a554497024
From-SVN: r267494
846 lines
27 KiB
C
846 lines
27 KiB
C
/* Combining of if-expressions on trees.
|
|
Copyright (C) 2007-2019 Free Software Foundation, Inc.
|
|
Contributed by Richard Guenther <rguenther@suse.de>
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3, or (at your option)
|
|
any later version.
|
|
|
|
GCC is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "backend.h"
|
|
#include "rtl.h"
|
|
#include "tree.h"
|
|
#include "gimple.h"
|
|
#include "cfghooks.h"
|
|
#include "tree-pass.h"
|
|
#include "memmodel.h"
|
|
#include "tm_p.h"
|
|
#include "ssa.h"
|
|
#include "tree-pretty-print.h"
|
|
/* rtl is needed only because arm back-end requires it for
|
|
BRANCH_COST. */
|
|
#include "fold-const.h"
|
|
#include "cfganal.h"
|
|
#include "gimple-fold.h"
|
|
#include "gimple-iterator.h"
|
|
#include "gimplify-me.h"
|
|
#include "tree-cfg.h"
|
|
#include "tree-ssa.h"
|
|
#include "params.h"
|
|
|
|
#ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
|
|
#define LOGICAL_OP_NON_SHORT_CIRCUIT \
|
|
(BRANCH_COST (optimize_function_for_speed_p (cfun), \
|
|
false) >= 2)
|
|
#endif
|
|
|
|
/* This pass combines COND_EXPRs to simplify control flow. It
|
|
currently recognizes bit tests and comparisons in chains that
|
|
represent logical and or logical or of two COND_EXPRs.
|
|
|
|
It does so by walking basic blocks in a approximate reverse
|
|
post-dominator order and trying to match CFG patterns that
|
|
represent logical and or logical or of two COND_EXPRs.
|
|
Transformations are done if the COND_EXPR conditions match
|
|
either
|
|
|
|
1. two single bit tests X & (1 << Yn) (for logical and)
|
|
|
|
2. two bit tests X & Yn (for logical or)
|
|
|
|
3. two comparisons X OPn Y (for logical or)
|
|
|
|
To simplify this pass, removing basic blocks and dead code
|
|
is left to CFG cleanup and DCE. */
|
|
|
|
|
|
/* Recognize a if-then-else CFG pattern starting to match with the
|
|
COND_BB basic-block containing the COND_EXPR. The recognized
|
|
then end else blocks are stored to *THEN_BB and *ELSE_BB. If
|
|
*THEN_BB and/or *ELSE_BB are already set, they are required to
|
|
match the then and else basic-blocks to make the pattern match.
|
|
Returns true if the pattern matched, false otherwise. */
|
|
|
|
static bool
|
|
recognize_if_then_else (basic_block cond_bb,
|
|
basic_block *then_bb, basic_block *else_bb)
|
|
{
|
|
edge t, e;
|
|
|
|
if (EDGE_COUNT (cond_bb->succs) != 2)
|
|
return false;
|
|
|
|
/* Find the then/else edges. */
|
|
t = EDGE_SUCC (cond_bb, 0);
|
|
e = EDGE_SUCC (cond_bb, 1);
|
|
if (!(t->flags & EDGE_TRUE_VALUE))
|
|
std::swap (t, e);
|
|
if (!(t->flags & EDGE_TRUE_VALUE)
|
|
|| !(e->flags & EDGE_FALSE_VALUE))
|
|
return false;
|
|
|
|
/* Check if the edge destinations point to the required block. */
|
|
if (*then_bb
|
|
&& t->dest != *then_bb)
|
|
return false;
|
|
if (*else_bb
|
|
&& e->dest != *else_bb)
|
|
return false;
|
|
|
|
if (!*then_bb)
|
|
*then_bb = t->dest;
|
|
if (!*else_bb)
|
|
*else_bb = e->dest;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Verify if the basic block BB does not have side-effects. Return
|
|
true in this case, else false. */
|
|
|
|
static bool
|
|
bb_no_side_effects_p (basic_block bb)
|
|
{
|
|
gimple_stmt_iterator gsi;
|
|
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
gimple *stmt = gsi_stmt (gsi);
|
|
|
|
if (is_gimple_debug (stmt))
|
|
continue;
|
|
|
|
if (gimple_has_side_effects (stmt)
|
|
|| gimple_uses_undefined_value_p (stmt)
|
|
|| gimple_could_trap_p (stmt)
|
|
|| gimple_vuse (stmt)
|
|
/* const calls don't match any of the above, yet they could
|
|
still have some side-effects - they could contain
|
|
gimple_could_trap_p statements, like floating point
|
|
exceptions or integer division by zero. See PR70586.
