have an operation of that mode. */
|
||
|
||
op0 = gen_lowpart_for_combine (op_mode,
|
||
force_to_mode (XEXP (x, 0), mode, mask,
|
||
reg, next_select));
|
||
op1 = gen_lowpart_for_combine (op_mode,
|
||
force_to_mode (XEXP (x, 1), mode, mask,
|
||
reg, next_select));
|
||
|
||
/* If OP1 is a CONST_INT and X is an IOR or XOR, clear bits outside
|
||
MASK since OP1 might have been sign-extended but we never want
|
||
to turn on extra bits, since combine might have previously relied
|
||
on them being off. */
|
||
if (GET_CODE (op1) == CONST_INT && (code == IOR || code == XOR)
|
||
&& (INTVAL (op1) & mask) != 0)
|
||
op1 = GEN_INT (INTVAL (op1) & mask);
|
||
|
||
if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
|
||
x = gen_binary (code, op_mode, op0, op1);
|
||
break;
|
||
|
||
case ASHIFT:
|
||
/* For left shifts, do the same, but just for the first operand.
|
||
However, we cannot do anything with shifts where we cannot
|
||
guarantee that the counts are smaller than the size of the mode
|
||
because such a count will have a different meaning in a
|
||
wider mode. */
|
||
|
||
if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
|
||
&& INTVAL (XEXP (x, 1)) >= 0
|
||
&& INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
|
||
&& ! (GET_MODE (XEXP (x, 1)) != VOIDmode
|
||
&& (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
|
||
< (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
|
||
break;
|
||
|
||
/* If the shift count is a constant and we can do arithmetic in
|
||
the mode of the shift, refine which bits we need. Otherwise, use the
|
||
conservative form of the mask. */
|
||
if (GET_CODE (XEXP (x, 1)) == CONST_INT
|
||
&& INTVAL (XEXP (x, 1)) >= 0
|
||
&& INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
|
||
&& GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
|
||
mask >>= INTVAL (XEXP (x, 1));
|
||
else
|
||
mask = fuller_mask;
|
||
|
||
op0 = gen_lowpart_for_combine (op_mode,
|
||
force_to_mode (XEXP (x, 0), op_mode,
|
||
mask, reg, next_select));
|
||
|
||
if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
|
||
x = gen_binary (code, op_mode, op0, XEXP (x, 1));
|
||
break;
|
||
|
||
case LSHIFTRT:
|
||
/* Here we can only do something if the shift count is a constant,
|
||
this shift constant is valid for the host, and we can do arithmetic
|
||
in OP_MODE. */
|
||
|
||
if (GET_CODE (XEXP (x, 1)) == CONST_INT
|
||
&& INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
|
||
&& GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
rtx inner = XEXP (x, 0);
|
||
|
||
/* Select the mask of the bits we need for the shift operand. */
|
||
mask <<= INTVAL (XEXP (x, 1));
|
||
|
||
/* We can only change the mode of the shift if we can do arithmetic
|
||
in the mode of the shift and MASK is no wider than the width of
|
||
OP_MODE. */
|
||
if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT
|
||
|| (mask & ~ GET_MODE_MASK (op_mode)) != 0)
|
||
op_mode = GET_MODE (x);
|
||
|
||
inner = force_to_mode (inner, op_mode, mask, reg, next_select);
|
||
|
||
if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
|
||
x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
|
||
}
|
||
|
||
/* If we have (and (lshiftrt FOO C1) C2) where the combination of the
|
||
shift and AND produces only copies of the sign bit (C2 is one less
|
||
than a power of two), we can do this with just a shift. */
|
||
|
||
if (GET_CODE (x) == LSHIFTRT
|
||
&& GET_CODE (XEXP (x, 1)) == CONST_INT
|
||
&& ((INTVAL (XEXP (x, 1))
|
||
+ num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
|
||
>= GET_MODE_BITSIZE (GET_MODE (x)))
|
||
&& exact_log2 (mask + 1) >= 0
|
||
&& (num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
|
||
>= exact_log2 (mask + 1)))
|
||
x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
|
||
GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
|
||
- exact_log2 (mask + 1)));
|
||
break;
|
||
|
||
case ASHIFTRT:
|
||
/* If we are just looking for the sign bit, we don't need this shift at
|
||
all, even if it has a variable count. */
|
||
if (mask == ((HOST_WIDE_INT) 1
|
||
<< (GET_MODE_BITSIZE (GET_MODE (x)) - 1)))
|
||
return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
|
||
|
||
/* If this is a shift by a constant, get a mask that contains those bits
|
||
that are not copies of the sign bit. We then have two cases: If
|
||
MASK only includes those bits, this can be a logical shift, which may
|
||
allow simplifications. If MASK is a single-bit field not within
|
||
those bits, we are requesting a copy of the sign bit and hence can
|
||
shift the sign bit to the appropriate location. */
|
||
|
||
if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
|
||
&& INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
int i = -1;
|
||
|
||
nonzero = GET_MODE_MASK (GET_MODE (x));
|
||
nonzero >>= INTVAL (XEXP (x, 1));
|
||
|
||
if ((mask & ~ nonzero) == 0
|
||
|| (i = exact_log2 (mask)) >= 0)
|
||
{
|
||
x = simplify_shift_const
|
||
(x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
|
||
i < 0 ? INTVAL (XEXP (x, 1))
|
||
: GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
|
||
|
||
if (GET_CODE (x) != ASHIFTRT)
|
||
return force_to_mode (x, mode, mask, reg, next_select);
|
||
}
|
||
}
|
||
|
||
/* If MASK is 1, convert this to a LSHIFTRT. This can be done
|
||
even if the shift count isn't a constant. */
|
||
if (mask == 1)
|
||
x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
|
||
|
||
/* If this is a sign-extension operation that just affects bits
|
||
we don't care about, remove it. Be sure the call above returned
|
||
something that is still a shift. */
|
||
|
||
if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
|
||
&& GET_CODE (XEXP (x, 1)) == CONST_INT
|
||
&& INTVAL (XEXP (x, 1)) >= 0
|
||
&& (INTVAL (XEXP (x, 1))
|
||
<= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
|
||
&& GET_CODE (XEXP (x, 0)) == ASHIFT
|
||
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
|
||
&& INTVAL (XEXP (XEXP (x, 0), 1)) == INTVAL (XEXP (x, 1)))
|
||
return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
|
||
reg, next_select);
|
||
|
||
break;
|
||
|
||
case ROTATE:
|
||
case ROTATERT:
|
||
/* If the shift count is constant and we can do computations
|
||
in the mode of X, compute where the bits we care about are.
|
||
Otherwise, we can't do anything. Don't change the mode of
|
||
the shift or propagate MODE into the shift, though. */
|
||
if (GET_CODE (XEXP (x, 1)) == CONST_INT
|
||
&& INTVAL (XEXP (x, 1)) >= 0)
|
||
{
|
||
temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
|
||
GET_MODE (x), GEN_INT (mask),
|
||
XEXP (x, 1));
|
||
if (temp && GET_CODE(temp) == CONST_INT)
|
||
SUBST (XEXP (x, 0),
|
||
force_to_mode (XEXP (x, 0), GET_MODE (x),
|
||
INTVAL (temp), reg, next_select));
|
||
}
|
||
break;
|
||
|
||
case NEG:
|
||
/* If we just want the low-order bit, the NEG isn't needed since it
|
||
won't change the low-order bit. */
|
||
if (mask == 1)
|
||
return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
|
||
|
||
/* We need any bits less significant than the most significant bit in
|
||
MASK since carries from those bits will affect the bits we are
|
||
interested in. */
|
||
mask = fuller_mask;
|
||
goto unop;
|
||
|
||
case NOT:
|
||
/* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
|
||
same as the XOR case above. Ensure that the constant we form is not
|
||
wider than the mode of X. */
|
||
|
||
if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
|
||
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
|
||
&& INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
|
||
&& (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
|
||
< GET_MODE_BITSIZE (GET_MODE (x)))
|
||
&& INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
temp = GEN_INT (mask << INTVAL (XEXP (XEXP (x, 0), 1)));
|
||
temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
|
||
x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
|
||
|
||
return force_to_mode (x, mode, mask, reg, next_select);
|
||
}
|
||
|
||
unop:
|
||
op0 = gen_lowpart_for_combine (op_mode,
|
||
force_to_mode (XEXP (x, 0), mode, mask,
|
||
reg, next_select));
|
||
if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
|
||
x = gen_unary (code, op_mode, op_mode, op0);
|
||
break;
|
||
|
||
case NE:
|
||
/* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
|
||
in STORE_FLAG_VALUE and FOO has no bits that might be nonzero not
|
||
in CONST. */
|
||
if ((mask & ~ STORE_FLAG_VALUE) == 0 && XEXP (x, 0) == const0_rtx
|
||
&& (nonzero_bits (XEXP (x, 0), mode) & ~ mask) == 0)
|
||
return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
|
||
|
||
break;
|
||
|
||
case IF_THEN_ELSE:
|
||
/* We have no way of knowing if the IF_THEN_ELSE can itself be
|
||
written in a narrower mode. We play it safe and do not do so. */
|
||
|
||
SUBST (XEXP (x, 1),
|
||
gen_lowpart_for_combine (GET_MODE (x),
|
||
force_to_mode (XEXP (x, 1), mode,
|
||
mask, reg, next_select)));
|
||
SUBST (XEXP (x, 2),
|
||
gen_lowpart_for_combine (GET_MODE (x),
|
||
force_to_mode (XEXP (x, 2), mode,
|
||
mask, reg,next_select)));
|
||
break;
|
||
}
|
||
|
||
/* Ensure we return a value of the proper mode. */
|
||
return gen_lowpart_for_combine (mode, x);
|
||
}
|
||
|
||
/* Return nonzero if X is an expression that has one of two values depending on
|
||
whether some other value is zero or nonzero. In that case, we return the
|
||
value that is being tested, *PTRUE is set to the value if the rtx being
|
||
returned has a nonzero value, and *PFALSE is set to the other alternative.
|
||
|
||
If we return zero, we set *PTRUE and *PFALSE to X. */
|
||
|
||
static rtx
|
||
if_then_else_cond (x, ptrue, pfalse)
|
||
rtx x;
|
||
rtx *ptrue, *pfalse;
|
||
{
|
||
enum machine_mode mode = GET_MODE (x);
|
||
enum rtx_code code = GET_CODE (x);
|
||
int size = GET_MODE_BITSIZE (mode);
|
||
rtx cond0, cond1, true0, true1, false0, false1;
|
||
unsigned HOST_WIDE_INT nz;
|
||
|
||
/* If this is a unary operation whose operand has one of two values, apply
|
||
our opcode to compute those values. */
|
||
if (GET_RTX_CLASS (code) == '1'
|
||
&& (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
|
||
{
|
||
*ptrue = gen_unary (code, mode, GET_MODE (XEXP (x, 0)), true0);
|
||
*pfalse = gen_unary (code, mode, GET_MODE (XEXP (x, 0)), false0);
|
||
return cond0;
|
||
}
|
||
|
||
/* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
|
||
make can't possibly match and would supress other optimizations. */
|
||
else if (code == COMPARE)
|
||
;
|
||
|
||
/* If this is a binary operation, see if either side has only one of two
|
||
values. If either one does or if both do and they are conditional on
|
||
the same value, compute the new true and false values. */
|
||
else if (GET_RTX_CLASS (code) == 'c' || GET_RTX_CLASS (code) == '2'
|
||
|| GET_RTX_CLASS (code) == '<')
|
||
{
|
||
cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
|
||
cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
|
||
|
||
if ((cond0 != 0 || cond1 != 0)
|
||
&& ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
|
||
{
|
||
*ptrue = gen_binary (code, mode, true0, true1);
|
||
*pfalse = gen_binary (code, mode, false0, false1);
|
||
return cond0 ? cond0 : cond1;
|
||
}
|
||
|
||
#if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
|
||
|
||
/* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
|
||
operands is zero when the other is non-zero, and vice-versa. */
|
||
|
||
if ((code == PLUS || code == IOR || code == XOR || code == MINUS
|
||
|| code == UMAX)
|
||
&& GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
|
||
{
|
||
rtx op0 = XEXP (XEXP (x, 0), 1);
|
||
rtx op1 = XEXP (XEXP (x, 1), 1);
|
||
|
||
cond0 = XEXP (XEXP (x, 0), 0);
|
||
cond1 = XEXP (XEXP (x, 1), 0);
|
||
|
||
if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
|
||
&& GET_RTX_CLASS (GET_CODE (cond1)) == '<'
|
||
&& reversible_comparison_p (cond1)
|
||
&& ((GET_CODE (cond0) == reverse_condition (GET_CODE (cond1))
|
||
&& rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
|
||
&& rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
|
||
|| ((swap_condition (GET_CODE (cond0))
|
||
== reverse_condition (GET_CODE (cond1)))
|
||
&& rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
|
||
&& rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
|
||
&& ! side_effects_p (x))
|
||
{
|
||
*ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
|
||
*pfalse = gen_binary (MULT, mode,
|
||
(code == MINUS
|
||
? gen_unary (NEG, mode, mode, op1) : op1),
|
||
const_true_rtx);
|
||
return cond0;
|
||
}
|
||
}
|
||
|
||
/* Similarly for MULT, AND and UMIN, execpt that for these the result
|
||
is always zero. */
|
||
if ((code == MULT || code == AND || code == UMIN)
|
||
&& GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
|
||
{
|
||
cond0 = XEXP (XEXP (x, 0), 0);
|
||
cond1 = XEXP (XEXP (x, 1), 0);
|
||
|
||
if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
|
||
&& GET_RTX_CLASS (GET_CODE (cond1)) == '<'
|
||
&& reversible_comparison_p (cond1)
|
||
&& ((GET_CODE (cond0) == reverse_condition (GET_CODE (cond1))
|
||
&& rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
|
||
&& rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
|
||
|| ((swap_condition (GET_CODE (cond0))
|
||
== reverse_condition (GET_CODE (cond1)))
|
||
&& rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
|
||
&& rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
|
||
&& ! side_effects_p (x))
|
||
{
|
||
*ptrue = *pfalse = const0_rtx;
|
||
return cond0;
|
||
}
|
||
}
|
||
#endif
|
||
}
|
||
|
||
else if (code == IF_THEN_ELSE)
|
||
{
|
||
/* If we have IF_THEN_ELSE already, extract the condition and
|
||
canonicalize it if it is NE or EQ. */
|
||
cond0 = XEXP (x, 0);
|
||
*ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
|
||
if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
|
||
return XEXP (cond0, 0);
|
||
else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
|
||
{
|
||
*ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
|
||
return XEXP (cond0, 0);
|
||
}
|
||
else
|
||
return cond0;
|
||
}
|
||
|
||
/* If X is a normal SUBREG with both inner and outer modes integral,
|
||
we can narrow both the true and false values of the inner expression,
|
||
if there is a condition. */
|
||
else if (code == SUBREG && GET_MODE_CLASS (mode) == MODE_INT
|
||
&& GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
|
||
&& GET_MODE_SIZE (mode) <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
|
||
&& 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
|
||
&true0, &false0)))
|
||
{
|
||
*ptrue = force_to_mode (true0, mode, GET_MODE_MASK (mode), NULL_RTX, 0);
|
||
*pfalse
|
||
= force_to_mode (false0, mode, GET_MODE_MASK (mode), NULL_RTX, 0);
|
||
|
||
return cond0;
|
||
}
|
||
|
||
/* If X is a constant, this isn't special and will cause confusions
|
||
if we treat it as such. Likewise if it is equivalent to a constant. */
|
||
else if (CONSTANT_P (x)
|
||
|| ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
|
||
;
|
||
|
||
/* If X is known to be either 0 or -1, those are the true and
|
||
false values when testing X. */
|
||
else if (num_sign_bit_copies (x, mode) == size)
|
||
{
|
||
*ptrue = constm1_rtx, *pfalse = const0_rtx;
|
||
return x;
|
||
}
|
||
|
||
/* Likewise for 0 or a single bit. */
|
||
else if (exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
|
||
{
|
||
*ptrue = GEN_INT (nz), *pfalse = const0_rtx;
|
||
return x;
|
||
}
|
||
|
||
/* Otherwise fail; show no condition with true and false values the same. */
|
||
*ptrue = *pfalse = x;
|
||
return 0;
|
||
}
|
||
|
||
/* Return the value of expression X given the fact that condition COND
|
||
is known to be true when applied to REG as its first operand and VAL
|
||
as its second. X is known to not be shared and so can be modified in
|
||
place.
|
||
|
||
We only handle the simplest cases, and specifically those cases that
|
||
arise with IF_THEN_ELSE expressions. */
|
||
|
||
static rtx
|
||
known_cond (x, cond, reg, val)
|
||
rtx x;
|
||
enum rtx_code cond;
|
||
rtx reg, val;
|
||
{
|
||
enum rtx_code code = GET_CODE (x);
|
||
rtx temp;
|
||
char *fmt;
|
||
int i, j;
|
||
|
||
if (side_effects_p (x))
|
||
return x;
|
||
|
||
if (cond == EQ && rtx_equal_p (x, reg))
|
||
return val;
|
||
|
||
/* If X is (abs REG) and we know something about REG's relationship
|
||
with zero, we may be able to simplify this. */
|
||
|
||
if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
|
||
switch (cond)
|
||
{
|
||
case GE: case GT: case EQ:
|
||
return XEXP (x, 0);
|
||
case LT: case LE:
|
||
return gen_unary (NEG, GET_MODE (XEXP (x, 0)), GET_MODE (XEXP (x, 0)),
|
||
XEXP (x, 0));
|
||
}
|
||
|
||
/* The only other cases we handle are MIN, MAX, and comparisons if the
|
||
operands are the same as REG and VAL. */
|
||
|
||
else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
|
||
{
|
||
if (rtx_equal_p (XEXP (x, 0), val))
|
||
cond = swap_condition (cond), temp = val, val = reg, reg = temp;
|
||
|
||
if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
|
||
{
|
||
if (GET_RTX_CLASS (code) == '<')
|
||
return (comparison_dominates_p (cond, code) ? const_true_rtx
|
||
: (comparison_dominates_p (cond,
|
||
reverse_condition (code))
|
||
? const0_rtx : x));
|
||
|
||
else if (code == SMAX || code == SMIN
|
||
|| code == UMIN || code == UMAX)
|
||
{
|
||
int unsignedp = (code == UMIN || code == UMAX);
|
||
|
||
if (code == SMAX || code == UMAX)
|
||
cond = reverse_condition (cond);
|
||
|
||
switch (cond)
|
||
{
|
||
case GE: case GT:
|
||
return unsignedp ? x : XEXP (x, 1);
|
||
case LE: case LT:
|
||
return unsignedp ? x : XEXP (x, 0);
|
||
case GEU: case GTU:
|
||
return unsignedp ? XEXP (x, 1) : x;
|
||
case LEU: case LTU:
|
||
return unsignedp ? XEXP (x, 0) : x;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
|
||
else if (fmt[i] == 'E')
|
||
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
||
SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
|
||
cond, reg, val));
|
||
}
|
||
|
||
return x;
|
||
}
|
||
|
||
/* See if X, a SET operation, can be rewritten as a bit-field assignment.
|
||
Return that assignment if so.
|
||
|
||
We only handle the most common cases. */
|
||
|
||
static rtx
|
||
make_field_assignment (x)
|
||
rtx x;
|
||
{
|
||
rtx dest = SET_DEST (x);
|
||
rtx src = SET_SRC (x);
|
||
rtx assign;
|
||
HOST_WIDE_INT c1;
|
||
int pos, len;
|
||
rtx other;
|
||
enum machine_mode mode;
|
||
|
||
/* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
|
||
a clear of a one-bit field. We will have changed it to
|
||
(and (rotate (const_int -2) POS) DEST), so check for that. Also check
|
||
for a SUBREG. */
|
||
|
||
if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
|
||
&& GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
|
||
&& INTVAL (XEXP (XEXP (src, 0), 0)) == -2
|
||
&& (rtx_equal_p (dest, XEXP (src, 1))
|
||
|| rtx_equal_p (dest, get_last_value (XEXP (src, 1)))
|
||
|| rtx_equal_p (get_last_value (dest), XEXP (src, 1))))
|
||
{
|
||
assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
|
||
1, 1, 1, 0);
|
||
return gen_rtx (SET, VOIDmode, assign, const0_rtx);
|
||
}
|
||
|
||
else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
|
||
&& subreg_lowpart_p (XEXP (src, 0))
|
||
&& (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
|
||
< GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
|
||
&& GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
|
||
&& INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
|
||
&& (rtx_equal_p (dest, XEXP (src, 1))
|
||
|| rtx_equal_p (dest, get_last_value (XEXP (src, 1)))
|
||
|| rtx_equal_p (get_last_value (dest), XEXP (src, 1))))
|
||
{
|
||
assign = make_extraction (VOIDmode, dest, 0,
|
||
XEXP (SUBREG_REG (XEXP (src, 0)), 1),
|
||
1, 1, 1, 0);
|
||
return gen_rtx (SET, VOIDmode, assign, const0_rtx);
|
||
}
|
||
|
||
/* If SRC is (ior (ashift (const_int 1) POS DEST)), this is a set of a
|
||
one-bit field. */
|
||
else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
|
||
&& XEXP (XEXP (src, 0), 0) == const1_rtx
|
||
&& (rtx_equal_p (dest, XEXP (src, 1))
|
||
|| rtx_equal_p (dest, get_last_value (XEXP (src, 1)))
|
||
|| rtx_equal_p (get_last_value (dest), XEXP (src, 1))))
|
||
{
|
||
assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
|
||
1, 1, 1, 0);
|
||
return gen_rtx (SET, VOIDmode, assign, const1_rtx);
|
||
}
|
||
|
||
/* The other case we handle is assignments into a constant-position
|
||
field. They look like (ior (and DEST C1) OTHER). If C1 represents
|
||
a mask that has all one bits except for a group of zero bits and
|
||
OTHER is known to have zeros where C1 has ones, this is such an
|
||
assignment. Compute the position and length from C1. Shift OTHER
|
||
to the appropriate position, force it to the required mode, and
|
||
make the extraction. Check for the AND in both operands. */
|
||
|
||
if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == AND
|
||
&& GET_CODE (XEXP (XEXP (src, 0), 1)) == CONST_INT
|
||
&& (rtx_equal_p (XEXP (XEXP (src, 0), 0), dest)
|
||
|| rtx_equal_p (XEXP (XEXP (src, 0), 0), get_last_value (dest))
|
||
|| rtx_equal_p (get_last_value (XEXP (XEXP (src, 0), 1)), dest)))
|
||
c1 = INTVAL (XEXP (XEXP (src, 0), 1)), other = XEXP (src, 1);
|
||
else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 1)) == AND
|
||
&& GET_CODE (XEXP (XEXP (src, 1), 1)) == CONST_INT
|
||
&& (rtx_equal_p (XEXP (XEXP (src, 1), 0), dest)
|
||
|| rtx_equal_p (XEXP (XEXP (src, 1), 0), get_last_value (dest))
|
||
|| rtx_equal_p (get_last_value (XEXP (XEXP (src, 1), 0)),
|
||
dest)))
|
||
c1 = INTVAL (XEXP (XEXP (src, 1), 1)), other = XEXP (src, 0);
|
||
else
|
||
return x;
|
||
|
||
pos = get_pos_from_mask (c1 ^ GET_MODE_MASK (GET_MODE (dest)), &len);
|
||
if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
|
||
|| (GET_MODE_BITSIZE (GET_MODE (other)) <= HOST_BITS_PER_WIDE_INT
|
||
&& (c1 & nonzero_bits (other, GET_MODE (other))) != 0))
|
||
return x;
|
||
|
||
assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
|
||
|
||
/* The mode to use for the source is the mode of the assignment, or of
|
||
what is inside a possible STRICT_LOW_PART. */
|
||
mode = (GET_CODE (assign) == STRICT_LOW_PART
|
||
? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
|
||
|
||
/* Shift OTHER right POS places and make it the source, restricting it
|
||
to the proper length and mode. */
|
||
|
||
src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
|
||
GET_MODE (src), other, pos),
|
||
mode,
|
||
GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
|
||
? GET_MODE_MASK (mode)
|
||
: ((HOST_WIDE_INT) 1 << len) - 1,
|
||
dest, 0);
|
||
|
||
return gen_rtx_combine (SET, VOIDmode, assign, src);
|
||
}
|
||
|
||
/* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
|
||
if so. */
|
||
|
||
static rtx
|
||
apply_distributive_law (x)
|
||
rtx x;
|
||
{
|
||
enum rtx_code code = GET_CODE (x);
|
||
rtx lhs, rhs, other;
|
||
rtx tem;
|
||
enum rtx_code inner_code;
|
||
|
||
/* Distributivity is not true for floating point.
