gcc/libgfortran/generated/unpack_i4.c
Janne Blomqvist 92e6f3a43e Introduce xmallocarray, an overflow checking variant of xmalloc.
2014-06-17  Janne Blomqvist  <jb@gcc.gnu.org>

	* libgfortran.h (xmallocarray): New prototype.
	* runtime/memory.c (xmallocarray): New function.
	(xcalloc): Check for nonzero separately instead of multiplying.
	* generated/*.c: Regenerated.
	* intrinsics/cshift0.c (cshift0): Call xmallocarray instead of
	xmalloc.
	* intrinsics/eoshift0.c (eoshift0): Likewise.
	* intrinsics/eoshift2.c (eoshift2): Likewise.
	* intrinsics/pack_generic.c (pack_internal): Likewise.
	(pack_s_internal): Likewise.
	* intrinsics/reshape_generic.c (reshape_internal): Likewise.
	* intrinsics/spread_generic.c (spread_internal): Likewise.
	(spread_internal_scalar): Likewise.
	* intrinsics/string_intrinsics_inc.c (string_trim): Likewise.
	(string_minmax): Likewise.
	* intrinsics/transpose_generic.c (transpose_internal): Likewise.
	* intrinsics/unpack_generic.c (unpack_internal): Likewise.
	* io/list_read.c (nml_touch_nodes): Don't cast xmalloc return value.
	* io/transfer.c (st_set_nml_var): Call xmallocarray instead of
	xmalloc.
	* io/unit.c (get_internal_unit): Likewise.
	(filename_from_unit): Don't cast xmalloc return value.
	* io/write.c (nml_write_obj): Likewise, formatting.
	* m4/bessel.m4 (bessel_jn_r'rtype_kind`): Call xmallocarray
	instead of xmalloc.
	(besse_yn_r'rtype_kind`): Likewise.
	* m4/cshift1.m4 (cshift1): Likewise.
	* m4/eoshift1.m4 (eoshift1): Likewise.
	* m4/eoshift3.m4 (eoshift3): Likewise.
	* m4/iforeach.m4: Likewise.
	* m4/ifunction.m4: Likewise.
	* m4/ifunction_logical.m4 (name`'rtype_qual`_'atype_code):
	Likewise.
	* m4/in_pack.m4 (internal_pack_'rtype_ccode`): Likewise.
	* m4/matmul.m4 (matmul_'rtype_code`): Likewise.
	* m4/matmull.m4 (matmul_'rtype_code`): Likewise.
	* m4/pack.m4 (pack_'rtype_code`): Likewise.
	* m4/reshape.m4 (reshape_'rtype_ccode`): Likewise.
	* m4/shape.m4 (shape_'rtype_kind`): Likewise.
	* m4/spread.m4 (spread_'rtype_code`): Likewise.
	(spread_scalar_'rtype_code`): Likewise.
	* m4/transpose.m4 (transpose_'rtype_code`): Likewise.
	* m4/unpack.m4 (unpack0_'rtype_code`): Likewise.
	(unpack1_'rtype_code`): Likewise.
	* runtime/convert_char.c (convert_char1_to_char4): Likewise.
	(convert_char4_to_char1): Simplify.
	* runtime/environ.c (init_unformatted): Call xmallocarray instead
	of xmalloc.
	* runtime/in_pack_generic.c (internal_pack): Likewise.

