gcc/libsanitizer/tsan/tsan_rtl_access.cpp

605 lines
19 KiB
C++

//===-- tsan_rtl_access.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
// Definitions of memory access and function entry/exit entry points.
//===----------------------------------------------------------------------===//
#include "tsan_rtl.h"
namespace __tsan {
namespace v3 {
ALWAYS_INLINE USED bool TryTraceMemoryAccess(ThreadState *thr, uptr pc,
uptr addr, uptr size,
AccessType typ) {
DCHECK(size == 1 || size == 2 || size == 4 || size == 8);
if (!kCollectHistory)
return true;
EventAccess *ev;
if (UNLIKELY(!TraceAcquire(thr, &ev)))
return false;
u64 size_log = size == 1 ? 0 : size == 2 ? 1 : size == 4 ? 2 : 3;
uptr pc_delta = pc - thr->trace_prev_pc + (1 << (EventAccess::kPCBits - 1));
thr->trace_prev_pc = pc;
if (LIKELY(pc_delta < (1 << EventAccess::kPCBits))) {
ev->is_access = 1;
ev->is_read = !!(typ & kAccessRead);
ev->is_atomic = !!(typ & kAccessAtomic);
ev->size_log = size_log;
ev->pc_delta = pc_delta;
DCHECK_EQ(ev->pc_delta, pc_delta);
ev->addr = CompressAddr(addr);
TraceRelease(thr, ev);
return true;
}
auto *evex = reinterpret_cast<EventAccessExt *>(ev);
evex->is_access = 0;
evex->is_func = 0;
evex->type = EventType::kAccessExt;
evex->is_read = !!(typ & kAccessRead);
evex->is_atomic = !!(typ & kAccessAtomic);
evex->size_log = size_log;
evex->addr = CompressAddr(addr);
evex->pc = pc;
TraceRelease(thr, evex);
return true;
}
ALWAYS_INLINE USED bool TryTraceMemoryAccessRange(ThreadState *thr, uptr pc,
uptr addr, uptr size,
AccessType typ) {
if (!kCollectHistory)
return true;
EventAccessRange *ev;
if (UNLIKELY(!TraceAcquire(thr, &ev)))
return false;
thr->trace_prev_pc = pc;
ev->is_access = 0;
ev->is_func = 0;
ev->type = EventType::kAccessRange;
ev->is_read = !!(typ & kAccessRead);
ev->is_free = !!(typ & kAccessFree);
ev->size_lo = size;
ev->pc = CompressAddr(pc);
ev->addr = CompressAddr(addr);
ev->size_hi = size >> EventAccessRange::kSizeLoBits;
TraceRelease(thr, ev);
return true;
}
void TraceMemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size,
AccessType typ) {
if (LIKELY(TryTraceMemoryAccessRange(thr, pc, addr, size, typ)))
return;
TraceSwitchPart(thr);
UNUSED bool res = TryTraceMemoryAccessRange(thr, pc, addr, size, typ);
DCHECK(res);
}
void TraceFunc(ThreadState *thr, uptr pc) {
if (LIKELY(TryTraceFunc(thr, pc)))
return;
TraceSwitchPart(thr);
UNUSED bool res = TryTraceFunc(thr, pc);
DCHECK(res);
}
void TraceMutexLock(ThreadState *thr, EventType type, uptr pc, uptr addr,
StackID stk) {
DCHECK(type == EventType::kLock || type == EventType::kRLock);
if (!kCollectHistory)
return;
EventLock ev;
ev.is_access = 0;
ev.is_func = 0;
ev.type = type;
ev.pc = CompressAddr(pc);
ev.stack_lo = stk;
ev.stack_hi = stk >> EventLock::kStackIDLoBits;
ev._ = 0;
ev.addr = CompressAddr(addr);
TraceEvent(thr, ev);
}
void TraceMutexUnlock(ThreadState *thr, uptr addr) {
if (!kCollectHistory)
return;
EventUnlock ev;
ev.is_access = 0;
ev.is_func = 0;
ev.type = EventType::kUnlock;
ev._ = 0;
ev.addr = CompressAddr(addr);
TraceEvent(thr, ev);
}
void TraceTime(ThreadState *thr) {
if (!kCollectHistory)
return;
EventTime ev;
ev.is_access = 0;
ev.is_func = 0;
ev.type = EventType::kTime;
ev.sid = static_cast<u64>(thr->sid);
ev.epoch = static_cast<u64>(thr->epoch);
ev._ = 0;
TraceEvent(thr, ev);
}
} // namespace v3
ALWAYS_INLINE
Shadow LoadShadow(u64 *p) {
u64 raw = atomic_load((atomic_uint64_t *)p, memory_order_relaxed);
return Shadow(raw);
}
ALWAYS_INLINE
void StoreShadow(u64 *sp, u64 s) {
atomic_store((atomic_uint64_t *)sp, s, memory_order_relaxed);
}
ALWAYS_INLINE
void StoreIfNotYetStored(u64 *sp, u64 *s) {
StoreShadow(sp, *s);
*s = 0;
}
extern "C" void __tsan_report_race();
ALWAYS_INLINE
