gcc/libgfortran/intrinsics/trigd.inc
2022-01-03 10:42:10 +01:00

494 lines
12 KiB
C

/* Implementation of the degree trignometric functions COSD, SIND, TAND.
Copyright (C) 2020-2022 Free Software Foundation, Inc.
Contributed by Steven G. Kargl <kargl@gcc.gnu.org>
and Fritz Reese <foreese@gcc.gnu.org>
This file is part of the GNU Fortran runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
/*
This file is included from both the FE and the runtime library code.
Operations are generalized using GMP/MPFR functions. When included from
libgfortran, these should be overridden using macros which will use native
operations conforming to the same API. From the FE, the GMP/MPFR functions can
be used as-is.
The following macros are used and must be defined, unless listed as [optional]:
FTYPE
Type name for the real-valued parameter.
Variables of this type are constructed/destroyed using mpfr_init()
and mpfr_clear.
RETTYPE
Return type of the functions.
RETURN(x)
Insert code to return a value.
The parameter x is the result variable, which was also the input parameter.
ITYPE
Type name for integer types.
SIND, COSD, TRIGD
Names for the degree-valued trig functions defined by this module.
ENABLE_SIND, ENABLE_COSD, ENABLE_TAND
Whether the degree-valued trig functions can be enabled.
ERROR_RETURN(f, k, x)
If ENABLE_<xxx>D is not defined, this is substituted to assert an
error condition for function f, kind k, and parameter x.
The function argument is one of {sind, cosd, tand}.
ISFINITE(x)
Whether x is a regular number or zero (not inf or NaN).
D2R(x)
Convert x from radians to degrees.
SET_COSD30(x)
Set x to COSD(30), or equivalently, SIND(60).
TINY_LITERAL [optional]
Value subtracted from 1 to cause raise INEXACT for COSD(x) for x << 1.
If not set, COSD(x) for x <= COSD_SMALL_LITERAL simply returns 1.
COSD_SMALL_LITERAL [optional]
Value such that x <= COSD_SMALL_LITERAL implies COSD(x) = 1 to within the
precision of FTYPE. If not set, this condition is not checked.
SIND_SMALL_LITERAL [optional]
Value such that x <= SIND_SMALL_LITERAL implies SIND(x) = D2R(x) to within
the precision of FTYPE. If not set, this condition is not checked.
*/
#ifdef SIND
/* Compute sind(x) = sin(x * pi / 180). */
RETTYPE
SIND (FTYPE x)
{
#ifdef ENABLE_SIND
if (ISFINITE (x))
{
FTYPE s, one;
/* sin(-x) = - sin(x). */
mpfr_init (s);
mpfr_init_set_ui (one, 1, GFC_RND_MODE);
mpfr_copysign (s, one, x, GFC_RND_MODE);
mpfr_clear (one);
#ifdef SIND_SMALL_LITERAL
/* sin(x) = x as x -> 0; but only for some precisions. */
FTYPE ax;
mpfr_init (ax);
mpfr_abs (ax, x, GFC_RND_MODE);
if (mpfr_cmp_ld (ax, SIND_SMALL_LITERAL) < 0)
{
D2R (x);
mpfr_clear (ax);
return x;
}
mpfr_swap (x, ax);
mpfr_clear (ax);
#else
mpfr_abs (x, x, GFC_RND_MODE);
#endif /* SIND_SMALL_LITERAL */
/* Reduce angle to x in [0,360]. */
FTYPE period;
mpfr_init_set_ui (period, 360, GFC_RND_MODE);
mpfr_fmod (x, x, period, GFC_RND_MODE);
mpfr_clear (period);
/* Special cases with exact results. */
ITYPE n;
mpz_init (n);
if (mpfr_get_z (n, x, GFC_RND_MODE) == 0 && mpz_divisible_ui_p (n, 30))
{
/* Flip sign for odd n*pi (x is % 360 so this is only for 180).
