gcc/libgo/go/runtime/mheap.go
2019-09-12 23:22:53 +00:00

2005 lines
63 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Page heap.
//
// See malloc.go for overview.
package runtime
import (
"internal/cpu"
"runtime/internal/atomic"
"runtime/internal/sys"
"unsafe"
)
// minPhysPageSize is a lower-bound on the physical page size. The
// true physical page size may be larger than this. In contrast,
// sys.PhysPageSize is an upper-bound on the physical page size.
const minPhysPageSize = 4096
// Main malloc heap.
// The heap itself is the "free" and "scav" treaps,
// but all the other global data is here too.
//
// mheap must not be heap-allocated because it contains mSpanLists,
// which must not be heap-allocated.
//
//go:notinheap
type mheap struct {
// lock must only be acquired on the system stack, otherwise a g
// could self-deadlock if its stack grows with the lock held.
lock mutex
free mTreap // free spans
sweepgen uint32 // sweep generation, see comment in mspan
sweepdone uint32 // all spans are swept
sweepers uint32 // number of active sweepone calls
// allspans is a slice of all mspans ever created. Each mspan
// appears exactly once.
//
// The memory for allspans is manually managed and can be
// reallocated and move as the heap grows.
//
// In general, allspans is protected by mheap_.lock, which
// prevents concurrent access as well as freeing the backing
// store. Accesses during STW might not hold the lock, but
// must ensure that allocation cannot happen around the
// access (since that may free the backing store).
allspans []*mspan // all spans out there
// sweepSpans contains two mspan stacks: one of swept in-use
// spans, and one of unswept in-use spans. These two trade
// roles on each GC cycle. Since the sweepgen increases by 2
// on each cycle, this means the swept spans are in
// sweepSpans[sweepgen/2%2] and the unswept spans are in
// sweepSpans[1-sweepgen/2%2]. Sweeping pops spans from the
// unswept stack and pushes spans that are still in-use on the
// swept stack. Likewise, allocating an in-use span pushes it
// on the swept stack.
sweepSpans [2]gcSweepBuf
_ uint32 // align uint64 fields on 32-bit for atomics
// Proportional sweep
//
// These parameters represent a linear function from heap_live
// to page sweep count. The proportional sweep system works to
// stay in the black by keeping the current page sweep count
// above this line at the current heap_live.
//
// The line has slope sweepPagesPerByte and passes through a
// basis point at (sweepHeapLiveBasis, pagesSweptBasis). At
// any given time, the system is at (memstats.heap_live,
// pagesSwept) in this space.
//
// It's important that the line pass through a point we
// control rather than simply starting at a (0,0) origin
// because that lets us adjust sweep pacing at any time while
// accounting for current progress. If we could only adjust
// the slope, it would create a discontinuity in debt if any
// progress has already been made.
pagesInUse uint64 // pages of spans in stats mSpanInUse; R/W with mheap.lock
pagesSwept uint64 // pages swept this cycle; updated atomically
pagesSweptBasis uint64 // pagesSwept to use as the origin of the sweep ratio; updated atomically
sweepHeapLiveBasis uint64 // value of heap_live to use as the origin of sweep ratio; written with lock, read without
sweepPagesPerByte float64 // proportional sweep ratio; written with lock, read without
// TODO(austin): pagesInUse should be a uintptr, but the 386
// compiler can't 8-byte align fields.
// Scavenger pacing parameters
//
// The two basis parameters and the scavenge ratio parallel the proportional
// sweeping implementation, the primary differences being that:
// * Scavenging concerns itself with RSS, estimated as heapRetained()
// * Rather than pacing the scavenger to the GC, it is paced to a
// time-based rate computed in gcPaceScavenger.
//
// scavengeRetainedGoal represents our goal RSS.
//
// All fields must be accessed with lock.
//
// TODO(mknyszek): Consider abstracting the basis fields and the scavenge ratio
// into its own type so that this logic may be shared with proportional sweeping.
scavengeTimeBasis int64
scavengeRetainedBasis uint64
scavengeBytesPerNS float64
scavengeRetainedGoal uint64
// Page reclaimer state
// reclaimIndex is the page index in allArenas of next page to
// reclaim. Specifically, it refers to page (i %
// pagesPerArena) of arena allArenas[i / pagesPerArena].
//
// If this is >= 1<<63, the page reclaimer is done scanning
// the page marks.
//
// This is accessed atomically.
reclaimIndex uint64
// reclaimCredit is spare credit for extra pages swept. Since
// the page reclaimer works in large chunks, it may reclaim
// more than requested. Any spare pages released go to this
// credit pool.
//
// This is accessed atomically.
reclaimCredit uintptr
// Malloc stats.
largealloc uint64 // bytes allocated for large objects
nlargealloc uint64 // number of large object allocations
largefree uint64 // bytes freed for large objects (>maxsmallsize)
nlargefree uint64 // number of frees for large objects (>maxsmallsize)
nsmallfree [_NumSizeClasses]uint64 // number of frees for small objects (<=maxsmallsize)
// arenas is the heap arena map. It points to the metadata for
// the heap for every arena frame of the entire usable virtual
// address space.
//
// Use arenaIndex to compute indexes into this array.
//
// For regions of the address space that are not backed by the
// Go heap, the arena map contains nil.
//
// Modifications are protected by mheap_.lock. Reads can be
// performed without locking; however, a given entry can
// transition from nil to non-nil at any time when the lock
// isn't held. (Entries never transitions back to nil.)
//
// In general, this is a two-level mapping consisting of an L1
// map and possibly many L2 maps. This saves space when there
// are a huge number of arena frames. However, on many
// platforms (even 64-bit), arenaL1Bits is 0, making this
// effectively a single-level map. In this case, arenas[0]
// will never be nil.
arenas [1 << arenaL1Bits]*[1 << arenaL2Bits]*heapArena
// heapArenaAlloc is pre-reserved space for allocating heapArena
// objects. This is only used on 32-bit, where we pre-reserve
// this space to avoid interleaving it with the heap itself.
heapArenaAlloc linearAlloc
// arenaHints is a list of addresses at which to attempt to
// add more heap arenas. This is initially populated with a
// set of general hint addresses, and grown with the bounds of
// actual heap arena ranges.
arenaHints *arenaHint
// arena is a pre-reserved space for allocating heap arenas
// (the actual arenas). This is only used on 32-bit.
arena linearAlloc
// allArenas is the arenaIndex of every mapped arena. This can
// be used to iterate through the address space.
//
// Access is protected by mheap_.lock. However, since this is
// append-only and old backing arrays are never freed, it is
// safe to acquire mheap_.lock, copy the slice header, and
// then release mheap_.lock.
allArenas []arenaIdx
// sweepArenas is a snapshot of allArenas taken at the
// beginning of the sweep cycle. This can be read safely by
// simply blocking GC (by disabling preemption).
sweepArenas []arenaIdx
_ uint32 // ensure 64-bit alignment of central
// central free lists for small size classes.
// the padding makes sure that the mcentrals are
// spaced CacheLinePadSize bytes apart, so that each mcentral.lock
// gets its own cache line.
// central is indexed by spanClass.
central [numSpanClasses]struct {
mcentral mcentral
pad [cpu.CacheLinePadSize - unsafe.Sizeof(mcentral{})%cpu.CacheLinePadSize]byte
}
spanalloc fixalloc // allocator for span*
cachealloc fixalloc // allocator for mcache*
treapalloc fixalloc // allocator for treapNodes*
specialfinalizeralloc fixalloc // allocator for specialfinalizer*
specialprofilealloc fixalloc // allocator for specialprofile*
speciallock mutex // lock for special record allocators.
arenaHintAlloc fixalloc // allocator for arenaHints
unused *specialfinalizer // never set, just here to force the specialfinalizer type into DWARF
}
var mheap_ mheap
// A heapArena stores metadata for a heap arena. heapArenas are stored
// outside of the Go heap and accessed via the mheap_.arenas index.
//
// This gets allocated directly from the OS, so ideally it should be a
// multiple of the system page size. For example, avoid adding small
// fields.
//
//go:notinheap
type heapArena struct {
// bitmap stores the pointer/scalar bitmap for the words in
// this arena. See mbitmap.go for a description. Use the
// heapBits type to access this.
bitmap [heapArenaBitmapBytes]byte
// spans maps from virtual address page ID within this arena to *mspan.