void HandleRace(ThreadState *thr, u64 *shadow_mem, Shadow cur, Shadow old) {
thr->racy_state[0] = cur.raw();
thr->racy_state[1] = old.raw();
thr->racy_shadow_addr = shadow_mem;
#if !SANITIZER_GO
HACKY_CALL(__tsan_report_race);
#else
ReportRace(thr);
#endif
}
static inline bool HappensBefore(Shadow old, ThreadState *thr) {
return thr->clock.get(old.TidWithIgnore()) >= old.epoch();
}
ALWAYS_INLINE
void MemoryAccessImpl1(ThreadState *thr, uptr addr, int kAccessSizeLog,
bool kAccessIsWrite, bool kIsAtomic, u64 *shadow_mem,
Shadow cur) {
// This potentially can live in an MMX/SSE scratch register.
// The required intrinsics are:
// __m128i _mm_move_epi64(__m128i*);
// _mm_storel_epi64(u64*, __m128i);
u64 store_word = cur.raw();
bool stored = false;
// scan all the shadow values and dispatch to 4 categories:
// same, replace, candidate and race (see comments below).
// we consider only 3 cases regarding access sizes:
// equal, intersect and not intersect. initially I considered
// larger and smaller as well, it allowed to replace some
// 'candidates' with 'same' or 'replace', but I think
// it's just not worth it (performance- and complexity-wise).
Shadow old(0);
// It release mode we manually unroll the loop,
// because empirically gcc generates better code this way.
// However, we can't afford unrolling in debug mode, because the function
// consumes almost 4K of stack. Gtest gives only 4K of stack to death test
// threads, which is not enough for the unrolled loop.
#if SANITIZER_DEBUG
for (int idx = 0; idx < 4; idx++) {
# include "tsan_update_shadow_word.inc"
}
#else
int idx = 0;
# include "tsan_update_shadow_word.inc"
idx = 1;
if (stored) {
# include "tsan_update_shadow_word.inc"
} else {
# include "tsan_update_shadow_word.inc"
}
idx = 2;
if (stored) {
# include "tsan_update_shadow_word.inc"
} else {
# include "tsan_update_shadow_word.inc"
}
idx = 3;
if (stored) {
# include "tsan_update_shadow_word.inc"
} else {
# include "tsan_update_shadow_word.inc"
}
#endif
// we did not find any races and had already stored
// the current access info, so we are done
if (LIKELY(stored))
return;
// choose a random candidate slot and replace it
StoreShadow(shadow_mem + (cur.epoch() % kShadowCnt), store_word);
return;
RACE:
HandleRace(thr, shadow_mem, cur, old);
return;
}
void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr, uptr size,
AccessType typ) {
DCHECK(!(typ & kAccessAtomic));
const bool kAccessIsWrite = !(typ & kAccessRead);
const bool kIsAtomic = false;
while (size) {
int size1 = 1;
int kAccessSizeLog = kSizeLog1;
if (size >= 8 && (addr & ~7) == ((addr + 7) & ~7)) {
size1 = 8;
kAccessSizeLog = kSizeLog8;
} else if (size >= 4 && (addr & ~7) == ((addr + 3) & ~7)) {
size1 = 4;
kAccessSizeLog = kSizeLog4;
} else if (size >= 2 && (addr & ~7) == ((addr + 1) & ~7)) {
size1 = 2;
kAccessSizeLog = kSizeLog2;
}
MemoryAccess(thr, pc, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic);
addr += size1;
size -= size1;
}
}
ALWAYS_INLINE
bool ContainsSameAccessSlow(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
Shadow cur(a);
for (uptr i = 0; i < kShadowCnt; i++) {
Shadow old(LoadShadow(&s[i]));
if (Shadow::Addr0AndSizeAreEqual(cur, old) &&
old.TidWithIgnore() == cur.TidWithIgnore() &&
old.epoch() > sync_epoch && old.IsAtomic() == cur.IsAtomic() &&
old.IsRead() <= cur.IsRead())
return true;
}
return false;
}
#if TSAN_VECTORIZE
# define SHUF(v0, v1, i0, i1, i2, i3) \
_mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(v0), \
_mm_castsi128_ps(v1), \
(i0)*1 + (i1)*4 + (i2)*16 + (i3)*64))
ALWAYS_INLINE
bool ContainsSameAccessFast(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
// This is an optimized version of ContainsSameAccessSlow.