This respects sgn(sin(x)) = sgn(d/dx sin(x)) = sgn(cos(x)). */
if (mpz_divisible_ui_p (n, 180))
{
mpfr_set_ui (x, 0, GFC_RND_MODE);
if (mpz_cmp_ui (n, 180) == 0)
mpfr_neg (s, s, GFC_RND_MODE);
}
else if (mpz_divisible_ui_p (n, 90))
mpfr_set_si (x, (mpz_cmp_ui (n, 90) == 0 ? 1 : -1), GFC_RND_MODE);
else if (mpz_divisible_ui_p (n, 60))
{
SET_COSD30 (x);
if (mpz_cmp_ui (n, 180) >= 0)
mpfr_neg (x, x, GFC_RND_MODE);
}
else
mpfr_set_ld (x, (mpz_cmp_ui (n, 180) < 0 ? 0.5L : -0.5L),
GFC_RND_MODE);
}
/* Fold [0,360] into the range [0,45], and compute either SIN() or
COS() depending on symmetry of shifting into the [0,45] range. */
else
{
bool fold_cos = false;
if (mpfr_cmp_ui (x, 180) <= 0)
{
if (mpfr_cmp_ui (x, 90) <= 0)
{
if (mpfr_cmp_ui (x, 45) > 0)
{
/* x = COS(D2R(90 - x)) */
mpfr_ui_sub (x, 90, x, GFC_RND_MODE);
fold_cos = true;
}
}
else
{
if (mpfr_cmp_ui (x, 135) <= 0)
{
mpfr_sub_ui (x, x, 90, GFC_RND_MODE);
fold_cos = true;
}
else
mpfr_ui_sub (x, 180, x, GFC_RND_MODE);
}
}
else if (mpfr_cmp_ui (x, 270) <= 0)
{
if (mpfr_cmp_ui (x, 225) <= 0)
mpfr_sub_ui (x, x, 180, GFC_RND_MODE);
else
{
mpfr_ui_sub (x, 270, x, GFC_RND_MODE);
fold_cos = true;
}
mpfr_neg (s, s, GFC_RND_MODE);
}
else
{
if (mpfr_cmp_ui (x, 315) <= 0)
{
mpfr_sub_ui (x, x, 270, GFC_RND_MODE);
fold_cos = true;
}
else
mpfr_ui_sub (x, 360, x, GFC_RND_MODE);
mpfr_neg (s, s, GFC_RND_MODE);
}
D2R (x);
if (fold_cos)
mpfr_cos (x, x, GFC_RND_MODE);
else
mpfr_sin (x, x, GFC_RND_MODE);
}
mpfr_mul (x, x, s, GFC_RND_MODE);
mpz_clear (n);
mpfr_clear (s);
}
/* Return NaN for +-Inf and NaN and raise exception. */
else
mpfr_sub (x, x, x, GFC_RND_MODE);
RETURN (x);
#else
ERROR_RETURN(sind, KIND, x);
#endif // ENABLE_SIND
}
#endif // SIND
#ifdef COSD
/* Compute cosd(x) = cos(x * pi / 180). */
RETTYPE
COSD (FTYPE x)
{
#ifdef ENABLE_COSD
#if defined(TINY_LITERAL) && defined(COSD_SMALL_LITERAL)
static const volatile FTYPE tiny = TINY_LITERAL;
#endif
if (ISFINITE (x))
{
#ifdef COSD_SMALL_LITERAL
FTYPE ax;
mpfr_init (ax);
mpfr_abs (ax, x, GFC_RND_MODE);
/* No spurious underflows!. In radians, cos(x) = 1-x*x/2 as x -> 0. */
if (mpfr_cmp_ld (ax, COSD_SMALL_LITERAL) <= 0)
{
mpfr_set_ui (x, 1, GFC_RND_MODE);
#ifdef TINY_LITERAL
/* Cause INEXACT. */
if (!mpfr_zero_p (ax))
mpfr_sub_d (x, x, tiny, GFC_RND_MODE);
#endif
mpfr_clear (ax);
return x;
}
mpfr_swap (x, ax);
mpfr_clear (ax);
#else
mpfr_abs (x, x, GFC_RND_MODE);
#endif /* COSD_SMALL_LITERAL */
/* Reduce angle to ax in [0,360]. */
FTYPE period;
mpfr_init_set_ui (period, 360, GFC_RND_MODE);
mpfr_fmod (x, x, period, GFC_RND_MODE);
mpfr_clear (period);
/* Special cases with exact results.
Return negative zero for cosd(270) for consistency with libm cos(). */
ITYPE n;
mpz_init (n);
if (mpfr_get_z (n, x, GFC_RND_MODE) == 0 && mpz_divisible_ui_p (n, 30))
{
if (mpz_divisible_ui_p (n, 180))
mpfr_set_si (x, (mpz_cmp_ui (n, 180) == 0 ? -1 : 1),
GFC_RND_MODE);
else if (mpz_divisible_ui_p (n, 90))
mpfr_set_zero (x, 0);
else if (mpz_divisible_ui_p (n, 60))
{
mpfr_set_ld (x, 0.5, GFC_RND_MODE);
if (mpz_cmp_ui (n, 60) != 0 && mpz_cmp_ui (n, 300) != 0)
mpfr_neg (x, x, GFC_RND_MODE);
}
else
{
SET_COSD30 (x);
if (mpz_cmp_ui (n, 30) != 0 && mpz_cmp_ui (n, 330) != 0)
mpfr_neg (x, x, GFC_RND_MODE);
}
}