// For allocated spans, their pages map to the span itself.
// For free spans, only the lowest and highest pages map to the span itself.
// Internal pages map to an arbitrary span.
// For pages that have never been allocated, spans entries are nil.
//
// Modifications are protected by mheap.lock. Reads can be
// performed without locking, but ONLY from indexes that are
// known to contain in-use or stack spans. This means there
// must not be a safe-point between establishing that an
// address is live and looking it up in the spans array.
spans [pagesPerArena]*mspan
// pageInUse is a bitmap that indicates which spans are in
// state mSpanInUse. This bitmap is indexed by page number,
// but only the bit corresponding to the first page in each
// span is used.
//
// Writes are protected by mheap_.lock.
pageInUse [pagesPerArena / 8]uint8
// pageMarks is a bitmap that indicates which spans have any
// marked objects on them. Like pageInUse, only the bit
// corresponding to the first page in each span is used.
//
// Writes are done atomically during marking. Reads are
// non-atomic and lock-free since they only occur during
// sweeping (and hence never race with writes).
//
// This is used to quickly find whole spans that can be freed.
//
// TODO(austin): It would be nice if this was uint64 for
// faster scanning, but we don't have 64-bit atomic bit
// operations.
pageMarks [pagesPerArena / 8]uint8
}
// arenaHint is a hint for where to grow the heap arenas. See
// mheap_.arenaHints.
//
//go:notinheap
type arenaHint struct {
addr uintptr
down bool
next *arenaHint
}
// An mspan is a run of pages.
//
// When a mspan is in the heap free treap, state == mSpanFree
// and heapmap(s->start) == span, heapmap(s->start+s->npages-1) == span.
// If the mspan is in the heap scav treap, then in addition to the
// above scavenged == true. scavenged == false in all other cases.
//
// When a mspan is allocated, state == mSpanInUse or mSpanManual
// and heapmap(i) == span for all s->start <= i < s->start+s->npages.
// Every mspan is in one doubly-linked list, either in the mheap's
// busy list or one of the mcentral's span lists.
// An mspan representing actual memory has state mSpanInUse,
// mSpanManual, or mSpanFree. Transitions between these states are
// constrained as follows:
//
// * A span may transition from free to in-use or manual during any GC
// phase.
//
// * During sweeping (gcphase == _GCoff), a span may transition from
// in-use to free (as a result of sweeping) or manual to free (as a
// result of stacks being freed).
//
// * During GC (gcphase != _GCoff), a span *must not* transition from
// manual or in-use to free. Because concurrent GC may read a pointer
// and then look up its span, the span state must be monotonic.
type mSpanState uint8
const (
mSpanDead mSpanState = iota
mSpanInUse // allocated for garbage collected heap
mSpanManual // allocated for manual management (e.g., stack allocator)
mSpanFree
)
// mSpanStateNames are the names of the span states, indexed by
// mSpanState.
var mSpanStateNames = []string{
"mSpanDead",
"mSpanInUse",
"mSpanManual",
"mSpanFree",
}
// mSpanList heads a linked list of spans.
//
//go:notinheap
type mSpanList struct {
first *mspan // first span in list, or nil if none
last *mspan // last span in list, or nil if none
}
//go:notinheap
type mspan struct {
next *mspan // next span in list, or nil if none
prev *mspan // previous span in list, or nil if none
list *mSpanList // For debugging. TODO: Remove.
startAddr uintptr // address of first byte of span aka s.base()
npages uintptr // number of pages in span
manualFreeList gclinkptr // list of free objects in mSpanManual spans
// freeindex is the slot index between 0 and nelems at which to begin scanning
// for the next free object in this span.
// Each allocation scans allocBits starting at freeindex until it encounters a 0
// indicating a free object. freeindex is then adjusted so that subsequent scans begin
// just past the newly discovered free object.
//
// If freeindex == nelem, this span has no free objects.
//
// allocBits is a bitmap of objects in this span.
// If n >= freeindex and allocBits[n/8] & (1<<(n%8)) is 0
// then object n is free;
// otherwise, object n is allocated. Bits starting at nelem are
// undefined and should never be referenced.
//
// Object n starts at address n*elemsize + (start << pageShift).
freeindex uintptr
// TODO: Look up nelems from sizeclass and remove this field if it
// helps performance.
nelems uintptr // number of object in the span.
// Cache of the allocBits at freeindex. allocCache is shifted
// such that the lowest bit corresponds to the bit freeindex.
// allocCache holds the complement of allocBits, thus allowing
// ctz (count trailing zero) to use it directly.
// allocCache may contain bits beyond s.nelems; the caller must ignore
// these.
allocCache uint64
// allocBits and gcmarkBits hold pointers to a span's mark and
// allocation bits. The pointers are 8 byte aligned.
// There are three arenas where this data is held.
// free: Dirty arenas that are no longer accessed
// and can be reused.
// next: Holds information to be used in the next GC cycle.
// current: Information being used during this GC cycle.
// previous: Information being used during the last GC cycle.
// A new GC cycle starts with the call to finishsweep_m.
// finishsweep_m moves the previous arena to the free arena,
// the current arena to the previous arena, and
// the next arena to the current arena.
// The next arena is populated as the spans request
// memory to hold gcmarkBits for the next GC cycle as well
// as allocBits for newly allocated spans.
//
// The pointer arithmetic is done "by hand" instead of using
// arrays to avoid bounds checks along critical performance
// paths.
// The sweep will free the old allocBits and set allocBits to the
// gcmarkBits. The gcmarkBits are replaced with a fresh zeroed
// out memory.
allocBits *gcBits
gcmarkBits *gcBits
// sweep generation:
// if sweepgen == h->sweepgen - 2, the span needs sweeping
// if sweepgen == h->sweepgen - 1, the span is currently being swept
// if sweepgen == h->sweepgen, the span is swept and ready to use
// if sweepgen == h->sweepgen + 1, the span was cached before sweep began and is still cached, and needs sweeping
// if sweepgen == h->sweepgen + 3, the span was swept and then cached and is still cached
// h->sweepgen is incremented by 2 after every GC
sweepgen uint32
divMul uint16 // for divide by elemsize - divMagic.mul
baseMask uint16 // if non-0, elemsize is a power of 2, & this will get object allocation base
allocCount uint16 // number of allocated objects
spanclass spanClass // size class and noscan (uint8)
state mSpanState // mspaninuse etc
needzero uint8 // needs to be zeroed before allocation
divShift uint8 // for divide by elemsize - divMagic.shift
divShift2 uint8 // for divide by elemsize - divMagic.shift2
scavenged bool // whether this span has had its pages released to the OS
elemsize uintptr // computed from sizeclass or from npages
limit uintptr // end of data in span
speciallock mutex // guards specials list
specials *special // linked list of special records sorted by offset.
}
func (s *mspan) base() uintptr {
return s.startAddr
}
func (s *mspan) layout() (size, n, total uintptr) {
total = s.npages << _PageShift
size = s.elemsize
if size > 0 {
n = total / size
}
return
}
// physPageBounds returns the start and end of the span
// rounded in to the physical page size.
func (s *mspan) physPageBounds() (uintptr, uintptr) {
start := s.base()
end := start + s.npages<<_PageShift
if physPageSize > _PageSize {
// Round start and end in.
start = (start + physPageSize - 1) &^ (physPageSize - 1)
end &^= physPageSize - 1
}
return start, end
}
func (h *mheap) coalesce(s *mspan) {
// merge is a helper which merges other into s, deletes references to other
// in heap metadata, and then discards it. other must be adjacent to s.
merge := func(a, b, other *mspan) {
// Caller must ensure a.startAddr < b.startAddr and that either a or
// b is s. a and b must be adjacent. other is whichever of the two is
// not s.
if pageSize < physPageSize && a.scavenged && b.scavenged {
// If we're merging two scavenged spans on systems where
// pageSize < physPageSize, then their boundary should always be on
// a physical page boundary, due to the realignment that happens
// during coalescing. Throw if this case is no longer true, which
// means the implementation should probably be changed to scavenge
// along the boundary.