// load current access into access[0:63]
const m128 access = _mm_cvtsi64_si128(a);
// duplicate high part of access in addr0:
// addr0[0:31] = access[32:63]
// addr0[32:63] = access[32:63]
// addr0[64:95] = access[32:63]
// addr0[96:127] = access[32:63]
const m128 addr0 = SHUF(access, access, 1, 1, 1, 1);
// load 4 shadow slots
const m128 shadow0 = _mm_load_si128((__m128i *)s);
const m128 shadow1 = _mm_load_si128((__m128i *)s + 1);
// load high parts of 4 shadow slots into addr_vect:
// addr_vect[0:31] = shadow0[32:63]
// addr_vect[32:63] = shadow0[96:127]
// addr_vect[64:95] = shadow1[32:63]
// addr_vect[96:127] = shadow1[96:127]
m128 addr_vect = SHUF(shadow0, shadow1, 1, 3, 1, 3);
if (!is_write) {
// set IsRead bit in addr_vect
const m128 rw_mask1 = _mm_cvtsi64_si128(1 << 15);
const m128 rw_mask = SHUF(rw_mask1, rw_mask1, 0, 0, 0, 0);
addr_vect = _mm_or_si128(addr_vect, rw_mask);
}
// addr0 == addr_vect?
const m128 addr_res = _mm_cmpeq_epi32(addr0, addr_vect);
// epoch1[0:63] = sync_epoch
const m128 epoch1 = _mm_cvtsi64_si128(sync_epoch);
// epoch[0:31] = sync_epoch[0:31]
// epoch[32:63] = sync_epoch[0:31]
// epoch[64:95] = sync_epoch[0:31]
// epoch[96:127] = sync_epoch[0:31]
const m128 epoch = SHUF(epoch1, epoch1, 0, 0, 0, 0);
// load low parts of shadow cell epochs into epoch_vect:
// epoch_vect[0:31] = shadow0[0:31]
// epoch_vect[32:63] = shadow0[64:95]
// epoch_vect[64:95] = shadow1[0:31]
// epoch_vect[96:127] = shadow1[64:95]
const m128 epoch_vect = SHUF(shadow0, shadow1, 0, 2, 0, 2);
// epoch_vect >= sync_epoch?
const m128 epoch_res = _mm_cmpgt_epi32(epoch_vect, epoch);
// addr_res & epoch_res
const m128 res = _mm_and_si128(addr_res, epoch_res);
// mask[0] = res[7]
// mask[1] = res[15]
// ...
// mask[15] = res[127]
const int mask = _mm_movemask_epi8(res);
return mask != 0;
}
#endif
ALWAYS_INLINE
bool ContainsSameAccess(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
#if TSAN_VECTORIZE
bool res = ContainsSameAccessFast(s, a, sync_epoch, is_write);
// NOTE: this check can fail if the shadow is concurrently mutated
// by other threads. But it still can be useful if you modify
// ContainsSameAccessFast and want to ensure that it's not completely broken.