|
|
FIXME: perhaps gimple_has_side_effects or gimple_could_trap_p
|
|
should handle this. */
|
|
|| is_gimple_call (stmt))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Return true if BB is an empty forwarder block to TO_BB. */
|
|
|
|
static bool
|
|
forwarder_block_to (basic_block bb, basic_block to_bb)
|
|
{
|
|
return empty_block_p (bb)
|
|
&& single_succ_p (bb)
|
|
&& single_succ (bb) == to_bb;
|
|
}
|
|
|
|
/* Verify if all PHI node arguments in DEST for edges from BB1 or
|
|
BB2 to DEST are the same. This makes the CFG merge point
|
|
free from side-effects. Return true in this case, else false. */
|
|
|
|
static bool
|
|
same_phi_args_p (basic_block bb1, basic_block bb2, basic_block dest)
|
|
{
|
|
edge e1 = find_edge (bb1, dest);
|
|
edge e2 = find_edge (bb2, dest);
|
|
gphi_iterator gsi;
|
|
gphi *phi;
|
|
|
|
for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
phi = gsi.phi ();
|
|
if (!operand_equal_p (PHI_ARG_DEF_FROM_EDGE (phi, e1),
|
|
PHI_ARG_DEF_FROM_EDGE (phi, e2), 0))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Return the best representative SSA name for CANDIDATE which is used
|
|
in a bit test. */
|
|
|
|
static tree
|
|
get_name_for_bit_test (tree candidate)
|
|
{
|
|
/* Skip single-use names in favor of using the name from a
|
|
non-widening conversion definition. */
|
|
if (TREE_CODE (candidate) == SSA_NAME
|
|
&& has_single_use (candidate))
|
|
{
|
|
gimple *def_stmt = SSA_NAME_DEF_STMT (candidate);
|
|
if (is_gimple_assign (def_stmt)
|
|
&& CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
|
|
{
|
|
if (TYPE_PRECISION (TREE_TYPE (candidate))
|
|
<= TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
|
|
return gimple_assign_rhs1 (def_stmt);
|
|
}
|
|
}
|
|
|
|
return candidate;
|
|
}
|
|
|
|
/* Recognize a single bit test pattern in GIMPLE_COND and its defining
|
|
statements. Store the name being tested in *NAME and the bit
|
|
in *BIT. The GIMPLE_COND computes *NAME & (1 << *BIT).
|
|
Returns true if the pattern matched, false otherwise. */
|
|
|
|
static bool
|
|
recognize_single_bit_test (gcond *cond, tree *name, tree *bit, bool inv)
|
|
{
|
|
gimple *stmt;
|
|
|
|
/* Get at the definition of the result of the bit test. */
|
|
if (gimple_cond_code (cond) != (inv ? EQ_EXPR : NE_EXPR)
|
|
|| TREE_CODE (gimple_cond_lhs (cond)) != SSA_NAME
|
|
|| !integer_zerop (gimple_cond_rhs (cond)))
|
|
return false;
|
|
stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (cond));
|
|
if (!is_gimple_assign (stmt))
|
|
return false;
|
|
|
|
/* Look at which bit is tested. One form to recognize is
|
|
D.1985_5 = state_3(D) >> control1_4(D);
|
|
D.1986_6 = (int) D.1985_5;
|
|
D.1987_7 = op0 & 1;
|
|
if (D.1987_7 != 0) */
|
|
if (gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
|
|
&& integer_onep (gimple_assign_rhs2 (stmt))
|
|
&& TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
|
|
{
|
|
tree orig_name = gimple_assign_rhs1 (stmt);
|
|
|
|
/* Look through copies and conversions to eventually
|
|
find the stmt that computes the shift. */
|
|
stmt = SSA_NAME_DEF_STMT (orig_name);
|
|
|
|
while (is_gimple_assign (stmt)
|
|
&& ((CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt))
|
|
&& (TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (stmt)))
|
|
<= TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt))))
|
|
&& TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
|
|
|| gimple_assign_ssa_name_copy_p (stmt)))
|
|
stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
|
|
|
|
/* If we found such, decompose it. */
|
|
if (is_gimple_assign (stmt)
|
|
&& gimple_assign_rhs_code (stmt) == RSHIFT_EXPR)
|
|
{
|
|
/* op0 & (1 << op1) */
|
|
*bit = gimple_assign_rhs2 (stmt);
|
|
*name = gimple_assign_rhs1 (stmt);
|
|
}
|
|
else
|
|
{
|
|
/* t & 1 */
|
|
*bit = integer_zero_node;
|
|
*name = get_name_for_bit_test (orig_name);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Another form is
|
|
D.1987_7 = op0 & (1 << CST)
|
|
if (D.1987_7 != 0) */
|
|
if (gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
|
|
&& TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
|
|
