gcc/libquadmath/math/sqrtq.c
Tobias Burnus 737df6e617 complex.c (csqrtq): NaN and INF fixes.
2012-10-31  Tobias Burnus  <burnus@net-b.de>
            Joseph Myers <joseph@codesourcery.com>
            David S. Miller <davem@davemloft.net>
            Ulrich Drepper <drepper@redhat.com>
            Marek Polacek <polacek@redhat.com>:
            Petr Baudis <pasky@suse.cz>

        * math/complex.c (csqrtq): NaN and INF fixes.
        * math/sqrtq.c (sqrt): NaN, INF and < 0 fixes.
        * math/expm1q.c (expm1q): Changes from GLIBC. Use expq for
        large parameters. Fix errno for boundary conditions.
        * math/finiteq.c (finiteq): Add comment.
        * math/fmaq.c (fmaq): Changes from GLIBC. Fix missing underflows
        and bad results for some subnormal results. Fix sign of inexact
        zero return. Fix sign of exact zero return.
        Ensure additions are not scheduled after fetestexcept.
        * math/jnq.c (jnq): Changes from GLIBC. Set up errno properly
        for ynq. Fix jnq precision.
        * math/nearbyintq.c (nearbyintq): Changes from GLIBC. Do not
        manipulate bits before adding and subtracting TWO112[sx].
        * math/rintq.c (rintq): Ditto.
        * math/scalbnq.c (scalbnq): Changes from GLIBC. Fix integer
        overflow.


Co-Authored-By: David S. Miller <davem@davemloft.net>
Co-Authored-By: Joseph Myers <joseph@codesourcery.com>
Co-Authored-By: Ulrich Drepper <drepper@redhat.com>

From-SVN: r193037
2012-10-31 16:46:59 +01:00

61 lines
1.1 KiB
C

#include "quadmath-imp.h"
#include <math.h>
#include <float.h>
__float128
sqrtq (const __float128 x)
{
__float128 y;
int exp;
if (isnanq (x) || (isinfq (x) && x > 0))
return x;
if (x == 0)
return x;
if (x < 0)
{
/* Return NaN with invalid signal. */
return (x - x) / (x - x);
}
if (x <= DBL_MAX && x >= DBL_MIN)
{
/* Use double result as starting point. */
y = sqrt ((double) x);
/* Two Newton iterations. */
y -= 0.5q * (y - x / y);
y -= 0.5q * (y - x / y);
return y;
}
#ifdef HAVE_SQRTL
if (x <= LDBL_MAX && x >= LDBL_MIN)
{
/* Use long double result as starting point. */
y = sqrtl ((long double) x);
/* One Newton iteration. */
y -= 0.5q * (y - x / y);
return y;
}
#endif
/* If we're outside of the range of C types, we have to compute
the initial guess the hard way. */
y = frexpq (x, &exp);
if (exp % 2)
y *= 2, exp--;
y = sqrt (y);
y = scalbnq (y, exp / 2);
/* Two Newton iterations. */
y -= 0.5q * (y - x / y);
y -= 0.5q * (y - x / y);
return y;
}