_, start := a.physPageBounds()
end, _ := b.physPageBounds()
if start != end {
println("runtime: a.base=", hex(a.base()), "a.npages=", a.npages)
println("runtime: b.base=", hex(b.base()), "b.npages=", b.npages)
println("runtime: physPageSize=", physPageSize, "pageSize=", pageSize)
throw("neighboring scavenged spans boundary is not a physical page boundary")
}
}
// Adjust s via base and npages and also in heap metadata.
s.npages += other.npages
s.needzero |= other.needzero
if a == s {
h.setSpan(s.base()+s.npages*pageSize-1, s)
} else {
s.startAddr = other.startAddr
h.setSpan(s.base(), s)
}
// The size is potentially changing so the treap needs to delete adjacent nodes and
// insert back as a combined node.
h.free.removeSpan(other)
other.state = mSpanDead
h.spanalloc.free(unsafe.Pointer(other))
}
// realign is a helper which shrinks other and grows s such that their
// boundary is on a physical page boundary.
realign := func(a, b, other *mspan) {
// Caller must ensure a.startAddr < b.startAddr and that either a or
// b is s. a and b must be adjacent. other is whichever of the two is
// not s.
// If pageSize >= physPageSize then spans are always aligned
// to physical page boundaries, so just exit.
if pageSize >= physPageSize {
return
}
// Since we're resizing other, we must remove it from the treap.
h.free.removeSpan(other)
// Round boundary to the nearest physical page size, toward the
// scavenged span.
boundary := b.startAddr
if a.scavenged {
boundary &^= (physPageSize - 1)
} else {
boundary = (boundary + physPageSize - 1) &^ (physPageSize - 1)
}
a.npages = (boundary - a.startAddr) / pageSize
b.npages = (b.startAddr + b.npages*pageSize - boundary) / pageSize
b.startAddr = boundary
h.setSpan(boundary-1, a)
h.setSpan(boundary, b)
// Re-insert other now that it has a new size.
h.free.insert(other)
}
hpMiddle := s.hugePages()
// Coalesce with earlier, later spans.
var hpBefore uintptr
if before := spanOf(s.base() - 1); before != nil && before.state == mSpanFree {
if s.scavenged == before.scavenged {
hpBefore = before.hugePages()
merge(before, s, before)
} else {
realign(before, s, before)
}
}
// Now check to see if next (greater addresses) span is free and can be coalesced.
var hpAfter uintptr
if after := spanOf(s.base() + s.npages*pageSize); after != nil && after.state == mSpanFree {
if s.scavenged == after.scavenged {
hpAfter = after.hugePages()
merge(s, after, after)
} else {
realign(s, after, after)
}
}
if !s.scavenged && s.hugePages() > hpBefore+hpMiddle+hpAfter {
// If s has grown such that it now may contain more huge pages than it
// and its now-coalesced neighbors did before, then mark the whole region
// as huge-page-backable.
//
// Otherwise, on systems where we break up huge pages (like Linux)
// s may not be backed by huge pages because it could be made up of
// pieces which are broken up in the underlying VMA. The primary issue
// with this is that it can lead to a poor estimate of the amount of
// free memory backed by huge pages for determining the scavenging rate.
//
// TODO(mknyszek): Measure the performance characteristics of sysHugePage
// and determine whether it makes sense to only sysHugePage on the pages
// that matter, or if it's better to just mark the whole region.
sysHugePage(unsafe.Pointer(s.base()), s.npages*pageSize)
}
}
// hugePages returns the number of aligned physical huge pages in the memory
// regioned owned by this mspan.
func (s *mspan) hugePages() uintptr {
if physHugePageSize == 0 || s.npages < physHugePageSize/pageSize {
return 0
}
start := s.base()
end := start + s.npages*pageSize
if physHugePageSize > pageSize {
// Round start and end in.
start = (start + physHugePageSize - 1) &^ (physHugePageSize - 1)
end &^= physHugePageSize - 1
}
if start < end {
return (end - start) >> physHugePageShift
}
return 0
}
func (s *mspan) scavenge() uintptr {
// start and end must be rounded in, otherwise madvise
// will round them *out* and release more memory
// than we want.
start, end := s.physPageBounds()
if end <= start {
// start and end don't span a whole physical page.
return 0
}
released := end - start
memstats.heap_released += uint64(released)
s.scavenged = true
sysUnused(unsafe.Pointer(start), released)
return released
}
// released returns the number of bytes in this span
// which were returned back to the OS.
func (s *mspan) released() uintptr {
if !s.scavenged {
return 0
}
start, end := s.physPageBounds()
return end - start
}
// recordspan adds a newly allocated span to h.allspans.
//
// This only happens the first time a span is allocated from
// mheap.spanalloc (it is not called when a span is reused).
//
// Write barriers are disallowed here because it can be called from
// gcWork when allocating new workbufs. However, because it's an
// indirect call from the fixalloc initializer, the compiler can't see
// this.
//
//go:nowritebarrierrec
func recordspan(vh unsafe.Pointer, p unsafe.Pointer) {
h := (*mheap)(vh)
s := (*mspan)(p)
if len(h.allspans) >= cap(h.allspans) {
n := 64 * 1024 / sys.PtrSize
if n < cap(h.allspans)*3/2 {
n = cap(h.allspans) * 3 / 2
}
var new []*mspan
sp := (*notInHeapSlice)(unsafe.Pointer(&new))
sp.array = (*notInHeap)(sysAlloc(uintptr(n)*sys.PtrSize, &memstats.other_sys))
if sp.array == nil {
throw("runtime: cannot allocate memory")
}
sp.len = len(h.allspans)
sp.cap = n
if len(h.allspans) > 0 {
copy(new, h.allspans)
}
oldAllspans := h.allspans
*(*notInHeapSlice)(unsafe.Pointer(&h.allspans)) = *(*notInHeapSlice)(unsafe.Pointer(&new))
if len(oldAllspans) != 0 {
sysFree(unsafe.Pointer(&oldAllspans[0]), uintptr(cap(oldAllspans))*unsafe.Sizeof(oldAllspans[0]), &memstats.other_sys)
}
}
h.allspans = h.allspans[:len(h.allspans)+1]
h.allspans[len(h.allspans)-1] = s
}
// A spanClass represents the size class and noscan-ness of a span.
//
// Each size class has a noscan spanClass and a scan spanClass. The
// noscan spanClass contains only noscan objects, which do not contain
// pointers and thus do not need to be scanned by the garbage
// collector.
type spanClass uint8
const (
numSpanClasses = _NumSizeClasses << 1
tinySpanClass = spanClass(tinySizeClass<<1 | 1)
)
func makeSpanClass(sizeclass uint8, noscan bool) spanClass {
return spanClass(sizeclass<<1) | spanClass(bool2int(noscan))
}
func (sc spanClass) sizeclass() int8 {
return int8(sc >> 1)
}
func (sc spanClass) noscan() bool {
return sc&1 != 0
}
// arenaIndex returns the index into mheap_.arenas of the arena
// containing metadata for p. This index combines of an index into the
// L1 map and an index into the L2 map and should be used as
// mheap_.arenas[ai.l1()][ai.l2()].
//
// If p is outside the range of valid heap addresses, either l1() or
// l2() will be out of bounds.
//
// It is nosplit because it's called by spanOf and several other
// nosplit functions.
//
//go:nosplit
func arenaIndex(p uintptr) arenaIdx {
return arenaIdx((p + arenaBaseOffset) / heapArenaBytes)
}
// arenaBase returns the low address of the region covered by heap
// arena i.
func arenaBase(i arenaIdx) uintptr {
return uintptr(i)*heapArenaBytes - arenaBaseOffset
}
type arenaIdx uint
func (i arenaIdx) l1() uint {
if arenaL1Bits == 0 {
// Let the compiler optimize this away if there's no
// L1 map.
return 0
} else {
return uint(i) >> arenaL1Shift
}
}
func (i arenaIdx) l2() uint {
if arenaL1Bits == 0 {
return uint(i)
} else {
return uint(i) & (1<<arenaL2Bits - 1)
}
}
// inheap reports whether b is a pointer into a (potentially dead) heap object.
// It returns false for pointers into mSpanManual spans.
// Non-preemptible because it is used by write barriers.
//go:nowritebarrier
//go:nosplit
func inheap(b uintptr) bool {
return spanOfHeap(b) != nil
}
// inHeapOrStack is a variant of inheap that returns true for pointers
// into any allocated heap span.
