gcc/libstdc++-v3/include/bits/stl_vector.h
Paolo Carlini 874e7baa4c stl_vector.h: Trivial formatting fixes.
2004-04-26  Paolo Carlini  <pcarlini@suse.de>

	* include/bits/stl_vector.h: Trivial formatting fixes.
	* include/bits/vector.tcc: Likewise.

From-SVN: r81178
2004-04-26 09:02:43 +00:00

973 lines
33 KiB
C++

// Vector implementation -*- C++ -*-
// Copyright (C) 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
/*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1996
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
/** @file stl_vector.h
* This is an internal header file, included by other library headers.
* You should not attempt to use it directly.
*/
#ifndef _VECTOR_H
#define _VECTOR_H 1
#include <bits/stl_iterator_base_funcs.h>
#include <bits/functexcept.h>
#include <bits/concept_check.h>
namespace _GLIBCXX_STD
{
/**
* @if maint
* See bits/stl_deque.h's _Deque_base for an explanation.
* @endif
*/
template<typename _Tp, typename _Alloc>
struct _Vector_base
{
struct _Vector_impl
: public _Alloc
{
_Tp* _M_start;
_Tp* _M_finish;
_Tp* _M_end_of_storage;
_Vector_impl (_Alloc const& __a)
: _Alloc(__a), _M_start(0), _M_finish(0), _M_end_of_storage(0)
{ }
};
public:
typedef _Alloc allocator_type;
allocator_type
get_allocator() const
{ return *static_cast<const _Alloc*>(&this->_M_impl); }
_Vector_base(const allocator_type& __a)
: _M_impl(__a)
{ }
_Vector_base(size_t __n, const allocator_type& __a)
: _M_impl(__a)
{
this->_M_impl._M_start = this->_M_allocate(__n);
this->_M_impl._M_finish = this->_M_impl._M_start;
this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
}
~_Vector_base()
{ _M_deallocate(this->_M_impl._M_start, this->_M_impl._M_end_of_storage
- this->_M_impl._M_start); }
public:
_Vector_impl _M_impl;
_Tp*
_M_allocate(size_t __n)
{ return _M_impl.allocate(__n); }
void
_M_deallocate(_Tp* __p, size_t __n)
{ if (__p)
_M_impl.deallocate(__p, __n);
}
};
/**
* @brief A standard container which offers fixed time access to
* individual elements in any order.
*
* @ingroup Containers
* @ingroup Sequences
*
* Meets the requirements of a <a href="tables.html#65">container</a>, a
* <a href="tables.html#66">reversible container</a>, and a
* <a href="tables.html#67">sequence</a>, including the
* <a href="tables.html#68">optional sequence requirements</a> with the
* %exception of @c push_front and @c pop_front.
*
* In some terminology a %vector can be described as a dynamic
* C-style array, it offers fast and efficient access to individual
* elements in any order and saves the user from worrying about
* memory and size allocation. Subscripting ( @c [] ) access is
* also provided as with C-style arrays.
*/
template<typename _Tp, typename _Alloc = allocator<_Tp> >
class vector : protected _Vector_base<_Tp, _Alloc>
{
// Concept requirements.
__glibcxx_class_requires(_Tp, _SGIAssignableConcept)
typedef _Vector_base<_Tp, _Alloc> _Base;
typedef vector<_Tp, _Alloc> vector_type;
public:
typedef _Tp value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef __gnu_cxx::__normal_iterator<pointer, vector_type> iterator;
typedef __gnu_cxx::__normal_iterator<const_pointer, vector_type>
const_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef typename _Base::allocator_type allocator_type;
protected:
/** @if maint
* These two functions and three data members are all from the
* base class. They should be pretty self-explanatory, as
* %vector uses a simple contiguous allocation scheme. @endif
*/
using _Base::_M_allocate;
using _Base::_M_deallocate;
using _Base::_M_impl;
public:
// [23.2.4.1] construct/copy/destroy
// (assign() and get_allocator() are also listed in this section)
/**
* @brief Default constructor creates no elements.