&& integer_pow2p (gimple_assign_rhs2 (stmt)))
|
|
{
|
|
*name = gimple_assign_rhs1 (stmt);
|
|
*bit = build_int_cst (integer_type_node,
|
|
tree_log2 (gimple_assign_rhs2 (stmt)));
|
|
return true;
|
|
}
|
|
|
|
/* Another form is
|
|
D.1986_6 = 1 << control1_4(D)
|
|
D.1987_7 = op0 & D.1986_6
|
|
if (D.1987_7 != 0) */
|
|
if (gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
|
|
&& TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
|
|
&& TREE_CODE (gimple_assign_rhs2 (stmt)) == SSA_NAME)
|
|
{
|
|
gimple *tmp;
|
|
|
|
/* Both arguments of the BIT_AND_EXPR can be the single-bit
|
|
specifying expression. */
|
|
tmp = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
|
|
if (is_gimple_assign (tmp)
|
|
&& gimple_assign_rhs_code (tmp) == LSHIFT_EXPR
|
|
&& integer_onep (gimple_assign_rhs1 (tmp)))
|
|
{
|
|
*name = gimple_assign_rhs2 (stmt);
|
|
*bit = gimple_assign_rhs2 (tmp);
|
|
return true;
|
|
}
|
|
|
|
tmp = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
|
|
if (is_gimple_assign (tmp)
|
|
&& gimple_assign_rhs_code (tmp) == LSHIFT_EXPR
|
|
&& integer_onep (gimple_assign_rhs1 (tmp)))
|
|
{
|
|
*name = gimple_assign_rhs1 (stmt);
|
|
*bit = gimple_assign_rhs2 (tmp);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Recognize a bit test pattern in a GIMPLE_COND and its defining
|
|
statements. Store the name being tested in *NAME and the bits
|
|
in *BITS. The COND_EXPR computes *NAME & *BITS.
|
|
Returns true if the pattern matched, false otherwise. */
|
|
|
|
static bool
|
|
recognize_bits_test (gcond *cond, tree *name, tree *bits, bool inv)
|
|
{
|
|
gimple *stmt;
|
|
|
|
/* Get at the definition of the result of the bit test. */
|
|
if (gimple_cond_code (cond) != (inv ? EQ_EXPR : NE_EXPR)
|
|
|| TREE_CODE (gimple_cond_lhs (cond)) != SSA_NAME
|
|
|| !integer_zerop (gimple_cond_rhs (cond)))
|
|
return false;
|
|
stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (cond));
|
|
if (!is_gimple_assign (stmt)
|
|
|| gimple_assign_rhs_code (stmt) != BIT_AND_EXPR)
|
|
return false;
|
|
|
|
*name = get_name_for_bit_test (gimple_assign_rhs1 (stmt));
|
|
*bits = gimple_assign_rhs2 (stmt);
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Update profile after code in outer_cond_bb was adjusted so
|
|
outer_cond_bb has no condition. */
|
|
|
|
static void
|
|
update_profile_after_ifcombine (basic_block inner_cond_bb,
|
|
basic_block outer_cond_bb)
|
|
{
|
|
edge outer_to_inner = find_edge (outer_cond_bb, inner_cond_bb);
|
|
edge outer2 = (EDGE_SUCC (outer_cond_bb, 0) == outer_to_inner
|
|
? EDGE_SUCC (outer_cond_bb, 1)
|
|
: EDGE_SUCC (outer_cond_bb, 0));
|
|
edge inner_taken = EDGE_SUCC (inner_cond_bb, 0);
|
|
edge inner_not_taken = EDGE_SUCC (inner_cond_bb, 1);
|
|
|
|
if (inner_taken->dest != outer2->dest)
|
|
std::swap (inner_taken, inner_not_taken);
|
|
gcc_assert (inner_taken->dest == outer2->dest);
|
|
|
|
/* In the following we assume that inner_cond_bb has single predecessor. */
|
|
gcc_assert (single_pred_p (inner_cond_bb));
|
|
|
|
/* Path outer_cond_bb->(outer2) needs to be merged into path
|
|
outer_cond_bb->(outer_to_inner)->inner_cond_bb->(inner_taken)
|
|
and probability of inner_not_taken updated. */
|
|
|
|
inner_cond_bb->count = outer_cond_bb->count;
|
|
|
|
/* Handle special case where inner_taken probability is always. In this case
|
|
we know that the overall outcome will be always as well, but combining
|
|
probabilities will be conservative because it does not know that
|
|
outer2->probability is inverse of outer_to_inner->probability. */
|
|
if (inner_taken->probability == profile_probability::always ())
|
|
;
|
|
else
|
|
inner_taken->probability = outer2->probability + outer_to_inner->probability
|
|
* inner_taken->probability;
|
|
inner_not_taken->probability = profile_probability::always ()
|
|
- inner_taken->probability;
|
|
|
|
outer_to_inner->probability = profile_probability::always ();
|
|
outer2->probability = profile_probability::never ();
|
|
}
|
|
|
|
/* If-convert on a and pattern with a common else block. The inner
|
|
if is specified by its INNER_COND_BB, the outer by OUTER_COND_BB.