// DCHECK_EQ(res, ContainsSameAccessSlow(s, a, sync_epoch, is_write));
return res;
#else
return ContainsSameAccessSlow(s, a, sync_epoch, is_write);
#endif
}
ALWAYS_INLINE USED void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
int kAccessSizeLog, bool kAccessIsWrite,
bool kIsAtomic) {
RawShadow *shadow_mem = MemToShadow(addr);
DPrintf2(
"#%d: MemoryAccess: @%p %p size=%d"
" is_write=%d shadow_mem=%p {%zx, %zx, %zx, %zx}\n",
(int)thr->fast_state.tid(), (void *)pc, (void *)addr,
(int)(1 << kAccessSizeLog), kAccessIsWrite, shadow_mem,
(uptr)shadow_mem[0], (uptr)shadow_mem[1], (uptr)shadow_mem[2],
(uptr)shadow_mem[3]);
#if SANITIZER_DEBUG
if (!IsAppMem(addr)) {
Printf("Access to non app mem %zx\n", addr);
DCHECK(IsAppMem(addr));
}
if (!IsShadowMem(shadow_mem)) {
Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr);
DCHECK(IsShadowMem(shadow_mem));
}
#endif
if (!SANITIZER_GO && !kAccessIsWrite && *shadow_mem == kShadowRodata) {
// Access to .rodata section, no races here.
// Measurements show that it can be 10-20% of all memory accesses.
return;
}
FastState fast_state = thr->fast_state;
if (UNLIKELY(fast_state.GetIgnoreBit())) {
return;
}
Shadow cur(fast_state);
cur.SetAddr0AndSizeLog(addr & 7, kAccessSizeLog);
cur.SetWrite(kAccessIsWrite);
cur.SetAtomic(kIsAtomic);
if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(), thr->fast_synch_epoch,
kAccessIsWrite))) {
return;
}
if (kCollectHistory) {
fast_state.IncrementEpoch();
thr->fast_state = fast_state;
TraceAddEvent(thr, fast_state, EventTypeMop, pc);
cur.IncrementEpoch();
}
MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic,
shadow_mem, cur);
}
// Called by MemoryAccessRange in tsan_rtl_thread.cpp
ALWAYS_INLINE USED void MemoryAccessImpl(ThreadState *thr, uptr addr,
int kAccessSizeLog,
bool kAccessIsWrite, bool kIsAtomic,
u64 *shadow_mem, Shadow cur) {
if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(), thr->fast_synch_epoch,
kAccessIsWrite))) {
return;
}
MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic,
shadow_mem, cur);
}
static void MemoryRangeSet(ThreadState *thr, uptr pc, uptr addr, uptr size,
u64 val) {
(void)thr;
(void)pc;
if (size == 0)
return;
// FIXME: fix me.
uptr offset = addr % kShadowCell;
if (offset) {
offset = kShadowCell - offset;
if (size <= offset)
return;
addr += offset;
size -= offset;
}
DCHECK_EQ(addr % 8, 0);
// If a user passes some insane arguments (memset(0)),
// let it just crash as usual.
if (!IsAppMem(addr) || !IsAppMem(addr + size - 1))
return;
// Don't want to touch lots of shadow memory.
// If a program maps 10MB stack, there is no need reset the whole range.
size = (size + (kShadowCell - 1)) & ~(kShadowCell - 1);
// UnmapOrDie/MmapFixedNoReserve does not work on Windows.
if (SANITIZER_WINDOWS || size < common_flags()->clear_shadow_mmap_threshold) {
RawShadow *p = MemToShadow(addr);
CHECK(IsShadowMem(p));
CHECK(IsShadowMem(p + size * kShadowCnt / kShadowCell - 1));
// FIXME: may overwrite a part outside the region
for (uptr i = 0; i < size / kShadowCell * kShadowCnt;) {
p[i++] = val;
for (uptr j = 1; j < kShadowCnt; j++) p[i++] = 0;
}
} else {
// The region is big, reset only beginning and end.
const uptr kPageSize = GetPageSizeCached();
RawShadow *begin = MemToShadow(addr);
RawShadow *end = begin + size / kShadowCell * kShadowCnt;
RawShadow *p = begin;
// Set at least first kPageSize/2 to page boundary.
while ((p < begin + kPageSize / kShadowSize / 2) || ((uptr)p % kPageSize)) {
*p++ = val;
for (uptr j = 1; j < kShadowCnt; j++) *p++ = 0;
}
// Reset middle part.