//
//go:nowritebarrier
//go:nosplit
func inHeapOrStack(b uintptr) bool {
s := spanOf(b)
if s == nil || b < s.base() {
return false
}
switch s.state {
case mSpanInUse, mSpanManual:
return b < s.limit
default:
return false
}
}
// spanOf returns the span of p. If p does not point into the heap
// arena or no span has ever contained p, spanOf returns nil.
//
// If p does not point to allocated memory, this may return a non-nil
// span that does *not* contain p. If this is a possibility, the
// caller should either call spanOfHeap or check the span bounds
// explicitly.
//
// Must be nosplit because it has callers that are nosplit.
//
//go:nosplit
func spanOf(p uintptr) *mspan {
// This function looks big, but we use a lot of constant
// folding around arenaL1Bits to get it under the inlining
// budget. Also, many of the checks here are safety checks
// that Go needs to do anyway, so the generated code is quite
// short.
ri := arenaIndex(p)
if arenaL1Bits == 0 {
// If there's no L1, then ri.l1() can't be out of bounds but ri.l2() can.
if ri.l2() >= uint(len(mheap_.arenas[0])) {
return nil
}
} else {
// If there's an L1, then ri.l1() can be out of bounds but ri.l2() can't.
if ri.l1() >= uint(len(mheap_.arenas)) {
return nil
}
}
l2 := mheap_.arenas[ri.l1()]
if arenaL1Bits != 0 && l2 == nil { // Should never happen if there's no L1.
return nil
}
ha := l2[ri.l2()]
if ha == nil {
return nil
}
return ha.spans[(p/pageSize)%pagesPerArena]
}
// spanOfUnchecked is equivalent to spanOf, but the caller must ensure
// that p points into an allocated heap arena.
//
// Must be nosplit because it has callers that are nosplit.
//
//go:nosplit
func spanOfUnchecked(p uintptr) *mspan {
ai := arenaIndex(p)
return mheap_.arenas[ai.l1()][ai.l2()].spans[(p/pageSize)%pagesPerArena]
}
// spanOfHeap is like spanOf, but returns nil if p does not point to a
// heap object.
//
// Must be nosplit because it has callers that are nosplit.
//
//go:nosplit
func spanOfHeap(p uintptr) *mspan {
s := spanOf(p)
// If p is not allocated, it may point to a stale span, so we
// have to check the span's bounds and state.
if s == nil || p < s.base() || p >= s.limit || s.state != mSpanInUse {
return nil
}
return s
}
// pageIndexOf returns the arena, page index, and page mask for pointer p.
// The caller must ensure p is in the heap.
func pageIndexOf(p uintptr) (arena *heapArena, pageIdx uintptr, pageMask uint8) {
ai := arenaIndex(p)
arena = mheap_.arenas[ai.l1()][ai.l2()]
pageIdx = ((p / pageSize) / 8) % uintptr(len(arena.pageInUse))
pageMask = byte(1 << ((p / pageSize) % 8))
return
}
// Initialize the heap.
func (h *mheap) init() {
h.treapalloc.init(unsafe.Sizeof(treapNode{}), nil, nil, &memstats.other_sys)
h.spanalloc.init(unsafe.Sizeof(mspan{}), recordspan, unsafe.Pointer(h), &memstats.mspan_sys)
h.cachealloc.init(unsafe.Sizeof(mcache{}), nil, nil, &memstats.mcache_sys)
h.specialfinalizeralloc.init(unsafe.Sizeof(specialfinalizer{}), nil, nil, &memstats.other_sys)
h.specialprofilealloc.init(unsafe.Sizeof(specialprofile{}), nil, nil, &memstats.other_sys)
h.arenaHintAlloc.init(unsafe.Sizeof(arenaHint{}), nil, nil, &memstats.other_sys)
// Don't zero mspan allocations. Background sweeping can
// inspect a span concurrently with allocating it, so it's
// important that the span's sweepgen survive across freeing
// and re-allocating a span to prevent background sweeping
// from improperly cas'ing it from 0.
//
// This is safe because mspan contains no heap pointers.
h.spanalloc.zero = false
// h->mapcache needs no init
for i := range h.central {
h.central[i].mcentral.init(spanClass(i))
}
}
// reclaim sweeps and reclaims at least npage pages into the heap.
// It is called before allocating npage pages to keep growth in check.
//
// reclaim implements the page-reclaimer half of the sweeper.
//
// h must NOT be locked.
func (h *mheap) reclaim(npage uintptr) {
// This scans pagesPerChunk at a time. Higher values reduce
// contention on h.reclaimPos, but increase the minimum
// latency of performing a reclaim.
//
// Must be a multiple of the pageInUse bitmap element size.
//
// The time required by this can vary a lot depending on how
// many spans are actually freed. Experimentally, it can scan
// for pages at ~300 GB/ms on a 2.6GHz Core i7, but can only
// free spans at ~32 MB/ms. Using 512 pages bounds this at
// roughly 100µs.
//
// TODO(austin): Half of the time spent freeing spans is in
// locking/unlocking the heap (even with low contention). We
// could make the slow path here several times faster by
// batching heap frees.
const pagesPerChunk = 512
// Bail early if there's no more reclaim work.
if atomic.Load64(&h.reclaimIndex) >= 1<<63 {
return
}
// Disable preemption so the GC can't start while we're
// sweeping, so we can read h.sweepArenas, and so
// traceGCSweepStart/Done pair on the P.
mp := acquirem()
if trace.enabled {
traceGCSweepStart()
}
arenas := h.sweepArenas
locked := false
for npage > 0 {
// Pull from accumulated credit first.
if credit := atomic.Loaduintptr(&h.reclaimCredit); credit > 0 {
take := credit
if take > npage {
// Take only what we need.
take = npage
}
if atomic.Casuintptr(&h.reclaimCredit, credit, credit-take) {
npage -= take
}
continue
}
// Claim a chunk of work.
idx := uintptr(atomic.Xadd64(&h.reclaimIndex, pagesPerChunk) - pagesPerChunk)
if idx/pagesPerArena >= uintptr(len(arenas)) {
// Page reclaiming is done.
atomic.Store64(&h.reclaimIndex, 1<<63)
break
}
if !locked {
// Lock the heap for reclaimChunk.
lock(&h.lock)
locked = true
}
// Scan this chunk.
nfound := h.reclaimChunk(arenas, idx, pagesPerChunk)
if nfound <= npage {
npage -= nfound
} else {
// Put spare pages toward global credit.
atomic.Xadduintptr(&h.reclaimCredit, nfound-npage)
npage = 0
}
}
if locked {
unlock(&h.lock)
}
if trace.enabled {
traceGCSweepDone()
}
releasem(mp)
}
// reclaimChunk sweeps unmarked spans that start at page indexes [pageIdx, pageIdx+n).
// It returns the number of pages returned to the heap.
//
// h.lock must be held and the caller must be non-preemptible.
func (h *mheap) reclaimChunk(arenas []arenaIdx, pageIdx, n uintptr) uintptr {
// The heap lock must be held because this accesses the
// heapArena.spans arrays using potentially non-live pointers.
// In particular, if a span were freed and merged concurrently
// with this probing heapArena.spans, it would be possible to
// observe arbitrary, stale span pointers.
n0 := n
var nFreed uintptr
sg := h.sweepgen
for n > 0 {
ai := arenas[pageIdx/pagesPerArena]
ha := h.arenas[ai.l1()][ai.l2()]
// Get a chunk of the bitmap to work on.
arenaPage := uint(pageIdx % pagesPerArena)
inUse := ha.pageInUse[arenaPage/8:]
marked := ha.pageMarks[arenaPage/8:]
if uintptr(len(inUse)) > n/8 {
inUse = inUse[:n/8]
marked = marked[:n/8]
}
// Scan this bitmap chunk for spans that are in-use
// but have no marked objects on them.
for i := range inUse {
inUseUnmarked := inUse[i] &^ marked[i]
if inUseUnmarked == 0 {
continue
}
for j := uint(0); j < 8; j++ {
if inUseUnmarked&(1<<j) != 0 {
s := ha.spans[arenaPage+uint(i)*8+j]
if atomic.Load(&s.sweepgen) == sg-2 && atomic.Cas(&s.sweepgen, sg-2, sg-1) {
npages := s.npages
unlock(&h.lock)
if s.sweep(false) {
nFreed += npages
}
lock(&h.lock)
// Reload inUse. It's possible nearby
// spans were freed when we dropped the
// lock and we don't want to get stale
// pointers from the spans array.
inUseUnmarked = inUse[i] &^ marked[i]
}
}
}
}
// Advance.
pageIdx += uintptr(len(inUse) * 8)
n -= uintptr(len(inUse) * 8)
}
if trace.enabled {
// Account for pages scanned but not reclaimed.
traceGCSweepSpan((n0 - nFreed) * pageSize)
}
return nFreed
}
// alloc_m is the internal implementation of mheap.alloc.