|
|
inner_inv, outer_inv and result_inv indicate whether the conditions
|
|
are inverted.
|
|
Returns true if the edges to the common else basic-block were merged. */
|
|
|
|
static bool
|
|
ifcombine_ifandif (basic_block inner_cond_bb, bool inner_inv,
|
|
basic_block outer_cond_bb, bool outer_inv, bool result_inv)
|
|
{
|
|
gimple_stmt_iterator gsi;
|
|
gimple *inner_stmt, *outer_stmt;
|
|
gcond *inner_cond, *outer_cond;
|
|
tree name1, name2, bit1, bit2, bits1, bits2;
|
|
|
|
inner_stmt = last_stmt (inner_cond_bb);
|
|
if (!inner_stmt
|
|
|| gimple_code (inner_stmt) != GIMPLE_COND)
|
|
return false;
|
|
inner_cond = as_a <gcond *> (inner_stmt);
|
|
|
|
outer_stmt = last_stmt (outer_cond_bb);
|
|
if (!outer_stmt
|
|
|| gimple_code (outer_stmt) != GIMPLE_COND)
|
|
return false;
|
|
outer_cond = as_a <gcond *> (outer_stmt);
|
|
|
|
/* See if we test a single bit of the same name in both tests. In
|
|
that case remove the outer test, merging both else edges,
|
|
and change the inner one to test for
|
|
name & (bit1 | bit2) == (bit1 | bit2). */
|
|
if (recognize_single_bit_test (inner_cond, &name1, &bit1, inner_inv)
|
|
&& recognize_single_bit_test (outer_cond, &name2, &bit2, outer_inv)
|
|
&& name1 == name2)
|
|
{
|
|
tree t, t2;
|
|
|
|
/* Do it. */
|
|
gsi = gsi_for_stmt (inner_cond);
|
|
t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (name1),
|
|
build_int_cst (TREE_TYPE (name1), 1), bit1);
|
|
t2 = fold_build2 (LSHIFT_EXPR, TREE_TYPE (name1),
|
|
build_int_cst (TREE_TYPE (name1), 1), bit2);
|
|
t = fold_build2 (BIT_IOR_EXPR, TREE_TYPE (name1), t, t2);
|
|
t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
|
|
true, GSI_SAME_STMT);
|
|
t2 = fold_build2 (BIT_AND_EXPR, TREE_TYPE (name1), name1, t);
|
|
t2 = force_gimple_operand_gsi (&gsi, t2, true, NULL_TREE,
|
|
true, GSI_SAME_STMT);
|
|
t = fold_build2 (result_inv ? NE_EXPR : EQ_EXPR,
|
|
boolean_type_node, t2, t);
|
|
t = canonicalize_cond_expr_cond (t);
|
|
if (!t)
|
|
return false;
|
|
gimple_cond_set_condition_from_tree (inner_cond, t);
|
|
update_stmt (inner_cond);
|
|
|
|
/* Leave CFG optimization to cfg_cleanup. */
|
|
gimple_cond_set_condition_from_tree (outer_cond,
|
|
outer_inv ? boolean_false_node : boolean_true_node);
|
|
update_stmt (outer_cond);
|
|
|
|
update_profile_after_ifcombine (inner_cond_bb, outer_cond_bb);
|
|
|
|
if (dump_file)
|
|
{
|
|
fprintf (dump_file, "optimizing double bit test to ");
|
|
print_generic_expr (dump_file, name1);
|
|
fprintf (dump_file, " & T == T\nwith temporary T = (1 << ");
|
|
print_generic_expr (dump_file, bit1);
|
|
fprintf (dump_file, ") | (1 << ");
|
|
print_generic_expr (dump_file, bit2);
|
|
fprintf (dump_file, ")\n");
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* See if we have two bit tests of the same name in both tests.