|
||
It can change the value. So don't do it.
|
||
-- rms and moshier@world.std.com. */
|
||
if (FLOAT_MODE_P (GET_MODE (x)))
|
||
return x;
|
||
|
||
/* The outer operation can only be one of the following: */
|
||
if (code != IOR && code != AND && code != XOR
|
||
&& code != PLUS && code != MINUS)
|
||
return x;
|
||
|
||
lhs = XEXP (x, 0), rhs = XEXP (x, 1);
|
||
|
||
/* If either operand is a primitive we can't do anything, so get out fast. */
|
||
if (GET_RTX_CLASS (GET_CODE (lhs)) == 'o'
|
||
|| GET_RTX_CLASS (GET_CODE (rhs)) == 'o')
|
||
return x;
|
||
|
||
lhs = expand_compound_operation (lhs);
|
||
rhs = expand_compound_operation (rhs);
|
||
inner_code = GET_CODE (lhs);
|
||
if (inner_code != GET_CODE (rhs))
|
||
return x;
|
||
|
||
/* See if the inner and outer operations distribute. */
|
||
switch (inner_code)
|
||
{
|
||
case LSHIFTRT:
|
||
case ASHIFTRT:
|
||
case AND:
|
||
case IOR:
|
||
/* These all distribute except over PLUS. */
|
||
if (code == PLUS || code == MINUS)
|
||
return x;
|
||
break;
|
||
|
||
case MULT:
|
||
if (code != PLUS && code != MINUS)
|
||
return x;
|
||
break;
|
||
|
||
case ASHIFT:
|
||
/* This is also a multiply, so it distributes over everything. */
|
||
break;
|
||
|
||
case SUBREG:
|
||
/* Non-paradoxical SUBREGs distributes over all operations, provided
|
||
the inner modes and word numbers are the same, this is an extraction
|
||
of a low-order part, we don't convert an fp operation to int or
|
||
vice versa, and we would not be converting a single-word
|
||
operation into a multi-word operation. The latter test is not
|
||
required, but it prevents generating unneeded multi-word operations.
|
||
Some of the previous tests are redundant given the latter test, but
|
||
are retained because they are required for correctness.
|
||
|
||
We produce the result slightly differently in this case. */
|
||
|
||
if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
|
||
|| SUBREG_WORD (lhs) != SUBREG_WORD (rhs)
|
||
|| ! subreg_lowpart_p (lhs)
|
||
|| (GET_MODE_CLASS (GET_MODE (lhs))
|
||
!= GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
|
||
|| (GET_MODE_SIZE (GET_MODE (lhs))
|
||
< GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
|
||
|| GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
|
||
return x;
|
||
|
||
tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
|
||
SUBREG_REG (lhs), SUBREG_REG (rhs));
|
||
return gen_lowpart_for_combine (GET_MODE (x), tem);
|
||
|
||
default:
|
||
return x;
|
||
}
|
||
|
||
/* Set LHS and RHS to the inner operands (A and B in the example
|
||
above) and set OTHER to the common operand (C in the example).
|
||
These is only one way to do this unless the inner operation is
|
||
commutative. */
|
||
if (GET_RTX_CLASS (inner_code) == 'c'
|
||
&& rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
|
||
other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
|
||
else if (GET_RTX_CLASS (inner_code) == 'c'
|
||
&& rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
|
||
other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
|
||
else if (GET_RTX_CLASS (inner_code) == 'c'
|
||
&& rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
|
||
other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
|
||
else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
|
||
other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
|
||
else
|
||
return x;
|
||
|
||
/* Form the new inner operation, seeing if it simplifies first. */
|
||
tem = gen_binary (code, GET_MODE (x), lhs, rhs);
|
||
|
||
/* There is one exception to the general way of distributing:
|
||
(a ^ b) | (a ^ c) -> (~a) & (b ^ c) */
|
||
if (code == XOR && inner_code == IOR)
|
||
{
|
||
inner_code = AND;
|
||
other = gen_unary (NOT, GET_MODE (x), GET_MODE (x), other);
|
||
}
|
||
|
||
/* We may be able to continuing distributing the result, so call
|
||
ourselves recursively on the inner operation before forming the
|
||
outer operation, which we return. */
|
||
return gen_binary (inner_code, GET_MODE (x),
|
||
apply_distributive_law (tem), other);
|
||
}
|
||
|
||
/* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
|
||
in MODE.
|
||
|
||
Return an equivalent form, if different from X. Otherwise, return X. If
|
||
X is zero, we are to always construct the equivalent form. */
|
||
|
||
static rtx
|
||
simplify_and_const_int (x, mode, varop, constop)
|
||
rtx x;
|
||
enum machine_mode mode;
|
||
rtx varop;
|
||
unsigned HOST_WIDE_INT constop;
|
||
{
|
||
unsigned HOST_WIDE_INT nonzero;
|
||
int i;
|
||
|
||
/* Simplify VAROP knowing that we will be only looking at some of the
|
||
bits in it. */
|
||
varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
|
||
|
||
/* If VAROP is a CLOBBER, we will fail so return it; if it is a
|
||
CONST_INT, we are done. */
|
||
if (GET_CODE (varop) == CLOBBER || GET_CODE (varop) == CONST_INT)
|
||
return varop;
|
||
|
||
/* See what bits may be nonzero in VAROP. Unlike the general case of
|
||
a call to nonzero_bits, here we don't care about bits outside
|
||
MODE. */
|
||
|
||
nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
|
||
|
||
/* Turn off all bits in the constant that are known to already be zero.
|
||
Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
|
||
which is tested below. */
|
||
|
||
constop &= nonzero;
|
||
|
||
/* If we don't have any bits left, return zero. */
|
||
if (constop == 0)
|
||
return const0_rtx;
|
||
|
||
/* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
|
||
a power of two, we can replace this with a ASHIFT. */
|
||
if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
|
||
&& (i = exact_log2 (constop)) >= 0)
|
||
return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
|
||
|
||
/* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
|
||
or XOR, then try to apply the distributive law. This may eliminate
|
||
operations if either branch can be simplified because of the AND.
|
||
It may also make some cases more complex, but those cases probably
|
||
won't match a pattern either with or without this. */
|
||
|
||
if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
|
||
return
|
||
gen_lowpart_for_combine
|
||
(mode,
|
||
apply_distributive_law
|
||
(gen_binary (GET_CODE (varop), GET_MODE (varop),
|
||
simplify_and_const_int (NULL_RTX, GET_MODE (varop),
|
||
XEXP (varop, 0), constop),
|
||
simplify_and_const_int (NULL_RTX, GET_MODE (varop),
|
||
XEXP (varop, 1), constop))));
|
||
|
||
/* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
|
||
if we already had one (just check for the simplest cases). */
|
||
if (x && GET_CODE (XEXP (x, 0)) == SUBREG
|
||
&& GET_MODE (XEXP (x, 0)) == mode
|
||
&& SUBREG_REG (XEXP (x, 0)) == varop)
|
||
varop = XEXP (x, 0);
|
||
else
|
||
varop = gen_lowpart_for_combine (mode, varop);
|
||
|
||
/* If we can't make the SUBREG, try to return what we were given. */
|
||
if (GET_CODE (varop) == CLOBBER)
|
||
return x ? x : varop;
|
||
|
||
/* If we are only masking insignificant bits, return VAROP. */
|
||
if (constop == nonzero)
|
||
x = varop;
|
||
|
||
/* Otherwise, return an AND. See how much, if any, of X we can use. */
|
||
else if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
|
||
x = gen_binary (AND, mode, varop, GEN_INT (constop));
|
||
|
||
else
|
||
{
|
||
if (GET_CODE (XEXP (x, 1)) != CONST_INT
|
||
|| INTVAL (XEXP (x, 1)) != constop)
|
||
SUBST (XEXP (x, 1), GEN_INT (constop));
|
||
|
||
SUBST (XEXP (x, 0), varop);
|
||
}
|
||
|
||
return x;
|
||
}
|
||
|
||
/* Given an expression, X, compute which bits in X can be non-zero.
|
||
We don't care about bits outside of those defined in MODE.
|
||
|
||
For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
|
||
a shift, AND, or zero_extract, we can do better. */
|
||
|
||
static unsigned HOST_WIDE_INT
|
||
nonzero_bits (x, mode)
|
||
rtx x;
|
||
enum machine_mode mode;
|
||
{
|
||
unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
|
||
unsigned HOST_WIDE_INT inner_nz;
|
||
enum rtx_code code;
|
||
int mode_width = GET_MODE_BITSIZE (mode);
|
||
rtx tem;
|
||
|
||
/* For floating-point values, assume all bits are needed. */
|
||
if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
|
||
return nonzero;
|
||
|
||
/* If X is wider than MODE, use its mode instead. */
|
||
if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
|
||
{
|
||
mode = GET_MODE (x);
|
||
nonzero = GET_MODE_MASK (mode);
|
||
mode_width = GET_MODE_BITSIZE (mode);
|
||
}
|
||
|
||
if (mode_width > HOST_BITS_PER_WIDE_INT)
|
||
/* Our only callers in this case look for single bit values. So
|
||
just return the mode mask. Those tests will then be false. */
|
||
return nonzero;
|
||
|
||
#ifndef WORD_REGISTER_OPERATIONS
|
||
/* If MODE is wider than X, but both are a single word for both the host
|
||
and target machines, we can compute this from which bits of the
|
||
object might be nonzero in its own mode, taking into account the fact
|
||
that on many CISC machines, accessing an object in a wider mode
|
||
causes the high-order bits to become undefined. So they are
|
||
not known to be zero. */
|
||
|
||
if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
|
||
&& GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
|
||
&& GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
|
||
&& GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
|
||
{
|
||
nonzero &= nonzero_bits (x, GET_MODE (x));
|
||
nonzero |= GET_MODE_MASK (mode) & ~ GET_MODE_MASK (GET_MODE (x));
|
||
return nonzero;
|
||
}
|
||
#endif
|
||
|
||
code = GET_CODE (x);
|
||
switch (code)
|
||
{
|
||
case REG:
|
||
#ifdef STACK_BOUNDARY
|
||
/* If this is the stack pointer, we may know something about its
|
||
alignment. If PUSH_ROUNDING is defined, it is possible for the
|
||
stack to be momentarily aligned only to that amount, so we pick
|
||
the least alignment. */
|
||
|
||
if (x == stack_pointer_rtx)
|
||
{
|
||
int sp_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
|
||
|
||
#ifdef PUSH_ROUNDING
|
||
sp_alignment = MIN (PUSH_ROUNDING (1), sp_alignment);
|
||
#endif
|
||
|
||
return nonzero & ~ (sp_alignment - 1);
|
||
}
|
||
#endif
|
||
|
||
/* If X is a register whose nonzero bits value is current, use it.
|
||
Otherwise, if X is a register whose value we can find, use that
|
||
value. Otherwise, use the previously-computed global nonzero bits
|
||
for this register. */
|
||
|
||
if (reg_last_set_value[REGNO (x)] != 0
|
||
&& reg_last_set_mode[REGNO (x)] == mode
|
||
&& (reg_n_sets[REGNO (x)] == 1
|
||
|| reg_last_set_label[REGNO (x)] == label_tick)
|
||
&& INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
|
||
return reg_last_set_nonzero_bits[REGNO (x)];
|
||
|
||
tem = get_last_value (x);
|
||
|
||
if (tem)
|
||
{
|
||
#ifdef SHORT_IMMEDIATES_SIGN_EXTEND
|
||
/* If X is narrower than MODE and TEM is a non-negative
|
||
constant that would appear negative in the mode of X,
|
||
sign-extend it for use in reg_nonzero_bits because some
|
||
machines (maybe most) will actually do the sign-extension
|
||
and this is the conservative approach.
|
||
|
||
??? For 2.5, try to tighten up the MD files in this regard
|
||
instead of this kludge. */
|
||
|
||
if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width
|
||
&& GET_CODE (tem) == CONST_INT
|
||
&& INTVAL (tem) > 0
|
||
&& 0 != (INTVAL (tem)
|
||
& ((HOST_WIDE_INT) 1
|
||
<< (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
|
||
tem = GEN_INT (INTVAL (tem)
|
||
| ((HOST_WIDE_INT) (-1)
|
||
<< GET_MODE_BITSIZE (GET_MODE (x))));
|
||
#endif
|
||
return nonzero_bits (tem, mode);
|
||
}
|
||
else if (nonzero_sign_valid && reg_nonzero_bits[REGNO (x)])
|
||
return reg_nonzero_bits[REGNO (x)] & nonzero;
|
||
else
|
||
return nonzero;
|
||
|
||
case CONST_INT:
|
||
#ifdef SHORT_IMMEDIATES_SIGN_EXTEND
|
||
/* If X is negative in MODE, sign-extend the value. */
|
||
if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
|
||
&& 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
|
||
return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
|
||
#endif
|
||
|
||
return INTVAL (x);
|
||
|
||
case MEM:
|
||
#ifdef LOAD_EXTEND_OP
|
||
/* In many, if not most, RISC machines, reading a byte from memory
|
||
zeros the rest of the register. Noticing that fact saves a lot
|
||
of extra zero-extends. */
|
||
if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
|
||
nonzero &= GET_MODE_MASK (GET_MODE (x));
|
||
#endif
|
||
break;
|
||
|
||
case EQ: case NE:
|
||
case GT: case GTU:
|
||
case LT: case LTU:
|
||
case GE: case GEU:
|
||
case LE: case LEU:
|
||
|
||
/* If this produces an integer result, we know which bits are set.
|
||
Code here used to clear bits outside the mode of X, but that is
|
||
now done above. */
|
||
|
||
if (GET_MODE_CLASS (mode) == MODE_INT
|
||
&& mode_width <= HOST_BITS_PER_WIDE_INT)
|
||
nonzero = STORE_FLAG_VALUE;
|
||
break;
|
||
|
||
case NEG:
|
||
if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
|
||
== GET_MODE_BITSIZE (GET_MODE (x)))
|
||
nonzero = 1;
|
||
|
||
if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
|
||
nonzero |= (GET_MODE_MASK (mode) & ~ GET_MODE_MASK (GET_MODE (x)));
|
||
break;
|
||
|
||
case ABS:
|
||
if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
|
||
== GET_MODE_BITSIZE (GET_MODE (x)))
|
||
nonzero = 1;
|
||
break;
|
||
|
||
case TRUNCATE:
|
||
nonzero &= (nonzero_bits (XEXP (x, 0), mode) & GET_MODE_MASK (mode));
|
||
break;
|
||
|
||
case ZERO_EXTEND:
|
||
nonzero &= nonzero_bits (XEXP (x, 0), mode);
|
||
if (GET_MODE (XEXP (x, 0)) != VOIDmode)
|
||
nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
|
||
break;
|
||
|
||
case SIGN_EXTEND:
|
||
/* If the sign bit is known clear, this is the same as ZERO_EXTEND.
|
||
Otherwise, show all the bits in the outer mode but not the inner
|
||
may be non-zero. */
|
||
inner_nz = nonzero_bits (XEXP (x, 0), mode);
|
||
if (GET_MODE (XEXP (x, 0)) != VOIDmode)
|
||
{
|
||
inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
|
||
if (inner_nz &
|
||
(((HOST_WIDE_INT) 1
|
||
<< (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
|
||
inner_nz |= (GET_MODE_MASK (mode)
|
||
& ~ GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
|
||
}
|
||
|
||
nonzero &= inner_nz;
|
||
break;
|
||
|
||
case AND:
|
||
nonzero &= (nonzero_bits (XEXP (x, 0), mode)
|
||
& nonzero_bits (XEXP (x, 1), mode));
|
||
break;
|
||
|
||
case XOR: case IOR:
|
||
case UMIN: case UMAX: case SMIN: case SMAX:
|
||
nonzero &= (nonzero_bits (XEXP (x, 0), mode)
|
||
| nonzero_bits (XEXP (x, 1), mode));
|
||
break;
|
||
|
||
case PLUS: case MINUS:
|
||
case MULT:
|
||
case DIV: case UDIV:
|
||
case MOD: case UMOD:
|
||
/* We can apply the rules of arithmetic to compute the number of
|
||
high- and low-order zero bits of these operations. We start by
|
||
computing the width (position of the highest-order non-zero bit)
|
||
and the number of low-order zero bits for each value. */
|
||
{
|
||
unsigned HOST_WIDE_INT nz0 = nonzero_bits (XEXP (x, 0), mode);
|
||
unsigned HOST_WIDE_INT nz1 = nonzero_bits (XEXP (x, 1), mode);
|
||
int width0 = floor_log2 (nz0) + 1;
|
||
int width1 = floor_log2 (nz1) + 1;
|
||
int low0 = floor_log2 (nz0 & -nz0);
|
||
int low1 = floor_log2 (nz1 & -nz1);
|
||
HOST_WIDE_INT op0_maybe_minusp
|
||
= (nz0 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
|
||
HOST_WIDE_INT op1_maybe_minusp
|
||
= (nz1 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
|
||
int result_width = mode_width;
|
||
int result_low = 0;
|
||
|
||
switch (code)
|
||
{
|
||
case PLUS:
|
||
result_width = MAX (width0, width1) + 1;
|
||
result_low = MIN (low0, low1);
|
||
break;
|
||
case MINUS:
|
||
result_low = MIN (low0, low1);
|
||
break;
|
||
case MULT:
|
||
result_width = width0 + width1;
|
||
result_low = low0 + low1;
|
||
break;
|
||
case DIV:
|
||
if (! op0_maybe_minusp && ! op1_maybe_minusp)
|
||
result_width = width0;
|
||
break;
|
||
case UDIV:
|
||
result_width = width0;
|
||
break;
|
||
case MOD:
|
||
if (! op0_maybe_minusp && ! op1_maybe_minusp)
|
||
result_width = MIN (width0, width1);
|
||
result_low = MIN (low0, low1);
|
||
break;
|
||
case UMOD:
|
||
result_width = MIN (width0, width1);
|
||
result_low = MIN (low0, low1);
|
||
break;
|
||
}
|
||
|
||
if (result_width < mode_width)
|
||
nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
|
||
|
||
if (result_low > 0)
|
||
nonzero &= ~ (((HOST_WIDE_INT) 1 << result_low) - 1);
|
||
}
|
||
break;
|
||
|
||
case ZERO_EXTRACT:
|
||
if (GET_CODE (XEXP (x, 1)) == CONST_INT
|
||
&& INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
|
||
nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
|
||
break;
|
||
|
||
case SUBREG:
|
||
/* If this is a SUBREG formed for a promoted variable that has
|
||
been zero-extended, we know that at least the high-order bits
|
||
are zero, though others might be too. */
|
||
|
||
if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
|
||
nonzero = (GET_MODE_MASK (GET_MODE (x))
|
||
& nonzero_bits (SUBREG_REG (x), GET_MODE (x)));
|
||
|
||
/* If the inner mode is a single word for both the host and target
|
||
machines, we can compute this from which bits of the inner
|
||
object might be nonzero. */
|
||
if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
|
||
&& (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
|
||
<= HOST_BITS_PER_WIDE_INT))
|
||
{
|
||
nonzero &= nonzero_bits (SUBREG_REG (x), mode);
|
||
|
||
#ifndef WORD_REGISTER_OPERATIONS
|
||
/* On many CISC machines, accessing an object in a wider mode
|
||
causes the high-order bits to become undefined. So they are
|
||
not known to be zero. */
|
||
if (GET_MODE_SIZE (GET_MODE (x))
|
||
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
|
||
nonzero |= (GET_MODE_MASK (GET_MODE (x))
|
||
& ~ GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
|
||
#endif
|
||
}
|
||
break;
|
||
|
||
case ASHIFTRT:
|
||
case LSHIFTRT:
|
||
case ASHIFT:
|
||
case ROTATE:
|
||
/* The nonzero bits are in two classes: any bits within MODE
|
||
that aren't in GET_MODE (x) are always significant. The rest of the
|
||
nonzero bits are those that are significant in the operand of
|
||
the shift when shifted the appropriate number of bits. This
|
||
shows that high-order bits are cleared by the right shift and
|
||
low-order bits by left shifts. */
|
||
if (GET_CODE (XEXP (x, 1)) == CONST_INT
|
||
&& INTVAL (XEXP (x, 1)) >= 0
|
||
&& INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
enum machine_mode inner_mode = GET_MODE (x);
|
||
int width = GET_MODE_BITSIZE (inner_mode);
|
||
int count = INTVAL (XEXP (x, 1));
|
||
unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
|
||
unsigned HOST_WIDE_INT op_nonzero = nonzero_bits (XEXP (x, 0), mode);
|
||
unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
|
||
unsigned HOST_WIDE_INT outer = 0;
|
||
|
||
if (mode_width > width)
|
||
outer = (op_nonzero & nonzero & ~ mode_mask);
|
||
|
||
if (code == LSHIFTRT)
|
||
inner >>= count;
|
||
else if (code == ASHIFTRT)
|
||
{
|
||
inner >>= count;
|
||
|
||
/* If the sign bit may have been nonzero before the shift, we
|
||
need to mark all the places it could have been copied to
|
||
by the shift as possibly nonzero. */
|
||
if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
|
||
inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
|
||
}
|
||
else if (code == ASHIFT)
|
||
inner <<= count;
|
||
else
|
||
inner = ((inner << (count % width)
|
||
| (inner >> (width - (count % width)))) & mode_mask);
|
||
|
||
nonzero &= (outer | inner);
|
||
}
|
||
break;
|
||
|
||
case FFS:
|
||
/* This is at most the number of bits in the mode. */
|
||
nonzero = ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width) + 1)) - 1;
|
||
break;
|
||
|
||
case IF_THEN_ELSE:
|
||
nonzero &= (nonzero_bits (XEXP (x, 1), mode)
|
||
| nonzero_bits (XEXP (x, 2), mode));
|
||
break;
|
||
}
|
||
|
||
return nonzero;
|
||
}
|
||
|
||
/* Return the number of bits at the high-order end of X that are known to
|
||
be equal to the sign bit. X will be used in mode MODE; if MODE is
|
||
VOIDmode, X will be used in its own mode. The returned value will always
|
||
be between 1 and the number of bits in MODE. */
|
||
|
||
static int
|
||
num_sign_bit_copies (x, mode)
|
||
rtx x;
|
||
enum machine_mode mode;
|
||
{
|
||
enum rtx_code code = GET_CODE (x);
|
||
int bitwidth;
|
||
int num0, num1, result;
|
||
unsigned HOST_WIDE_INT nonzero;
|
||
rtx tem;
|
||
|
||
/* If we weren't given a mode, use the mode of X. If the mode is still
|
||
VOIDmode, we don't know anything. Likewise if one of the modes is
|
||
floating-point. */
|
||
|
||
if (mode == VOIDmode)
|
||
mode = GET_MODE (x);
|
||
|
||
if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
|
||
return 1;
|
||
|
||
bitwidth = GET_MODE_BITSIZE (mode);
|
||
|
||
/* For a smaller object, just ignore the high bits. */
|
||
if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
|
||
return MAX (1, (num_sign_bit_copies (x, GET_MODE (x))
|
||
- (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth)));
|
||
|
||
#ifndef WORD_REGISTER_OPERATIONS
|
||
/* If this machine does not do all register operations on the entire
|
||
register and MODE is wider than the mode of X, we can say nothing
|
||
at all about the high-order bits. */
|
||
if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
|
||
return 1;
|
||
#endif
|
||
|
||
switch (code)
|
||
{
|
||
case REG:
|
||
|
||
if (reg_last_set_value[REGNO (x)] != 0
|
||
&& reg_last_set_mode[REGNO (x)] == mode
|
||
&& (reg_n_sets[REGNO (x)] == 1
|
||
|| reg_last_set_label[REGNO (x)] == label_tick)
|
||
&& INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
|
||
return reg_last_set_sign_bit_copies[REGNO (x)];
|
||
|
||
tem = get_last_value (x);
|
||
if (tem != 0)
|
||
return num_sign_bit_copies (tem, mode);
|
||
|
||
if (nonzero_sign_valid && reg_sign_bit_copies[REGNO (x)] != 0)
|
||
return reg_sign_bit_copies[REGNO (x)];
|
||
break;
|
||
|
||
case MEM:
|
||
#ifdef LOAD_EXTEND_OP
|
||
/* Some RISC machines sign-extend all loads of smaller than a word. */
|
||
if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
|
||
return MAX (1, bitwidth - GET_MODE_BITSIZE (GET_MODE (x)) + 1);
|
||
#endif
|
||
break;
|
||
|
||
case CONST_INT:
|
||
/* If the constant is negative, take its 1's complement and remask.
