gcc/libsanitizer/tsan/tsan_mman.cc
Kostya Serebryany ef1b3fda32 libsanitizer merge from upstream r191666
This may break gcc-asan on Mac, will follow up separately.

From-SVN: r204368
2013-11-04 21:33:31 +00:00

274 lines
7.0 KiB
C++

//===-- tsan_mman.cc ------------------------------------------------------===//
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
//===----------------------------------------------------------------------===//
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_placement_new.h"
#include "tsan_mman.h"
#include "tsan_rtl.h"
#include "tsan_report.h"
#include "tsan_flags.h"
// May be overriden by front-end.
extern "C" void WEAK __tsan_malloc_hook(void *ptr, uptr size) {
(void)ptr;
(void)size;
}
extern "C" void WEAK __tsan_free_hook(void *ptr) {
(void)ptr;
}
namespace __tsan {
COMPILER_CHECK(sizeof(MBlock) == 16);
void MBlock::Lock() {
atomic_uintptr_t *a = reinterpret_cast<atomic_uintptr_t*>(this);
uptr v = atomic_load(a, memory_order_relaxed);
for (int iter = 0;; iter++) {
if (v & 1) {
if (iter < 10)
proc_yield(20);
else
internal_sched_yield();
v = atomic_load(a, memory_order_relaxed);
continue;
}
if (atomic_compare_exchange_weak(a, &v, v | 1, memory_order_acquire))
break;
}
}
void MBlock::Unlock() {
atomic_uintptr_t *a = reinterpret_cast<atomic_uintptr_t*>(this);
uptr v = atomic_load(a, memory_order_relaxed);
DCHECK(v & 1);
atomic_store(a, v & ~1, memory_order_relaxed);
}
struct MapUnmapCallback {
void OnMap(uptr p, uptr size) const { }
void OnUnmap(uptr p, uptr size) const {
// We are about to unmap a chunk of user memory.
// Mark the corresponding shadow memory as not needed.
DontNeedShadowFor(p, size);
}
};
static char allocator_placeholder[sizeof(Allocator)] ALIGNED(64);
Allocator *allocator() {
return reinterpret_cast<Allocator*>(&allocator_placeholder);
}
void InitializeAllocator() {
allocator()->Init();
}
void AllocatorThreadStart(ThreadState *thr) {
allocator()->InitCache(&thr->alloc_cache);
internal_allocator()->InitCache(&thr->internal_alloc_cache);
}
void AllocatorThreadFinish(ThreadState *thr) {
allocator()->DestroyCache(&thr->alloc_cache);
internal_allocator()->DestroyCache(&thr->internal_alloc_cache);
}
void AllocatorPrintStats() {
allocator()->PrintStats();
}
static void SignalUnsafeCall(ThreadState *thr, uptr pc) {
if (!thr->in_signal_handler || !flags()->report_signal_unsafe)
return;
Context *ctx = CTX();
StackTrace stack;
stack.ObtainCurrent(thr, pc);
ThreadRegistryLock l(ctx->thread_registry);
ScopedReport rep(ReportTypeSignalUnsafe);
if (!IsFiredSuppression(ctx, rep, stack)) {
rep.AddStack(&stack);
OutputReport(ctx, rep, rep.GetReport()->stacks[0]);
}
}
void *user_alloc(ThreadState *thr, uptr pc, uptr sz, uptr align) {
CHECK_GT(thr->in_rtl, 0);
if ((sz >= (1ull << 40)) || (align >= (1ull << 40)))
return AllocatorReturnNull();
void *p = allocator()->Allocate(&thr->alloc_cache, sz, align);
if (p == 0)
return 0;
MBlock *b = new(allocator()->GetMetaData(p)) MBlock;
b->Init(sz, thr->tid, CurrentStackId(thr, pc));
if (CTX() && CTX()->initialized) {
if (thr->ignore_reads_and_writes == 0)
MemoryRangeImitateWrite(thr, pc, (uptr)p, sz);
else
MemoryResetRange(thr, pc, (uptr)p, sz);
}
DPrintf("#%d: alloc(%zu) = %p\n", thr->tid, sz, p);
SignalUnsafeCall(thr, pc);
return p;
}
void user_free(ThreadState *thr, uptr pc, void *p) {