|
|
In that case remove the outer test and change the inner one to
|
|
test for name & (bits1 | bits2) != 0. */
|
|
else if (recognize_bits_test (inner_cond, &name1, &bits1, !inner_inv)
|
|
&& recognize_bits_test (outer_cond, &name2, &bits2, !outer_inv))
|
|
{
|
|
gimple_stmt_iterator gsi;
|
|
tree t;
|
|
|
|
/* Find the common name which is bit-tested. */
|
|
if (name1 == name2)
|
|
;
|
|
else if (bits1 == bits2)
|
|
{
|
|
std::swap (name2, bits2);
|
|
std::swap (name1, bits1);
|
|
}
|
|
else if (name1 == bits2)
|
|
std::swap (name2, bits2);
|
|
else if (bits1 == name2)
|
|
std::swap (name1, bits1);
|
|
else
|
|
return false;
|
|
|
|
/* As we strip non-widening conversions in finding a common
|
|
name that is tested make sure to end up with an integral
|
|
type for building the bit operations. */
|
|
if (TYPE_PRECISION (TREE_TYPE (bits1))
|
|
>= TYPE_PRECISION (TREE_TYPE (bits2)))
|
|
{
|
|
bits1 = fold_convert (unsigned_type_for (TREE_TYPE (bits1)), bits1);
|
|
name1 = fold_convert (TREE_TYPE (bits1), name1);
|
|
bits2 = fold_convert (unsigned_type_for (TREE_TYPE (bits2)), bits2);
|
|
bits2 = fold_convert (TREE_TYPE (bits1), bits2);
|
|
}
|
|
else
|
|
{
|
|
bits2 = fold_convert (unsigned_type_for (TREE_TYPE (bits2)), bits2);
|
|
name1 = fold_convert (TREE_TYPE (bits2), name1);
|
|
bits1 = fold_convert (unsigned_type_for (TREE_TYPE (bits1)), bits1);
|
|
bits1 = fold_convert (TREE_TYPE (bits2), bits1);
|
|
}
|
|
|
|
/* Do it. */
|
|
gsi = gsi_for_stmt (inner_cond);
|
|
t = fold_build2 (BIT_IOR_EXPR, TREE_TYPE (name1), bits1, bits2);
|
|
t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
|
|
true, GSI_SAME_STMT);
|
|
t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (name1), name1, t);
|
|
t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
|
|
true, GSI_SAME_STMT);
|
|
t = fold_build2 (result_inv ? NE_EXPR : EQ_EXPR, boolean_type_node, t,
|
|
build_int_cst (TREE_TYPE (t), 0));
|
|
t = canonicalize_cond_expr_cond (t);
|
|
if (!t)
|
|
return false;
|
|
gimple_cond_set_condition_from_tree (inner_cond, t);
|
|
update_stmt (inner_cond);
|
|
|
|
/* Leave CFG optimization to cfg_cleanup. */
|
|
gimple_cond_set_condition_from_tree (outer_cond,
|
|
outer_inv ? boolean_false_node : boolean_true_node);
|
|
update_stmt (outer_cond);
|
|
update_profile_after_ifcombine (inner_cond_bb, outer_cond_bb);
|
|
|
|
if (dump_file)
|
|
{
|
|
fprintf (dump_file, "optimizing bits or bits test to ");
|
|
print_generic_expr (dump_file, name1);
|
|
fprintf (dump_file, " & T != 0\nwith temporary T = ");
|
|
print_generic_expr (dump_file, bits1);
|
|
fprintf (dump_file, " | ");
|
|
print_generic_expr (dump_file, bits2);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* See if we have two comparisons that we can merge into one. */
|
|
else if (TREE_CODE_CLASS (gimple_cond_code (inner_cond)) == tcc_comparison
|
|
&& TREE_CODE_CLASS (gimple_cond_code (outer_cond)) == tcc_comparison)
|
|
{
|
|
tree t;
|
|