|
||
Then see how many zero bits we have. */
|
||
nonzero = INTVAL (x) & GET_MODE_MASK (mode);
|
||
if (bitwidth <= HOST_BITS_PER_WIDE_INT
|
||
&& (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
|
||
nonzero = (~ nonzero) & GET_MODE_MASK (mode);
|
||
|
||
return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
|
||
|
||
case SUBREG:
|
||
/* If this is a SUBREG for a promoted object that is sign-extended
|
||
and we are looking at it in a wider mode, we know that at least the
|
||
high-order bits are known to be sign bit copies. */
|
||
|
||
if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
|
||
return MAX (bitwidth - GET_MODE_BITSIZE (GET_MODE (x)) + 1,
|
||
num_sign_bit_copies (SUBREG_REG (x), mode));
|
||
|
||
/* For a smaller object, just ignore the high bits. */
|
||
if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
|
||
{
|
||
num0 = num_sign_bit_copies (SUBREG_REG (x), VOIDmode);
|
||
return MAX (1, (num0
|
||
- (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
|
||
- bitwidth)));
|
||
}
|
||
|
||
#ifdef WORD_REGISTER_OPERATIONS
|
||
/* For paradoxical SUBREGs on machines where all register operations
|
||
affect the entire register, just look inside. Note that we are
|
||
passing MODE to the recursive call, so the number of sign bit copies
|
||
will remain relative to that mode, not the inner mode. */
|
||
|
||
if (GET_MODE_SIZE (GET_MODE (x))
|
||
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
|
||
return num_sign_bit_copies (SUBREG_REG (x), mode);
|
||
#endif
|
||
break;
|
||
|
||
case SIGN_EXTRACT:
|
||
if (GET_CODE (XEXP (x, 1)) == CONST_INT)
|
||
return MAX (1, bitwidth - INTVAL (XEXP (x, 1)));
|
||
break;
|
||
|
||
case SIGN_EXTEND:
|
||
return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
|
||
+ num_sign_bit_copies (XEXP (x, 0), VOIDmode));
|
||
|
||
case TRUNCATE:
|
||
/* For a smaller object, just ignore the high bits. */
|
||
num0 = num_sign_bit_copies (XEXP (x, 0), VOIDmode);
|
||
return MAX (1, (num0 - (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
|
||
- bitwidth)));
|
||
|
||
case NOT:
|
||
return num_sign_bit_copies (XEXP (x, 0), mode);
|
||
|
||
case ROTATE: case ROTATERT:
|
||
/* If we are rotating left by a number of bits less than the number
|
||
of sign bit copies, we can just subtract that amount from the
|
||
number. */
|
||
if (GET_CODE (XEXP (x, 1)) == CONST_INT
|
||
&& INTVAL (XEXP (x, 1)) >= 0 && INTVAL (XEXP (x, 1)) < bitwidth)
|
||
{
|
||
num0 = num_sign_bit_copies (XEXP (x, 0), mode);
|
||
return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
|
||
: bitwidth - INTVAL (XEXP (x, 1))));
|
||
}
|
||
break;
|
||
|
||
case NEG:
|
||
/* In general, this subtracts one sign bit copy. But if the value
|
||
is known to be positive, the number of sign bit copies is the
|
||
same as that of the input. Finally, if the input has just one bit
|
||
that might be nonzero, all the bits are copies of the sign bit. */
|
||
nonzero = nonzero_bits (XEXP (x, 0), mode);
|
||
if (nonzero == 1)
|
||
return bitwidth;
|
||
|
||
num0 = num_sign_bit_copies (XEXP (x, 0), mode);
|
||
if (num0 > 1
|
||
&& bitwidth <= HOST_BITS_PER_WIDE_INT
|
||
&& (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
|
||
num0--;
|
||
|
||
return num0;
|
||
|
||
case IOR: case AND: case XOR:
|
||
case SMIN: case SMAX: case UMIN: case UMAX:
|
||
/* Logical operations will preserve the number of sign-bit copies.
|
||
MIN and MAX operations always return one of the operands. */
|
||
num0 = num_sign_bit_copies (XEXP (x, 0), mode);
|
||
num1 = num_sign_bit_copies (XEXP (x, 1), mode);
|
||
return MIN (num0, num1);
|
||
|
||
case PLUS: case MINUS:
|
||
/* For addition and subtraction, we can have a 1-bit carry. However,
|
||
if we are subtracting 1 from a positive number, there will not
|
||
be such a carry. Furthermore, if the positive number is known to
|
||
be 0 or 1, we know the result is either -1 or 0. */
|
||
|
||
if (code == PLUS && XEXP (x, 1) == constm1_rtx
|
||
&& bitwidth <= HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
nonzero = nonzero_bits (XEXP (x, 0), mode);
|
||
if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
|
||
return (nonzero == 1 || nonzero == 0 ? bitwidth
|
||
: bitwidth - floor_log2 (nonzero) - 1);
|
||
}
|
||
|
||
num0 = num_sign_bit_copies (XEXP (x, 0), mode);
|
||
num1 = num_sign_bit_copies (XEXP (x, 1), mode);
|
||
return MAX (1, MIN (num0, num1) - 1);
|
||
|
||
case MULT:
|
||
/* The number of bits of the product is the sum of the number of
|
||
bits of both terms. However, unless one of the terms if known
|
||
to be positive, we must allow for an additional bit since negating
|
||
a negative number can remove one sign bit copy. */
|
||
|
||
num0 = num_sign_bit_copies (XEXP (x, 0), mode);
|
||
num1 = num_sign_bit_copies (XEXP (x, 1), mode);
|
||
|
||
result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
|
||
if (result > 0
|
||
&& bitwidth <= HOST_BITS_PER_WIDE_INT
|
||
&& ((nonzero_bits (XEXP (x, 0), mode)
|
||
& ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
|
||
&& (nonzero_bits (XEXP (x, 1), mode)
|
||
& ((HOST_WIDE_INT) 1 << (bitwidth - 1)) != 0))
|
||
result--;
|
||
|
||
return MAX (1, result);
|
||
|
||
case UDIV:
|
||
/* The result must be <= the first operand. */
|
||
return num_sign_bit_copies (XEXP (x, 0), mode);
|
||
|
||
case UMOD:
|
||
/* The result must be <= the scond operand. */
|
||
return num_sign_bit_copies (XEXP (x, 1), mode);
|
||
|
||
case DIV:
|
||
/* Similar to unsigned division, except that we have to worry about
|
||
the case where the divisor is negative, in which case we have
|
||
to add 1. */
|
||
result = num_sign_bit_copies (XEXP (x, 0), mode);
|
||
if (result > 1
|
||
&& bitwidth <= HOST_BITS_PER_WIDE_INT
|
||
&& (nonzero_bits (XEXP (x, 1), mode)
|
||
& ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
|
||
result --;
|
||
|
||
return result;
|
||
|
||
case MOD:
|
||
result = num_sign_bit_copies (XEXP (x, 1), mode);
|
||
if (result > 1
|
||
&& bitwidth <= HOST_BITS_PER_WIDE_INT
|
||
&& (nonzero_bits (XEXP (x, 1), mode)
|
||
& ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
|
||
result --;
|
||
|
||
return result;
|
||
|
||
case ASHIFTRT:
|
||
/* Shifts by a constant add to the number of bits equal to the
|
||
sign bit. */
|
||
num0 = num_sign_bit_copies (XEXP (x, 0), mode);
|
||
if (GET_CODE (XEXP (x, 1)) == CONST_INT
|
||
&& INTVAL (XEXP (x, 1)) > 0)
|
||
num0 = MIN (bitwidth, num0 + INTVAL (XEXP (x, 1)));
|
||
|
||
return num0;
|
||
|
||
case ASHIFT:
|
||
/* Left shifts destroy copies. */
|
||
if (GET_CODE (XEXP (x, 1)) != CONST_INT
|
||
|| INTVAL (XEXP (x, 1)) < 0
|
||
|| INTVAL (XEXP (x, 1)) >= bitwidth)
|
||
return 1;
|
||
|
||
num0 = num_sign_bit_copies (XEXP (x, 0), mode);
|
||
return MAX (1, num0 - INTVAL (XEXP (x, 1)));
|
||
|
||
case IF_THEN_ELSE:
|
||
num0 = num_sign_bit_copies (XEXP (x, 1), mode);
|
||
num1 = num_sign_bit_copies (XEXP (x, 2), mode);
|
||
return MIN (num0, num1);
|
||
|
||
#if STORE_FLAG_VALUE == -1
|
||
case EQ: case NE: case GE: case GT: case LE: case LT:
|
||
case GEU: case GTU: case LEU: case LTU:
|
||
return bitwidth;
|
||
#endif
|
||
}
|
||
|
||
/* If we haven't been able to figure it out by one of the above rules,
|
||
see if some of the high-order bits are known to be zero. If so,
|
||
count those bits and return one less than that amount. If we can't
|
||
safely compute the mask for this mode, always return BITWIDTH. */
|
||
|
||
if (bitwidth > HOST_BITS_PER_WIDE_INT)
|
||
return 1;
|
||
|
||
nonzero = nonzero_bits (x, mode);
|
||
return (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
|
||
? 1 : bitwidth - floor_log2 (nonzero) - 1);
|
||
}
|
||
|
||
/* Return the number of "extended" bits there are in X, when interpreted
|
||
as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
|
||
unsigned quantities, this is the number of high-order zero bits.
|
||
For signed quantities, this is the number of copies of the sign bit
|
||
minus 1. In both case, this function returns the number of "spare"
|
||
bits. For example, if two quantities for which this function returns
|
||
at least 1 are added, the addition is known not to overflow.
|
||
|
||
This function will always return 0 unless called during combine, which
|
||
implies that it must be called from a define_split. */
|
||
|
||
int
|
||
extended_count (x, mode, unsignedp)
|
||
rtx x;
|
||
enum machine_mode mode;
|
||
int unsignedp;
|
||
{
|
||
if (nonzero_sign_valid == 0)
|
||
return 0;
|
||
|
||
return (unsignedp
|
||
? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
|
||
&& (GET_MODE_BITSIZE (mode) - 1
|
||
- floor_log2 (nonzero_bits (x, mode))))
|
||
: num_sign_bit_copies (x, mode) - 1);
|
||
}
|
||
|
||
/* This function is called from `simplify_shift_const' to merge two
|
||
outer operations. Specifically, we have already found that we need
|
||
to perform operation *POP0 with constant *PCONST0 at the outermost
|
||
position. We would now like to also perform OP1 with constant CONST1
|
||
(with *POP0 being done last).
|
||
|
||
Return 1 if we can do the operation and update *POP0 and *PCONST0 with
|
||
the resulting operation. *PCOMP_P is set to 1 if we would need to
|
||
complement the innermost operand, otherwise it is unchanged.
|
||
|
||
MODE is the mode in which the operation will be done. No bits outside
|
||
the width of this mode matter. It is assumed that the width of this mode
|
||
is smaller than or equal to HOST_BITS_PER_WIDE_INT.
|
||
|
||
If *POP0 or OP1 are NIL, it means no operation is required. Only NEG, PLUS,
|
||
IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
|
||
result is simply *PCONST0.
|
||
|
||
If the resulting operation cannot be expressed as one operation, we
|
||
return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
|
||
|
||
static int
|
||
merge_outer_ops (pop0, pconst0, op1, const1, mode, pcomp_p)
|
||
enum rtx_code *pop0;
|
||
HOST_WIDE_INT *pconst0;
|
||
enum rtx_code op1;
|
||
HOST_WIDE_INT const1;
|
||
enum machine_mode mode;
|
||
int *pcomp_p;
|
||
{
|
||
enum rtx_code op0 = *pop0;
|
||
HOST_WIDE_INT const0 = *pconst0;
|
||
|
||
const0 &= GET_MODE_MASK (mode);
|
||
const1 &= GET_MODE_MASK (mode);
|
||
|
||
/* If OP0 is an AND, clear unimportant bits in CONST1. */
|
||
if (op0 == AND)
|
||
const1 &= const0;
|
||
|
||
/* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or
|
||
if OP0 is SET. */
|
||
|
||
if (op1 == NIL || op0 == SET)
|
||
return 1;
|
||
|
||
else if (op0 == NIL)
|
||
op0 = op1, const0 = const1;
|
||
|
||
else if (op0 == op1)
|
||
{
|
||
switch (op0)
|
||
{
|
||
case AND:
|
||
const0 &= const1;
|
||
break;
|
||
case IOR:
|
||
const0 |= const1;
|
||
break;
|
||
case XOR:
|
||
const0 ^= const1;
|
||
break;
|
||
case PLUS:
|
||
const0 += const1;
|
||
break;
|
||
case NEG:
|
||
op0 = NIL;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Otherwise, if either is a PLUS or NEG, we can't do anything. */
|
||
else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
|
||
return 0;
|
||
|
||
/* If the two constants aren't the same, we can't do anything. The
|
||
remaining six cases can all be done. */
|
||
else if (const0 != const1)
|
||
return 0;
|
||
|
||
else
|
||
switch (op0)
|
||
{
|
||
case IOR:
|
||
if (op1 == AND)
|
||
/* (a & b) | b == b */
|
||
op0 = SET;
|
||
else /* op1 == XOR */
|
||
/* (a ^ b) | b == a | b */
|
||
;
|
||
break;
|
||
|
||
case XOR:
|
||
if (op1 == AND)
|
||
/* (a & b) ^ b == (~a) & b */
|
||
op0 = AND, *pcomp_p = 1;
|
||
else /* op1 == IOR */
|
||
/* (a | b) ^ b == a & ~b */
|
||
op0 = AND, *pconst0 = ~ const0;
|
||
break;
|
||
|
||
case AND:
|
||
if (op1 == IOR)
|
||
/* (a | b) & b == b */
|
||
op0 = SET;
|
||
else /* op1 == XOR */
|
||
/* (a ^ b) & b) == (~a) & b */
|
||
*pcomp_p = 1;
|
||
break;
|
||
}
|
||
|
||
/* Check for NO-OP cases. */
|
||
const0 &= GET_MODE_MASK (mode);
|
||
if (const0 == 0
|
||
&& (op0 == IOR || op0 == XOR || op0 == PLUS))
|
||
op0 = NIL;
|
||
else if (const0 == 0 && op0 == AND)
|
||
op0 = SET;
|
||
else if (const0 == GET_MODE_MASK (mode) && op0 == AND)
|
||
op0 = NIL;
|
||
|
||
*pop0 = op0;
|
||
*pconst0 = const0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
|
||
The result of the shift is RESULT_MODE. X, if non-zero, is an expression
|
||
that we started with.
|
||
|
||
The shift is normally computed in the widest mode we find in VAROP, as
|
||
long as it isn't a different number of words than RESULT_MODE. Exceptions
|
||
are ASHIFTRT and ROTATE, which are always done in their original mode, */
|
||
|
||
static rtx
|
||
simplify_shift_const (x, code, result_mode, varop, count)
|
||
rtx x;
|
||
enum rtx_code code;
|
||
enum machine_mode result_mode;
|
||
rtx varop;
|
||
int count;
|
||
{
|
||
enum rtx_code orig_code = code;
|
||
int orig_count = count;
|
||
enum machine_mode mode = result_mode;
|
||
enum machine_mode shift_mode, tmode;
|
||
int mode_words
|
||
= (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
|
||
/* We form (outer_op (code varop count) (outer_const)). */
|
||
enum rtx_code outer_op = NIL;
|
||
HOST_WIDE_INT outer_const = 0;
|
||
rtx const_rtx;
|
||
int complement_p = 0;
|
||
rtx new;
|
||
|
||
/* If we were given an invalid count, don't do anything except exactly
|
||
what was requested. */
|
||
|
||
if (count < 0 || count > GET_MODE_BITSIZE (mode))
|
||
{
|
||
if (x)
|
||
return x;
|
||
|
||
return gen_rtx (code, mode, varop, GEN_INT (count));
|
||
}
|
||
|
||
/* Unless one of the branches of the `if' in this loop does a `continue',
|
||
we will `break' the loop after the `if'. */
|
||
|
||
while (count != 0)
|
||
{
|
||
/* If we have an operand of (clobber (const_int 0)), just return that
|
||
value. */
|
||
if (GET_CODE (varop) == CLOBBER)
|
||
return varop;
|
||
|
||
/* If we discovered we had to complement VAROP, leave. Making a NOT
|
||
here would cause an infinite loop. */
|
||
if (complement_p)
|
||
break;
|
||
|
||
/* Convert ROTATETRT to ROTATE. */
|
||
if (code == ROTATERT)
|
||
code = ROTATE, count = GET_MODE_BITSIZE (result_mode) - count;
|
||
|
||
/* We need to determine what mode we will do the shift in. If the
|
||
shift is a ASHIFTRT or ROTATE, we must always do it in the mode it
|
||
was originally done in. Otherwise, we can do it in MODE, the widest
|
||
mode encountered. */
|
||
shift_mode = (code == ASHIFTRT || code == ROTATE ? result_mode : mode);
|
||
|
||
/* Handle cases where the count is greater than the size of the mode
|
||
minus 1. For ASHIFT, use the size minus one as the count (this can
|
||
occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
|
||
take the count modulo the size. For other shifts, the result is
|
||
zero.
