gcc/libgfortran/intrinsics/unpack_generic.c
2022-01-03 10:42:10 +01:00

651 lines
18 KiB
C

/* Generic implementation of the UNPACK intrinsic
Copyright (C) 2002-2022 Free Software Foundation, Inc.
Contributed by Paul Brook <paul@nowt.org>
This file is part of the GNU Fortran runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
Ligbfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#include "libgfortran.h"
#include <assert.h>
#include <string.h>
/* All the bounds checking for unpack in one function. If field is NULL,
we don't check it, for the unpack0 functions. */
static void
unpack_bounds (gfc_array_char *ret, const gfc_array_char *vector,
const gfc_array_l1 *mask, const gfc_array_char *field)
{
index_type vec_size, mask_count;
vec_size = size0 ((array_t *) vector);
mask_count = count_0 (mask);
if (vec_size < mask_count)
runtime_error ("Incorrect size of return value in UNPACK"
" intrinsic: should be at least %ld, is"
" %ld", (long int) mask_count,
(long int) vec_size);
if (field != NULL)
bounds_equal_extents ((array_t *) field, (array_t *) mask,
"FIELD", "UNPACK");
if (ret->base_addr != NULL)
bounds_equal_extents ((array_t *) ret, (array_t *) mask,
"return value", "UNPACK");
}
static void
unpack_internal (gfc_array_char *ret, const gfc_array_char *vector,
const gfc_array_l1 *mask, const gfc_array_char *field,
index_type size)
{
/* r.* indicates the return array. */
index_type rstride[GFC_MAX_DIMENSIONS];
index_type rstride0;
index_type rs;
char * restrict rptr;
/* v.* indicates the vector array. */
index_type vstride0;
char *vptr;
/* f.* indicates the field array. */
index_type fstride[GFC_MAX_DIMENSIONS];
index_type fstride0;
const char *fptr;
/* m.* indicates the mask array. */
index_type mstride[GFC_MAX_DIMENSIONS];
index_type mstride0;
const GFC_LOGICAL_1 *mptr;
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type n;
index_type dim;
int empty;
int mask_kind;
empty = 0;
mptr = mask->base_addr;
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
and using shifting to address size and endian issues. */
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
|| mask_kind == 16
#endif
)
{
/* Don't convert a NULL pointer as we use test for NULL below. */
if (mptr)
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
}
else
runtime_error ("Funny sized logical array");
if (ret->base_addr == NULL)
{
/* The front end has signalled that we need to populate the
return array descriptor. */
dim = GFC_DESCRIPTOR_RANK (mask);
rs = 1;
for (n = 0; n < dim; n++)
{
count[n] = 0;
GFC_DIMENSION_SET(ret->dim[n], 0,
GFC_DESCRIPTOR_EXTENT(mask,n) - 1, rs);
extent[n] = GFC_DESCRIPTOR_EXTENT(ret,n);
empty = empty || extent[n] <= 0;
rstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(ret, n);
fstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(field, n);
mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n);
rs *= extent[n];
}
ret->offset = 0;
ret->base_addr = xmallocarray (rs, size);
}
else
{
dim = GFC_DESCRIPTOR_RANK (ret);
for (n = 0; n < dim; n++)
{
count[n] = 0;
extent[n] = GFC_DESCRIPTOR_EXTENT(ret,n);
empty = empty || extent[n] <= 0;
rstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(ret, n);
fstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(field, n);
mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n);
}
}
if (empty)
return;
/* This assert makes sure GCC knows we can access *stride[0] later. */
assert (dim > 0);
vstride0 = GFC_DESCRIPTOR_STRIDE_BYTES(vector,0);
rstride0 = rstride[0];
fstride0 = fstride[0];
mstride0 = mstride[0];
rptr = ret->base_addr;
fptr = field->base_addr;
vptr = vector->base_addr;
while (rptr)
{
if (*mptr)
{
/* From vector. */
memcpy (rptr, vptr, size);
vptr += vstride0;
}
else
{
/* From field. */
memcpy (rptr, fptr, size);
}
/* Advance to the next element. */
rptr += rstride0;
fptr += fstride0;
mptr += mstride0;
count[0]++;
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
rptr -= rstride[n] * extent[n];
fptr -= fstride[n] * extent[n];
mptr -= mstride[n] * extent[n];
n++;
if (n >= dim)
{
/* Break out of the loop. */
rptr = NULL;
break;
}
else
{
count[n]++;
rptr += rstride[n];
fptr += fstride[n];
mptr += mstride[n];
}
}
}
}
extern void unpack1 (gfc_array_char *, const gfc_array_char *,
const gfc_array_l1 *, const gfc_array_char *);
export_proto(unpack1);
void
unpack1 (gfc_array_char *ret, const gfc_array_char *vector,
const gfc_array_l1 *mask, const gfc_array_char *field)
{
index_type type_size;
index_type size;
if (unlikely(compile_options.bounds_check))
unpack_bounds (ret, vector, mask, field);
type_size = GFC_DTYPE_TYPE_SIZE (vector);
size = GFC_DESCRIPTOR_SIZE (vector);
switch(type_size)
{
case GFC_DTYPE_LOGICAL_1:
case GFC_DTYPE_INTEGER_1:
unpack1_i1 ((gfc_array_i1 *) ret, (gfc_array_i1 *) vector,
mask, (gfc_array_i1 *) field);
return;
case GFC_DTYPE_LOGICAL_2:
case GFC_DTYPE_INTEGER_2:
unpack1_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) vector,
mask, (gfc_array_i2 *) field);
return;
case GFC_DTYPE_LOGICAL_4:
case GFC_DTYPE_INTEGER_4:
unpack1_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) vector,
mask, (gfc_array_i4 *) field);
return;
case GFC_DTYPE_LOGICAL_8:
case GFC_DTYPE_INTEGER_8:
unpack1_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) vector,
mask, (gfc_array_i8 *) field);
return;
#ifdef HAVE_GFC_INTEGER_16
case GFC_DTYPE_LOGICAL_16:
case GFC_DTYPE_INTEGER_16:
unpack1_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) vector,
mask, (gfc_array_i16 *) field);
return;
#endif
case GFC_DTYPE_REAL_4:
unpack1_r4 ((gfc_array_r4 *) ret, (gfc_array_r4 *) vector,
mask, (gfc_array_r4 *) field);
return;
case GFC_DTYPE_REAL_8:
unpack1_r8 ((gfc_array_r8 *) ret, (gfc_array_r8 *) vector,
mask, (gfc_array_r8 *) field);
return;
/* FIXME: This here is a hack, which will have to be removed when
the array descriptor is reworked. Currently, we don't store the
kind value for the type, but only the size. Because on targets with
__float128, we have sizeof(logn double) == sizeof(__float128),
we cannot discriminate here and have to fall back to the generic
handling (which is suboptimal). */
#if !defined(GFC_REAL_16_IS_FLOAT128)
# ifdef HAVE_GFC_REAL_10
case GFC_DTYPE_REAL_10:
unpack1_r10 ((gfc_array_r10 *) ret, (gfc_array_r10 *) vector,
mask, (gfc_array_r10 *) field);
return;