*/
explicit
vector(const allocator_type& __a = allocator_type())
: _Base(__a)
{ }
/**
* @brief Create a %vector with copies of an exemplar element.
* @param n The number of elements to initially create.
* @param value An element to copy.
*
* This constructor fills the %vector with @a n copies of @a value.
*/
vector(size_type __n, const value_type& __value,
const allocator_type& __a = allocator_type())
: _Base(__n, __a)
{ this->_M_impl._M_finish = std::uninitialized_fill_n(this->
_M_impl._M_start,
__n, __value); }
/**
* @brief Create a %vector with default elements.
* @param n The number of elements to initially create.
*
* This constructor fills the %vector with @a n copies of a
* default-constructed element.
*/
explicit
vector(size_type __n)
: _Base(__n, allocator_type())
{ this->_M_impl._M_finish = std::uninitialized_fill_n(this->
_M_impl._M_start,
__n,
value_type()); }
/**
* @brief %Vector copy constructor.
* @param x A %vector of identical element and allocator types.
*
* The newly-created %vector uses a copy of the allocation
* object used by @a x. All the elements of @a x are copied,
* but any extra memory in
* @a x (for fast expansion) will not be copied.
*/
vector(const vector& __x)
: _Base(__x.size(), __x.get_allocator())
{ this->_M_impl._M_finish = std::uninitialized_copy(__x.begin(),
__x.end(),
this->
_M_impl._M_start);
}
/**
* @brief Builds a %vector from a range.
* @param first An input iterator.
* @param last An input iterator.
*
* Create a %vector consisting of copies of the elements from
* [first,last).
*
* If the iterators are forward, bidirectional, or
* random-access, then this will call the elements' copy
* constructor N times (where N is distance(first,last)) and do
* no memory reallocation. But if only input iterators are
* used, then this will do at most 2N calls to the copy
* constructor, and logN memory reallocations.
*/
template<typename _InputIterator>
vector(_InputIterator __first, _InputIterator __last,
const allocator_type& __a = allocator_type())
: _Base(__a)
{
// Check whether it's an integral type. If so, it's not an iterator.
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_initialize_dispatch(__first, __last, _Integral());
}
/**
* The dtor only erases the elements, and note that if the
* elements themselves are pointers, the pointed-to memory is
* not touched in any way. Managing the pointer is the user's
* responsibilty.
*/
~vector()
{ std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish); }
/**
* @brief %Vector assignment operator.
* @param x A %vector of identical element and allocator types.
*
* All the elements of @a x are copied, but any extra memory in
* @a x (for fast expansion) will not be copied. Unlike the
* copy constructor, the allocator object is not copied.
*/
vector&
operator=(const vector& __x);
/**
* @brief Assigns a given value to a %vector.
* @param n Number of elements to be assigned.
* @param val Value to be assigned.
*
* This function fills a %vector with @a n copies of the given
* value. Note that the assignment completely changes the
* %vector and that the resulting %vector's size is the same as
* the number of elements assigned. Old data may be lost.
*/
void
assign(size_type __n, const value_type& __val)
{ _M_fill_assign(__n, __val); }
/**
* @brief Assigns a range to a %vector.
* @param first An input iterator.
* @param last An input iterator.
*
* This function fills a %vector with copies of the elements in the
* range [first,last).
*
* Note that the assignment completely changes the %vector and
* that the resulting %vector's size is the same as the number
* of elements assigned. Old data may be lost.
*/
template<typename _InputIterator>
void
assign(_InputIterator __first, _InputIterator __last)
{
// Check whether it's an integral type. If so, it's not an iterator.
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_assign_dispatch(__first, __last, _Integral());
}
/// Get a copy of the memory allocation object.
using _Base::get_allocator;
// iterators
/**
* Returns a read/write iterator that points to the first
* element in the %vector. Iteration is done in ordinary
* element order.
*/
iterator
begin()
{ return iterator (this->_M_impl._M_start); }
/**
* Returns a read-only (constant) iterator that points to the
* first element in the %vector. Iteration is done in ordinary
* element order.