|
||
|
||
Since these shifts are being produced by the compiler by combining
|
||
multiple operations, each of which are defined, we know what the
|
||
result is supposed to be. */
|
||
|
||
if (count > GET_MODE_BITSIZE (shift_mode) - 1)
|
||
{
|
||
if (code == ASHIFTRT)
|
||
count = GET_MODE_BITSIZE (shift_mode) - 1;
|
||
else if (code == ROTATE || code == ROTATERT)
|
||
count %= GET_MODE_BITSIZE (shift_mode);
|
||
else
|
||
{
|
||
/* We can't simply return zero because there may be an
|
||
outer op. */
|
||
varop = const0_rtx;
|
||
count = 0;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Negative counts are invalid and should not have been made (a
|
||
programmer-specified negative count should have been handled
|
||
above). */
|
||
else if (count < 0)
|
||
abort ();
|
||
|
||
/* An arithmetic right shift of a quantity known to be -1 or 0
|
||
is a no-op. */
|
||
if (code == ASHIFTRT
|
||
&& (num_sign_bit_copies (varop, shift_mode)
|
||
== GET_MODE_BITSIZE (shift_mode)))
|
||
{
|
||
count = 0;
|
||
break;
|
||
}
|
||
|
||
/* If we are doing an arithmetic right shift and discarding all but
|
||
the sign bit copies, this is equivalent to doing a shift by the
|
||
bitsize minus one. Convert it into that shift because it will often
|
||
allow other simplifications. */
|
||
|
||
if (code == ASHIFTRT
|
||
&& (count + num_sign_bit_copies (varop, shift_mode)
|
||
>= GET_MODE_BITSIZE (shift_mode)))
|
||
count = GET_MODE_BITSIZE (shift_mode) - 1;
|
||
|
||
/* We simplify the tests below and elsewhere by converting
|
||
ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
|
||
`make_compound_operation' will convert it to a ASHIFTRT for
|
||
those machines (such as Vax) that don't have a LSHIFTRT. */
|
||
if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
|
||
&& code == ASHIFTRT
|
||
&& ((nonzero_bits (varop, shift_mode)
|
||
& ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
|
||
== 0))
|
||
code = LSHIFTRT;
|
||
|
||
switch (GET_CODE (varop))
|
||
{
|
||
case SIGN_EXTEND:
|
||
case ZERO_EXTEND:
|
||
case SIGN_EXTRACT:
|
||
case ZERO_EXTRACT:
|
||
new = expand_compound_operation (varop);
|
||
if (new != varop)
|
||
{
|
||
varop = new;
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
case MEM:
|
||
/* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
|
||
minus the width of a smaller mode, we can do this with a
|
||
SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
|
||
if ((code == ASHIFTRT || code == LSHIFTRT)
|
||
&& ! mode_dependent_address_p (XEXP (varop, 0))
|
||
&& ! MEM_VOLATILE_P (varop)
|
||
&& (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
|
||
MODE_INT, 1)) != BLKmode)
|
||
{
|
||
#if BYTES_BIG_ENDIAN
|
||
new = gen_rtx (MEM, tmode, XEXP (varop, 0));
|
||
#else
|
||
new = gen_rtx (MEM, tmode,
|
||
plus_constant (XEXP (varop, 0),
|
||
count / BITS_PER_UNIT));
|
||
RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (varop);
|
||
MEM_VOLATILE_P (new) = MEM_VOLATILE_P (varop);
|
||
MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (varop);
|
||
#endif
|
||
varop = gen_rtx_combine (code == ASHIFTRT ? SIGN_EXTEND
|
||
: ZERO_EXTEND, mode, new);
|
||
count = 0;
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
case USE:
|
||
/* Similar to the case above, except that we can only do this if
|
||
the resulting mode is the same as that of the underlying
|
||
MEM and adjust the address depending on the *bits* endianness
|
||
because of the way that bit-field extract insns are defined. */
|
||
if ((code == ASHIFTRT || code == LSHIFTRT)
|
||
&& (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
|
||
MODE_INT, 1)) != BLKmode
|
||
&& tmode == GET_MODE (XEXP (varop, 0)))
|
||
{
|
||
#if BITS_BIG_ENDIAN
|
||
new = XEXP (varop, 0);
|
||
#else
|
||
new = copy_rtx (XEXP (varop, 0));
|
||
SUBST (XEXP (new, 0),
|
||
plus_constant (XEXP (new, 0),
|
||
count / BITS_PER_UNIT));
|
||
#endif
|
||
|
||
varop = gen_rtx_combine (code == ASHIFTRT ? SIGN_EXTEND
|
||
: ZERO_EXTEND, mode, new);
|
||
count = 0;
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
case SUBREG:
|
||
/* If VAROP is a SUBREG, strip it as long as the inner operand has
|
||
the same number of words as what we've seen so far. Then store
|
||
the widest mode in MODE. */
|
||
if (subreg_lowpart_p (varop)
|
||
&& (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
|
||
> GET_MODE_SIZE (GET_MODE (varop)))
|
||
&& (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
|
||
+ (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
|
||
== mode_words))
|
||
{
|
||
varop = SUBREG_REG (varop);
|
||
if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
|
||
mode = GET_MODE (varop);
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
case MULT:
|
||
/* Some machines use MULT instead of ASHIFT because MULT
|
||
is cheaper. But it is still better on those machines to
|
||
merge two shifts into one. */
|
||
if (GET_CODE (XEXP (varop, 1)) == CONST_INT
|
||
&& exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
|
||
{
|
||
varop = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
|
||
GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));;
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
case UDIV:
|
||
/* Similar, for when divides are cheaper. */
|
||
if (GET_CODE (XEXP (varop, 1)) == CONST_INT
|
||
&& exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
|
||
{
|
||
varop = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
|
||
GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
case ASHIFTRT:
|
||
/* If we are extracting just the sign bit of an arithmetic right
|
||
shift, that shift is not needed. */
|
||
if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1)
|
||
{
|
||
varop = XEXP (varop, 0);
|
||
continue;
|
||
}
|
||
|
||
/* ... fall through ... */
|
||
|
||
case LSHIFTRT:
|
||
case ASHIFT:
|
||
case ROTATE:
|
||
/* Here we have two nested shifts. The result is usually the
|
||
AND of a new shift with a mask. We compute the result below. */
|
||
if (GET_CODE (XEXP (varop, 1)) == CONST_INT
|
||
&& INTVAL (XEXP (varop, 1)) >= 0
|
||
&& INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
|
||
&& GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
|
||
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
enum rtx_code first_code = GET_CODE (varop);
|
||
int first_count = INTVAL (XEXP (varop, 1));
|
||
unsigned HOST_WIDE_INT mask;
|
||
rtx mask_rtx;
|
||
|
||
/* We have one common special case. We can't do any merging if
|
||
the inner code is an ASHIFTRT of a smaller mode. However, if
|
||
we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
|
||
with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
|
||
we can convert it to
|
||
(ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
|
||
This simplifies certain SIGN_EXTEND operations. */
|
||
if (code == ASHIFT && first_code == ASHIFTRT
|
||
&& (GET_MODE_BITSIZE (result_mode)
|
||
- GET_MODE_BITSIZE (GET_MODE (varop))) == count)
|
||
{
|
||
/* C3 has the low-order C1 bits zero. */
|
||
|
||
mask = (GET_MODE_MASK (mode)
|
||
& ~ (((HOST_WIDE_INT) 1 << first_count) - 1));
|
||
|
||
varop = simplify_and_const_int (NULL_RTX, result_mode,
|
||
XEXP (varop, 0), mask);
|
||
varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
|
||
varop, count);
|
||
count = first_count;
|
||
code = ASHIFTRT;
|
||
continue;
|
||
}
|
||
|
||
/* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
|
||
than C1 high-order bits equal to the sign bit, we can convert
|
||
this to either an ASHIFT or a ASHIFTRT depending on the
|
||
two counts.
|
||
|
||
We cannot do this if VAROP's mode is not SHIFT_MODE. */
|
||
|
||
if (code == ASHIFTRT && first_code == ASHIFT
|
||
&& GET_MODE (varop) == shift_mode
|
||
&& (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
|
||
> first_count))
|
||
{
|
||
count -= first_count;
|
||
if (count < 0)
|
||
count = - count, code = ASHIFT;
|
||
varop = XEXP (varop, 0);
|
||
continue;
|
||
}
|
||
|
||
/* There are some cases we can't do. If CODE is ASHIFTRT,
|
||
we can only do this if FIRST_CODE is also ASHIFTRT.
|
||
|
||
We can't do the case when CODE is ROTATE and FIRST_CODE is
|
||
ASHIFTRT.
|
||
|
||
If the mode of this shift is not the mode of the outer shift,
|
||
we can't do this if either shift is ASHIFTRT or ROTATE.
|
||
|
||
Finally, we can't do any of these if the mode is too wide
|
||
unless the codes are the same.
|
||
|
||
Handle the case where the shift codes are the same
|
||
first. */
|
||
|
||
if (code == first_code)
|
||
{
|
||
if (GET_MODE (varop) != result_mode
|
||
&& (code == ASHIFTRT || code == ROTATE))
|
||
break;
|
||
|
||
count += first_count;
|
||
varop = XEXP (varop, 0);
|
||
continue;
|
||
}
|
||
|
||
if (code == ASHIFTRT
|
||
|| (code == ROTATE && first_code == ASHIFTRT)
|
||
|| GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
|
||
|| (GET_MODE (varop) != result_mode
|
||
&& (first_code == ASHIFTRT || first_code == ROTATE
|
||
|| code == ROTATE)))
|
||
break;
|
||
|
||
/* To compute the mask to apply after the shift, shift the
|
||
nonzero bits of the inner shift the same way the
|
||
outer shift will. */
|
||
|
||
mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
|
||
|
||
mask_rtx
|
||
= simplify_binary_operation (code, result_mode, mask_rtx,
|
||
GEN_INT (count));
|
||
|
||
/* Give up if we can't compute an outer operation to use. */
|
||
if (mask_rtx == 0
|
||
|| GET_CODE (mask_rtx) != CONST_INT
|
||
|| ! merge_outer_ops (&outer_op, &outer_const, AND,
|
||
INTVAL (mask_rtx),
|
||
result_mode, &complement_p))
|
||
break;
|
||
|
||
/* If the shifts are in the same direction, we add the
|
||
counts. Otherwise, we subtract them. */
|
||
if ((code == ASHIFTRT || code == LSHIFTRT)
|
||
== (first_code == ASHIFTRT || first_code == LSHIFTRT))
|
||
count += first_count;
|
||
else
|
||
count -= first_count;
|
||
|
||
/* If COUNT is positive, the new shift is usually CODE,
|
||
except for the two exceptions below, in which case it is
|
||
FIRST_CODE. If the count is negative, FIRST_CODE should
|
||
always be used */
|
||
if (count > 0
|
||
&& ((first_code == ROTATE && code == ASHIFT)
|
||
|| (first_code == ASHIFTRT && code == LSHIFTRT)))
|
||
code = first_code;
|
||
else if (count < 0)
|
||
code = first_code, count = - count;
|
||
|
||
varop = XEXP (varop, 0);
|
||
continue;
|
||
}
|
||
|
||
/* If we have (A << B << C) for any shift, we can convert this to
|
||
(A << C << B). This wins if A is a constant. Only try this if
|
||
B is not a constant. */
|
||
|
||
else if (GET_CODE (varop) == code
|
||
&& GET_CODE (XEXP (varop, 1)) != CONST_INT
|
||
&& 0 != (new
|
||
= simplify_binary_operation (code, mode,
|
||
XEXP (varop, 0),
|
||
GEN_INT (count))))
|
||
{
|
||
varop = gen_rtx_combine (code, mode, new, XEXP (varop, 1));
|
||
count = 0;
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
case NOT:
|
||
/* Make this fit the case below. */
|
||
varop = gen_rtx_combine (XOR, mode, XEXP (varop, 0),
|
||
GEN_INT (GET_MODE_MASK (mode)));
|
||
continue;
|
||
|
||
case IOR:
|
||
case AND:
|
||
case XOR:
|
||
/* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
|
||
with C the size of VAROP - 1 and the shift is logical if
|
||
STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
|
||
we have an (le X 0) operation. If we have an arithmetic shift
|
||
and STORE_FLAG_VALUE is 1 or we have a logical shift with
|
||
STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
|
||
|
||
if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
|
||
&& XEXP (XEXP (varop, 0), 1) == constm1_rtx
|
||
&& (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
|
||
&& (code == LSHIFTRT || code == ASHIFTRT)
|
||
&& count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
|
||
&& rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
|
||
{
|
||
count = 0;
|
||
varop = gen_rtx_combine (LE, GET_MODE (varop), XEXP (varop, 1),
|
||
const0_rtx);
|
||
|
||
if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
|
||
varop = gen_rtx_combine (NEG, GET_MODE (varop), varop);
|
||
|
||
continue;
|
||
}
|
||
|
||
/* If we have (shift (logical)), move the logical to the outside
|
||
to allow it to possibly combine with another logical and the
|
||
shift to combine with another shift. This also canonicalizes to
|
||
what a ZERO_EXTRACT looks like. Also, some machines have
|
||
(and (shift)) insns. */
|
||
|
||
if (GET_CODE (XEXP (varop, 1)) == CONST_INT
|
||
&& (new = simplify_binary_operation (code, result_mode,
|
||
XEXP (varop, 1),
|
||
GEN_INT (count))) != 0
|
||
&& GET_CODE(new) == CONST_INT
|
||
&& merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
|
||
INTVAL (new), result_mode, &complement_p))
|
||
{
|
||
varop = XEXP (varop, 0);
|
||
continue;
|
||
}
|
||
|
||
/* If we can't do that, try to simplify the shift in each arm of the
|
||
logical expression, make a new logical expression, and apply
|
||
the inverse distributive law. */
|
||
{
|
||
rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
|
||
XEXP (varop, 0), count);
|
||
rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
|
||
XEXP (varop, 1), count);
|
||
|
||
varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
|
||
varop = apply_distributive_law (varop);
|
||
|
||
count = 0;
|
||
}
|
||
break;
|
||
|
||
case EQ:
|
||
/* convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
|
||
says that the sign bit can be tested, FOO has mode MODE, C is
|
||
GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
|
||
that may be nonzero. */
|
||
if (code == LSHIFTRT
|
||
&& XEXP (varop, 1) == const0_rtx
|
||
&& GET_MODE (XEXP (varop, 0)) == result_mode
|
||
&& count == GET_MODE_BITSIZE (result_mode) - 1
|
||
&& GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
|
||
&& ((STORE_FLAG_VALUE
|
||
& ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (result_mode) - 1))))
|
||
&& nonzero_bits (XEXP (varop, 0), result_mode) == 1
|
||
&& merge_outer_ops (&outer_op, &outer_const, XOR,
|
||
(HOST_WIDE_INT) 1, result_mode,
|
||
&complement_p))
|
||
{
|
||
varop = XEXP (varop, 0);
|
||
count = 0;
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
case NEG:
|
||
/* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
|
||
than the number of bits in the mode is equivalent to A. */
|
||
if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
|
||
&& nonzero_bits (XEXP (varop, 0), result_mode) == 1)
|
||
{
|
||
varop = XEXP (varop, 0);
|
||
count = 0;
|
||
continue;
|
||
}
|
||
|
||
/* NEG commutes with ASHIFT since it is multiplication. Move the
|
||
NEG outside to allow shifts to combine. */
|
||
if (code == ASHIFT
|
||
&& merge_outer_ops (&outer_op, &outer_const, NEG,
|
||
(HOST_WIDE_INT) 0, result_mode,
|
||
&complement_p))
|
||
{
|
||
varop = XEXP (varop, 0);
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
case PLUS:
|
||
/* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
|
||
is one less than the number of bits in the mode is
|
||
equivalent to (xor A 1). */
|
||
if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
|
||
&& XEXP (varop, 1) == constm1_rtx
|
||
&& nonzero_bits (XEXP (varop, 0), result_mode) == 1
|
||
&& merge_outer_ops (&outer_op, &outer_const, XOR,
|
||
(HOST_WIDE_INT) 1, result_mode,
|
||
&complement_p))
|
||
{
|
||
count = 0;
|
||
varop = XEXP (varop, 0);
|
||
continue;
|
||
}
|
||
|
||
/* If we have (xshiftrt (plus FOO BAR) C), and the only bits
|
||
that might be nonzero in BAR are those being shifted out and those
|
||
bits are known zero in FOO, we can replace the PLUS with FOO.
|
||
Similarly in the other operand order. This code occurs when
|
||
we are computing the size of a variable-size array. */
|
||
|
||
if ((code == ASHIFTRT || code == LSHIFTRT)
|
||
&& count < HOST_BITS_PER_WIDE_INT
|
||
&& nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
|
||
&& (nonzero_bits (XEXP (varop, 1), result_mode)
|
||
& nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
|
||
{
|
||
varop = XEXP (varop, 0);
|
||
continue;
|
||
}
|
||
else if ((code == ASHIFTRT || code == LSHIFTRT)
|
||
&& count < HOST_BITS_PER_WIDE_INT
|
||
&& GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
|
||
&& 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
|
||
>> count)
|
||
&& 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
|
||
& nonzero_bits (XEXP (varop, 1),
|
||
result_mode)))
|
||
{
|
||
varop = XEXP (varop, 1);
|
||
continue;
|
||
}
|
||
|
||
/* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
|
||
if (code == ASHIFT
|
||
&& GET_CODE (XEXP (varop, 1)) == CONST_INT
|
||
&& (new = simplify_binary_operation (ASHIFT, result_mode,
|
||
XEXP (varop, 1),
|
||
GEN_INT (count))) != 0
|
||
&& GET_CODE(new) == CONST_INT
|
||
&& merge_outer_ops (&outer_op, &outer_const, PLUS,
|
||
INTVAL (new), result_mode, &complement_p))
|
||
{
|
||
varop = XEXP (varop, 0);
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
case MINUS:
|
||
/* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
|
||
with C the size of VAROP - 1 and the shift is logical if
|
||
STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
|
||
we have a (gt X 0) operation. If the shift is arithmetic with
|
||
STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
|
||
we have a (neg (gt X 0)) operation. */
|
||
|
||
if (GET_CODE (XEXP (varop, 0)) == ASHIFTRT
|
||
&& count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
|
||
&& (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
|
||
&& (code == LSHIFTRT || code == ASHIFTRT)
|
||
&& GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
|
||
&& INTVAL (XEXP (XEXP (varop, 0), 1)) == count
|
||
&& rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
|
||
{
|
||
count = 0;
|
||
varop = gen_rtx_combine (GT, GET_MODE (varop), XEXP (varop, 1),
|
||
const0_rtx);
|
||
|
||
if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
|
||
varop = gen_rtx_combine (NEG, GET_MODE (varop), varop);
|
||
|
||
continue;
|
||
}
|
||
break;
|
||
}
|
||
|
||
break;
|
||
}
|
||
|
||
/* We need to determine what mode to do the shift in. If the shift is
|
||
a ASHIFTRT or ROTATE, we must always do it in the mode it was originally
|
||
done in. Otherwise, we can do it in MODE, the widest mode encountered.
|
||
The code we care about is that of the shift that will actually be done,
|
||
not the shift that was originally requested. */
|
||
shift_mode = (code == ASHIFTRT || code == ROTATE ? result_mode : mode);
|
||
|
||
/* We have now finished analyzing the shift. The result should be
|
||
a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
|
||
OUTER_OP is non-NIL, it is an operation that needs to be applied
|
||
to the result of the shift. OUTER_CONST is the relevant constant,
|
||
but we must turn off all bits turned off in the shift.
|
||
|
||
If we were passed a value for X, see if we can use any pieces of
|
||
it. If not, make new rtx. */
|
||
|
||
if (x && GET_RTX_CLASS (GET_CODE (x)) == '2'
|
||
&& GET_CODE (XEXP (x, 1)) == CONST_INT
|
||
&& INTVAL (XEXP (x, 1)) == count)
|
||
const_rtx = XEXP (x, 1);
|
||
else
|
||
const_rtx = GEN_INT (count);
|
||
|
||
if (x && GET_CODE (XEXP (x, 0)) == SUBREG
|
||
&& GET_MODE (XEXP (x, 0)) == shift_mode
|
||
&& SUBREG_REG (XEXP (x, 0)) == varop)
|
||
varop = XEXP (x, 0);
|
||
else if (GET_MODE (varop) != shift_mode)
|
||
varop = gen_lowpart_for_combine (shift_mode, varop);
|
||
|
||
/* If we can't make the SUBREG, try to return what we were given. */
|
||
if (GET_CODE (varop) == CLOBBER)
|
||
return x ? x : varop;
|
||
|
||
new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
|
||
if (new != 0)
|
||
x = new;
|
||
else
|
||
{
|
||
if (x == 0 || GET_CODE (x) != code || GET_MODE (x) != shift_mode)
|
||
x = gen_rtx_combine (code, shift_mode, varop, const_rtx);
|
||
|
||
SUBST (XEXP (x, 0), varop);
|
||
SUBST (XEXP (x, 1), const_rtx);
|
||
}
|
||
|
||
/* If we have an outer operation and we just made a shift, it is
|
||
possible that we could have simplified the shift were it not
|
||
for the outer operation. So try to do the simplification
|
||
recursively. */
|
||
|
||
if (outer_op != NIL && GET_CODE (x) == code
|
||
&& GET_CODE (XEXP (x, 1)) == CONST_INT)
|
||
x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
|
||
INTVAL (XEXP (x, 1)));
|
||
|
||
/* If we were doing a LSHIFTRT in a wider mode than it was originally,
|
||
turn off all the bits that the shift would have turned off. */
|
||
if (orig_code == LSHIFTRT && result_mode != shift_mode)
|
||
x = simplify_and_const_int (NULL_RTX, shift_mode, x,
|
||
GET_MODE_MASK (result_mode) >> orig_count);
|
||
|
||
/* Do the remainder of the processing in RESULT_MODE. */
|
||
x = gen_lowpart_for_combine (result_mode, x);
|
||
|
||
/* If COMPLEMENT_P is set, we have to complement X before doing the outer
|
||
operation. */
|
||
if (complement_p)
|
||
x = gen_unary (NOT, result_mode, result_mode, x);
|
||
|
||
if (outer_op != NIL)
|
||
{
|
||
if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
|
||
outer_const &= GET_MODE_MASK (result_mode);
|
||
|
||
if (outer_op == AND)
|
||
x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
|
||
else if (outer_op == SET)
|
||
/* This means that we have determined that the result is
|
||
equivalent to a constant. This should be rare. */
|
||
x = GEN_INT (outer_const);
|
||
else if (GET_RTX_CLASS (outer_op) == '1')
|
||
x = gen_unary (outer_op, result_mode, result_mode, x);
|
||
else
|
||
x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
|
||
}
|
||
|
||
return x;
|
||
}
|
||
|
||
/* Like recog, but we receive the address of a pointer to a new pattern.
|
||
We try to match the rtx that the pointer points to.
|
||
If that fails, we may try to modify or replace the pattern,
|
||
storing the replacement into the same pointer object.
|
||
|
||
Modifications include deletion or addition of CLOBBERs.
|
||
|
||
PNOTES is a pointer to a location where any REG_UNUSED notes added for
|
||
the CLOBBERs are placed.
|
||
|
||
The value is the final insn code from the pattern ultimately matched,
|
||
or -1. */
|
||
|
||
static int
|
||
recog_for_combine (pnewpat, insn, pnotes)
|
||
rtx *pnewpat;
|
||
rtx insn;
|
||
rtx *pnotes;
|
||
{
|
||
register rtx pat = *pnewpat;
|
||
int insn_code_number;
|
||
int num_clobbers_to_add = 0;
|
||
int i;
|
||
rtx notes = 0;
|
||
|
||
/* If PAT is a PARALLEL, check to see if it contains the CLOBBER
|
||
we use to indicate that something didn't match. If we find such a
|
||
thing, force rejection. */
|
||
if (GET_CODE (pat) == PARALLEL)
|
||
for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
|
||
if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
|
||
&& XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
|
||
return -1;
|
||
|
||
/* Is the result of combination a valid instruction? */
|
||
insn_code_number = recog (pat, insn, &num_clobbers_to_add);
|
||
|
||
/* If it isn't, there is the possibility that we previously had an insn
|
||
that clobbered some register as a side effect, but the combined
|
||
insn doesn't need to do that. So try once more without the clobbers
|
||
unless this represents an ASM insn. */
|
||
|
||
if (insn_code_number < 0 && ! check_asm_operands (pat)
|
||
&& GET_CODE (pat) == PARALLEL)
|
||
{
|
||
int pos;
|
||
|
||
for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
|
||
if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
|
||
{
|
||
if (i != pos)
|
||
SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
|
||
pos++;
|
||
}
|
||
|
||
SUBST_INT (XVECLEN (pat, 0), pos);
|
||
|
||
if (pos == 1)
|
||
pat = XVECEXP (pat, 0, 0);
|
||
|
||
insn_code_number = recog (pat, insn, &num_clobbers_to_add);
|
||
}
|
||
|
||
/* If we had any clobbers to add, make a new pattern than contains
|
||
them. Then check to make sure that all of them are dead. */
|
||
if (num_clobbers_to_add)
|
||
{
|
||
rtx newpat = gen_rtx (PARALLEL, VOIDmode,
|
||
gen_rtvec (GET_CODE (pat) == PARALLEL
|
||
? XVECLEN (pat, 0) + num_clobbers_to_add
|
||
: num_clobbers_to_add + 1));
|
||
|
||
if (GET_CODE (pat) == PARALLEL)
|
||
for (i = 0; i < XVECLEN (pat, 0); i++)
|
||
XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
|
||
else
|
||
XVECEXP (newpat, 0, 0) = pat;
|
||
|
||
add_clobbers (newpat, insn_code_number);
|
||
|
||
for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
|
||
i < XVECLEN (newpat, 0); i++)
|
||
{
|
||
if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG
|
||
&& ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
|
||
return -1;
|
||
notes = gen_rtx (EXPR_LIST, REG_UNUSED,
|
||
XEXP (XVECEXP (newpat, 0, i), 0), notes);
|
||
}
|
||
pat = newpat;
|
||
}
|
||
|
||
*pnewpat = pat;
|
||
*pnotes = notes;
|
||
|
||
return insn_code_number;
|
||
}
|
||
|
||
/* Like gen_lowpart but for use by combine. In combine it is not possible
|
||
to create any new pseudoregs. However, it is safe to create
|
||
invalid memory addresses, because combine will try to recognize
|
||
them and all they will do is make the combine attempt fail.