RawShadow *p1 = p;
p = RoundDown(end, kPageSize);
if (!MmapFixedSuperNoReserve((uptr)p1, (uptr)p - (uptr)p1))
Die();
// Set the ending.
while (p < end) {
*p++ = val;
for (uptr j = 1; j < kShadowCnt; j++) *p++ = 0;
}
}
}
void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size) {
MemoryRangeSet(thr, pc, addr, size, 0);
}
void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size) {
// Processing more than 1k (4k of shadow) is expensive,
// can cause excessive memory consumption (user does not necessary touch
// the whole range) and most likely unnecessary.
if (size > 1024)
size = 1024;
CHECK_EQ(thr->is_freeing, false);
thr->is_freeing = true;
MemoryAccessRange(thr, pc, addr, size, true);
thr->is_freeing = false;
if (kCollectHistory) {
thr->fast_state.IncrementEpoch();
TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc);
}
Shadow s(thr->fast_state);
s.ClearIgnoreBit();
s.MarkAsFreed();
s.SetWrite(true);
s.SetAddr0AndSizeLog(0, 3);
MemoryRangeSet(thr, pc, addr, size, s.raw());
}
void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size) {
if (kCollectHistory) {
thr->fast_state.IncrementEpoch();
TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc);
}
Shadow s(thr->fast_state);
s.ClearIgnoreBit();
s.SetWrite(true);
s.SetAddr0AndSizeLog(0, 3);
MemoryRangeSet(thr, pc, addr, size, s.raw());
}
void MemoryRangeImitateWriteOrResetRange(ThreadState *thr, uptr pc, uptr addr,
uptr size) {
if (thr->ignore_reads_and_writes == 0)
MemoryRangeImitateWrite(thr, pc, addr, size);
else
MemoryResetRange(thr, pc, addr, size);
}
void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size,
bool is_write) {
if (size == 0)
return;
RawShadow *shadow_mem = MemToShadow(addr);
DPrintf2("#%d: MemoryAccessRange: @%p %p size=%d is_write=%d\n", thr->tid,
(void *)pc, (void *)addr, (int)size, is_write);
#if SANITIZER_DEBUG
if (!IsAppMem(addr)) {
Printf("Access to non app mem %zx\n", addr);
DCHECK(IsAppMem(addr));
}
if (!IsAppMem(addr + size - 1)) {
Printf("Access to non app mem %zx\n", addr + size - 1);
DCHECK(IsAppMem(addr + size - 1));
}
if (!IsShadowMem(shadow_mem)) {
Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr);
DCHECK(IsShadowMem(shadow_mem));
}
if (!IsShadowMem(shadow_mem + size * kShadowCnt / 8 - 1)) {
Printf("Bad shadow addr %p (%zx)\n", shadow_mem + size * kShadowCnt / 8 - 1,
addr + size - 1);
DCHECK(IsShadowMem(shadow_mem + size * kShadowCnt / 8 - 1));
}
#endif
if (*shadow_mem == kShadowRodata) {
DCHECK(!is_write);
// Access to .rodata section, no races here.
// Measurements show that it can be 10-20% of all memory accesses.
return;
}
FastState fast_state = thr->fast_state;
if (fast_state.GetIgnoreBit())
return;
fast_state.IncrementEpoch();
thr->fast_state = fast_state;
TraceAddEvent(thr, fast_state, EventTypeMop, pc);
bool unaligned = (addr % kShadowCell) != 0;
// Handle unaligned beginning, if any.
for (; addr % kShadowCell && size; addr++, size--) {
int const kAccessSizeLog = 0;
Shadow cur(fast_state);
cur.SetWrite(is_write);
cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog);
MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false, shadow_mem,
cur);
}
if (unaligned)
shadow_mem += kShadowCnt;
// Handle middle part, if any.
for (; size >= kShadowCell; addr += kShadowCell, size -= kShadowCell) {
int const kAccessSizeLog = 3;
Shadow cur(fast_state);
cur.SetWrite(is_write);
cur.SetAddr0AndSizeLog(0, kAccessSizeLog);
MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false, shadow_mem,
cur);
shadow_mem += kShadowCnt;
}
// Handle ending, if any.
for (; size; addr++, size--) {
int const kAccessSizeLog = 0;
Shadow cur(fast_state);
cur.SetWrite(is_write);
cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog);
MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false, shadow_mem,
cur);
}
}
} // namespace __tsan
#if !SANITIZER_GO
// Must be included in this file to make sure everything is inlined.
# include "tsan_interface.inc"
#endif