*/
const_iterator
begin() const
{ return const_iterator (this->_M_impl._M_start); }
/**
* Returns a read/write iterator that points one past the last
* element in the %vector. Iteration is done in ordinary
* element order.
*/
iterator
end()
{ return iterator (this->_M_impl._M_finish); }
/**
* Returns a read-only (constant) iterator that points one past
* the last element in the %vector. Iteration is done in
* ordinary element order.
*/
const_iterator
end() const
{ return const_iterator (this->_M_impl._M_finish); }
/**
* Returns a read/write reverse iterator that points to the
* last element in the %vector. Iteration is done in reverse
* element order.
*/
reverse_iterator
rbegin()
{ return reverse_iterator(end()); }
/**
* Returns a read-only (constant) reverse iterator that points
* to the last element in the %vector. Iteration is done in
* reverse element order.
*/
const_reverse_iterator
rbegin() const
{ return const_reverse_iterator(end()); }
/**
* Returns a read/write reverse iterator that points to one
* before the first element in the %vector. Iteration is done
* in reverse element order.
*/
reverse_iterator
rend()
{ return reverse_iterator(begin()); }
/**
* Returns a read-only (constant) reverse iterator that points
* to one before the first element in the %vector. Iteration
* is done in reverse element order.
*/
const_reverse_iterator
rend() const
{ return const_reverse_iterator(begin()); }
// [23.2.4.2] capacity
/** Returns the number of elements in the %vector. */
size_type
size() const
{ return size_type(end() - begin()); }
/** Returns the size() of the largest possible %vector. */
size_type
max_size() const
{ return size_type(-1) / sizeof(value_type); }
/**
* @brief Resizes the %vector to the specified number of elements.
* @param new_size Number of elements the %vector should contain.
* @param x Data with which new elements should be populated.
*
* This function will %resize the %vector to the specified
* number of elements. If the number is smaller than the
* %vector's current size the %vector is truncated, otherwise
* the %vector is extended and new elements are populated with
* given data.
*/
void
resize(size_type __new_size, const value_type& __x)
{
if (__new_size < size())
erase(begin() + __new_size, end());
else
insert(end(), __new_size - size(), __x);
}
/**
* @brief Resizes the %vector to the specified number of elements.
* @param new_size Number of elements the %vector should contain.
*
* This function will resize the %vector to the specified
* number of elements. If the number is smaller than the
* %vector's current size the %vector is truncated, otherwise
* the %vector is extended and new elements are
* default-constructed.
*/
void
resize(size_type __new_size)
{ resize(__new_size, value_type()); }
/**
* Returns the total number of elements that the %vector can
* hold before needing to allocate more memory.
*/
size_type
capacity() const
{ return size_type(const_iterator(this->_M_impl._M_end_of_storage)
- begin()); }
/**
* Returns true if the %vector is empty. (Thus begin() would
* equal end().)
*/
bool
empty() const
{ return begin() == end(); }
/**
* @brief Attempt to preallocate enough memory for specified number of
* elements.
* @param n Number of elements required.
* @throw std::length_error If @a n exceeds @c max_size().
*
* This function attempts to reserve enough memory for the
* %vector to hold the specified number of elements. If the
* number requested is more than max_size(), length_error is
* thrown.
*
* The advantage of this function is that if optimal code is a
* necessity and the user can determine the number of elements
* that will be required, the user can reserve the memory in
* %advance, and thus prevent a possible reallocation of memory
* and copying of %vector data.
*/
void
reserve(size_type __n);
// element access
/**
* @brief Subscript access to the data contained in the %vector.
* @param n The index of the element for which data should be
* accessed.
* @return Read/write reference to data.
*
* This operator allows for easy, array-style, data access.
* Note that data access with this operator is unchecked and
* out_of_range lookups are not defined. (For checked lookups
* see at().)
*/
reference
operator[](size_type __n)
{ return *(begin() + __n); }
/**
* @brief Subscript access to the data contained in the %vector.
* @param n The index of the element for which data should be
* accessed.
* @return Read-only (constant) reference to data.