enum tree_code inner_cond_code = gimple_cond_code (inner_cond);
|
|
enum tree_code outer_cond_code = gimple_cond_code (outer_cond);
|
|
|
|
/* Invert comparisons if necessary (and possible). */
|
|
if (inner_inv)
|
|
inner_cond_code = invert_tree_comparison (inner_cond_code,
|
|
HONOR_NANS (gimple_cond_lhs (inner_cond)));
|
|
if (inner_cond_code == ERROR_MARK)
|
|
return false;
|
|
if (outer_inv)
|
|
outer_cond_code = invert_tree_comparison (outer_cond_code,
|
|
HONOR_NANS (gimple_cond_lhs (outer_cond)));
|
|
if (outer_cond_code == ERROR_MARK)
|
|
return false;
|
|
/* Don't return false so fast, try maybe_fold_or_comparisons? */
|
|
|
|
if (!(t = maybe_fold_and_comparisons (inner_cond_code,
|
|
gimple_cond_lhs (inner_cond),
|
|
gimple_cond_rhs (inner_cond),
|
|
outer_cond_code,
|
|
gimple_cond_lhs (outer_cond),
|
|
gimple_cond_rhs (outer_cond))))
|
|
{
|
|
tree t1, t2;
|
|
gimple_stmt_iterator gsi;
|
|
bool logical_op_non_short_circuit = LOGICAL_OP_NON_SHORT_CIRCUIT;
|
|
if (PARAM_VALUE (PARAM_LOGICAL_OP_NON_SHORT_CIRCUIT) != -1)
|
|
logical_op_non_short_circuit
|
|
= PARAM_VALUE (PARAM_LOGICAL_OP_NON_SHORT_CIRCUIT);
|
|
if (!logical_op_non_short_circuit || flag_sanitize_coverage)
|
|
return false;
|
|
/* Only do this optimization if the inner bb contains only the conditional. */
|
|
if (!gsi_one_before_end_p (gsi_start_nondebug_after_labels_bb (inner_cond_bb)))
|
|
return false;
|
|
t1 = fold_build2_loc (gimple_location (inner_cond),
|
|
inner_cond_code,
|
|
boolean_type_node,
|
|
gimple_cond_lhs (inner_cond),
|
|
gimple_cond_rhs (inner_cond));
|
|
t2 = fold_build2_loc (gimple_location (outer_cond),
|
|
outer_cond_code,
|
|
boolean_type_node,
|
|
gimple_cond_lhs (outer_cond),
|
|
gimple_cond_rhs (outer_cond));
|
|
t = fold_build2_loc (gimple_location (inner_cond),
|
|
TRUTH_AND_EXPR, boolean_type_node, t1, t2);
|
|
if (result_inv)
|
|
{
|
|
t = fold_build1 (TRUTH_NOT_EXPR, TREE_TYPE (t), t);
|
|
result_inv = false;
|
|
}
|
|
gsi = gsi_for_stmt (inner_cond);
|
|
t = force_gimple_operand_gsi_1 (&gsi, t, is_gimple_condexpr, NULL, true,
|
|
GSI_SAME_STMT);
|
|
}
|
|
if (result_inv)
|
|
t = fold_build1 (TRUTH_NOT_EXPR, TREE_TYPE (t), t);
|
|
t = canonicalize_cond_expr_cond (t);
|
|
if (!t)
|
|
return false;
|
|
gimple_cond_set_condition_from_tree (inner_cond, t);
|
|
update_stmt (inner_cond);
|
|
|
|
/* Leave CFG optimization to cfg_cleanup. */
|
|
gimple_cond_set_condition_from_tree (outer_cond,
|
|
outer_inv ? boolean_false_node : boolean_true_node);
|
|
update_stmt (outer_cond);
|
|
update_profile_after_ifcombine (inner_cond_bb, outer_cond_bb);
|
|
|
|
if (dump_file)
|
|
{
|
|
fprintf (dump_file, "optimizing two comparisons to ");
|
|
print_generic_expr (dump_file, t);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Helper function for tree_ssa_ifcombine_bb. Recognize a CFG pattern and
|
|
dispatch to the appropriate if-conversion helper for a particular
|
|
set of INNER_COND_BB, OUTER_COND_BB, THEN_BB and ELSE_BB.