|
||
|
||
If for some reason this cannot do its job, an rtx
|
||
(clobber (const_int 0)) is returned.
|
||
An insn containing that will not be recognized. */
|
||
|
||
#undef gen_lowpart
|
||
|
||
static rtx
|
||
gen_lowpart_for_combine (mode, x)
|
||
enum machine_mode mode;
|
||
register rtx x;
|
||
{
|
||
rtx result;
|
||
|
||
if (GET_MODE (x) == mode)
|
||
return x;
|
||
|
||
/* We can only support MODE being wider than a word if X is a
|
||
constant integer or has a mode the same size. */
|
||
|
||
if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
|
||
&& ! ((GET_MODE (x) == VOIDmode
|
||
&& (GET_CODE (x) == CONST_INT
|
||
|| GET_CODE (x) == CONST_DOUBLE))
|
||
|| GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
|
||
return gen_rtx (CLOBBER, GET_MODE (x), const0_rtx);
|
||
|
||
/* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
|
||
won't know what to do. So we will strip off the SUBREG here and
|
||
process normally. */
|
||
if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
|
||
{
|
||
x = SUBREG_REG (x);
|
||
if (GET_MODE (x) == mode)
|
||
return x;
|
||
}
|
||
|
||
result = gen_lowpart_common (mode, x);
|
||
if (result)
|
||
return result;
|
||
|
||
if (GET_CODE (x) == MEM)
|
||
{
|
||
register int offset = 0;
|
||
rtx new;
|
||
|
||
/* Refuse to work on a volatile memory ref or one with a mode-dependent
|
||
address. */
|
||
if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
|
||
return gen_rtx (CLOBBER, GET_MODE (x), const0_rtx);
|
||
|
||
/* If we want to refer to something bigger than the original memref,
|
||
generate a perverse subreg instead. That will force a reload
|
||
of the original memref X. */
|
||
if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
|
||
return gen_rtx (SUBREG, mode, x, 0);
|
||
|
||
#if WORDS_BIG_ENDIAN
|
||
offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
|
||
- MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
|
||
#endif
|
||
#if BYTES_BIG_ENDIAN
|
||
/* Adjust the address so that the address-after-the-data
|
||
is unchanged. */
|
||
offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
|
||
- MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
|
||
#endif
|
||
new = gen_rtx (MEM, mode, plus_constant (XEXP (x, 0), offset));
|
||
RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (x);
|
||
MEM_VOLATILE_P (new) = MEM_VOLATILE_P (x);
|
||
MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (x);
|
||
return new;
|
||
}
|
||
|
||
/* If X is a comparison operator, rewrite it in a new mode. This
|
||
probably won't match, but may allow further simplifications. */
|
||
else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
|
||
return gen_rtx_combine (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
|
||
|
||
/* If we couldn't simplify X any other way, just enclose it in a
|
||
SUBREG. Normally, this SUBREG won't match, but some patterns may
|
||
include an explicit SUBREG or we may simplify it further in combine. */
|
||
else
|
||
{
|
||
int word = 0;
|
||
|
||
if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
|
||
word = ((GET_MODE_SIZE (GET_MODE (x))
|
||
- MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD))
|
||
/ UNITS_PER_WORD);
|
||
return gen_rtx (SUBREG, mode, x, word);
|
||
}
|
||
}
|
||
|
||
/* Make an rtx expression. This is a subset of gen_rtx and only supports
|
||
expressions of 1, 2, or 3 operands, each of which are rtx expressions.
|
||
|
||
If the identical expression was previously in the insn (in the undobuf),
|
||
it will be returned. Only if it is not found will a new expression
|
||
be made. */
|
||
|
||
/*VARARGS2*/
|
||
static rtx
|
||
gen_rtx_combine VPROTO((enum rtx_code code, enum machine_mode mode, ...))
|
||
{
|
||
#ifndef __STDC__
|
||
enum rtx_code code;
|
||
enum machine_mode mode;
|
||
#endif
|
||
va_list p;
|
||
int n_args;
|
||
rtx args[3];
|
||
int i, j;
|
||
char *fmt;
|
||
rtx rt;
|
||
|
||
VA_START (p, mode);
|
||
|
||
#ifndef __STDC__
|
||
code = va_arg (p, enum rtx_code);
|
||
mode = va_arg (p, enum machine_mode);
|
||
#endif
|
||
|
||
n_args = GET_RTX_LENGTH (code);
|
||
fmt = GET_RTX_FORMAT (code);
|
||
|
||
if (n_args == 0 || n_args > 3)
|
||
abort ();
|
||
|
||
/* Get each arg and verify that it is supposed to be an expression. */
|
||
for (j = 0; j < n_args; j++)
|
||
{
|
||
if (*fmt++ != 'e')
|
||
abort ();
|
||
|
||
args[j] = va_arg (p, rtx);
|
||
}
|
||
|
||
/* See if this is in undobuf. Be sure we don't use objects that came
|
||
from another insn; this could produce circular rtl structures. */
|
||
|
||
for (i = previous_num_undos; i < undobuf.num_undo; i++)
|
||
if (!undobuf.undo[i].is_int
|
||
&& GET_CODE (undobuf.undo[i].old_contents.r) == code
|
||
&& GET_MODE (undobuf.undo[i].old_contents.r) == mode)
|
||
{
|
||
for (j = 0; j < n_args; j++)
|
||
if (XEXP (undobuf.undo[i].old_contents.r, j) != args[j])
|
||
break;
|
||
|
||
if (j == n_args)
|
||
return undobuf.undo[i].old_contents.r;
|
||
}
|
||
|
||
/* Otherwise make a new rtx. We know we have 1, 2, or 3 args.
|
||
Use rtx_alloc instead of gen_rtx because it's faster on RISC. */
|
||
rt = rtx_alloc (code);
|
||
PUT_MODE (rt, mode);
|
||
XEXP (rt, 0) = args[0];
|
||
if (n_args > 1)
|
||
{
|
||
XEXP (rt, 1) = args[1];
|
||
if (n_args > 2)
|
||
XEXP (rt, 2) = args[2];
|
||
}
|
||
return rt;
|
||
}
|
||
|
||
/* These routines make binary and unary operations by first seeing if they
|
||
fold; if not, a new expression is allocated. */
|
||
|
||
static rtx
|
||
gen_binary (code, mode, op0, op1)
|
||
enum rtx_code code;
|
||
enum machine_mode mode;
|
||
rtx op0, op1;
|
||
{
|
||
rtx result;
|
||
rtx tem;
|
||
|
||
if (GET_RTX_CLASS (code) == 'c'
|
||
&& (GET_CODE (op0) == CONST_INT
|
||
|| (CONSTANT_P (op0) && GET_CODE (op1) != CONST_INT)))
|
||
tem = op0, op0 = op1, op1 = tem;
|
||
|
||
if (GET_RTX_CLASS (code) == '<')
|
||
{
|
||
enum machine_mode op_mode = GET_MODE (op0);
|
||
|
||
/* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
|
||
just (REL_OP X Y). */
|
||
if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
|
||
{
|
||
op1 = XEXP (op0, 1);
|
||
op0 = XEXP (op0, 0);
|
||
op_mode = GET_MODE (op0);
|
||
}
|
||
|
||
if (op_mode == VOIDmode)
|
||
op_mode = GET_MODE (op1);
|
||
result = simplify_relational_operation (code, op_mode, op0, op1);
|
||
}
|
||
else
|
||
result = simplify_binary_operation (code, mode, op0, op1);
|
||
|
||
if (result)
|
||
return result;
|
||
|
||
/* Put complex operands first and constants second. */
|
||
if (GET_RTX_CLASS (code) == 'c'
|
||
&& ((CONSTANT_P (op0) && GET_CODE (op1) != CONST_INT)
|
||
|| (GET_RTX_CLASS (GET_CODE (op0)) == 'o'
|
||
&& GET_RTX_CLASS (GET_CODE (op1)) != 'o')
|
||
|| (GET_CODE (op0) == SUBREG
|
||
&& GET_RTX_CLASS (GET_CODE (SUBREG_REG (op0))) == 'o'
|
||
&& GET_RTX_CLASS (GET_CODE (op1)) != 'o')))
|
||
return gen_rtx_combine (code, mode, op1, op0);
|
||
|
||
return gen_rtx_combine (code, mode, op0, op1);
|
||
}
|
||
|
||
static rtx
|
||
gen_unary (code, mode, op0_mode, op0)
|
||
enum rtx_code code;
|
||
enum machine_mode mode, op0_mode;
|
||
rtx op0;
|
||
{
|
||
rtx result = simplify_unary_operation (code, mode, op0, op0_mode);
|
||
|
||
if (result)
|
||
return result;
|
||
|
||
return gen_rtx_combine (code, mode, op0);
|
||
}
|
||
|
||
/* Simplify a comparison between *POP0 and *POP1 where CODE is the
|
||
comparison code that will be tested.
|
||
|
||
The result is a possibly different comparison code to use. *POP0 and
|
||
*POP1 may be updated.
|
||
|
||
It is possible that we might detect that a comparison is either always
|
||
true or always false. However, we do not perform general constant
|
||
folding in combine, so this knowledge isn't useful. Such tautologies
|
||
should have been detected earlier. Hence we ignore all such cases. */
|
||
|
||
static enum rtx_code
|
||
simplify_comparison (code, pop0, pop1)
|
||
enum rtx_code code;
|
||
rtx *pop0;
|
||
rtx *pop1;
|
||
{
|
||
rtx op0 = *pop0;
|
||
rtx op1 = *pop1;
|
||
rtx tem, tem1;
|
||
int i;
|
||
enum machine_mode mode, tmode;
|
||
|
||
/* Try a few ways of applying the same transformation to both operands. */
|
||
while (1)
|
||
{
|
||
#ifndef WORD_REGISTER_OPERATIONS
|
||
/* The test below this one won't handle SIGN_EXTENDs on these machines,
|
||
so check specially. */
|
||
if (code != GTU && code != GEU && code != LTU && code != LEU
|
||
&& GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
|
||
&& GET_CODE (XEXP (op0, 0)) == ASHIFT
|
||
&& GET_CODE (XEXP (op1, 0)) == ASHIFT
|
||
&& GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
|
||
&& GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
|
||
&& (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
|
||
== GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
|
||
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
|
||
&& GET_CODE (XEXP (op1, 1)) == CONST_INT
|
||
&& GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
|
||
&& GET_CODE (XEXP (XEXP (op1, 0), 1)) == CONST_INT
|
||
&& INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (op1, 1))
|
||
&& INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op0, 0), 1))
|
||
&& INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op1, 0), 1))
|
||
&& (INTVAL (XEXP (op0, 1))
|
||
== (GET_MODE_BITSIZE (GET_MODE (op0))
|
||
- (GET_MODE_BITSIZE
|
||
(GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
|
||
{
|
||
op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
|
||
op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
|
||
}
|
||
#endif
|
||
|
||
/* If both operands are the same constant shift, see if we can ignore the
|
||
shift. We can if the shift is a rotate or if the bits shifted out of
|
||
this shift are known to be zero for both inputs and if the type of
|
||
comparison is compatible with the shift. */
|
||
if (GET_CODE (op0) == GET_CODE (op1)
|
||
&& GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
|
||
&& ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
|
||
|| ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
|
||
&& (code != GT && code != LT && code != GE && code != LE))
|
||
|| (GET_CODE (op0) == ASHIFTRT
|
||
&& (code != GTU && code != LTU
|
||
&& code != GEU && code != GEU)))
|
||
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
|
||
&& INTVAL (XEXP (op0, 1)) >= 0
|
||
&& INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
|
||
&& XEXP (op0, 1) == XEXP (op1, 1))
|
||
{
|
||
enum machine_mode mode = GET_MODE (op0);
|
||
unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
|
||
int shift_count = INTVAL (XEXP (op0, 1));
|
||
|
||
if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
|
||
mask &= (mask >> shift_count) << shift_count;
|
||
else if (GET_CODE (op0) == ASHIFT)
|
||
mask = (mask & (mask << shift_count)) >> shift_count;
|
||
|
||
if ((nonzero_bits (XEXP (op0, 0), mode) & ~ mask) == 0
|
||
&& (nonzero_bits (XEXP (op1, 0), mode) & ~ mask) == 0)
|
||
op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
|
||
else
|
||
break;
|
||
}
|
||
|
||
/* If both operands are AND's of a paradoxical SUBREG by constant, the
|
||
SUBREGs are of the same mode, and, in both cases, the AND would
|
||
be redundant if the comparison was done in the narrower mode,
|
||
do the comparison in the narrower mode (e.g., we are AND'ing with 1
|
||
and the operand's possibly nonzero bits are 0xffffff01; in that case
|
||
if we only care about QImode, we don't need the AND). This case
|
||
occurs if the output mode of an scc insn is not SImode and
|
||
STORE_FLAG_VALUE == 1 (e.g., the 386).
|
||
|
||
Similarly, check for a case where the AND's are ZERO_EXTEND
|
||
operations from some narrower mode even though a SUBREG is not
|
||
present. */
|
||
|
||
else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
|
||
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
|
||
&& GET_CODE (XEXP (op1, 1)) == CONST_INT)
|
||
{
|
||
rtx inner_op0 = XEXP (op0, 0);
|
||
rtx inner_op1 = XEXP (op1, 0);
|
||
HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
|
||
HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
|
||
int changed = 0;
|
||
|
||
if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
|
||
&& (GET_MODE_SIZE (GET_MODE (inner_op0))
|
||
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
|
||
&& (GET_MODE (SUBREG_REG (inner_op0))
|
||
== GET_MODE (SUBREG_REG (inner_op1)))
|
||
&& (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
|
||
<= HOST_BITS_PER_WIDE_INT)
|
||
&& (0 == (~c0) & nonzero_bits (SUBREG_REG (inner_op0),
|
||
GET_MODE (SUBREG_REG (op0))))
|
||
&& (0 == (~c1) & nonzero_bits (SUBREG_REG (inner_op1),
|
||
GET_MODE (SUBREG_REG (inner_op1)))))
|
||
{
|
||
op0 = SUBREG_REG (inner_op0);
|
||
op1 = SUBREG_REG (inner_op1);
|
||
|
||
/* The resulting comparison is always unsigned since we masked
|
||
off the original sign bit. */
|
||
code = unsigned_condition (code);
|
||
|
||
changed = 1;
|
||
}
|
||
|
||
else if (c0 == c1)
|
||
for (tmode = GET_CLASS_NARROWEST_MODE
|
||
(GET_MODE_CLASS (GET_MODE (op0)));
|
||
tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
|
||
if (c0 == GET_MODE_MASK (tmode))
|
||
{
|
||
op0 = gen_lowpart_for_combine (tmode, inner_op0);
|
||
op1 = gen_lowpart_for_combine (tmode, inner_op1);
|
||
code = unsigned_condition (code);
|
||
changed = 1;
|
||
break;
|
||
}
|
||
|
||
if (! changed)
|
||
break;
|
||
}
|
||
|
||
/* If both operands are NOT, we can strip off the outer operation
|
||
and adjust the comparison code for swapped operands; similarly for
|
||
NEG, except that this must be an equality comparison. */
|
||
else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
|
||
|| (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
|
||
&& (code == EQ || code == NE)))
|
||
op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
|
||
|
||
else
|
||
break;
|
||
}
|
||
|
||
/* If the first operand is a constant, swap the operands and adjust the
|
||
comparison code appropriately. */
|
||
if (CONSTANT_P (op0))
|
||
{
|
||
tem = op0, op0 = op1, op1 = tem;
|
||
code = swap_condition (code);
|
||
}
|
||
|
||
/* We now enter a loop during which we will try to simplify the comparison.
|
||
For the most part, we only are concerned with comparisons with zero,
|
||
but some things may really be comparisons with zero but not start
|
||
out looking that way. */
|
||
|
||
while (GET_CODE (op1) == CONST_INT)
|
||
{
|
||
enum machine_mode mode = GET_MODE (op0);
|
||
int mode_width = GET_MODE_BITSIZE (mode);
|
||
unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
|
||
int equality_comparison_p;
|
||
int sign_bit_comparison_p;
|
||
int unsigned_comparison_p;
|
||
HOST_WIDE_INT const_op;
|
||
|
||
/* We only want to handle integral modes. This catches VOIDmode,
|
||
CCmode, and the floating-point modes. An exception is that we
|
||
can handle VOIDmode if OP0 is a COMPARE or a comparison
|
||
operation. */
|
||
|
||
if (GET_MODE_CLASS (mode) != MODE_INT
|
||
&& ! (mode == VOIDmode
|
||
&& (GET_CODE (op0) == COMPARE
|
||
|| GET_RTX_CLASS (GET_CODE (op0)) == '<')))
|
||
break;
|
||
|
||
/* Get the constant we are comparing against and turn off all bits
|
||
not on in our mode. */
|
||
const_op = INTVAL (op1);
|
||
if (mode_width <= HOST_BITS_PER_WIDE_INT)
|
||
const_op &= mask;
|
||
|
||
/* If we are comparing against a constant power of two and the value
|
||
being compared can only have that single bit nonzero (e.g., it was
|
||
`and'ed with that bit), we can replace this with a comparison
|
||
with zero. */
|
||
if (const_op
|
||
&& (code == EQ || code == NE || code == GE || code == GEU
|
||
|| code == LT || code == LTU)
|
||
&& mode_width <= HOST_BITS_PER_WIDE_INT
|
||
&& exact_log2 (const_op) >= 0
|
||
&& nonzero_bits (op0, mode) == const_op)
|
||
{
|
||
code = (code == EQ || code == GE || code == GEU ? NE : EQ);
|
||
op1 = const0_rtx, const_op = 0;
|
||
}
|
||
|
||
/* Similarly, if we are comparing a value known to be either -1 or
|
||
0 with -1, change it to the opposite comparison against zero. */
|
||
|
||
if (const_op == -1
|
||
&& (code == EQ || code == NE || code == GT || code == LE
|
||
|| code == GEU || code == LTU)
|
||
&& num_sign_bit_copies (op0, mode) == mode_width)
|
||
{
|
||
code = (code == EQ || code == LE || code == GEU ? NE : EQ);
|
||
op1 = const0_rtx, const_op = 0;
|
||
}
|
||
|
||
/* Do some canonicalizations based on the comparison code. We prefer
|
||
comparisons against zero and then prefer equality comparisons.