CHECK_GT(thr->in_rtl, 0);
CHECK_NE(p, (void*)0);
DPrintf("#%d: free(%p)\n", thr->tid, p);
MBlock *b = (MBlock*)allocator()->GetMetaData(p);
if (b->ListHead()) {
MBlock::ScopedLock l(b);
for (SyncVar *s = b->ListHead(); s;) {
SyncVar *res = s;
s = s->next;
StatInc(thr, StatSyncDestroyed);
res->mtx.Lock();
res->mtx.Unlock();
DestroyAndFree(res);
}
b->ListReset();
}
if (CTX() && CTX()->initialized && thr->in_rtl == 1) {
if (thr->ignore_reads_and_writes == 0)
MemoryRangeFreed(thr, pc, (uptr)p, b->Size());
}
allocator()->Deallocate(&thr->alloc_cache, p);
SignalUnsafeCall(thr, pc);
}
void *user_realloc(ThreadState *thr, uptr pc, void *p, uptr sz) {
CHECK_GT(thr->in_rtl, 0);
void *p2 = 0;
// FIXME: Handle "shrinking" more efficiently,
// it seems that some software actually does this.
if (sz) {
p2 = user_alloc(thr, pc, sz);
if (p2 == 0)
return 0;
if (p) {
MBlock *b = user_mblock(thr, p);
CHECK_NE(b, 0);
internal_memcpy(p2, p, min(b->Size(), sz));
}
}
if (p)
user_free(thr, pc, p);
return p2;
}
uptr user_alloc_usable_size(ThreadState *thr, uptr pc, void *p) {
CHECK_GT(thr->in_rtl, 0);
if (p == 0)
return 0;
MBlock *b = (MBlock*)allocator()->GetMetaData(p);
return b ? b->Size() : 0;
}
MBlock *user_mblock(ThreadState *thr, void *p) {
CHECK_NE(p, 0);
Allocator *a = allocator();
void *b = a->GetBlockBegin(p);
if (b == 0)
return 0;
return (MBlock*)a->GetMetaData(b);
}
void invoke_malloc_hook(void *ptr, uptr size) {
Context *ctx = CTX();
ThreadState *thr = cur_thread();
if (ctx == 0 || !ctx->initialized || thr->in_rtl)
return;
__tsan_malloc_hook(ptr, size);
}
void invoke_free_hook(void *ptr) {
Context *ctx = CTX();
ThreadState *thr = cur_thread();
if (ctx == 0 || !ctx->initialized || thr->in_rtl)
return;
__tsan_free_hook(ptr);
}
void *internal_alloc(MBlockType typ, uptr sz) {
ThreadState *thr = cur_thread();
CHECK_GT(thr->in_rtl, 0);
CHECK_LE(sz, InternalSizeClassMap::kMaxSize);
if (thr->nomalloc) {
thr->nomalloc = 0; // CHECK calls internal_malloc().
CHECK(0);
}
return InternalAlloc(sz, &thr->internal_alloc_cache);
}
void internal_free(void *p) {
ThreadState *thr = cur_thread();
CHECK_GT(thr->in_rtl, 0);
if (thr->nomalloc) {
thr->nomalloc = 0; // CHECK calls internal_malloc().
CHECK(0);
}
InternalFree(p, &thr->internal_alloc_cache);
}
} // namespace __tsan
using namespace __tsan;
extern "C" {
uptr __tsan_get_current_allocated_bytes() {
u64 stats[AllocatorStatCount];
allocator()->GetStats(stats);
u64 m = stats[AllocatorStatMalloced];
u64 f = stats[AllocatorStatFreed];
return m >= f ? m - f : 1;
}
uptr __tsan_get_heap_size() {
u64 stats[AllocatorStatCount];
allocator()->GetStats(stats);
u64 m = stats[AllocatorStatMmapped];
u64 f = stats[AllocatorStatUnmapped];
return m >= f ? m - f : 1;
}
uptr __tsan_get_free_bytes() {
return 1;
}
uptr __tsan_get_unmapped_bytes() {
return 1;
}
uptr __tsan_get_estimated_allocated_size(uptr size) {
return size;
}
bool __tsan_get_ownership(void *p) {
return allocator()->GetBlockBegin(p) != 0;
}
uptr __tsan_get_allocated_size(void *p) {
if (p == 0)
return 0;
p = allocator()->GetBlockBegin(p);
if (p == 0)
return 0;
MBlock *b = (MBlock*)allocator()->GetMetaData(p);
return b->Size();
}
void __tsan_on_thread_idle() {
ThreadState *thr = cur_thread();
allocator()->SwallowCache(&thr->alloc_cache);
internal_allocator()->SwallowCache(&thr->internal_alloc_cache);
}
} // extern "C"