|
|
PHI_PRED_BB should be one of INNER_COND_BB, THEN_BB or ELSE_BB. */
|
|
|
|
static bool
|
|
tree_ssa_ifcombine_bb_1 (basic_block inner_cond_bb, basic_block outer_cond_bb,
|
|
basic_block then_bb, basic_block else_bb,
|
|
basic_block phi_pred_bb)
|
|
{
|
|
/* The && form is characterized by a common else_bb with
|
|
the two edges leading to it mergable. The latter is
|
|
guaranteed by matching PHI arguments in the else_bb and
|
|
the inner cond_bb having no side-effects. */
|
|
if (phi_pred_bb != else_bb
|
|
&& recognize_if_then_else (outer_cond_bb, &inner_cond_bb, &else_bb)
|
|
&& same_phi_args_p (outer_cond_bb, phi_pred_bb, else_bb))
|
|
{
|
|
/* We have
|
|
<outer_cond_bb>
|
|
if (q) goto inner_cond_bb; else goto else_bb;
|
|
<inner_cond_bb>
|
|
if (p) goto ...; else goto else_bb;
|
|
...
|
|
<else_bb>
|
|
...
|
|
*/
|
|
return ifcombine_ifandif (inner_cond_bb, false, outer_cond_bb, false,
|
|
false);
|
|
}
|
|
|
|
/* And a version where the outer condition is negated. */
|
|
if (phi_pred_bb != else_bb
|
|
&& recognize_if_then_else (outer_cond_bb, &else_bb, &inner_cond_bb)
|
|
&& same_phi_args_p (outer_cond_bb, phi_pred_bb, else_bb))
|
|
{
|
|
/* We have
|
|
<outer_cond_bb>
|
|
if (q) goto else_bb; else goto inner_cond_bb;
|
|
<inner_cond_bb>
|
|
if (p) goto ...; else goto else_bb;
|
|
...
|
|
<else_bb>
|
|
...
|
|
*/
|
|
return ifcombine_ifandif (inner_cond_bb, false, outer_cond_bb, true,
|
|
false);
|
|
}
|
|
|
|
/* The || form is characterized by a common then_bb with the
|
|
two edges leading to it mergable. The latter is guaranteed
|
|
by matching PHI arguments in the then_bb and the inner cond_bb
|
|
having no side-effects. */
|
|
if (phi_pred_bb != then_bb
|
|
&& recognize_if_then_else (outer_cond_bb, &then_bb, &inner_cond_bb)
|
|
&& same_phi_args_p (outer_cond_bb, phi_pred_bb, then_bb))
|
|
{
|
|
/* We have
|
|
<outer_cond_bb>
|
|
if (q) goto then_bb; else goto inner_cond_bb;
|
|
<inner_cond_bb>
|
|
if (q) goto then_bb; else goto ...;
|
|
<then_bb>
|
|
...
|
|
*/
|
|
return ifcombine_ifandif (inner_cond_bb, true, outer_cond_bb, true,
|
|
true);
|
|
}
|
|
|
|
/* And a version where the outer condition is negated. */
|
|
if (phi_pred_bb != then_bb
|
|
&& recognize_if_then_else (outer_cond_bb, &inner_cond_bb, &then_bb)
|
|
&& same_phi_args_p (outer_cond_bb, phi_pred_bb, then_bb))
|
|
{
|
|
/* We have
|
|
<outer_cond_bb>
|
|
if (q) goto inner_cond_bb; else goto then_bb;
|
|
<inner_cond_bb>
|
|
if (q) goto then_bb; else goto ...;
|
|
<then_bb>
|
|
...
|
|
*/
|
|
return ifcombine_ifandif (inner_cond_bb, true, outer_cond_bb, false,
|
|
true);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Recognize a CFG pattern and dispatch to the appropriate
|
|
if-conversion helper. We start with BB as the innermost
|
|
worker basic-block. Returns true if a transformation was done. */
|
|
|
|
static bool
|
|
tree_ssa_ifcombine_bb (basic_block inner_cond_bb)
|
|
{
|
|
basic_block then_bb = NULL, else_bb = NULL;
|
|
|
|
if (!recognize_if_then_else (inner_cond_bb, &then_bb, &else_bb))
|
|
return false;
|
|
|
|
/* Recognize && and || of two conditions with a common
|
|
then/else block which entry edges we can merge. That is:
|
|
if (a || b)
|
|
;
|
|
and
|
|
if (a && b)
|
|
;
|
|
This requires a single predecessor of the inner cond_bb. */
|
|
if (single_pred_p (inner_cond_bb)
|
|
&& bb_no_side_effects_p (inner_cond_bb))
|
|
{
|
|
basic_block outer_cond_bb = single_pred (inner_cond_bb);
|
|
|
|
if (tree_ssa_ifcombine_bb_1 (inner_cond_bb, outer_cond_bb,
|
|
then_bb, else_bb, inner_cond_bb))
|
|
return true;
|
|
|
|
if (forwarder_block_to (else_bb, then_bb))
|
|
{
|
|
/* Other possibilities for the && form, if else_bb is
|
|
empty forwarder block to then_bb. Compared to the above simpler
|
|
forms this can be treated as if then_bb and else_bb were swapped,
|
|
and the corresponding inner_cond_bb not inverted because of that.