# endif
# ifdef HAVE_GFC_REAL_16
case GFC_DTYPE_REAL_16:
unpack1_r16 ((gfc_array_r16 *) ret, (gfc_array_r16 *) vector,
mask, (gfc_array_r16 *) field);
return;
# endif
#endif
case GFC_DTYPE_COMPLEX_4:
unpack1_c4 ((gfc_array_c4 *) ret, (gfc_array_c4 *) vector,
mask, (gfc_array_c4 *) field);
return;
case GFC_DTYPE_COMPLEX_8:
unpack1_c8 ((gfc_array_c8 *) ret, (gfc_array_c8 *) vector,
mask, (gfc_array_c8 *) field);
return;
/* FIXME: This here is a hack, which will have to be removed when
the array descriptor is reworked. Currently, we don't store the
kind value for the type, but only the size. Because on targets with
__float128, we have sizeof(logn double) == sizeof(__float128),
we cannot discriminate here and have to fall back to the generic
handling (which is suboptimal). */
#if !defined(GFC_REAL_16_IS_FLOAT128)
# ifdef HAVE_GFC_COMPLEX_10
case GFC_DTYPE_COMPLEX_10:
unpack1_c10 ((gfc_array_c10 *) ret, (gfc_array_c10 *) vector,
mask, (gfc_array_c10 *) field);
return;
# endif
# ifdef HAVE_GFC_COMPLEX_16
case GFC_DTYPE_COMPLEX_16:
unpack1_c16 ((gfc_array_c16 *) ret, (gfc_array_c16 *) vector,
mask, (gfc_array_c16 *) field);
return;
# endif
#endif
}
switch (GFC_DESCRIPTOR_SIZE(ret))
{
case 1:
unpack1_i1 ((gfc_array_i1 *) ret, (gfc_array_i1 *) vector,
mask, (gfc_array_i1 *) field);
return;
case 2:
if (GFC_UNALIGNED_2(ret->base_addr) || GFC_UNALIGNED_2(vector->base_addr)
|| GFC_UNALIGNED_2(field->base_addr))
break;
else
{
unpack1_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) vector,
mask, (gfc_array_i2 *) field);
return;
}
case 4:
if (GFC_UNALIGNED_4(ret->base_addr) || GFC_UNALIGNED_4(vector->base_addr)
|| GFC_UNALIGNED_4(field->base_addr))
break;
else
{
unpack1_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) vector,
mask, (gfc_array_i4 *) field);
return;
}
case 8:
if (GFC_UNALIGNED_8(ret->base_addr) || GFC_UNALIGNED_8(vector->base_addr)
|| GFC_UNALIGNED_8(field->base_addr))
break;
else
{
unpack1_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) vector,
mask, (gfc_array_i8 *) field);
return;
}
#ifdef HAVE_GFC_INTEGER_16
case 16:
if (GFC_UNALIGNED_16(ret->base_addr)
|| GFC_UNALIGNED_16(vector->base_addr)
|| GFC_UNALIGNED_16(field->base_addr))
break;
else
{
unpack1_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) vector,
mask, (gfc_array_i16 *) field);
return;
}
#endif
default:
break;
}
unpack_internal (ret, vector, mask, field, size);
}
extern void unpack1_char (gfc_array_char *, GFC_INTEGER_4,
const gfc_array_char *, const gfc_array_l1 *,
const gfc_array_char *, GFC_INTEGER_4,
GFC_INTEGER_4);
export_proto(unpack1_char);
void
unpack1_char (gfc_array_char *ret,
GFC_INTEGER_4 ret_length __attribute__((unused)),
const gfc_array_char *vector, const gfc_array_l1 *mask,
const gfc_array_char *field, GFC_INTEGER_4 vector_length,
GFC_INTEGER_4 field_length __attribute__((unused)))
{
if (unlikely(compile_options.bounds_check))
unpack_bounds (ret, vector, mask, field);
unpack_internal (ret, vector, mask, field, vector_length);
}
extern void unpack1_char4 (gfc_array_char *, GFC_INTEGER_4,
const gfc_array_char *, const gfc_array_l1 *,
const gfc_array_char *, GFC_INTEGER_4,
GFC_INTEGER_4);