//
// alloc_m must run on the system stack because it locks the heap, so
// any stack growth during alloc_m would self-deadlock.
//
//go:systemstack
func (h *mheap) alloc_m(npage uintptr, spanclass spanClass, large bool) *mspan {
_g_ := getg()
// To prevent excessive heap growth, before allocating n pages
// we need to sweep and reclaim at least n pages.
if h.sweepdone == 0 {
h.reclaim(npage)
}
lock(&h.lock)
// transfer stats from cache to global
memstats.heap_scan += uint64(_g_.m.mcache.local_scan)
_g_.m.mcache.local_scan = 0
memstats.tinyallocs += uint64(_g_.m.mcache.local_tinyallocs)
_g_.m.mcache.local_tinyallocs = 0
s := h.allocSpanLocked(npage, &memstats.heap_inuse)
if s != nil {
// Record span info, because gc needs to be
// able to map interior pointer to containing span.
atomic.Store(&s.sweepgen, h.sweepgen)
h.sweepSpans[h.sweepgen/2%2].push(s) // Add to swept in-use list.
s.state = mSpanInUse
s.allocCount = 0
s.spanclass = spanclass
if sizeclass := spanclass.sizeclass(); sizeclass == 0 {
s.elemsize = s.npages << _PageShift
s.divShift = 0
s.divMul = 0
s.divShift2 = 0
s.baseMask = 0
} else {
s.elemsize = uintptr(class_to_size[sizeclass])
m := &class_to_divmagic[sizeclass]
s.divShift = m.shift
s.divMul = m.mul
s.divShift2 = m.shift2
s.baseMask = m.baseMask
}
// Mark in-use span in arena page bitmap.
arena, pageIdx, pageMask := pageIndexOf(s.base())
arena.pageInUse[pageIdx] |= pageMask
// update stats, sweep lists
h.pagesInUse += uint64(npage)
if large {
memstats.heap_objects++
mheap_.largealloc += uint64(s.elemsize)
mheap_.nlargealloc++
atomic.Xadd64(&memstats.heap_live, int64(npage<<_PageShift))
}
}
// heap_scan and heap_live were updated.
if gcBlackenEnabled != 0 {
gcController.revise()
}
if trace.enabled {
traceHeapAlloc()
}
// h.spans is accessed concurrently without synchronization
// from other threads. Hence, there must be a store/store
// barrier here to ensure the writes to h.spans above happen
// before the caller can publish a pointer p to an object
// allocated from s. As soon as this happens, the garbage
// collector running on another processor could read p and
// look up s in h.spans. The unlock acts as the barrier to
// order these writes. On the read side, the data dependency
// between p and the index in h.spans orders the reads.
unlock(&h.lock)
return s
}
// alloc allocates a new span of npage pages from the GC'd heap.
//
// Either large must be true or spanclass must indicates the span's
// size class and scannability.
//
// If needzero is true, the memory for the returned span will be zeroed.
func (h *mheap) alloc(npage uintptr, spanclass spanClass, large bool, needzero bool) *mspan {
// Don't do any operations that lock the heap on the G stack.
// It might trigger stack growth, and the stack growth code needs
// to be able to allocate heap.
var s *mspan
systemstack(func() {
s = h.alloc_m(npage, spanclass, large)
})
if s != nil {
if needzero && s.needzero != 0 {
memclrNoHeapPointers(unsafe.Pointer(s.base()), s.npages<<_PageShift)
}
s.needzero = 0
}
return s
}
// allocManual allocates a manually-managed span of npage pages.
// allocManual returns nil if allocation fails.
//
// allocManual adds the bytes used to *stat, which should be a
// memstats in-use field. Unlike allocations in the GC'd heap, the
// allocation does *not* count toward heap_inuse or heap_sys.
//
// The memory backing the returned span may not be zeroed if
// span.needzero is set.
//
// allocManual must be called on the system stack because it acquires
// the heap lock. See mheap for details.
//
//go:systemstack
func (h *mheap) allocManual(npage uintptr, stat *uint64) *mspan {
lock(&h.lock)
s := h.allocSpanLocked(npage, stat)
if s != nil {
s.state = mSpanManual
s.manualFreeList = 0
s.allocCount = 0
s.spanclass = 0
s.nelems = 0
s.elemsize = 0
s.limit = s.base() + s.npages<<_PageShift
// Manually managed memory doesn't count toward heap_sys.
memstats.heap_sys -= uint64(s.npages << _PageShift)
}
// This unlock acts as a release barrier. See mheap.alloc_m.
unlock(&h.lock)
return s
}
// setSpan modifies the span map so spanOf(base) is s.
func (h *mheap) setSpan(base uintptr, s *mspan) {
ai := arenaIndex(base)
h.arenas[ai.l1()][ai.l2()].spans[(base/pageSize)%pagesPerArena] = s
}
// setSpans modifies the span map so [spanOf(base), spanOf(base+npage*pageSize))
// is s.
func (h *mheap) setSpans(base, npage uintptr, s *mspan) {
p := base / pageSize
ai := arenaIndex(base)
ha := h.arenas[ai.l1()][ai.l2()]
for n := uintptr(0); n < npage; n++ {
i := (p + n) % pagesPerArena
if i == 0 {
ai = arenaIndex(base + n*pageSize)
ha = h.arenas[ai.l1()][ai.l2()]
}
ha.spans[i] = s
}
}
// Allocates a span of the given size. h must be locked.
// The returned span has been removed from the
// free structures, but its state is still mSpanFree.
func (h *mheap) allocSpanLocked(npage uintptr, stat *uint64) *mspan {
t := h.free.find(npage)
if t.valid() {
goto HaveSpan
}
if !h.grow(npage) {
return nil
}
t = h.free.find(npage)
if t.valid() {
goto HaveSpan
}
throw("grew heap, but no adequate free span found")
HaveSpan:
s := t.span()
if s.state != mSpanFree {
throw("candidate mspan for allocation is not free")
}
// First, subtract any memory that was released back to
// the OS from s. We will add back what's left if necessary.
memstats.heap_released -= uint64(s.released())
if s.npages == npage {
h.free.erase(t)
} else if s.npages > npage {
// Trim off the lower bits and make that our new span.
// Do this in-place since this operation does not
// affect the original span's location in the treap.
n := (*mspan)(h.spanalloc.alloc())
h.free.mutate(t, func(s *mspan) {
n.init(s.base(), npage)
s.npages -= npage
s.startAddr = s.base() + npage*pageSize
h.setSpan(s.base()-1, n)
h.setSpan(s.base(), s)
h.setSpan(n.base(), n)
n.needzero = s.needzero
// n may not be big enough to actually be scavenged, but that's fine.
// We still want it to appear to be scavenged so that we can do the
// right bookkeeping later on in this function (i.e. sysUsed).
n.scavenged = s.scavenged
// Check if s is still scavenged.
if s.scavenged {
start, end := s.physPageBounds()
if start < end {
memstats.heap_released += uint64(end - start)
} else {
s.scavenged = false
}
}
})
s = n
} else {
throw("candidate mspan for allocation is too small")
}
// "Unscavenge" s only AFTER splitting so that
// we only sysUsed whatever we actually need.
if s.scavenged {
// sysUsed all the pages that are actually available
// in the span. Note that we don't need to decrement
// heap_released since we already did so earlier.
sysUsed(unsafe.Pointer(s.base()), s.npages<<_PageShift)
s.scavenged = false
// Since we allocated out of a scavenged span, we just
// grew the RSS. Mitigate this by scavenging enough free
// space to make up for it but only if we need to.