*
* This operator allows for easy, array-style, data access.
* Note that data access with this operator is unchecked and
* out_of_range lookups are not defined. (For checked lookups
* see at().)
*/
const_reference
operator[](size_type __n) const
{ return *(begin() + __n); }
protected:
/// @if maint Safety check used only from at(). @endif
void
_M_range_check(size_type __n) const
{
if (__n >= this->size())
__throw_out_of_range(__N("vector::_M_range_check"));
}
public:
/**
* @brief Provides access to the data contained in the %vector.
* @param n The index of the element for which data should be
* accessed.
* @return Read/write reference to data.
* @throw std::out_of_range If @a n is an invalid index.
*
* This function provides for safer data access. The parameter
* is first checked that it is in the range of the vector. The
* function throws out_of_range if the check fails.
*/
reference
at(size_type __n)
{
_M_range_check(__n);
return (*this)[__n];
}
/**
* @brief Provides access to the data contained in the %vector.
* @param n The index of the element for which data should be
* accessed.
* @return Read-only (constant) reference to data.
* @throw std::out_of_range If @a n is an invalid index.
*
* This function provides for safer data access. The parameter
* is first checked that it is in the range of the vector. The
* function throws out_of_range if the check fails.
*/
const_reference
at(size_type __n) const
{
_M_range_check(__n);
return (*this)[__n];
}
/**
* Returns a read/write reference to the data at the first
* element of the %vector.
*/
reference
front()
{ return *begin(); }
/**
* Returns a read-only (constant) reference to the data at the first
* element of the %vector.
*/
const_reference
front() const
{ return *begin(); }
/**
* Returns a read/write reference to the data at the last
* element of the %vector.
*/
reference
back()
{ return *(end() - 1); }
/**
* Returns a read-only (constant) reference to the data at the
* last element of the %vector.
*/
const_reference
back() const
{ return *(end() - 1); }
// [23.2.4.3] modifiers
/**
* @brief Add data to the end of the %vector.
* @param x Data to be added.
*
* This is a typical stack operation. The function creates an
* element at the end of the %vector and assigns the given data
* to it. Due to the nature of a %vector this operation can be
* done in constant time if the %vector has preallocated space
* available.
*/
void
push_back(const value_type& __x)
{
if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage)
{
std::_Construct(this->_M_impl._M_finish, __x);
++this->_M_impl._M_finish;
}
else
_M_insert_aux(end(), __x);
}
/**
* @brief Removes last element.
*
* This is a typical stack operation. It shrinks the %vector by one.
*
* Note that no data is returned, and if the last element's
* data is needed, it should be retrieved before pop_back() is
* called.
*/
void
pop_back()
{
--this->_M_impl._M_finish;
std::_Destroy(this->_M_impl._M_finish);
}
/**
* @brief Inserts given value into %vector before specified iterator.
* @param position An iterator into the %vector.
* @param x Data to be inserted.
* @return An iterator that points to the inserted data.
*
* This function will insert a copy of the given value before
* the specified location. Note that this kind of operation
* could be expensive for a %vector and if it is frequently
* used the user should consider using std::list.
*/
iterator
insert(iterator __position, const value_type& __x);
/**
* @brief Inserts a number of copies of given data into the %vector.
* @param position An iterator into the %vector.
* @param n Number of elements to be inserted.
* @param x Data to be inserted.
*
* This function will insert a specified number of copies of
* the given data before the location specified by @a position.
*
* Note that this kind of operation could be expensive for a
* %vector and if it is frequently used the user should
* consider using std::list.
*/
void
insert(iterator __position, size_type __n, const value_type& __x)
{ _M_fill_insert(__position, __n, __x); }
/**
* @brief Inserts a range into the %vector.
* @param position An iterator into the %vector.
* @param first An input iterator.
* @param last An input iterator.
*
* This function will insert copies of the data in the range
* [first,last) into the %vector before the location specified
* by @a pos.
*
* Note that this kind of operation could be expensive for a
* %vector and if it is frequently used the user should
* consider using std::list.