|
|
For same_phi_args_p we look at equality of arguments between
|
|
edge from outer_cond_bb and the forwarder block. */
|
|
if (tree_ssa_ifcombine_bb_1 (inner_cond_bb, outer_cond_bb, else_bb,
|
|
then_bb, else_bb))
|
|
return true;
|
|
}
|
|
else if (forwarder_block_to (then_bb, else_bb))
|
|
{
|
|
/* Other possibilities for the || form, if then_bb is
|
|
empty forwarder block to else_bb. Compared to the above simpler
|
|
forms this can be treated as if then_bb and else_bb were swapped,
|
|
and the corresponding inner_cond_bb not inverted because of that.
|
|
For same_phi_args_p we look at equality of arguments between
|
|
edge from outer_cond_bb and the forwarder block. */
|
|
if (tree_ssa_ifcombine_bb_1 (inner_cond_bb, outer_cond_bb, else_bb,
|
|
then_bb, then_bb))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Main entry for the tree if-conversion pass. */
|
|
|
|
namespace {
|
|
|
|
const pass_data pass_data_tree_ifcombine =
|
|
{
|
|
GIMPLE_PASS, /* type */
|
|
"ifcombine", /* name */
|
|
OPTGROUP_NONE, /* optinfo_flags */
|
|
TV_TREE_IFCOMBINE, /* tv_id */
|
|
( PROP_cfg | PROP_ssa ), /* properties_required */
|
|
0, /* properties_provided */
|
|
0, /* properties_destroyed */
|
|
0, /* todo_flags_start */
|
|
TODO_update_ssa, /* todo_flags_finish */
|
|
};
|
|
|
|
class pass_tree_ifcombine : public gimple_opt_pass
|
|
{
|
|
public:
|
|
pass_tree_ifcombine (gcc::context *ctxt)
|
|
: gimple_opt_pass (pass_data_tree_ifcombine, ctxt)
|
|
{}
|
|
|
|
/* opt_pass methods: */
|
|
virtual unsigned int execute (function *);
|
|
|
|
}; // class pass_tree_ifcombine
|
|
|
|
unsigned int
|
|
pass_tree_ifcombine::execute (function *fun)
|
|
{
|
|
basic_block *bbs;
|
|
bool cfg_changed = false;
|
|
int i;
|
|
|
|
bbs = single_pred_before_succ_order ();
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
|
|
|
/* Search every basic block for COND_EXPR we may be able to optimize.
|
|
|
|
We walk the blocks in order that guarantees that a block with
|
|
a single predecessor is processed after the predecessor.
|
|
This ensures that we collapse outter ifs before visiting the
|
|
inner ones, and also that we do not try to visit a removed
|
|
block. This is opposite of PHI-OPT, because we cascade the
|
|
combining rather than cascading PHIs. */
|
|
for (i = n_basic_blocks_for_fn (fun) - NUM_FIXED_BLOCKS - 1; i >= 0; i--)
|
|
{
|
|
basic_block bb = bbs[i];
|
|
gimple *stmt = last_stmt (bb);
|
|
|
|
if (stmt
|
|
&& gimple_code (stmt) == GIMPLE_COND)
|
|
if (tree_ssa_ifcombine_bb (bb))
|
|
{
|
|
/* Clear range info from all stmts in BB which is now executed
|
|
conditional on a always true/false condition. */
|
|
reset_flow_sensitive_info_in_bb (bb);
|
|
cfg_changed |= true;
|
|
}
|
|
}
|
|
|
|
free (bbs);
|
|
|
|
return cfg_changed ? TODO_cleanup_cfg : 0;
|
|
}
|
|
|
|
} // anon namespace
|
|
|
|
gimple_opt_pass *
|
|
make_pass_tree_ifcombine (gcc::context *ctxt)
|
|
{
|
|
return new pass_tree_ifcombine (ctxt);
|
|
}
|