//
// scavengeLocked may cause coalescing, so prevent
// coalescing with s by temporarily changing its state.
s.state = mSpanManual
h.scavengeIfNeededLocked(s.npages * pageSize)
s.state = mSpanFree
}
h.setSpans(s.base(), npage, s)
*stat += uint64(npage << _PageShift)
memstats.heap_idle -= uint64(npage << _PageShift)
if s.inList() {
throw("still in list")
}
return s
}
// Try to add at least npage pages of memory to the heap,
// returning whether it worked.
//
// h must be locked.
func (h *mheap) grow(npage uintptr) bool {
ask := npage << _PageShift
v, size := h.sysAlloc(ask)
if v == nil {
print("runtime: out of memory: cannot allocate ", ask, "-byte block (", memstats.heap_sys, " in use)\n")
return false
}
// Create a fake "in use" span and free it, so that the
// right accounting and coalescing happens.
s := (*mspan)(h.spanalloc.alloc())
s.init(uintptr(v), size/pageSize)
h.setSpans(s.base(), s.npages, s)
s.state = mSpanFree
memstats.heap_idle += uint64(size)
// (*mheap).sysAlloc returns untouched/uncommitted memory.
s.scavenged = true
// s is always aligned to the heap arena size which is always > physPageSize,
// so its totally safe to just add directly to heap_released. Coalescing,
// if possible, will also always be correct in terms of accounting, because
// s.base() must be a physical page boundary.
memstats.heap_released += uint64(size)
h.coalesce(s)
h.free.insert(s)
return true
}
// Free the span back into the heap.
//
// large must match the value of large passed to mheap.alloc. This is
// used for accounting.
func (h *mheap) freeSpan(s *mspan, large bool) {
systemstack(func() {
mp := getg().m
lock(&h.lock)
memstats.heap_scan += uint64(mp.mcache.local_scan)
mp.mcache.local_scan = 0
memstats.tinyallocs += uint64(mp.mcache.local_tinyallocs)
mp.mcache.local_tinyallocs = 0
if msanenabled {
// Tell msan that this entire span is no longer in use.
base := unsafe.Pointer(s.base())
bytes := s.npages << _PageShift
msanfree(base, bytes)
}
if large {
// Match accounting done in mheap.alloc.
memstats.heap_objects--
}
if gcBlackenEnabled != 0 {
// heap_scan changed.
gcController.revise()
}
h.freeSpanLocked(s, true, true)
unlock(&h.lock)
})
}
// freeManual frees a manually-managed span returned by allocManual.
// stat must be the same as the stat passed to the allocManual that
// allocated s.
//
// This must only be called when gcphase == _GCoff. See mSpanState for
// an explanation.
//
// freeManual must be called on the system stack because it acquires
// the heap lock. See mheap for details.
//
//go:systemstack
func (h *mheap) freeManual(s *mspan, stat *uint64) {
s.needzero = 1
lock(&h.lock)
*stat -= uint64(s.npages << _PageShift)
memstats.heap_sys += uint64(s.npages << _PageShift)
h.freeSpanLocked(s, false, true)
unlock(&h.lock)
}
func (h *mheap) freeSpanLocked(s *mspan, acctinuse, acctidle bool) {
switch s.state {
case mSpanManual:
if s.allocCount != 0 {
throw("mheap.freeSpanLocked - invalid stack free")
}
case mSpanInUse:
if s.allocCount != 0 || s.sweepgen != h.sweepgen {
print("mheap.freeSpanLocked - span ", s, " ptr ", hex(s.base()), " allocCount ", s.allocCount, " sweepgen ", s.sweepgen, "/", h.sweepgen, "\n")
throw("mheap.freeSpanLocked - invalid free")
}
h.pagesInUse -= uint64(s.npages)
// Clear in-use bit in arena page bitmap.
arena, pageIdx, pageMask := pageIndexOf(s.base())
arena.pageInUse[pageIdx] &^= pageMask
default:
throw("mheap.freeSpanLocked - invalid span state")
}
if acctinuse {
memstats.heap_inuse -= uint64(s.npages << _PageShift)
}
if acctidle {
memstats.heap_idle += uint64(s.npages << _PageShift)
}
s.state = mSpanFree
// Coalesce span with neighbors.
h.coalesce(s)
// Insert s into the treap.
h.free.insert(s)
}
// scavengeSplit takes t.span() and attempts to split off a span containing size
// (in bytes) worth of physical pages from the back.
//
// The split point is only approximately defined by size since the split point
// is aligned to physPageSize and pageSize every time. If physHugePageSize is
// non-zero and the split point would break apart a huge page in the span, then
// the split point is also aligned to physHugePageSize.
//
// If the desired split point ends up at the base of s, or if size is obviously
// much larger than s, then a split is not possible and this method returns nil.
// Otherwise if a split occurred it returns the newly-created span.
func (h *mheap) scavengeSplit(t treapIter, size uintptr) *mspan {
s := t.span()
start, end := s.physPageBounds()
if end <= start || end-start <= size {
// Size covers the whole span.
return nil
}
// The span is bigger than what we need, so compute the base for the new
// span if we decide to split.
base := end - size
// Round down to the next physical or logical page, whichever is bigger.
base &^= (physPageSize - 1) | (pageSize - 1)
if base <= start {
return nil
}
if physHugePageSize > pageSize && base&^(physHugePageSize-1) >= start {
// We're in danger of breaking apart a huge page, so include the entire
// huge page in the bound by rounding down to the huge page size.
// base should still be aligned to pageSize.
base &^= physHugePageSize - 1
}
if base == start {
// After all that we rounded base down to s.base(), so no need to split.
return nil
}
if base < start {
print("runtime: base=", base, ", s.npages=", s.npages, ", s.base()=", s.base(), ", size=", size, "\n")
print("runtime: physPageSize=", physPageSize, ", physHugePageSize=", physHugePageSize, "\n")
throw("bad span split base")
}
// Split s in-place, removing from the back.
n := (*mspan)(h.spanalloc.alloc())
nbytes := s.base() + s.npages*pageSize - base
h.free.mutate(t, func(s *mspan) {
n.init(base, nbytes/pageSize)
s.npages -= nbytes / pageSize
h.setSpan(n.base()-1, s)
h.setSpan(n.base(), n)
h.setSpan(n.base()+nbytes-1, n)
n.needzero = s.needzero
n.state = s.state
})
return n
}
// scavengeLocked scavenges nbytes worth of spans in the free treap by
// starting from the span with the highest base address and working down.
// It then takes those spans and places them in scav.
//
// Returns the amount of memory scavenged in bytes. h must be locked.
func (h *mheap) scavengeLocked(nbytes uintptr) uintptr {
released := uintptr(0)
// Iterate over spans with huge pages first, then spans without.
const mask = treapIterScav | treapIterHuge
for _, match := range []treapIterType{treapIterHuge, 0} {
// Iterate over the treap backwards (from highest address to lowest address)
// scavenging spans until we've reached our quota of nbytes.
for t := h.free.end(mask, match); released < nbytes && t.valid(); {
s := t.span()
start, end := s.physPageBounds()
if start >= end {
// This span doesn't cover at least one physical page, so skip it.
t = t.prev()
continue
}
n := t.prev()
if span := h.scavengeSplit(t, nbytes-released); span != nil {
s = span
} else {
h.free.erase(t)
}
released += s.scavenge()
// Now that s is scavenged, we must eagerly coalesce it
// with its neighbors to prevent having two spans with
// the same scavenged state adjacent to each other.
h.coalesce(s)
t = n
h.free.insert(s)
}
}
return released
}
// scavengeIfNeededLocked calls scavengeLocked if we're currently above the
// scavenge goal in order to prevent the mutator from out-running the
// the scavenger.