From-SVN: r211721
2014-06-17 06:50:34 +03:00

332 lines
8.6 KiB
C

/* Specific implementation of the UNPACK intrinsic
Copyright (C) 2008-2014 Free Software Foundation, Inc.
Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on
unpack_generic.c by Paul Brook <paul@nowt.org>.
This file is part of the GNU Fortran runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
Ligbfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#include "libgfortran.h"
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#if defined (HAVE_GFC_INTEGER_4)
void
unpack0_i4 (gfc_array_i4 *ret, const gfc_array_i4 *vector,
const gfc_array_l1 *mask, const GFC_INTEGER_4 *fptr)
{
/* r.* indicates the return array. */
index_type rstride[GFC_MAX_DIMENSIONS];
index_type rstride0;
index_type rs;
GFC_INTEGER_4 * restrict rptr;
/* v.* indicates the vector array. */
index_type vstride0;
GFC_INTEGER_4 *vptr;
/* Value for field, this is constant. */
const GFC_INTEGER_4 fval = *fptr;
/* m.* indicates the mask array. */
index_type mstride[GFC_MAX_DIMENSIONS];
index_type mstride0;
const GFC_LOGICAL_1 *mptr;
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type n;
index_type dim;
int empty;
int mask_kind;
empty = 0;
mptr = mask->base_addr;
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
and using shifting to address size and endian issues. */
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
|| mask_kind == 16
#endif
)
{
/* Do not convert a NULL pointer as we use test for NULL below. */
if (mptr)
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
}
else
runtime_error ("Funny sized logical array");
if (ret->base_addr == NULL)
{
/* The front end has signalled that we need to populate the
return array descriptor. */
dim = GFC_DESCRIPTOR_RANK (mask);
rs = 1;
for (n = 0; n < dim; n++)
{
count[n] = 0;
GFC_DIMENSION_SET(ret->dim[n], 0,
GFC_DESCRIPTOR_EXTENT(mask,n) - 1, rs);
extent[n] = GFC_DESCRIPTOR_EXTENT(ret,n);
empty = empty || extent[n] <= 0;
rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,n);
mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
rs *= extent[n];
}
ret->offset = 0;
ret->base_addr = xmallocarray (rs, sizeof (GFC_INTEGER_4));
}
else
{
dim = GFC_DESCRIPTOR_RANK (ret);
for (n = 0; n < dim; n++)
{
count[n] = 0;
extent[n] = GFC_DESCRIPTOR_EXTENT(ret,n);
empty = empty || extent[n] <= 0;
rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,n);
mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
}
if (rstride[0] == 0)
rstride[0] = 1;
}
if (empty)
return;
if (mstride[0] == 0)
mstride[0] = 1;
vstride0 = GFC_DESCRIPTOR_STRIDE(vector,0);
if (vstride0 == 0)
vstride0 = 1;
rstride0 = rstride[0];
mstride0 = mstride[0];
rptr = ret->base_addr;
vptr = vector->base_addr;
while (rptr)
{
if (*mptr)
{
/* From vector. */
*rptr = *vptr;
vptr += vstride0;
}
else
{
/* From field. */
*rptr = fval;
}
/* Advance to the next element. */
rptr += rstride0;
mptr += mstride0;
count[0]++;
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
rptr -= rstride[n] * extent[n];
mptr -= mstride[n] * extent[n];
n++;
if (n >= dim)
{
/* Break out of the loop. */
rptr = NULL;
break;
}
else
{
count[n]++;
rptr += rstride[n];
mptr += mstride[n];
}
}
}
}
void
unpack1_i4 (gfc_array_i4 *ret, const gfc_array_i4 *vector,
const gfc_array_l1 *mask, const gfc_array_i4 *field)
{
/* r.* indicates the return array. */
index_type rstride[GFC_MAX_DIMENSIONS];
index_type rstride0;
index_type rs;
GFC_INTEGER_4 * restrict rptr;
/* v.* indicates the vector array. */
index_type vstride0;
GFC_INTEGER_4 *vptr;
/* f.* indicates the field array. */
index_type fstride[GFC_MAX_DIMENSIONS];
index_type fstride0;
const GFC_INTEGER_4 *fptr;
/* m.* indicates the mask array. */
index_type mstride[GFC_MAX_DIMENSIONS];
index_type mstride0;
const GFC_LOGICAL_1 *mptr;
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type n;
index_type dim;
int empty;
int mask_kind;
empty = 0;
mptr = mask->base_addr;
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
and using shifting to address size and endian issues. */
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
|| mask_kind == 16
#endif
)
{
/* Do not convert a NULL pointer as we use test for NULL below. */
if (mptr)
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
}
else
runtime_error ("Funny sized logical array");
if (ret->base_addr == NULL)
{
/* The front end has signalled that we need to populate the
return array descriptor. */
dim = GFC_DESCRIPTOR_RANK (mask);
rs = 1;
for (n = 0; n < dim; n++)
{
count[n] = 0;
GFC_DIMENSION_SET(ret->dim[n], 0,
GFC_DESCRIPTOR_EXTENT(mask,n) - 1, rs);
extent[n] = GFC_DESCRIPTOR_EXTENT(ret,n);
empty = empty || extent[n] <= 0;
rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,n);
fstride[n] = GFC_DESCRIPTOR_STRIDE(field,n);
mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
rs *= extent[n];
}
ret->offset = 0;
ret->base_addr = xmallocarray (rs, sizeof (GFC_INTEGER_4));
}
else
{
dim = GFC_DESCRIPTOR_RANK (ret);
for (n = 0; n < dim; n++)
{
count[n] = 0;
extent[n] = GFC_DESCRIPTOR_EXTENT(ret,n);
empty = empty || extent[n] <= 0;
rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,n);
fstride[n] = GFC_DESCRIPTOR_STRIDE(field,n);
mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
}
if (rstride[0] == 0)
rstride[0] = 1;
}
if (empty)
return;
if (fstride[0] == 0)
fstride[0] = 1;
if (mstride[0] == 0)
mstride[0] = 1;
vstride0 = GFC_DESCRIPTOR_STRIDE(vector,0);
if (vstride0 == 0)
vstride0 = 1;
rstride0 = rstride[0];
fstride0 = fstride[0];
mstride0 = mstride[0];
rptr = ret->base_addr;
fptr = field->base_addr;
vptr = vector->base_addr;
while (rptr)
{
if (*mptr)
{
/* From vector. */
*rptr = *vptr;
vptr += vstride0;
}
else
{
/* From field. */
*rptr = *fptr;
}
/* Advance to the next element. */
rptr += rstride0;
fptr += fstride0;
mptr += mstride0;
count[0]++;
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
rptr -= rstride[n] * extent[n];
fptr -= fstride[n] * extent[n];
mptr -= mstride[n] * extent[n];
n++;
if (n >= dim)
{
/* Break out of the loop. */
rptr = NULL;
break;
}
else
{
count[n]++;
rptr += rstride[n];
fptr += fstride[n];
mptr += mstride[n];
}
}
}
}
#endif