|
||
If we can reduce the size of a constant, we will do that too. */
|
||
|
||
switch (code)
|
||
{
|
||
case LT:
|
||
/* < C is equivalent to <= (C - 1) */
|
||
if (const_op > 0)
|
||
{
|
||
const_op -= 1;
|
||
op1 = GEN_INT (const_op);
|
||
code = LE;
|
||
/* ... fall through to LE case below. */
|
||
}
|
||
else
|
||
break;
|
||
|
||
case LE:
|
||
/* <= C is equivalent to < (C + 1); we do this for C < 0 */
|
||
if (const_op < 0)
|
||
{
|
||
const_op += 1;
|
||
op1 = GEN_INT (const_op);
|
||
code = LT;
|
||
}
|
||
|
||
/* If we are doing a <= 0 comparison on a value known to have
|
||
a zero sign bit, we can replace this with == 0. */
|
||
else if (const_op == 0
|
||
&& mode_width <= HOST_BITS_PER_WIDE_INT
|
||
&& (nonzero_bits (op0, mode)
|
||
& ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
|
||
code = EQ;
|
||
break;
|
||
|
||
case GE:
|
||
/* >= C is equivalent to > (C - 1). */
|
||
if (const_op > 0)
|
||
{
|
||
const_op -= 1;
|
||
op1 = GEN_INT (const_op);
|
||
code = GT;
|
||
/* ... fall through to GT below. */
|
||
}
|
||
else
|
||
break;
|
||
|
||
case GT:
|
||
/* > C is equivalent to >= (C + 1); we do this for C < 0*/
|
||
if (const_op < 0)
|
||
{
|
||
const_op += 1;
|
||
op1 = GEN_INT (const_op);
|
||
code = GE;
|
||
}
|
||
|
||
/* If we are doing a > 0 comparison on a value known to have
|
||
a zero sign bit, we can replace this with != 0. */
|
||
else if (const_op == 0
|
||
&& mode_width <= HOST_BITS_PER_WIDE_INT
|
||
&& (nonzero_bits (op0, mode)
|
||
& ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
|
||
code = NE;
|
||
break;
|
||
|
||
case LTU:
|
||
/* < C is equivalent to <= (C - 1). */
|
||
if (const_op > 0)
|
||
{
|
||
const_op -= 1;
|
||
op1 = GEN_INT (const_op);
|
||
code = LEU;
|
||
/* ... fall through ... */
|
||
}
|
||
|
||
/* (unsigned) < 0x80000000 is equivalent to >= 0. */
|
||
else if (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1))
|
||
{
|
||
const_op = 0, op1 = const0_rtx;
|
||
code = GE;
|
||
break;
|
||
}
|
||
else
|
||
break;
|
||
|
||
case LEU:
|
||
/* unsigned <= 0 is equivalent to == 0 */
|
||
if (const_op == 0)
|
||
code = EQ;
|
||
|
||
/* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
|
||
else if (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
|
||
{
|
||
const_op = 0, op1 = const0_rtx;
|
||
code = GE;
|
||
}
|
||
break;
|
||
|
||
case GEU:
|
||
/* >= C is equivalent to < (C - 1). */
|
||
if (const_op > 1)
|
||
{
|
||
const_op -= 1;
|
||
op1 = GEN_INT (const_op);
|
||
code = GTU;
|
||
/* ... fall through ... */
|
||
}
|
||
|
||
/* (unsigned) >= 0x80000000 is equivalent to < 0. */
|
||
else if (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1))
|
||
{
|
||
const_op = 0, op1 = const0_rtx;
|
||
code = LT;
|
||
break;
|
||
}
|
||
else
|
||
break;
|
||
|
||
case GTU:
|
||
/* unsigned > 0 is equivalent to != 0 */
|
||
if (const_op == 0)
|
||
code = NE;
|
||
|
||
/* (unsigned) > 0x7fffffff is equivalent to < 0. */
|
||
else if (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
|
||
{
|
||
const_op = 0, op1 = const0_rtx;
|
||
code = LT;
|
||
}
|
||
break;
|
||
}
|
||
|
||
/* Compute some predicates to simplify code below. */
|
||
|
||
equality_comparison_p = (code == EQ || code == NE);
|
||
sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
|
||
unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
|
||
|| code == LEU);
|
||
|
||
/* If this is a sign bit comparison and we can do arithmetic in
|
||
MODE, say that we will only be needing the sign bit of OP0. */
|
||
if (sign_bit_comparison_p
|
||
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
|
||
op0 = force_to_mode (op0, mode,
|
||
((HOST_WIDE_INT) 1
|
||
<< (GET_MODE_BITSIZE (mode) - 1)),
|
||
NULL_RTX, 0);
|
||
|
||
/* Now try cases based on the opcode of OP0. If none of the cases
|
||
does a "continue", we exit this loop immediately after the
|
||
switch. */
|
||
|
||
switch (GET_CODE (op0))
|
||
{
|
||
case ZERO_EXTRACT:
|
||
/* If we are extracting a single bit from a variable position in
|
||
a constant that has only a single bit set and are comparing it
|
||
with zero, we can convert this into an equality comparison
|
||
between the position and the location of the single bit. We can't
|
||
do this if bit endian and we don't have an extzv since we then
|
||
can't know what mode to use for the endianness adjustment. */
|
||
|
||
#if ! BITS_BIG_ENDIAN || defined (HAVE_extzv)
|
||
if (GET_CODE (XEXP (op0, 0)) == CONST_INT
|
||
&& XEXP (op0, 1) == const1_rtx
|
||
&& equality_comparison_p && const_op == 0
|
||
&& (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
|
||
{
|
||
#if BITS_BIG_ENDIAN
|
||
i = (GET_MODE_BITSIZE
|
||
(insn_operand_mode[(int) CODE_FOR_extzv][1]) - 1 - i);
|
||
#endif
|
||
|
||
op0 = XEXP (op0, 2);
|
||
op1 = GEN_INT (i);
|
||
const_op = i;
|
||
|
||
/* Result is nonzero iff shift count is equal to I. */
|
||
code = reverse_condition (code);
|
||
continue;
|
||
}
|
||
#endif
|
||
|
||
/* ... fall through ... */
|
||
|
||
case SIGN_EXTRACT:
|
||
tem = expand_compound_operation (op0);
|
||
if (tem != op0)
|
||
{
|
||
op0 = tem;
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
case NOT:
|
||
/* If testing for equality, we can take the NOT of the constant. */
|
||
if (equality_comparison_p
|
||
&& (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
|
||
{
|
||
op0 = XEXP (op0, 0);
|
||
op1 = tem;
|
||
continue;
|
||
}
|
||
|
||
/* If just looking at the sign bit, reverse the sense of the
|
||
comparison. */
|
||
if (sign_bit_comparison_p)
|
||
{
|
||
op0 = XEXP (op0, 0);
|
||
code = (code == GE ? LT : GE);
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
case NEG:
|
||
/* If testing for equality, we can take the NEG of the constant. */
|
||
if (equality_comparison_p
|
||
&& (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
|
||
{
|
||
op0 = XEXP (op0, 0);
|
||
op1 = tem;
|
||
continue;
|
||
}
|
||
|
||
/* The remaining cases only apply to comparisons with zero. */
|
||
if (const_op != 0)
|
||
break;
|
||
|
||
/* When X is ABS or is known positive,
|
||
(neg X) is < 0 if and only if X != 0. */
|
||
|
||
if (sign_bit_comparison_p
|
||
&& (GET_CODE (XEXP (op0, 0)) == ABS
|
||
|| (mode_width <= HOST_BITS_PER_WIDE_INT
|
||
&& (nonzero_bits (XEXP (op0, 0), mode)
|
||
& ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
|
||
{
|
||
op0 = XEXP (op0, 0);
|
||
code = (code == LT ? NE : EQ);
|
||
continue;
|
||
}
|
||
|
||
/* If we have NEG of something whose two high-order bits are the
|
||
same, we know that "(-a) < 0" is equivalent to "a > 0". */
|
||
if (num_sign_bit_copies (op0, mode) >= 2)
|
||
{
|
||
op0 = XEXP (op0, 0);
|
||
code = swap_condition (code);
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
case ROTATE:
|
||
/* If we are testing equality and our count is a constant, we
|
||
can perform the inverse operation on our RHS. */
|
||
if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
|
||
&& (tem = simplify_binary_operation (ROTATERT, mode,
|
||
op1, XEXP (op0, 1))) != 0)
|
||
{
|
||
op0 = XEXP (op0, 0);
|
||
op1 = tem;
|
||
continue;
|
||
}
|
||
|
||
/* If we are doing a < 0 or >= 0 comparison, it means we are testing
|
||
a particular bit. Convert it to an AND of a constant of that
|
||
bit. This will be converted into a ZERO_EXTRACT. */
|
||
if (const_op == 0 && sign_bit_comparison_p
|
||
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
|
||
&& mode_width <= HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
|
||
((HOST_WIDE_INT) 1
|
||
<< (mode_width - 1
|
||
- INTVAL (XEXP (op0, 1)))));
|
||
code = (code == LT ? NE : EQ);
|
||
continue;
|
||
}
|
||
|
||
/* ... fall through ... */
|
||
|
||
case ABS:
|
||
/* ABS is ignorable inside an equality comparison with zero. */
|
||
if (const_op == 0 && equality_comparison_p)
|
||
{
|
||
op0 = XEXP (op0, 0);
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
|
||
case SIGN_EXTEND:
|
||
/* Can simplify (compare (zero/sign_extend FOO) CONST)
|
||
to (compare FOO CONST) if CONST fits in FOO's mode and we
|
||
are either testing inequality or have an unsigned comparison
|
||
with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
|
||
if (! unsigned_comparison_p
|
||
&& (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
|
||
<= HOST_BITS_PER_WIDE_INT)
|
||
&& ((unsigned HOST_WIDE_INT) const_op
|
||
< (((HOST_WIDE_INT) 1
|
||
<< (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
|
||
{
|
||
op0 = XEXP (op0, 0);
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
case SUBREG:
|
||
/* Check for the case where we are comparing A - C1 with C2,
|
||
both constants are smaller than 1/2 the maxium positive
|
||
value in MODE, and the comparison is equality or unsigned.
|
||
In that case, if A is either zero-extended to MODE or has
|
||
sufficient sign bits so that the high-order bit in MODE
|
||
is a copy of the sign in the inner mode, we can prove that it is
|
||
safe to do the operation in the wider mode. This simplifies
|
||
many range checks. */
|
||
|
||
if (mode_width <= HOST_BITS_PER_WIDE_INT
|
||
&& subreg_lowpart_p (op0)
|
||
&& GET_CODE (SUBREG_REG (op0)) == PLUS
|
||
&& GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
|
||
&& INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
|
||
&& (- INTVAL (XEXP (SUBREG_REG (op0), 1))
|
||
< GET_MODE_MASK (mode) / 2)
|
||
&& (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
|
||
&& (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
|
||
GET_MODE (SUBREG_REG (op0)))
|
||
& ~ GET_MODE_MASK (mode))
|
||
|| (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
|
||
GET_MODE (SUBREG_REG (op0)))
|
||
> (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
|
||
- GET_MODE_BITSIZE (mode)))))
|
||
{
|
||
op0 = SUBREG_REG (op0);
|
||
continue;
|
||
}
|
||
|
||
/* If the inner mode is narrower and we are extracting the low part,
|
||
we can treat the SUBREG as if it were a ZERO_EXTEND. */
|
||
if (subreg_lowpart_p (op0)
|
||
&& GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
|
||
/* Fall through */ ;
|
||
else
|
||
break;
|
||
|
||
/* ... fall through ... */
|
||
|
||
case ZERO_EXTEND:
|
||
if ((unsigned_comparison_p || equality_comparison_p)
|
||
&& (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
|
||
<= HOST_BITS_PER_WIDE_INT)
|
||
&& ((unsigned HOST_WIDE_INT) const_op
|
||
< GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
|
||
{
|
||
op0 = XEXP (op0, 0);
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
case PLUS:
|
||
/* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
|
||
this for equality comparisons due to pathological cases involving
|
||
overflows. */
|
||
if (equality_comparison_p
|
||
&& 0 != (tem = simplify_binary_operation (MINUS, mode,
|
||
op1, XEXP (op0, 1))))
|
||
{
|
||
op0 = XEXP (op0, 0);
|
||
op1 = tem;
|
||
continue;
|
||
}
|
||
|
||
/* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
|
||
if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
|
||
&& GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
|
||
{
|
||
op0 = XEXP (XEXP (op0, 0), 0);
|
||
code = (code == LT ? EQ : NE);
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
case MINUS:
|
||
/* (eq (minus A B) C) -> (eq A (plus B C)) or
|
||
(eq B (minus A C)), whichever simplifies. We can only do
|
||
this for equality comparisons due to pathological cases involving
|
||
overflows. */
|
||
if (equality_comparison_p
|
||
&& 0 != (tem = simplify_binary_operation (PLUS, mode,
|
||
XEXP (op0, 1), op1)))
|
||
{
|
||
op0 = XEXP (op0, 0);
|
||
op1 = tem;
|
||
continue;
|
||
}
|
||
|
||
if (equality_comparison_p
|
||
&& 0 != (tem = simplify_binary_operation (MINUS, mode,
|
||
XEXP (op0, 0), op1)))
|
||
{
|
||
op0 = XEXP (op0, 1);
|
||
op1 = tem;
|
||
continue;
|
||
}
|
||
|
||
/* The sign bit of (minus (ashiftrt X C) X), where C is the number
|
||
of bits in X minus 1, is one iff X > 0. */
|
||
if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
|
||
&& GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
|
||
&& INTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
|
||
&& rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
|
||
{
|
||
op0 = XEXP (op0, 1);
|
||
code = (code == GE ? LE : GT);
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
case XOR:
|
||
/* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
|
||
if C is zero or B is a constant. */
|
||
if (equality_comparison_p
|
||
&& 0 != (tem = simplify_binary_operation (XOR, mode,
|
||
XEXP (op0, 1), op1)))
|
||
{
|
||
op0 = XEXP (op0, 0);
|
||
op1 = tem;
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
case EQ: case NE:
|
||
case LT: case LTU: case LE: case LEU:
|
||
case GT: case GTU: case GE: case GEU:
|
||
/* We can't do anything if OP0 is a condition code value, rather
|
||
than an actual data value. */
|
||
if (const_op != 0
|
||
#ifdef HAVE_cc0
|
||
|| XEXP (op0, 0) == cc0_rtx
|
||
#endif
|
||
|| GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
|
||
break;
|
||
|
||
/* Get the two operands being compared. */
|
||
if (GET_CODE (XEXP (op0, 0)) == COMPARE)
|
||
tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
|
||
else
|
||
tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
|
||
|
||
/* Check for the cases where we simply want the result of the
|
||
earlier test or the opposite of that result. */
|
||
if (code == NE
|
||
|| (code == EQ && reversible_comparison_p (op0))
|
||
|| (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
|
||
&& GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
|
||
&& (STORE_FLAG_VALUE
|
||
& (((HOST_WIDE_INT) 1
|
||
<< (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
|
||
&& (code == LT
|
||
|| (code == GE && reversible_comparison_p (op0)))))
|
||
{
|
||
code = (code == LT || code == NE
|
||
? GET_CODE (op0) : reverse_condition (GET_CODE (op0)));
|
||
op0 = tem, op1 = tem1;
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
case IOR:
|
||
/* The sign bit of (ior (plus X (const_int -1)) X) is non-zero
|
||
iff X <= 0. */
|
||
if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
|
||
&& XEXP (XEXP (op0, 0), 1) == constm1_rtx
|
||
&& rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
|
||
{
|
||
op0 = XEXP (op0, 1);
|
||
code = (code == GE ? GT : LE);
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
case AND:
|
||
/* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
|
||
will be converted to a ZERO_EXTRACT later. */
|
||
if (const_op == 0 && equality_comparison_p
|
||
&& GET_CODE (XEXP (op0, 0)) == ASHIFT
|
||
&& XEXP (XEXP (op0, 0), 0) == const1_rtx)
|
||
{
|
||
op0 = simplify_and_const_int
|
||
(op0, mode, gen_rtx_combine (LSHIFTRT, mode,
|
||
XEXP (op0, 1),
|
||
XEXP (XEXP (op0, 0), 1)),
|
||
(HOST_WIDE_INT) 1);
|
||
continue;
|
||
}
|
||
|
||
/* If we are comparing (and (lshiftrt X C1) C2) for equality with
|
||
zero and X is a comparison and C1 and C2 describe only bits set
|
||
in STORE_FLAG_VALUE, we can compare with X. */
|
||
if (const_op == 0 && equality_comparison_p
|
||
&& mode_width <= HOST_BITS_PER_WIDE_INT
|
||
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
|
||
&& GET_CODE (XEXP (op0, 0)) == LSHIFTRT
|
||
&& GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
|
||
&& INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
|
||
&& INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
|
||
<< INTVAL (XEXP (XEXP (op0, 0), 1)));
|
||
if ((~ STORE_FLAG_VALUE & mask) == 0
|
||
&& (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0, 0), 0))) == '<'
|
||
|| ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
|
||
&& GET_RTX_CLASS (GET_CODE (tem)) == '<')))
|
||
{
|
||
op0 = XEXP (XEXP (op0, 0), 0);
|
||
continue;
|
||
}
|
||
}
|
||
|
||
/* If we are doing an equality comparison of an AND of a bit equal
|
||
to the sign bit, replace this with a LT or GE comparison of
|
||
the underlying value. */
|
||
if (equality_comparison_p
|
||
&& const_op == 0
|
||
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
|
||
&& mode_width <= HOST_BITS_PER_WIDE_INT
|
||
&& ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
|
||
== (HOST_WIDE_INT) 1 << (mode_width - 1)))
|
||
{
|
||
op0 = XEXP (op0, 0);
|
||
code = (code == EQ ? GE : LT);
|
||
continue;
|
||
}
|
||
|
||
/* If this AND operation is really a ZERO_EXTEND from a narrower
|
||
mode, the constant fits within that mode, and this is either an
|
||
equality or unsigned comparison, try to do this comparison in
|
||
the narrower mode. */
|
||
if ((equality_comparison_p || unsigned_comparison_p)
|
||
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
|
||
&& (i = exact_log2 ((INTVAL (XEXP (op0, 1))
|
||
& GET_MODE_MASK (mode))
|
||
+ 1)) >= 0
|
||
&& const_op >> i == 0
|
||
&& (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
|
||
{
|
||
op0 = gen_lowpart_for_combine (tmode, XEXP (op0, 0));
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
case ASHIFT:
|
||
/* If we have (compare (ashift FOO N) (const_int C)) and
|
||
the high order N bits of FOO (N+1 if an inequality comparison)
|
||
are known to be zero, we can do this by comparing FOO with C
|
||
shifted right N bits so long as the low-order N bits of C are
|
||
zero. */
|
||
if (GET_CODE (XEXP (op0, 1)) == CONST_INT
|
||
&& INTVAL (XEXP (op0, 1)) >= 0
|
||
&& ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
|
||
< HOST_BITS_PER_WIDE_INT)
|
||
&& ((const_op
|
||
& (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
|
||
&& mode_width <= HOST_BITS_PER_WIDE_INT
|
||
&& (nonzero_bits (XEXP (op0, 0), mode)
|
||
& ~ (mask >> (INTVAL (XEXP (op0, 1))
|
||
+ ! equality_comparison_p))) == 0)
|
||
{
|
||
const_op >>= INTVAL (XEXP (op0, 1));
|
||
op1 = GEN_INT (const_op);
|
||
op0 = XEXP (op0, 0);
|
||
continue;
|
||
}
|
||
|
||
/* If we are doing a sign bit comparison, it means we are testing
|
||
a particular bit. Convert it to the appropriate AND. */
|
||
if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
|
||
&& mode_width <= HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
|
||
((HOST_WIDE_INT) 1
|
||
<< (mode_width - 1
|
||
- INTVAL (XEXP (op0, 1)))));
|
||
code = (code == LT ? NE : EQ);
|
||
continue;
|
||
}
|
||
|
||
/* If this an equality comparison with zero and we are shifting
|
||
the low bit to the sign bit, we can convert this to an AND of the
|
||
low-order bit. */
|
||
if (const_op == 0 && equality_comparison_p
|
||
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
|
||
&& INTVAL (XEXP (op0, 1)) == mode_width - 1)
|
||
{
|
||
op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
|
||
(HOST_WIDE_INT) 1);
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
case ASHIFTRT:
|
||
/* If this is an equality comparison with zero, we can do this
|
||
as a logical shift, which might be much simpler. */
|
||
if (equality_comparison_p && const_op == 0
|
||
&& GET_CODE (XEXP (op0, 1)) == CONST_INT)
|
||
{
|
||
op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
|
||
XEXP (op0, 0),
|
||
INTVAL (XEXP (op0, 1)));
|
||
continue;
|
||
}
|
||
|
||
/* If OP0 is a sign extension and CODE is not an unsigned comparison,
|
||
do the comparison in a narrower mode. */
|
||
if (! unsigned_comparison_p
|
||
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
|
||
&& GET_CODE (XEXP (op0, 0)) == ASHIFT
|
||
&& XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
|
||
&& (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
|
||
MODE_INT, 1)) != BLKmode
|
||
&& ((unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (tmode)
|
||
|| ((unsigned HOST_WIDE_INT) - const_op
|
||
<= GET_MODE_MASK (tmode))))
|
||
{
|
||
op0 = gen_lowpart_for_combine (tmode, XEXP (XEXP (op0, 0), 0));
|
||
continue;
|
||
}
|
||
|
||
/* ... fall through ... */
|
||
case LSHIFTRT:
|
||
/* If we have (compare (xshiftrt FOO N) (const_int C)) and
|
||
the low order N bits of FOO are known to be zero, we can do this
|
||
by comparing FOO with C shifted left N bits so long as no
|
||
overflow occurs. */
|
||
if (GET_CODE (XEXP (op0, 1)) == CONST_INT
|
||
&& INTVAL (XEXP (op0, 1)) >= 0
|
||
&& INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
|
||
&& mode_width <= HOST_BITS_PER_WIDE_INT
|
||
&& (nonzero_bits (XEXP (op0, 0), mode)
|
||
& (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
|
||
&& (const_op == 0
|
||
|| (floor_log2 (const_op) + INTVAL (XEXP (op0, 1))
|
||
< mode_width)))
|
||
{
|
||
const_op <<= INTVAL (XEXP (op0, 1));
|
||
op1 = GEN_INT (const_op);
|
||
op0 = XEXP (op0, 0);
|
||
continue;
|
||
}
|
||
|
||
/* If we are using this shift to extract just the sign bit, we
|
||
can replace this with an LT or GE comparison. */
|
||
if (const_op == 0
|
||
&& (equality_comparison_p || sign_bit_comparison_p)
|
||
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
|
||
&& INTVAL (XEXP (op0, 1)) == mode_width - 1)
|
||
{
|
||
op0 = XEXP (op0, 0);
|
||
code = (code == NE || code == GT ? LT : GE);
|
||
continue;
|
||
}
|
||
break;
|
||
}
|
||
|
||
break;
|
||
}
|
||
|
||
/* Now make any compound operations involved in this comparison. Then,
|
||
check for an outmost SUBREG on OP0 that isn't doing anything or is
|
||
paradoxical. The latter case can only occur when it is known that the
|
||
"extra" bits will be zero. Therefore, it is safe to remove the SUBREG.
|
||
We can never remove a SUBREG for a non-equality comparison because the
|
||
sign bit is in a different place in the underlying object. */
|
||
|
||
op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
|
||
op1 = make_compound_operation (op1, SET);
|
||
|
||
if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
|
||
&& GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
|
||
&& (code == NE || code == EQ)
|
||
&& ((GET_MODE_SIZE (GET_MODE (op0))
|
||
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))))
|
||
{
|
||
op0 = SUBREG_REG (op0);
|
||
op1 = gen_lowpart_for_combine (GET_MODE (op0), op1);
|
||
}
|
||
|
||
else if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
|
||
&& GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
|
||
&& (code == NE || code == EQ)
|
||
&& (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
|
||
<= HOST_BITS_PER_WIDE_INT)
|
||
&& (nonzero_bits (SUBREG_REG (op0), GET_MODE (SUBREG_REG (op0)))
|
||
& ~ GET_MODE_MASK (GET_MODE (op0))) == 0
|
||
&& (tem = gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0)),
|
||
op1),
|
||
(nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
|
||
& ~ GET_MODE_MASK (GET_MODE (op0))) == 0))
|
||
op0 = SUBREG_REG (op0), op1 = tem;
|
||
|
||
/* We now do the opposite procedure: Some machines don't have compare
|
||
insns in all modes. If OP0's mode is an integer mode smaller than a
|
||
word and we can't do a compare in that mode, see if there is a larger
|
||
mode for which we can do the compare. There are a number of cases in
|
||
which we can use the wider mode. */
|
||
|
||
mode = GET_MODE (op0);
|
||
if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
|
||
&& GET_MODE_SIZE (mode) < UNITS_PER_WORD
|
||
&& cmp_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing)
|
||
for (tmode = GET_MODE_WIDER_MODE (mode);
|
||
(tmode != VOIDmode
|
||
&& GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
|
||
tmode = GET_MODE_WIDER_MODE (tmode))
|
||
if (cmp_optab->handlers[(int) tmode].insn_code != CODE_FOR_nothing)
|
||
{
|
||
/* If the only nonzero bits in OP0 and OP1 are those in the
|
||
narrower mode and this is an equality or unsigned comparison,
|
||
we can use the wider mode. Similarly for sign-extended
|
||
values, in which case it is true for all comparisons. */
|
||
if (((code == EQ || code == NE
|
||
|| code == GEU || code == GTU || code == LEU || code == LTU)
|
||
&& (nonzero_bits (op0, tmode) & ~ GET_MODE_MASK (mode)) == 0
|
||
&& (nonzero_bits (op1, tmode) & ~ GET_MODE_MASK (mode)) == 0)
|
||
|| ((num_sign_bit_copies (op0, tmode)
|
||
> GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))
|
||
&& (num_sign_bit_copies (op1, tmode)
|
||
> GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))))
|
||
{
|
||
op0 = gen_lowpart_for_combine (tmode, op0);
|
||
op1 = gen_lowpart_for_combine (tmode, op1);
|
||
break;
|
||
}
|
||
|
||
/* If this is a test for negative, we can make an explicit
|
||
test of the sign bit. */
|
||
|
||
if (op1 == const0_rtx && (code == LT || code == GE)
|
||
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
op0 = gen_binary (AND, tmode,
|
||
gen_lowpart_for_combine (tmode, op0),
|
||
GEN_INT ((HOST_WIDE_INT) 1
|
||
<< (GET_MODE_BITSIZE (mode) - 1)));
|
||
code = (code == LT) ? NE : EQ;
|
||
break;
|
||
}
|
||
}
|
||
|
||
#ifdef CANONICALIZE_COMPARISON
|
||
/* If this machine only supports a subset of valid comparisons, see if we
|
||
can convert an unsupported one into a supported one. */
|
||
CANONICALIZE_COMPARISON (code, op0, op1);
|
||
#endif
|
||
|
||
*pop0 = op0;
|
||
*pop1 = op1;
|
||
|
||
return code;
|
||
}
|
||
|
||
/* Return 1 if we know that X, a comparison operation, is not operating
|
||
on a floating-point value or is EQ or NE, meaning that we can safely
|
||
reverse it. */
|
||
|
||
static int
|
||
reversible_comparison_p (x)
|
||
rtx x;
|
||
{
|
||
if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
|
||
|| flag_fast_math
|
||
|| GET_CODE (x) == NE || GET_CODE (x) == EQ)
|
||
return 1;
|
||
|
||
switch (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))))
|
||
{
|
||
case MODE_INT:
|
||
case MODE_PARTIAL_INT:
|
||
case MODE_COMPLEX_INT:
|
||
return 1;
|
||
|
||
case MODE_CC:
|
||
/* If the mode of the condition codes tells us that this is safe,
|
||
we need look no further. */
|
||
if (REVERSIBLE_CC_MODE (GET_MODE (XEXP (x, 0))))
|
||
return 1;
|
||
|
||
/* Otherwise try and find where the condition codes were last set and
|
||
use that. */
|
||
x = get_last_value (XEXP (x, 0));
|
||
return (x && GET_CODE (x) == COMPARE
|
||
&& ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0))));
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Utility function for following routine. Called when X is part of a value
|
||
being stored into reg_last_set_value. Sets reg_last_set_table_tick
|
||
for each register mentioned. Similar to mention_regs in cse.c */
|
||
|
||
static void
|
||
update_table_tick (x)
|
||
rtx x;
|
||
{
|
||
register enum rtx_code code = GET_CODE (x);
|
||
register char *fmt = GET_RTX_FORMAT (code);
|
||
register int i;
|
||
|
||
if (code == REG)
|
||
{
|
||
int regno = REGNO (x);
|
||
int endregno = regno + (regno < FIRST_PSEUDO_REGISTER
|
||
? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
|
||
|
||
for (i = regno; i < endregno; i++)
|
||
reg_last_set_table_tick[i] = label_tick;
|
||
|
||
return;
|
||
}
|
||
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
/* Note that we can't have an "E" in values stored; see
|
||
get_last_value_validate. */
|
||
if (fmt[i] == 'e')
|
||
update_table_tick (XEXP (x, i));
|
||
}
|
||
|
||
/* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
|
||
are saying that the register is clobbered and we no longer know its
|
||
value. If INSN is zero, don't update reg_last_set; this is only permitted
|
||
with VALUE also zero and is used to invalidate the register. */
|
||
|
||
static void
|
||
record_value_for_reg (reg, insn, value)
|
||
rtx reg;
|
||
rtx insn;
|
||
rtx value;
|
||
{
|
||
int regno = REGNO (reg);
|
||
int endregno = regno + (regno < FIRST_PSEUDO_REGISTER
|
||
? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
|
||
int i;
|
||
|
||
/* If VALUE contains REG and we have a previous value for REG, substitute
|
||
the previous value. */
|
||
if (value && insn && reg_overlap_mentioned_p (reg, value))
|
||
{
|
||
rtx tem;
|
||
|
||
/* Set things up so get_last_value is allowed to see anything set up to
|
||
our insn. */
|
||
subst_low_cuid = INSN_CUID (insn);
|
||
tem = get_last_value (reg);
|
||
|
||
if (tem)
|
||
value = replace_rtx (copy_rtx (value), reg, tem);
|
||
}
|
||
|
||
/* For each register modified, show we don't know its value, that
|
||
we don't know about its bitwise content, that its value has been
|
||
updated, and that we don't know the location of the death of the
|
||
register. */
|
||
for (i = regno; i < endregno; i ++)
|
||
{
|
||
if (insn)
|
||
reg_last_set[i] = insn;
|
||
reg_last_set_value[i] = 0;
|
||
reg_last_set_mode[i] = 0;
|
||
reg_last_set_nonzero_bits[i] = 0;
|
||
reg_last_set_sign_bit_copies[i] = 0;
|
||
reg_last_death[i] = 0;
|
||
}
|
||
|
||
/* Mark registers that are being referenced in this value. */
|
||
if (value)
|
||
update_table_tick (value);
|
||
|
||
/* Now update the status of each register being set.