export_proto(unpack1_char4);
void
unpack1_char4 (gfc_array_char *ret,
GFC_INTEGER_4 ret_length __attribute__((unused)),
const gfc_array_char *vector, const gfc_array_l1 *mask,
const gfc_array_char *field, GFC_INTEGER_4 vector_length,
GFC_INTEGER_4 field_length __attribute__((unused)))
{
if (unlikely(compile_options.bounds_check))
unpack_bounds (ret, vector, mask, field);
unpack_internal (ret, vector, mask, field,
vector_length * sizeof (gfc_char4_t));
}
extern void unpack0 (gfc_array_char *, const gfc_array_char *,
const gfc_array_l1 *, char *);
export_proto(unpack0);
void
unpack0 (gfc_array_char *ret, const gfc_array_char *vector,
const gfc_array_l1 *mask, char *field)
{
gfc_array_char tmp;
index_type type_size;
if (unlikely(compile_options.bounds_check))
unpack_bounds (ret, vector, mask, NULL);
type_size = GFC_DTYPE_TYPE_SIZE (vector);
switch (type_size)
{
case GFC_DTYPE_LOGICAL_1:
case GFC_DTYPE_INTEGER_1:
unpack0_i1 ((gfc_array_i1 *) ret, (gfc_array_i1 *) vector,
mask, (GFC_INTEGER_1 *) field);
return;
case GFC_DTYPE_LOGICAL_2:
case GFC_DTYPE_INTEGER_2:
unpack0_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) vector,
mask, (GFC_INTEGER_2 *) field);
return;
case GFC_DTYPE_LOGICAL_4:
case GFC_DTYPE_INTEGER_4:
unpack0_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) vector,
mask, (GFC_INTEGER_4 *) field);
return;
case GFC_DTYPE_LOGICAL_8:
case GFC_DTYPE_INTEGER_8:
unpack0_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) vector,
mask, (GFC_INTEGER_8 *) field);
return;
#ifdef HAVE_GFC_INTEGER_16
case GFC_DTYPE_LOGICAL_16:
case GFC_DTYPE_INTEGER_16:
unpack0_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) vector,
mask, (GFC_INTEGER_16 *) field);
return;
#endif
case GFC_DTYPE_REAL_4:
unpack0_r4 ((gfc_array_r4 *) ret, (gfc_array_r4 *) vector,
mask, (GFC_REAL_4 *) field);
return;
case GFC_DTYPE_REAL_8:
unpack0_r8 ((gfc_array_r8 *) ret, (gfc_array_r8*) vector,
mask, (GFC_REAL_8 *) field);
return;
/* FIXME: This here is a hack, which will have to be removed when
the array descriptor is reworked. Currently, we don't store the
kind value for the type, but only the size. Because on targets with
__float128, we have sizeof(logn double) == sizeof(__float128),
we cannot discriminate here and have to fall back to the generic
handling (which is suboptimal). */
#if !defined(GFC_REAL_16_IS_FLOAT128)
# ifdef HAVE_GFC_REAL_10
case GFC_DTYPE_REAL_10:
unpack0_r10 ((gfc_array_r10 *) ret, (gfc_array_r10 *) vector,
mask, (GFC_REAL_10 *) field);
return;
# endif
# ifdef HAVE_GFC_REAL_16
case GFC_DTYPE_REAL_16:
unpack0_r16 ((gfc_array_r16 *) ret, (gfc_array_r16 *) vector,
mask, (GFC_REAL_16 *) field);
return;
# endif
#endif
case GFC_DTYPE_COMPLEX_4:
unpack0_c4 ((gfc_array_c4 *) ret, (gfc_array_c4 *) vector,
mask, (GFC_COMPLEX_4 *) field);
return;
case GFC_DTYPE_COMPLEX_8:
unpack0_c8 ((gfc_array_c8 *) ret, (gfc_array_c8 *) vector,
mask, (GFC_COMPLEX_8 *) field);
return;
/* FIXME: This here is a hack, which will have to be removed when
the array descriptor is reworked. Currently, we don't store the
kind value for the type, but only the size. Because on targets with