*/
template<typename _InputIterator>
void
insert(iterator __position, _InputIterator __first,
_InputIterator __last)
{
// Check whether it's an integral type. If so, it's not an iterator.
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_insert_dispatch(__position, __first, __last, _Integral());
}
/**
* @brief Remove element at given position.
* @param position Iterator pointing to element to be erased.
* @return An iterator pointing to the next element (or end()).
*
* This function will erase the element at the given position and thus
* shorten the %vector by one.
*
* Note This operation could be expensive and if it is
* frequently used the user should consider using std::list.
* The user is also cautioned that this function only erases
* the element, and that if the element is itself a pointer,
* the pointed-to memory is not touched in any way. Managing
* the pointer is the user's responsibilty.
*/
iterator
erase(iterator __position);
/**
* @brief Remove a range of elements.
* @param first Iterator pointing to the first element to be erased.
* @param last Iterator pointing to one past the last element to be
* erased.
* @return An iterator pointing to the element pointed to by @a last
* prior to erasing (or end()).
*
* This function will erase the elements in the range [first,last) and
* shorten the %vector accordingly.
*
* Note This operation could be expensive and if it is
* frequently used the user should consider using std::list.
* The user is also cautioned that this function only erases
* the elements, and that if the elements themselves are
* pointers, the pointed-to memory is not touched in any way.
* Managing the pointer is the user's responsibilty.
*/
iterator
erase(iterator __first, iterator __last);
/**
* @brief Swaps data with another %vector.
* @param x A %vector of the same element and allocator types.
*
* This exchanges the elements between two vectors in constant time.
* (Three pointers, so it should be quite fast.)
* Note that the global std::swap() function is specialized such that
* std::swap(v1,v2) will feed to this function.
*/
void
swap(vector& __x)
{
std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
std::swap(this->_M_impl._M_end_of_storage,
__x._M_impl._M_end_of_storage);
}
/**
* Erases all the elements. Note that this function only erases the
* elements, and that if the elements themselves are pointers, the
* pointed-to memory is not touched in any way. Managing the pointer is
* the user's responsibilty.
*/
void
clear()
{ erase(begin(), end()); }
protected:
/**
* @if maint
* Memory expansion handler. Uses the member allocation function to
* obtain @a n bytes of memory, and then copies [first,last) into it.
* @endif
*/
template<typename _ForwardIterator>
pointer
_M_allocate_and_copy(size_type __n,
_ForwardIterator __first, _ForwardIterator __last)
{
pointer __result = this->_M_allocate(__n);
try
{
std::uninitialized_copy(__first, __last, __result);
return __result;
}
catch(...)
{
_M_deallocate(__result, __n);
__throw_exception_again;
}
}
// Internal constructor functions follow.
// Called by the range constructor to implement [23.1.1]/9
template<typename _Integer>
void
_M_initialize_dispatch(_Integer __n, _Integer __value, __true_type)
{
this->_M_impl._M_start = _M_allocate(__n);
this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
this->_M_impl._M_finish = std::uninitialized_fill_n(this->
_M_impl._M_start,
__n, __value);
}
// Called by the range constructor to implement [23.1.1]/9
template<typename _InputIterator>
void
_M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
__false_type)
{
typedef typename iterator_traits<_InputIterator>::iterator_category
_IterCategory;
_M_range_initialize(__first, __last, _IterCategory());
}
// Called by the second initialize_dispatch above
template<typename _InputIterator>
void
_M_range_initialize(_InputIterator __first,
_InputIterator __last, input_iterator_tag)
{
for ( ; __first != __last; ++__first)
push_back(*__first);
}
// Called by the second initialize_dispatch above
template<typename _ForwardIterator>
void
_M_range_initialize(_ForwardIterator __first,
_ForwardIterator __last, forward_iterator_tag)
{
size_type __n = std::distance(__first, __last);
this->_M_impl._M_start = this->_M_allocate(__n);
this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
this->_M_impl._M_finish = std::uninitialized_copy(__first, __last,
this->
_M_impl._M_start);
}
// Internal assign functions follow. The *_aux functions do the actual
// assignment work for the range versions.