|
||
If someone is using this register in this block, set this register
|
||
to invalid since we will get confused between the two lives in this
|
||
basic block. This makes using this register always invalid. In cse, we
|
||
scan the table to invalidate all entries using this register, but this
|
||
is too much work for us. */
|
||
|
||
for (i = regno; i < endregno; i++)
|
||
{
|
||
reg_last_set_label[i] = label_tick;
|
||
if (value && reg_last_set_table_tick[i] == label_tick)
|
||
reg_last_set_invalid[i] = 1;
|
||
else
|
||
reg_last_set_invalid[i] = 0;
|
||
}
|
||
|
||
/* The value being assigned might refer to X (like in "x++;"). In that
|
||
case, we must replace it with (clobber (const_int 0)) to prevent
|
||
infinite loops. */
|
||
if (value && ! get_last_value_validate (&value,
|
||
reg_last_set_label[regno], 0))
|
||
{
|
||
value = copy_rtx (value);
|
||
if (! get_last_value_validate (&value, reg_last_set_label[regno], 1))
|
||
value = 0;
|
||
}
|
||
|
||
/* For the main register being modified, update the value, the mode, the
|
||
nonzero bits, and the number of sign bit copies. */
|
||
|
||
reg_last_set_value[regno] = value;
|
||
|
||
if (value)
|
||
{
|
||
subst_low_cuid = INSN_CUID (insn);
|
||
reg_last_set_mode[regno] = GET_MODE (reg);
|
||
reg_last_set_nonzero_bits[regno] = nonzero_bits (value, GET_MODE (reg));
|
||
reg_last_set_sign_bit_copies[regno]
|
||
= num_sign_bit_copies (value, GET_MODE (reg));
|
||
}
|
||
}
|
||
|
||
/* Used for communication between the following two routines. */
|
||
static rtx record_dead_insn;
|
||
|
||
/* Called via note_stores from record_dead_and_set_regs to handle one
|
||
SET or CLOBBER in an insn. */
|
||
|
||
static void
|
||
record_dead_and_set_regs_1 (dest, setter)
|
||
rtx dest, setter;
|
||
{
|
||
if (GET_CODE (dest) == REG)
|
||
{
|
||
/* If we are setting the whole register, we know its value. Otherwise
|
||
show that we don't know the value. We can handle SUBREG in
|
||
some cases. */
|
||
if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
|
||
record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
|
||
else if (GET_CODE (setter) == SET
|
||
&& GET_CODE (SET_DEST (setter)) == SUBREG
|
||
&& SUBREG_REG (SET_DEST (setter)) == dest
|
||
&& GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
|
||
&& subreg_lowpart_p (SET_DEST (setter)))
|
||
record_value_for_reg (dest, record_dead_insn,
|
||
gen_lowpart_for_combine (GET_MODE (dest),
|
||
SET_SRC (setter)));
|
||
else
|
||
record_value_for_reg (dest, record_dead_insn, NULL_RTX);
|
||
}
|
||
else if (GET_CODE (dest) == MEM
|
||
/* Ignore pushes, they clobber nothing. */
|
||
&& ! push_operand (dest, GET_MODE (dest)))
|
||
mem_last_set = INSN_CUID (record_dead_insn);
|
||
}
|
||
|
||
/* Update the records of when each REG was most recently set or killed
|
||
for the things done by INSN. This is the last thing done in processing
|
||
INSN in the combiner loop.
|
||
|
||
We update reg_last_set, reg_last_set_value, reg_last_set_mode,
|
||
reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death,
|
||
and also the similar information mem_last_set (which insn most recently
|
||
modified memory) and last_call_cuid (which insn was the most recent
|
||
subroutine call). */
|
||
|
||
static void
|
||
record_dead_and_set_regs (insn)
|
||
rtx insn;
|
||
{
|
||
register rtx link;
|
||
int i;
|
||
|
||
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
|
||
{
|
||
if (REG_NOTE_KIND (link) == REG_DEAD
|
||
&& GET_CODE (XEXP (link, 0)) == REG)
|
||
{
|
||
int regno = REGNO (XEXP (link, 0));
|
||
int endregno
|
||
= regno + (regno < FIRST_PSEUDO_REGISTER
|
||
? HARD_REGNO_NREGS (regno, GET_MODE (XEXP (link, 0)))
|
||
: 1);
|
||
|
||
for (i = regno; i < endregno; i++)
|
||
reg_last_death[i] = insn;
|
||
}
|
||
else if (REG_NOTE_KIND (link) == REG_INC)
|
||
record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
|
||
}
|
||
|
||
if (GET_CODE (insn) == CALL_INSN)
|
||
{
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
if (call_used_regs[i])
|
||
{
|
||
reg_last_set_value[i] = 0;
|
||
reg_last_set_mode[i] = 0;
|
||
reg_last_set_nonzero_bits[i] = 0;
|
||
reg_last_set_sign_bit_copies[i] = 0;
|
||
reg_last_death[i] = 0;
|
||
}
|
||
|
||
last_call_cuid = mem_last_set = INSN_CUID (insn);
|
||
}
|
||
|
||
record_dead_insn = insn;
|
||
note_stores (PATTERN (insn), record_dead_and_set_regs_1);
|
||
}
|
||
|
||
/* Utility routine for the following function. Verify that all the registers
|
||
mentioned in *LOC are valid when *LOC was part of a value set when
|
||
label_tick == TICK. Return 0 if some are not.
|
||
|
||
If REPLACE is non-zero, replace the invalid reference with
|
||
(clobber (const_int 0)) and return 1. This replacement is useful because
|
||
we often can get useful information about the form of a value (e.g., if
|
||
it was produced by a shift that always produces -1 or 0) even though
|
||
we don't know exactly what registers it was produced from. */
|
||
|
||
static int
|
||
get_last_value_validate (loc, tick, replace)
|
||
rtx *loc;
|
||
int tick;
|
||
int replace;
|
||
{
|
||
rtx x = *loc;
|
||
char *fmt = GET_RTX_FORMAT (GET_CODE (x));
|
||
int len = GET_RTX_LENGTH (GET_CODE (x));
|
||
int i;
|
||
|
||
if (GET_CODE (x) == REG)
|
||
{
|
||
int regno = REGNO (x);
|
||
int endregno = regno + (regno < FIRST_PSEUDO_REGISTER
|
||
? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
|
||
int j;
|
||
|
||
for (j = regno; j < endregno; j++)
|
||
if (reg_last_set_invalid[j]
|
||
/* If this is a pseudo-register that was only set once, it is
|
||
always valid. */
|
||
|| (! (regno >= FIRST_PSEUDO_REGISTER && reg_n_sets[regno] == 1)
|
||
&& reg_last_set_label[j] > tick))
|
||
{
|
||
if (replace)
|
||
*loc = gen_rtx (CLOBBER, GET_MODE (x), const0_rtx);
|
||
return replace;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
for (i = 0; i < len; i++)
|
||
if ((fmt[i] == 'e'
|
||
&& get_last_value_validate (&XEXP (x, i), tick, replace) == 0)
|
||
/* Don't bother with these. They shouldn't occur anyway. */
|
||
|| fmt[i] == 'E')
|
||
return 0;
|
||
|
||
/* If we haven't found a reason for it to be invalid, it is valid. */
|
||
return 1;
|
||
}
|
||
|
||
/* Get the last value assigned to X, if known. Some registers
|
||
in the value may be replaced with (clobber (const_int 0)) if their value
|
||
is known longer known reliably. */
|
||
|
||
static rtx
|
||
get_last_value (x)
|
||
rtx x;
|
||
{
|
||
int regno;
|
||
rtx value;
|
||
|
||
/* If this is a non-paradoxical SUBREG, get the value of its operand and
|
||
then convert it to the desired mode. If this is a paradoxical SUBREG,
|
||
we cannot predict what values the "extra" bits might have. */
|
||
if (GET_CODE (x) == SUBREG
|
||
&& subreg_lowpart_p (x)
|
||
&& (GET_MODE_SIZE (GET_MODE (x))
|
||
<= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
|
||
&& (value = get_last_value (SUBREG_REG (x))) != 0)
|
||
return gen_lowpart_for_combine (GET_MODE (x), value);
|
||
|
||
if (GET_CODE (x) != REG)
|
||
return 0;
|
||
|
||
regno = REGNO (x);
|
||
value = reg_last_set_value[regno];
|
||
|
||
/* If we don't have a value or if it isn't for this basic block, return 0. */
|
||
|
||
if (value == 0
|
||
|| (reg_n_sets[regno] != 1
|
||
&& reg_last_set_label[regno] != label_tick))
|
||
return 0;
|
||
|
||
/* If the value was set in a later insn that the ones we are processing,
|
||
we can't use it even if the register was only set once, but make a quick
|
||
check to see if the previous insn set it to something. This is commonly
|
||
the case when the same pseudo is used by repeated insns. */
|
||
|
||
if (INSN_CUID (reg_last_set[regno]) >= subst_low_cuid)
|
||
{
|
||
rtx insn, set;
|
||
|
||
for (insn = prev_nonnote_insn (subst_insn);
|
||
insn && INSN_CUID (insn) >= subst_low_cuid;
|
||
insn = prev_nonnote_insn (insn))
|
||
;
|
||
|
||
if (insn
|
||
&& (set = single_set (insn)) != 0
|
||
&& rtx_equal_p (SET_DEST (set), x))
|
||
{
|
||
value = SET_SRC (set);
|
||
|
||
/* Make sure that VALUE doesn't reference X. Replace any
|
||
expliit references with a CLOBBER. If there are any remaining
|
||
references (rare), don't use the value. */
|
||
|
||
if (reg_mentioned_p (x, value))
|
||
value = replace_rtx (copy_rtx (value), x,
|
||
gen_rtx (CLOBBER, GET_MODE (x), const0_rtx));
|
||
|
||
if (reg_overlap_mentioned_p (x, value))
|
||
return 0;
|
||
}
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
/* If the value has all its registers valid, return it. */
|
||
if (get_last_value_validate (&value, reg_last_set_label[regno], 0))
|
||
return value;
|
||
|
||
/* Otherwise, make a copy and replace any invalid register with
|
||
(clobber (const_int 0)). If that fails for some reason, return 0. */
|
||
|
||
value = copy_rtx (value);
|
||
if (get_last_value_validate (&value, reg_last_set_label[regno], 1))
|
||
return value;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return nonzero if expression X refers to a REG or to memory
|
||
that is set in an instruction more recent than FROM_CUID. */
|
||
|
||
static int
|
||
use_crosses_set_p (x, from_cuid)
|
||
register rtx x;
|
||
int from_cuid;
|
||
{
|
||
register char *fmt;
|
||
register int i;
|
||
register enum rtx_code code = GET_CODE (x);
|
||
|
||
if (code == REG)
|
||
{
|
||
register int regno = REGNO (x);
|
||
int endreg = regno + (regno < FIRST_PSEUDO_REGISTER
|
||
? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
|
||
|
||
#ifdef PUSH_ROUNDING
|
||
/* Don't allow uses of the stack pointer to be moved,
|
||
because we don't know whether the move crosses a push insn. */
|
||
if (regno == STACK_POINTER_REGNUM)
|
||
return 1;
|
||
#endif
|
||
for (;regno < endreg; regno++)
|
||
if (reg_last_set[regno]
|
||
&& INSN_CUID (reg_last_set[regno]) > from_cuid)
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
if (code == MEM && mem_last_set > from_cuid)
|
||
return 1;
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'E')
|
||
{
|
||
register int j;
|
||
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
||
if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
|
||
return 1;
|
||
}
|
||
else if (fmt[i] == 'e'
|
||
&& use_crosses_set_p (XEXP (x, i), from_cuid))
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Define three variables used for communication between the following
|
||
routines. */
|
||
|
||
static int reg_dead_regno, reg_dead_endregno;
|
||
static int reg_dead_flag;
|
||
|
||
/* Function called via note_stores from reg_dead_at_p.
|
||
|
||
If DEST is within [reg_dead_rengno, reg_dead_endregno), set
|
||
reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
|
||
|
||
static void
|
||
reg_dead_at_p_1 (dest, x)
|
||
rtx dest;
|
||
rtx x;
|
||
{
|
||
int regno, endregno;
|
||
|
||
if (GET_CODE (dest) != REG)
|
||
return;
|
||
|
||
regno = REGNO (dest);
|
||
endregno = regno + (regno < FIRST_PSEUDO_REGISTER
|
||
? HARD_REGNO_NREGS (regno, GET_MODE (dest)) : 1);
|
||
|
||
if (reg_dead_endregno > regno && reg_dead_regno < endregno)
|
||
reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
|
||
}
|
||
|
||
/* Return non-zero if REG is known to be dead at INSN.
|
||
|
||
We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
|
||
referencing REG, it is dead. If we hit a SET referencing REG, it is
|
||
live. Otherwise, see if it is live or dead at the start of the basic
|
||
block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
|
||
must be assumed to be always live. */
|
||
|
||
static int
|
||
reg_dead_at_p (reg, insn)
|
||
rtx reg;
|
||
rtx insn;
|
||
{
|
||
int block, i;
|
||
|
||
/* Set variables for reg_dead_at_p_1. */
|
||
reg_dead_regno = REGNO (reg);
|
||
reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
|
||
? HARD_REGNO_NREGS (reg_dead_regno,
|
||
GET_MODE (reg))
|
||
: 1);
|
||
|
||
reg_dead_flag = 0;
|
||
|
||
/* Check that reg isn't mentioned in NEWPAT_USED_REGS. */
|
||
if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
for (i = reg_dead_regno; i < reg_dead_endregno; i++)
|
||
if (TEST_HARD_REG_BIT (newpat_used_regs, i))
|
||
return 0;
|
||
}
|
||
|
||
/* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
|
||
beginning of function. */
|
||
for (; insn && GET_CODE (insn) != CODE_LABEL;
|
||
insn = prev_nonnote_insn (insn))
|
||
{
|
||
note_stores (PATTERN (insn), reg_dead_at_p_1);
|
||
if (reg_dead_flag)
|
||
return reg_dead_flag == 1 ? 1 : 0;
|
||
|
||
if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
|
||
return 1;
|
||
}
|
||
|
||
/* Get the basic block number that we were in. */
|
||
if (insn == 0)
|
||
block = 0;
|
||
else
|
||
{
|
||
for (block = 0; block < n_basic_blocks; block++)
|
||
if (insn == basic_block_head[block])
|
||
break;
|
||
|
||
if (block == n_basic_blocks)
|
||
return 0;
|
||
}
|
||
|
||
for (i = reg_dead_regno; i < reg_dead_endregno; i++)
|
||
if (basic_block_live_at_start[block][i / REGSET_ELT_BITS]
|
||
& ((REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS)))
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Note hard registers in X that are used. This code is similar to
|
||
that in flow.c, but much simpler since we don't care about pseudos. */
|
||
|
||
static void
|
||
mark_used_regs_combine (x)
|
||
rtx x;
|
||
{
|
||
register RTX_CODE code = GET_CODE (x);
|
||
register int regno;
|
||
int i;
|
||
|
||
switch (code)
|
||
{
|
||
case LABEL_REF:
|
||
case SYMBOL_REF:
|
||
case CONST_INT:
|
||
case CONST:
|
||
case CONST_DOUBLE:
|
||
case PC:
|
||
case ADDR_VEC:
|
||
case ADDR_DIFF_VEC:
|
||
case ASM_INPUT:
|
||
#ifdef HAVE_cc0
|
||
/* CC0 must die in the insn after it is set, so we don't need to take
|
||
special note of it here. */
|
||
case CC0:
|
||
#endif
|
||
return;
|
||
|
||
case CLOBBER:
|
||
/* If we are clobbering a MEM, mark any hard registers inside the
|
||
address as used. */
|
||
if (GET_CODE (XEXP (x, 0)) == MEM)
|
||
mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
|
||
return;
|
||
|
||
case REG:
|
||
regno = REGNO (x);
|
||
/* A hard reg in a wide mode may really be multiple registers.
|
||
If so, mark all of them just like the first. */
|
||
if (regno < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
/* None of this applies to the stack, frame or arg pointers */
|
||
if (regno == STACK_POINTER_REGNUM
|
||
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
|
||
|| regno == HARD_FRAME_POINTER_REGNUM
|
||
#endif
|
||
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
|
||
|| (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
|
||
#endif
|
||
|| regno == FRAME_POINTER_REGNUM)
|
||
return;
|
||
|
||
i = HARD_REGNO_NREGS (regno, GET_MODE (x));
|
||
while (i-- > 0)
|
||
SET_HARD_REG_BIT (newpat_used_regs, regno + i);
|
||
}
|
||
return;
|
||
|
||
case SET:
|
||
{
|
||
/* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
|
||
the address. */
|
||
register rtx testreg = SET_DEST (x);
|
||
|
||
while (GET_CODE (testreg) == SUBREG
|
||
|| GET_CODE (testreg) == ZERO_EXTRACT
|
||
|| GET_CODE (testreg) == SIGN_EXTRACT
|
||
|| GET_CODE (testreg) == STRICT_LOW_PART)
|
||
testreg = XEXP (testreg, 0);
|
||
|
||
if (GET_CODE (testreg) == MEM)
|
||
mark_used_regs_combine (XEXP (testreg, 0));
|
||
|
||
mark_used_regs_combine (SET_SRC (x));
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* Recursively scan the operands of this expression. */
|
||
|
||
{
|
||
register char *fmt = GET_RTX_FORMAT (code);
|
||
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
mark_used_regs_combine (XEXP (x, i));
|
||
else if (fmt[i] == 'E')
|
||
{
|
||
register int j;
|
||
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
mark_used_regs_combine (XVECEXP (x, i, j));
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Remove register number REGNO from the dead registers list of INSN.
|
||
|
||
Return the note used to record the death, if there was one. */
|
||
|
||
rtx
|
||
remove_death (regno, insn)
|
||
int regno;
|
||
rtx insn;
|
||
{
|
||
register rtx note = find_regno_note (insn, REG_DEAD, regno);
|
||
|
||
if (note)
|
||
{
|
||
reg_n_deaths[regno]--;
|
||
remove_note (insn, note);
|
||
}
|
||
|
||
return note;
|
||
}
|
||
|
||
/* For each register (hardware or pseudo) used within expression X, if its
|
||
death is in an instruction with cuid between FROM_CUID (inclusive) and
|
||
TO_INSN (exclusive), put a REG_DEAD note for that register in the
|
||
list headed by PNOTES.
|
||
|
||
This is done when X is being merged by combination into TO_INSN. These
|
||
notes will then be distributed as needed. */
|
||
|
||
static void
|
||
move_deaths (x, from_cuid, to_insn, pnotes)
|
||
rtx x;
|
||
int from_cuid;
|
||
rtx to_insn;
|
||
rtx *pnotes;
|
||
{
|
||
register char *fmt;
|
||
register int len, i;
|
||
register enum rtx_code code = GET_CODE (x);
|
||
|
||
if (code == REG)
|
||
{
|
||
register int regno = REGNO (x);
|
||
register rtx where_dead = reg_last_death[regno];
|
||
|
||
if (where_dead && INSN_CUID (where_dead) >= from_cuid
|
||
&& INSN_CUID (where_dead) < INSN_CUID (to_insn))
|
||
{
|
||
rtx note = remove_death (regno, where_dead);
|
||
|
||
/* It is possible for the call above to return 0. This can occur
|
||
when reg_last_death points to I2 or I1 that we combined with.