__float128, we have sizeof(logn double) == sizeof(__float128),
we cannot discriminate here and have to fall back to the generic
handling (which is suboptimal). */
#if !defined(GFC_REAL_16_IS_FLOAT128)
# ifdef HAVE_GFC_COMPLEX_10
case GFC_DTYPE_COMPLEX_10:
unpack0_c10 ((gfc_array_c10 *) ret, (gfc_array_c10 *) vector,
mask, (GFC_COMPLEX_10 *) field);
return;
# endif
# ifdef HAVE_GFC_COMPLEX_16
case GFC_DTYPE_COMPLEX_16:
unpack0_c16 ((gfc_array_c16 *) ret, (gfc_array_c16 *) vector,
mask, (GFC_COMPLEX_16 *) field);
return;
# endif
#endif
}
switch (GFC_DESCRIPTOR_SIZE(ret))
{
case 1:
unpack0_i1 ((gfc_array_i1 *) ret, (gfc_array_i1 *) vector,
mask, (GFC_INTEGER_1 *) field);
return;
case 2:
if (GFC_UNALIGNED_2(ret->base_addr) || GFC_UNALIGNED_2(vector->base_addr)
|| GFC_UNALIGNED_2(field))
break;
else
{
unpack0_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) vector,
mask, (GFC_INTEGER_2 *) field);
return;
}
case 4:
if (GFC_UNALIGNED_4(ret->base_addr) || GFC_UNALIGNED_4(vector->base_addr)
|| GFC_UNALIGNED_4(field))
break;
else
{
unpack0_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) vector,
mask, (GFC_INTEGER_4 *) field);
return;
}
case 8:
if (GFC_UNALIGNED_8(ret->base_addr) || GFC_UNALIGNED_8(vector->base_addr)
|| GFC_UNALIGNED_8(field))
break;
else
{
unpack0_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) vector,
mask, (GFC_INTEGER_8 *) field);
return;
}
#ifdef HAVE_GFC_INTEGER_16
case 16:
if (GFC_UNALIGNED_16(ret->base_addr)
|| GFC_UNALIGNED_16(vector->base_addr)
|| GFC_UNALIGNED_16(field))
break;
else
{
unpack0_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) vector,
mask, (GFC_INTEGER_16 *) field);
return;
}
#endif
}
memset (&tmp, 0, sizeof (tmp));
GFC_DTYPE_CLEAR(&tmp);
tmp.base_addr = field;
unpack_internal (ret, vector, mask, &tmp, GFC_DESCRIPTOR_SIZE (vector));
}
extern void unpack0_char (gfc_array_char *, GFC_INTEGER_4,
const gfc_array_char *, const gfc_array_l1 *,
char *, GFC_INTEGER_4, GFC_INTEGER_4);
export_proto(unpack0_char);
void
unpack0_char (gfc_array_char *ret,
GFC_INTEGER_4 ret_length __attribute__((unused)),
const gfc_array_char *vector, const gfc_array_l1 *mask,
char *field, GFC_INTEGER_4 vector_length,
GFC_INTEGER_4 field_length __attribute__((unused)))
{
gfc_array_char tmp;
if (unlikely(compile_options.bounds_check))
unpack_bounds (ret, vector, mask, NULL);
memset (&tmp, 0, sizeof (tmp));
GFC_DTYPE_CLEAR(&tmp);
tmp.base_addr = field;
unpack_internal (ret, vector, mask, &tmp, vector_length);
}
extern void unpack0_char4 (gfc_array_char *, GFC_INTEGER_4,
const gfc_array_char *, const gfc_array_l1 *,
char *, GFC_INTEGER_4, GFC_INTEGER_4);
export_proto(unpack0_char4);
void
unpack0_char4 (gfc_array_char *ret,
GFC_INTEGER_4 ret_length __attribute__((unused)),
const gfc_array_char *vector, const gfc_array_l1 *mask,
char *field, GFC_INTEGER_4 vector_length,
GFC_INTEGER_4 field_length __attribute__((unused)))
{
gfc_array_char tmp;
if (unlikely(compile_options.bounds_check))
unpack_bounds (ret, vector, mask, NULL);
memset (&tmp, 0, sizeof (tmp));
GFC_DTYPE_CLEAR(&tmp);
tmp.base_addr = field;
unpack_internal (ret, vector, mask, &tmp,
vector_length * sizeof (gfc_char4_t));
}