//
// h must be locked.
func (h *mheap) scavengeIfNeededLocked(size uintptr) {
if r := heapRetained(); r+uint64(size) > h.scavengeRetainedGoal {
todo := uint64(size)
// If we're only going to go a little bit over, just request what
// we actually need done.
if overage := r + uint64(size) - h.scavengeRetainedGoal; overage < todo {
todo = overage
}
h.scavengeLocked(uintptr(todo))
}
}
// scavengeAll visits each node in the free treap and scavenges the
// treapNode's span. It then removes the scavenged span from
// unscav and adds it into scav before continuing.
func (h *mheap) scavengeAll() {
// Disallow malloc or panic while holding the heap lock. We do
// this here because this is an non-mallocgc entry-point to
// the mheap API.
gp := getg()
gp.m.mallocing++
lock(&h.lock)
released := h.scavengeLocked(^uintptr(0))
unlock(&h.lock)
gp.m.mallocing--
if debug.gctrace > 0 {
if released > 0 {
print("forced scvg: ", released>>20, " MB released\n")
}
print("forced scvg: inuse: ", memstats.heap_inuse>>20, ", idle: ", memstats.heap_idle>>20, ", sys: ", memstats.heap_sys>>20, ", released: ", memstats.heap_released>>20, ", consumed: ", (memstats.heap_sys-memstats.heap_released)>>20, " (MB)\n")
}
}
//go:linkname runtime_debug_freeOSMemory runtime..z2fdebug.freeOSMemory
func runtime_debug_freeOSMemory() {
GC()
systemstack(func() { mheap_.scavengeAll() })
}
// Initialize a new span with the given start and npages.
func (span *mspan) init(base uintptr, npages uintptr) {
// span is *not* zeroed.
span.next = nil
span.prev = nil
span.list = nil
span.startAddr = base
span.npages = npages
span.allocCount = 0
span.spanclass = 0
span.elemsize = 0
span.state = mSpanDead
span.scavenged = false
span.speciallock.key = 0
span.specials = nil
span.needzero = 0
span.freeindex = 0
span.allocBits = nil
span.gcmarkBits = nil
}
func (span *mspan) inList() bool {
return span.list != nil
}
// Initialize an empty doubly-linked list.
func (list *mSpanList) init() {
list.first = nil
list.last = nil
}
func (list *mSpanList) remove(span *mspan) {
if span.list != list {
print("runtime: failed mSpanList.remove span.npages=", span.npages,
" span=", span, " prev=", span.prev, " span.list=", span.list, " list=", list, "\n")
throw("mSpanList.remove")
}
if list.first == span {
list.first = span.next
} else {
span.prev.next = span.next
}
if list.last == span {
list.last = span.prev
} else {
span.next.prev = span.prev
}
span.next = nil
span.prev = nil
span.list = nil
}
func (list *mSpanList) isEmpty() bool {
return list.first == nil
}
func (list *mSpanList) insert(span *mspan) {
if span.next != nil || span.prev != nil || span.list != nil {
println("runtime: failed mSpanList.insert", span, span.next, span.prev, span.list)
throw("mSpanList.insert")
}
span.next = list.first
if list.first != nil {
// The list contains at least one span; link it in.
// The last span in the list doesn't change.
list.first.prev = span
} else {
// The list contains no spans, so this is also the last span.
list.last = span
}
list.first = span
span.list = list
}
func (list *mSpanList) insertBack(span *mspan) {
if span.next != nil || span.prev != nil || span.list != nil {
println("runtime: failed mSpanList.insertBack", span, span.next, span.prev, span.list)
throw("mSpanList.insertBack")
}
span.prev = list.last
if list.last != nil {
// The list contains at least one span.
list.last.next = span
} else {
// The list contains no spans, so this is also the first span.
list.first = span
}
list.last = span
span.list = list
}
// takeAll removes all spans from other and inserts them at the front
// of list.
func (list *mSpanList) takeAll(other *mSpanList) {
if other.isEmpty() {
return
}
// Reparent everything in other to list.
for s := other.first; s != nil; s = s.next {
s.list = list
}
// Concatenate the lists.
if list.isEmpty() {
*list = *other
} else {
// Neither list is empty. Put other before list.
other.last.next = list.first
list.first.prev = other.last
list.first = other.first
}
other.first, other.last = nil, nil
}
const (
_KindSpecialFinalizer = 1
_KindSpecialProfile = 2
// Note: The finalizer special must be first because if we're freeing
// an object, a finalizer special will cause the freeing operation
// to abort, and we want to keep the other special records around
// if that happens.
)
//go:notinheap
type special struct {
next *special // linked list in span
offset uint16 // span offset of object
kind byte // kind of special
}
// Adds the special record s to the list of special records for
// the object p. All fields of s should be filled in except for
// offset & next, which this routine will fill in.
// Returns true if the special was successfully added, false otherwise.
// (The add will fail only if a record with the same p and s->kind
// already exists.)
func addspecial(p unsafe.Pointer, s *special) bool {
span := spanOfHeap(uintptr(p))
if span == nil {
throw("addspecial on invalid pointer")
}
// Ensure that the span is swept.
// Sweeping accesses the specials list w/o locks, so we have
// to synchronize with it. And it's just much safer.
mp := acquirem()
span.ensureSwept()
offset := uintptr(p) - span.base()
kind := s.kind
lock(&span.speciallock)
// Find splice point, check for existing record.
t := &span.specials
for {
x := *t
if x == nil {
break
}
if offset == uintptr(x.offset) && kind == x.kind {
unlock(&span.speciallock)
releasem(mp)
return false // already exists
}
if offset < uintptr(x.offset) || (offset == uintptr(x.offset) && kind < x.kind) {
break
}
t = &x.next
}
// Splice in record, fill in offset.
s.offset = uint16(offset)
s.next = *t
*t = s
unlock(&span.speciallock)
releasem(mp)
return true
}
// Removes the Special record of the given kind for the object p.
// Returns the record if the record existed, nil otherwise.
// The caller must FixAlloc_Free the result.
func removespecial(p unsafe.Pointer, kind uint8) *special {
span := spanOfHeap(uintptr(p))
if span == nil {
throw("removespecial on invalid pointer")
}
// Ensure that the span is swept.
// Sweeping accesses the specials list w/o locks, so we have
// to synchronize with it. And it's just much safer.
mp := acquirem()
span.ensureSwept()
offset := uintptr(p) - span.base()
lock(&span.speciallock)
t := &span.specials
for {
s := *t
if s == nil {
break
}
// This function is used for finalizers only, so we don't check for
// "interior" specials (p must be exactly equal to s->offset).
if offset == uintptr(s.offset) && kind == s.kind {
*t = s.next
unlock(&span.speciallock)
releasem(mp)
return s
}
t = &s.next
}
unlock(&span.speciallock)
releasem(mp)
return nil
}
// The described object has a finalizer set for it.
//
// specialfinalizer is allocated from non-GC'd memory, so any heap
// pointers must be specially handled.
//
//go:notinheap
type specialfinalizer struct {
special special
fn *funcval // May be a heap pointer.
ft *functype // May be a heap pointer, but always live.
ot *ptrtype // May be a heap pointer, but always live.
}
// Adds a finalizer to the object p. Returns true if it succeeded.
func addfinalizer(p unsafe.Pointer, f *funcval, ft *functype, ot *ptrtype) bool {
lock(&mheap_.speciallock)
s := (*specialfinalizer)(mheap_.specialfinalizeralloc.alloc())
unlock(&mheap_.speciallock)
s.special.kind = _KindSpecialFinalizer
s.fn = f
s.ft = ft
s.ot = ot
if addspecial(p, &s.special) {
// This is responsible for maintaining the same
// GC-related invariants as markrootSpans in any
// situation where it's possible that markrootSpans
// has already run but mark termination hasn't yet.
if gcphase != _GCoff {
base, _, _ := findObject(uintptr(p), 0, 0, false)
mp := acquirem()
gcw := &mp.p.ptr().gcw
// Mark everything reachable from the object
// so it's retained for the finalizer.
scanobject(base, gcw)
// Mark the finalizer itself, since the
// special isn't part of the GC'd heap.
scanblock(uintptr(unsafe.Pointer(&s.fn)), sys.PtrSize, &oneptrmask[0], gcw)
releasem(mp)
}
return true
}
// There was an old finalizer
lock(&mheap_.speciallock)
mheap_.specialfinalizeralloc.free(unsafe.Pointer(s))
unlock(&mheap_.speciallock)
return false
}
// Removes the finalizer (if any) from the object p.
func removefinalizer(p unsafe.Pointer) {
s := (*specialfinalizer)(unsafe.Pointer(removespecial(p, _KindSpecialFinalizer)))
if s == nil {
return // there wasn't a finalizer to remove
}
lock(&mheap_.speciallock)
mheap_.specialfinalizeralloc.free(unsafe.Pointer(s))
unlock(&mheap_.speciallock)
}
// The described object is being heap profiled.