// Called by the range assign to implement [23.1.1]/9
template<typename _Integer>
void
_M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
{
_M_fill_assign(static_cast<size_type>(__n),
static_cast<value_type>(__val));
}
// Called by the range assign to implement [23.1.1]/9
template<typename _InputIterator>
void
_M_assign_dispatch(_InputIterator __first, _InputIterator __last,
__false_type)
{
typedef typename iterator_traits<_InputIterator>::iterator_category
_IterCategory;
_M_assign_aux(__first, __last, _IterCategory());
}
// Called by the second assign_dispatch above
template<typename _InputIterator>
void
_M_assign_aux(_InputIterator __first, _InputIterator __last,
input_iterator_tag);
// Called by the second assign_dispatch above
template<typename _ForwardIterator>
void
_M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
forward_iterator_tag);
// Called by assign(n,t), and the range assign when it turns out
// to be the same thing.
void
_M_fill_assign(size_type __n, const value_type& __val);
// Internal insert functions follow.
// Called by the range insert to implement [23.1.1]/9
template<typename _Integer>
void
_M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val,
__true_type)
{
_M_fill_insert(__pos, static_cast<size_type>(__n),
static_cast<value_type>(__val));
}
// Called by the range insert to implement [23.1.1]/9
template<typename _InputIterator>
void
_M_insert_dispatch(iterator __pos, _InputIterator __first,
_InputIterator __last, __false_type)
{
typedef typename iterator_traits<_InputIterator>::iterator_category
_IterCategory;
_M_range_insert(__pos, __first, __last, _IterCategory());
}
// Called by the second insert_dispatch above
template<typename _InputIterator>
void
_M_range_insert(iterator __pos, _InputIterator __first,
_InputIterator __last, input_iterator_tag);
// Called by the second insert_dispatch above
template<typename _ForwardIterator>
void
_M_range_insert(iterator __pos, _ForwardIterator __first,
_ForwardIterator __last, forward_iterator_tag);
// Called by insert(p,n,x), and the range insert when it turns out to be
// the same thing.
void
_M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
// Called by insert(p,x)
void
_M_insert_aux(iterator __position, const value_type& __x);
};
/**
* @brief Vector equality comparison.
* @param x A %vector.
* @param y A %vector of the same type as @a x.
* @return True iff the size and elements of the vectors are equal.
*
* This is an equivalence relation. It is linear in the size of the
* vectors. Vectors are considered equivalent if their sizes are equal,
* and if corresponding elements compare equal.
*/
template<typename _Tp, typename _Alloc>
inline bool
operator==(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
{ return (__x.size() == __y.size()
&& std::equal(__x.begin(), __x.end(), __y.begin())); }
/**
* @brief Vector ordering relation.
* @param x A %vector.
* @param y A %vector of the same type as @a x.
* @return True iff @a x is lexicographically less than @a y.
*
* This is a total ordering relation. It is linear in the size of the
* vectors. The elements must be comparable with @c <.
*
* See std::lexicographical_compare() for how the determination is made.
*/
template<typename _Tp, typename _Alloc>
inline bool
operator<(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
{ return std::lexicographical_compare(__x.begin(), __x.end(),
__y.begin(), __y.end()); }
/// Based on operator==
template<typename _Tp, typename _Alloc>
inline bool
operator!=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
{ return !(__x == __y); }
/// Based on operator<
template<typename _Tp, typename _Alloc>
inline bool
operator>(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
{ return __y < __x; }
/// Based on operator<
template<typename _Tp, typename _Alloc>
inline bool
operator<=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
{ return !(__y < __x); }
/// Based on operator<
template<typename _Tp, typename _Alloc>
inline bool
operator>=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
{ return !(__x < __y); }
/// See std::vector::swap().
template<typename _Tp, typename _Alloc>
inline void
swap(vector<_Tp, _Alloc>& __x, vector<_Tp, _Alloc>& __y)
{ __x.swap(__y); }
} // namespace std
#endif /* _VECTOR_H */