/* Fold [0,360] into the range [0,45], and compute either SIN() or
COS() depending on symmetry of shifting into the [0,45] range. */
else
{
bool neg = false;
bool fold_sin = false;
if (mpfr_cmp_ui (x, 180) <= 0)
{
if (mpfr_cmp_ui (x, 90) <= 0)
{
if (mpfr_cmp_ui (x, 45) > 0)
{
mpfr_ui_sub (x, 90, x, GFC_RND_MODE);
fold_sin = true;
}
}
else
{
if (mpfr_cmp_ui (x, 135) <= 0)
{
mpfr_sub_ui (x, x, 90, GFC_RND_MODE);
fold_sin = true;
}
else
mpfr_ui_sub (x, 180, x, GFC_RND_MODE);
neg = true;
}
}
else if (mpfr_cmp_ui (x, 270) <= 0)
{
if (mpfr_cmp_ui (x, 225) <= 0)
mpfr_sub_ui (x, x, 180, GFC_RND_MODE);
else
{
mpfr_ui_sub (x, 270, x, GFC_RND_MODE);
fold_sin = true;
}
neg = true;
}
else
{
if (mpfr_cmp_ui (x, 315) <= 0)
{
mpfr_sub_ui (x, x, 270, GFC_RND_MODE);
fold_sin = true;
}
else
mpfr_ui_sub (x, 360, x, GFC_RND_MODE);
}
D2R (x);
if (fold_sin)
mpfr_sin (x, x, GFC_RND_MODE);
else
mpfr_cos (x, x, GFC_RND_MODE);
if (neg)
mpfr_neg (x, x, GFC_RND_MODE);
}
mpz_clear (n);
}
/* Return NaN for +-Inf and NaN and raise exception. */
else
mpfr_sub (x, x, x, GFC_RND_MODE);
RETURN (x);
#else
ERROR_RETURN(cosd, KIND, x);
#endif // ENABLE_COSD
}
#endif // COSD
#ifdef TAND
/* Compute tand(x) = tan(x * pi / 180). */
RETTYPE
TAND (FTYPE x)
{
#ifdef ENABLE_TAND
if (ISFINITE (x))
{
FTYPE s, one;
/* tan(-x) = - tan(x). */
mpfr_init (s);
mpfr_init_set_ui (one, 1, GFC_RND_MODE);
mpfr_copysign (s, one, x, GFC_RND_MODE);
mpfr_clear (one);
#ifdef SIND_SMALL_LITERAL
/* tan(x) = x as x -> 0; but only for some precisions. */
FTYPE ax;
mpfr_init (ax);
mpfr_abs (ax, x, GFC_RND_MODE);
if (mpfr_cmp_ld (ax, SIND_SMALL_LITERAL) < 0)
{
D2R (x);
mpfr_clear (ax);
return x;
}
mpfr_swap (x, ax);
mpfr_clear (ax);
#else
mpfr_abs (x, x, GFC_RND_MODE);
#endif /* SIND_SMALL_LITERAL */
/* Reduce angle to x in [0,360]. */
FTYPE period;
mpfr_init_set_ui (period, 360, GFC_RND_MODE);
mpfr_fmod (x, x, period, GFC_RND_MODE);
mpfr_clear (period);
/* Special cases with exact results. */
ITYPE n;
mpz_init (n);
if (mpfr_get_z (n, x, GFC_RND_MODE) == 0 && mpz_divisible_ui_p (n, 45))
{
if (mpz_divisible_ui_p (n, 180))
mpfr_set_zero (x, 0);
/* Though mathematically NaN is more appropriate for tan(n*90),
returning +/-Inf offers the advantage that 1/tan(n*90) returns 0,
which is mathematically sound. In fact we rely on this behavior
to implement COTAND(x) = 1 / TAND(x).
*/
else if (mpz_divisible_ui_p (n, 90))
mpfr_set_inf (x, mpz_cmp_ui (n, 90) == 0 ? 0 : 1);
else
{
mpfr_set_ui (x, 1, GFC_RND_MODE);
if (mpz_cmp_ui (n, 45) != 0 && mpz_cmp_ui (n, 225) != 0)
mpfr_neg (x, x, GFC_RND_MODE);
}
}
else
{
/* Fold [0,360] into the range [0,90], and compute TAN(). */
if (mpfr_cmp_ui (x, 180) <= 0)
{
if (mpfr_cmp_ui (x, 90) > 0)
{
mpfr_ui_sub (x, 180, x, GFC_RND_MODE);
mpfr_neg (s, s, GFC_RND_MODE);
}
}
else
{
if (mpfr_cmp_ui (x, 270) <= 0)
{
mpfr_sub_ui (x, x, 180, GFC_RND_MODE);
}
else
{
mpfr_ui_sub (x, 360, x, GFC_RND_MODE);
mpfr_neg (s, s, GFC_RND_MODE);
}
}
D2R (x);
mpfr_tan (x, x, GFC_RND_MODE);
}
mpfr_mul (x, x, s, GFC_RND_MODE);
mpz_clear (n);
mpfr_clear (s);
}
/* Return NaN for +-Inf and NaN and raise exception. */
else
mpfr_sub (x, x, x, GFC_RND_MODE);
RETURN (x);
#else
ERROR_RETURN(tand, KIND, x);
#endif // ENABLE_TAND
}
#endif // TAND
/* vim: set ft=c: */