//
//go:notinheap
type specialprofile struct {
special special
b *bucket
}
// Set the heap profile bucket associated with addr to b.
func setprofilebucket(p unsafe.Pointer, b *bucket) {
lock(&mheap_.speciallock)
s := (*specialprofile)(mheap_.specialprofilealloc.alloc())
unlock(&mheap_.speciallock)
s.special.kind = _KindSpecialProfile
s.b = b
if !addspecial(p, &s.special) {
throw("setprofilebucket: profile already set")
}
}
// Do whatever cleanup needs to be done to deallocate s. It has
// already been unlinked from the mspan specials list.
func freespecial(s *special, p unsafe.Pointer, size uintptr) {
switch s.kind {
case _KindSpecialFinalizer:
sf := (*specialfinalizer)(unsafe.Pointer(s))
queuefinalizer(p, sf.fn, sf.ft, sf.ot)
lock(&mheap_.speciallock)
mheap_.specialfinalizeralloc.free(unsafe.Pointer(sf))
unlock(&mheap_.speciallock)
case _KindSpecialProfile:
sp := (*specialprofile)(unsafe.Pointer(s))
mProf_Free(sp.b, size)
lock(&mheap_.speciallock)
mheap_.specialprofilealloc.free(unsafe.Pointer(sp))
unlock(&mheap_.speciallock)
default:
throw("bad special kind")
panic("not reached")
}
}
// gcBits is an alloc/mark bitmap. This is always used as *gcBits.
//
//go:notinheap
type gcBits uint8
// bytep returns a pointer to the n'th byte of b.
func (b *gcBits) bytep(n uintptr) *uint8 {
return addb((*uint8)(b), n)
}
// bitp returns a pointer to the byte containing bit n and a mask for
// selecting that bit from *bytep.
func (b *gcBits) bitp(n uintptr) (bytep *uint8, mask uint8) {
return b.bytep(n / 8), 1 << (n % 8)
}
const gcBitsChunkBytes = uintptr(64 << 10)
const gcBitsHeaderBytes = unsafe.Sizeof(gcBitsHeader{})
type gcBitsHeader struct {
free uintptr // free is the index into bits of the next free byte.
next uintptr // *gcBits triggers recursive type bug. (issue 14620)
}
//go:notinheap
type gcBitsArena struct {
// gcBitsHeader // side step recursive type bug (issue 14620) by including fields by hand.
free uintptr // free is the index into bits of the next free byte; read/write atomically
next *gcBitsArena
bits [gcBitsChunkBytes - gcBitsHeaderBytes]gcBits
}
var gcBitsArenas struct {
lock mutex
free *gcBitsArena
next *gcBitsArena // Read atomically. Write atomically under lock.
current *gcBitsArena
previous *gcBitsArena
}
// tryAlloc allocates from b or returns nil if b does not have enough room.
// This is safe to call concurrently.
func (b *gcBitsArena) tryAlloc(bytes uintptr) *gcBits {
if b == nil || atomic.Loaduintptr(&b.free)+bytes > uintptr(len(b.bits)) {
return nil
}
// Try to allocate from this block.
end := atomic.Xadduintptr(&b.free, bytes)
if end > uintptr(len(b.bits)) {
return nil
}
// There was enough room.
start := end - bytes
return &b.bits[start]
}
// newMarkBits returns a pointer to 8 byte aligned bytes
// to be used for a span's mark bits.
func newMarkBits(nelems uintptr) *gcBits {
blocksNeeded := uintptr((nelems + 63) / 64)
bytesNeeded := blocksNeeded * 8
// Try directly allocating from the current head arena.
head := (*gcBitsArena)(atomic.Loadp(unsafe.Pointer(&gcBitsArenas.next)))
if p := head.tryAlloc(bytesNeeded); p != nil {
return p
}
// There's not enough room in the head arena. We may need to
// allocate a new arena.
lock(&gcBitsArenas.lock)
// Try the head arena again, since it may have changed. Now
// that we hold the lock, the list head can't change, but its
// free position still can.
if p := gcBitsArenas.next.tryAlloc(bytesNeeded); p != nil {
unlock(&gcBitsArenas.lock)
return p
}
// Allocate a new arena. This may temporarily drop the lock.
fresh := newArenaMayUnlock()
// If newArenaMayUnlock dropped the lock, another thread may
// have put a fresh arena on the "next" list. Try allocating
// from next again.
if p := gcBitsArenas.next.tryAlloc(bytesNeeded); p != nil {
// Put fresh back on the free list.
// TODO: Mark it "already zeroed"
fresh.next = gcBitsArenas.free
gcBitsArenas.free = fresh
unlock(&gcBitsArenas.lock)
return p
}
// Allocate from the fresh arena. We haven't linked it in yet, so
// this cannot race and is guaranteed to succeed.
p := fresh.tryAlloc(bytesNeeded)
if p == nil {
throw("markBits overflow")
}
// Add the fresh arena to the "next" list.
fresh.next = gcBitsArenas.next
atomic.StorepNoWB(unsafe.Pointer(&gcBitsArenas.next), unsafe.Pointer(fresh))
unlock(&gcBitsArenas.lock)
return p
}
// newAllocBits returns a pointer to 8 byte aligned bytes
// to be used for this span's alloc bits.
// newAllocBits is used to provide newly initialized spans
// allocation bits. For spans not being initialized the
// mark bits are repurposed as allocation bits when
// the span is swept.
func newAllocBits(nelems uintptr) *gcBits {
return newMarkBits(nelems)
}
// nextMarkBitArenaEpoch establishes a new epoch for the arenas
// holding the mark bits. The arenas are named relative to the
// current GC cycle which is demarcated by the call to finishweep_m.
//
// All current spans have been swept.
// During that sweep each span allocated room for its gcmarkBits in
// gcBitsArenas.next block. gcBitsArenas.next becomes the gcBitsArenas.current
// where the GC will mark objects and after each span is swept these bits
// will be used to allocate objects.
// gcBitsArenas.current becomes gcBitsArenas.previous where the span's
// gcAllocBits live until all the spans have been swept during this GC cycle.
// The span's sweep extinguishes all the references to gcBitsArenas.previous
// by pointing gcAllocBits into the gcBitsArenas.current.
// The gcBitsArenas.previous is released to the gcBitsArenas.free list.
func nextMarkBitArenaEpoch() {
lock(&gcBitsArenas.lock)
if gcBitsArenas.previous != nil {
if gcBitsArenas.free == nil {
gcBitsArenas.free = gcBitsArenas.previous
} else {
// Find end of previous arenas.
last := gcBitsArenas.previous
for last = gcBitsArenas.previous; last.next != nil; last = last.next {
}
last.next = gcBitsArenas.free
gcBitsArenas.free = gcBitsArenas.previous
}
}
gcBitsArenas.previous = gcBitsArenas.current
gcBitsArenas.current = gcBitsArenas.next
atomic.StorepNoWB(unsafe.Pointer(&gcBitsArenas.next), nil) // newMarkBits calls newArena when needed
unlock(&gcBitsArenas.lock)
}
// newArenaMayUnlock allocates and zeroes a gcBits arena.
// The caller must hold gcBitsArena.lock. This may temporarily release it.
func newArenaMayUnlock() *gcBitsArena {
var result *gcBitsArena
if gcBitsArenas.free == nil {
unlock(&gcBitsArenas.lock)
result = (*gcBitsArena)(sysAlloc(gcBitsChunkBytes, &memstats.gc_sys))
if result == nil {
throw("runtime: cannot allocate memory")
}
lock(&gcBitsArenas.lock)
} else {
result = gcBitsArenas.free
gcBitsArenas.free = gcBitsArenas.free.next
memclrNoHeapPointers(unsafe.Pointer(result), gcBitsChunkBytes)
}
result.next = nil
// If result.bits is not 8 byte aligned adjust index so
// that &result.bits[result.free] is 8 byte aligned.
if uintptr(unsafe.Offsetof(gcBitsArena{}.bits))&7 == 0 {
result.free = 0
} else {
result.free = 8 - (uintptr(unsafe.Pointer(&result.bits[0])) & 7)
}
return result
}