|
||
In that case make a new note.
|
||
|
||
We must also check for the case where X is a hard register
|
||
and NOTE is a death note for a range of hard registers
|
||
including X. In that case, we must put REG_DEAD notes for
|
||
the remaining registers in place of NOTE. */
|
||
|
||
if (note != 0 && regno < FIRST_PSEUDO_REGISTER
|
||
&& (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
|
||
!= GET_MODE_SIZE (GET_MODE (x))))
|
||
{
|
||
int deadregno = REGNO (XEXP (note, 0));
|
||
int deadend
|
||
= (deadregno + HARD_REGNO_NREGS (deadregno,
|
||
GET_MODE (XEXP (note, 0))));
|
||
int ourend = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
|
||
int i;
|
||
|
||
for (i = deadregno; i < deadend; i++)
|
||
if (i < regno || i >= ourend)
|
||
REG_NOTES (where_dead)
|
||
= gen_rtx (EXPR_LIST, REG_DEAD,
|
||
gen_rtx (REG, reg_raw_mode[i], i),
|
||
REG_NOTES (where_dead));
|
||
}
|
||
|
||
if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
|
||
{
|
||
XEXP (note, 1) = *pnotes;
|
||
*pnotes = note;
|
||
}
|
||
else
|
||
*pnotes = gen_rtx (EXPR_LIST, REG_DEAD, x, *pnotes);
|
||
|
||
reg_n_deaths[regno]++;
|
||
}
|
||
|
||
return;
|
||
}
|
||
|
||
else if (GET_CODE (x) == SET)
|
||
{
|
||
rtx dest = SET_DEST (x);
|
||
|
||
move_deaths (SET_SRC (x), from_cuid, to_insn, pnotes);
|
||
|
||
/* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
|
||
that accesses one word of a multi-word item, some
|
||
piece of everything register in the expression is used by
|
||
this insn, so remove any old death. */
|
||
|
||
if (GET_CODE (dest) == ZERO_EXTRACT
|
||
|| GET_CODE (dest) == STRICT_LOW_PART
|
||
|| (GET_CODE (dest) == SUBREG
|
||
&& (((GET_MODE_SIZE (GET_MODE (dest))
|
||
+ UNITS_PER_WORD - 1) / UNITS_PER_WORD)
|
||
== ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
|
||
+ UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
|
||
{
|
||
move_deaths (dest, from_cuid, to_insn, pnotes);
|
||
return;
|
||
}
|
||
|
||
/* If this is some other SUBREG, we know it replaces the entire
|
||
value, so use that as the destination. */
|
||
if (GET_CODE (dest) == SUBREG)
|
||
dest = SUBREG_REG (dest);
|
||
|
||
/* If this is a MEM, adjust deaths of anything used in the address.
|
||
For a REG (the only other possibility), the entire value is
|
||
being replaced so the old value is not used in this insn. */
|
||
|
||
if (GET_CODE (dest) == MEM)
|
||
move_deaths (XEXP (dest, 0), from_cuid, to_insn, pnotes);
|
||
return;
|
||
}
|
||
|
||
else if (GET_CODE (x) == CLOBBER)
|
||
return;
|
||
|
||
len = GET_RTX_LENGTH (code);
|
||
fmt = GET_RTX_FORMAT (code);
|
||
|
||
for (i = 0; i < len; i++)
|
||
{
|
||
if (fmt[i] == 'E')
|
||
{
|
||
register int j;
|
||
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
||
move_deaths (XVECEXP (x, i, j), from_cuid, to_insn, pnotes);
|
||
}
|
||
else if (fmt[i] == 'e')
|
||
move_deaths (XEXP (x, i), from_cuid, to_insn, pnotes);
|
||
}
|
||
}
|
||
|
||
/* Return 1 if X is the target of a bit-field assignment in BODY, the
|
||
pattern of an insn. X must be a REG. */
|
||
|
||
static int
|
||
reg_bitfield_target_p (x, body)
|
||
rtx x;
|
||
rtx body;
|
||
{
|
||
int i;
|
||
|
||
if (GET_CODE (body) == SET)
|
||
{
|
||
rtx dest = SET_DEST (body);
|
||
rtx target;
|
||
int regno, tregno, endregno, endtregno;
|
||
|
||
if (GET_CODE (dest) == ZERO_EXTRACT)
|
||
target = XEXP (dest, 0);
|
||
else if (GET_CODE (dest) == STRICT_LOW_PART)
|
||
target = SUBREG_REG (XEXP (dest, 0));
|
||
else
|
||
return 0;
|
||
|
||
if (GET_CODE (target) == SUBREG)
|
||
target = SUBREG_REG (target);
|
||
|
||
if (GET_CODE (target) != REG)
|
||
return 0;
|
||
|
||
tregno = REGNO (target), regno = REGNO (x);
|
||
if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
|
||
return target == x;
|
||
|
||
endtregno = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (target));
|
||
endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
|
||
|
||
return endregno > tregno && regno < endtregno;
|
||
}
|
||
|
||
else if (GET_CODE (body) == PARALLEL)
|
||
for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
|
||
if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
|
||
as appropriate. I3 and I2 are the insns resulting from the combination
|
||
insns including FROM (I2 may be zero).
|
||
|
||
ELIM_I2 and ELIM_I1 are either zero or registers that we know will
|
||
not need REG_DEAD notes because they are being substituted for. This
|
||
saves searching in the most common cases.
|
||
|
||
Each note in the list is either ignored or placed on some insns, depending
|
||
on the type of note. */
|
||
|
||
static void
|
||
distribute_notes (notes, from_insn, i3, i2, elim_i2, elim_i1)
|
||
rtx notes;
|
||
rtx from_insn;
|
||
rtx i3, i2;
|
||
rtx elim_i2, elim_i1;
|
||
{
|
||
rtx note, next_note;
|
||
rtx tem;
|
||
|
||
for (note = notes; note; note = next_note)
|
||
{
|
||
rtx place = 0, place2 = 0;
|
||
|
||
/* If this NOTE references a pseudo register, ensure it references
|
||
the latest copy of that register. */
|
||
if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG
|
||
&& REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
|
||
XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
|
||
|
||
next_note = XEXP (note, 1);
|
||
switch (REG_NOTE_KIND (note))
|
||
{
|
||
case REG_UNUSED:
|
||
/* Any clobbers for i3 may still exist, and so we must process
|
||
REG_UNUSED notes from that insn.
|
||
|
||
Any clobbers from i2 or i1 can only exist if they were added by
|
||
recog_for_combine. In that case, recog_for_combine created the
|
||
necessary REG_UNUSED notes. Trying to keep any original
|
||
REG_UNUSED notes from these insns can cause incorrect output
|
||
if it is for the same register as the original i3 dest.
|
||
In that case, we will notice that the register is set in i3,
|
||
and then add a REG_UNUSED note for the destination of i3, which
|
||
is wrong. However, it is possible to have REG_UNUSED notes from
|
||
i2 or i1 for register which were both used and clobbered, so
|
||
we keep notes from i2 or i1 if they will turn into REG_DEAD
|
||
notes. */
|
||
|
||
/* If this register is set or clobbered in I3, put the note there
|
||
unless there is one already. */
|
||
if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
|
||
{
|
||
if (from_insn != i3)
|
||
break;
|
||
|
||
if (! (GET_CODE (XEXP (note, 0)) == REG
|
||
? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
|
||
: find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
|
||
place = i3;
|
||
}
|
||
/* Otherwise, if this register is used by I3, then this register
|
||
now dies here, so we must put a REG_DEAD note here unless there
|
||
is one already. */
|
||
else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
|
||
&& ! (GET_CODE (XEXP (note, 0)) == REG
|
||
? find_regno_note (i3, REG_DEAD, REGNO (XEXP (note, 0)))
|
||
: find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
|
||
{
|
||
PUT_REG_NOTE_KIND (note, REG_DEAD);
|
||
place = i3;
|
||
}
|
||
break;
|
||
|
||
case REG_EQUAL:
|
||
case REG_EQUIV:
|
||
case REG_NONNEG:
|
||
/* These notes say something about results of an insn. We can
|
||
only support them if they used to be on I3 in which case they
|
||
remain on I3. Otherwise they are ignored.
|
||
|
||
If the note refers to an expression that is not a constant, we
|
||
must also ignore the note since we cannot tell whether the
|
||
equivalence is still true. It might be possible to do
|
||
slightly better than this (we only have a problem if I2DEST
|
||
or I1DEST is present in the expression), but it doesn't
|
||
seem worth the trouble. */
|
||
|
||
if (from_insn == i3
|
||
&& (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
|
||
place = i3;
|
||
break;
|
||
|
||
case REG_INC:
|
||
case REG_NO_CONFLICT:
|
||
case REG_LABEL:
|
||
/* These notes say something about how a register is used. They must
|
||
be present on any use of the register in I2 or I3. */
|
||
if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
|
||
place = i3;
|
||
|
||
if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
|
||
{
|
||
if (place)
|
||
place2 = i2;
|
||
else
|
||
place = i2;
|
||
}
|
||
break;
|
||
|
||
case REG_WAS_0:
|
||
/* It is too much trouble to try to see if this note is still
|
||
correct in all situations. It is better to simply delete it. */
|
||
break;
|
||
|
||
case REG_RETVAL:
|
||
/* If the insn previously containing this note still exists,
|
||
put it back where it was. Otherwise move it to the previous
|
||
insn. Adjust the corresponding REG_LIBCALL note. */
|
||
if (GET_CODE (from_insn) != NOTE)
|
||
place = from_insn;
|
||
else
|
||
{
|
||
tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
|
||
place = prev_real_insn (from_insn);
|
||
if (tem && place)
|
||
XEXP (tem, 0) = place;
|
||
}
|
||
break;
|
||
|
||
case REG_LIBCALL:
|
||
/* This is handled similarly to REG_RETVAL. */
|
||
if (GET_CODE (from_insn) != NOTE)
|
||
place = from_insn;
|
||
else
|
||
{
|
||
tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
|
||
place = next_real_insn (from_insn);
|
||
if (tem && place)
|
||
XEXP (tem, 0) = place;
|
||
}
|
||
break;
|
||
|
||
case REG_DEAD:
|
||
/* If the register is used as an input in I3, it dies there.
|
||
Similarly for I2, if it is non-zero and adjacent to I3.
|
||
|
||
If the register is not used as an input in either I3 or I2
|
||
and it is not one of the registers we were supposed to eliminate,
|
||
there are two possibilities. We might have a non-adjacent I2
|
||
or we might have somehow eliminated an additional register
|
||
from a computation. For example, we might have had A & B where
|
||
we discover that B will always be zero. In this case we will
|
||
eliminate the reference to A.
|
||
|
||
In both cases, we must search to see if we can find a previous
|
||
use of A and put the death note there. */
|
||
|
||
if (from_insn
|
||
&& GET_CODE (from_insn) == CALL_INSN
|
||
&& find_reg_fusage (from_insn, USE, XEXP (note, 0)))
|
||
place = from_insn;
|
||
else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
|
||
place = i3;
|
||
else if (i2 != 0 && next_nonnote_insn (i2) == i3
|
||
&& reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
|
||
place = i2;
|
||
|
||
if (XEXP (note, 0) == elim_i2 || XEXP (note, 0) == elim_i1)
|
||
break;
|
||
|
||
/* If the register is used in both I2 and I3 and it dies in I3,
|
||
we might have added another reference to it. If reg_n_refs
|
||
was 2, bump it to 3. This has to be correct since the
|
||
register must have been set somewhere. The reason this is
|
||
done is because local-alloc.c treats 2 references as a
|
||
special case. */
|
||
|
||
if (place == i3 && i2 != 0 && GET_CODE (XEXP (note, 0)) == REG
|
||
&& reg_n_refs[REGNO (XEXP (note, 0))]== 2
|
||
&& reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
|
||
reg_n_refs[REGNO (XEXP (note, 0))] = 3;
|
||
|
||
if (place == 0)
|
||
for (tem = prev_nonnote_insn (i3);
|
||
tem && (GET_CODE (tem) == INSN
|
||
|| GET_CODE (tem) == CALL_INSN);
|
||
tem = prev_nonnote_insn (tem))
|
||
{
|
||
/* If the register is being set at TEM, see if that is all
|
||
TEM is doing. If so, delete TEM. Otherwise, make this
|
||
into a REG_UNUSED note instead. */
|
||
if (reg_set_p (XEXP (note, 0), PATTERN (tem)))
|
||
{
|
||
rtx set = single_set (tem);
|
||
|
||
/* Verify that it was the set, and not a clobber that
|
||
modified the register. */
|
||
|
||
if (set != 0 && ! side_effects_p (SET_SRC (set))
|
||
&& rtx_equal_p (XEXP (note, 0), SET_DEST (set)))
|
||
{
|
||
/* Move the notes and links of TEM elsewhere.
|
||
This might delete other dead insns recursively.
|
||
First set the pattern to something that won't use
|
||
any register. */
|
||
|
||
PATTERN (tem) = pc_rtx;
|
||
|
||
distribute_notes (REG_NOTES (tem), tem, tem,
|
||
NULL_RTX, NULL_RTX, NULL_RTX);
|
||
distribute_links (LOG_LINKS (tem));
|
||
|
||
PUT_CODE (tem, NOTE);
|
||
NOTE_LINE_NUMBER (tem) = NOTE_INSN_DELETED;
|
||
NOTE_SOURCE_FILE (tem) = 0;
|
||
}
|
||
else
|
||
{
|
||
PUT_REG_NOTE_KIND (note, REG_UNUSED);
|
||
|
||
/* If there isn't already a REG_UNUSED note, put one
|
||
here. */
|
||
if (! find_regno_note (tem, REG_UNUSED,
|
||
REGNO (XEXP (note, 0))))
|
||
place = tem;
|
||
break;
|
||
}
|
||
}
|
||
else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
|
||
|| (GET_CODE (tem) == CALL_INSN
|
||
&& find_reg_fusage (tem, USE, XEXP (note, 0))))
|
||
{
|
||
place = tem;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* If the register is set or already dead at PLACE, we needn't do
|
||
anything with this note if it is still a REG_DEAD note.
|
||
|
||
Note that we cannot use just `dead_or_set_p' here since we can
|
||
convert an assignment to a register into a bit-field assignment.
|
||
Therefore, we must also omit the note if the register is the
|
||
target of a bitfield assignment. */
|
||
|
||
if (place && REG_NOTE_KIND (note) == REG_DEAD)
|
||
{
|
||
int regno = REGNO (XEXP (note, 0));
|
||
|
||
if (dead_or_set_p (place, XEXP (note, 0))
|
||
|| reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
|
||
{
|
||
/* Unless the register previously died in PLACE, clear
|
||
reg_last_death. [I no longer understand why this is
|
||
being done.] */
|
||
if (reg_last_death[regno] != place)
|
||
reg_last_death[regno] = 0;
|
||
place = 0;
|
||
}
|
||
else
|
||
reg_last_death[regno] = place;
|
||
|
||
/* If this is a death note for a hard reg that is occupying
|
||
multiple registers, ensure that we are still using all
|
||
parts of the object. If we find a piece of the object
|
||
that is unused, we must add a USE for that piece before
|
||
PLACE and put the appropriate REG_DEAD note on it.
|
||
|
||
An alternative would be to put a REG_UNUSED for the pieces
|
||
on the insn that set the register, but that can't be done if
|
||
it is not in the same block. It is simpler, though less
|
||
efficient, to add the USE insns. */
|
||
|
||
if (place && regno < FIRST_PSEUDO_REGISTER
|
||
&& HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0))) > 1)
|
||
{
|
||
int endregno
|
||
= regno + HARD_REGNO_NREGS (regno,
|
||
GET_MODE (XEXP (note, 0)));
|
||
int all_used = 1;
|
||
int i;
|
||
|
||
for (i = regno; i < endregno; i++)
|
||
if (! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
|
||
&& ! find_regno_fusage (place, USE, i))
|
||
{
|
||
rtx piece = gen_rtx (REG, reg_raw_mode[i], i);
|
||
rtx p;
|
||
|
||
/* See if we already placed a USE note for this
|
||
register in front of PLACE. */
|
||
for (p = place;
|
||
GET_CODE (PREV_INSN (p)) == INSN
|
||
&& GET_CODE (PATTERN (PREV_INSN (p))) == USE;
|
||
p = PREV_INSN (p))
|
||
if (rtx_equal_p (piece,
|
||
XEXP (PATTERN (PREV_INSN (p)), 0)))
|
||
{
|
||
p = 0;
|
||
break;
|
||
}
|
||
|
||
if (p)
|
||
{
|
||
rtx use_insn
|
||
= emit_insn_before (gen_rtx (USE, VOIDmode,
|
||
piece),
|
||
p);
|
||
REG_NOTES (use_insn)
|
||
= gen_rtx (EXPR_LIST, REG_DEAD, piece,
|
||
REG_NOTES (use_insn));
|
||
}
|
||
|
||
all_used = 0;
|
||
}
|
||
|
||
/* Check for the case where the register dying partially
|
||
overlaps the register set by this insn. */
|
||
if (all_used)
|
||
for (i = regno; i < endregno; i++)
|
||
if (dead_or_set_regno_p (place, i))
|
||
{
|
||
all_used = 0;
|
||
break;
|
||
}
|
||
|
||
if (! all_used)
|
||
{
|
||
/* Put only REG_DEAD notes for pieces that are
|
||
still used and that are not already dead or set. */
|
||
|
||
for (i = regno; i < endregno; i++)
|
||
{
|
||
rtx piece = gen_rtx (REG, reg_raw_mode[i], i);
|
||
|
||
if ((reg_referenced_p (piece, PATTERN (place))
|
||
|| (GET_CODE (place) == CALL_INSN
|
||
&& find_reg_fusage (place, USE, piece)))
|
||
&& ! dead_or_set_p (place, piece)
|
||
&& ! reg_bitfield_target_p (piece,
|
||
PATTERN (place)))
|
||
REG_NOTES (place) = gen_rtx (EXPR_LIST, REG_DEAD,
|
||
piece,
|
||
REG_NOTES (place));
|
||
}
|
||
|
||
place = 0;
|
||
}
|
||
}
|
||
}
|
||
break;
|
||
|
||
default:
|
||
/* Any other notes should not be present at this point in the
|
||
compilation. */
|
||
abort ();
|
||
}
|
||
|
||
if (place)
|
||
{
|
||
XEXP (note, 1) = REG_NOTES (place);
|
||
REG_NOTES (place) = note;
|
||
}
|
||
else if ((REG_NOTE_KIND (note) == REG_DEAD
|
||
|| REG_NOTE_KIND (note) == REG_UNUSED)
|
||
&& GET_CODE (XEXP (note, 0)) == REG)
|
||
reg_n_deaths[REGNO (XEXP (note, 0))]--;
|
||
|
||
if (place2)
|
||
{
|
||
if ((REG_NOTE_KIND (note) == REG_DEAD
|
||
|| REG_NOTE_KIND (note) == REG_UNUSED)
|
||
&& GET_CODE (XEXP (note, 0)) == REG)
|
||
reg_n_deaths[REGNO (XEXP (note, 0))]++;
|
||
|
||
REG_NOTES (place2) = gen_rtx (GET_CODE (note), REG_NOTE_KIND (note),
|
||
XEXP (note, 0), REG_NOTES (place2));
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Similarly to above, distribute the LOG_LINKS that used to be present on
|
||
I3, I2, and I1 to new locations. This is also called in one case to
|
||
add a link pointing at I3 when I3's destination is changed. */
|
||
|
||
static void
|
||
distribute_links (links)
|
||
rtx links;
|
||
{
|
||
rtx link, next_link;
|
||
|
||
for (link = links; link; link = next_link)
|
||
{
|
||
rtx place = 0;
|
||
rtx insn;
|
||
rtx set, reg;
|
||
|
||
next_link = XEXP (link, 1);
|
||
|
||
/* If the insn that this link points to is a NOTE or isn't a single
|
||
set, ignore it. In the latter case, it isn't clear what we
|
||
can do other than ignore the link, since we can't tell which
|
||
register it was for. Such links wouldn't be used by combine
|
||
anyway.
|
||
|
||
It is not possible for the destination of the target of the link to
|
||
have been changed by combine. The only potential of this is if we
|
||
replace I3, I2, and I1 by I3 and I2. But in that case the
|
||
destination of I2 also remains unchanged. */
|
||
|
||
if (GET_CODE (XEXP (link, 0)) == NOTE
|
||
|| (set = single_set (XEXP (link, 0))) == 0)
|
||
continue;
|
||
|
||
reg = SET_DEST (set);
|
||
while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
|
||
|| GET_CODE (reg) == SIGN_EXTRACT
|
||
|| GET_CODE (reg) == STRICT_LOW_PART)
|
||
reg = XEXP (reg, 0);
|
||
|
||
/* A LOG_LINK is defined as being placed on the first insn that uses
|
||
a register and points to the insn that sets the register. Start
|
||
searching at the next insn after the target of the link and stop
|
||
when we reach a set of the register or the end of the basic block.
|
||
|
||
Note that this correctly handles the link that used to point from
|
||
I3 to I2. Also note that not much searching is typically done here
|
||
since most links don't point very far away. */
|
||
|
||
for (insn = NEXT_INSN (XEXP (link, 0));
|
||
(insn && (this_basic_block == n_basic_blocks - 1
|
||
|| basic_block_head[this_basic_block + 1] != insn));
|
||
insn = NEXT_INSN (insn))
|
||
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
|
||
&& reg_overlap_mentioned_p (reg, PATTERN (insn)))
|
||
{
|
||
if (reg_referenced_p (reg, PATTERN (insn)))
|
||
place = insn;
|
||
break;
|
||
}
|
||
else if (GET_CODE (insn) == CALL_INSN
|
||
&& find_reg_fusage (insn, USE, reg))
|
||
{
|
||
place = insn;
|
||
break;
|
||
}
|
||
|
||
/* If we found a place to put the link, place it there unless there
|
||
is already a link to the same insn as LINK at that point. */
|
||
|
||
if (place)
|
||
{
|
||
rtx link2;
|
||
|
||
for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
|
||
if (XEXP (link2, 0) == XEXP (link, 0))
|
||
break;
|
||
|
||
if (link2 == 0)
|
||
{
|
||
XEXP (link, 1) = LOG_LINKS (place);
|
||
LOG_LINKS (place) = link;
|
||
|
||
/* Set added_links_insn to the earliest insn we added a
|
||
link to. */
|
||
if (added_links_insn == 0
|
||
|| INSN_CUID (added_links_insn) > INSN_CUID (place))
|
||
added_links_insn = place;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
void
|
||
dump_combine_stats (file)
|
||
FILE *file;
|
||
{
|
||
fprintf
|
||
(file,
|
||
";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
|
||
combine_attempts, combine_merges, combine_extras, combine_successes);
|
||
}
|
||
|
||
void
|
||
dump_combine_total_stats (file)
|
||
FILE *file;
|
||
{
|
||
fprintf
|
||
(file,
|
||
"\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
|
||
total_attempts, total_merges, total_extras, total_successes);
|
||
}
|