eadf906f46
* tree-gimple.c: Rename from tree-simple.c. * tree-gimple.h: Rename from tree-simple.h. * c-gimplify.c: Rename from c-simplify.c * Makefile.in, c-decl.c, gimple-low.c, gimplify.c, langhooks.c, tree-alias-ander.c, tree-alias-common.c, tree-complex.c, tree-dfa.c, tree-flow.h, tree-inline.c, tree-into-ssa.c, tree-iterator.c, tree-mudflap.c, tree-nested.c, tree-nomudflap.c, tree-outof-ssa.c, tree-sra.c, tree-ssa-alias.c, tree-ssa-ccp.c, tree-ssa-copyrename.c, tree-ssa-dce.c, tree-ssa-live.c, tree-ssa-pre.c, tree-ssa.c: Update. cp/ChangeLog * cp-gimplify.c: Rename from cp-simplify.c. * Make-lang.in, optimize.c: Update. fortran/ChangeLog * Make-lang.in, f95-lang.c, trans-array.c, trans-decl.c, trans-expr.c, trans-intrinsic.c, trans-io.c, trans-stmt.c, trans.c: Rename tree-simple.[ch] to tree-gimple.[ch]. java/ChangeLog * Make-lang.in, expr.c, java-gimplify.c: Rename tree-simple.[ch] to tree-gimple.[ch]. From-SVN: r81829
914 lines
24 KiB
C
914 lines
24 KiB
C
/* Dead code elimination pass for the GNU compiler.
|
||
Copyright (C) 2002, 2003, 2004 Free Software Foundation, Inc.
|
||
Contributed by Ben Elliston <bje@redhat.com>
|
||
and Andrew MacLeod <amacleod@redhat.com>
|
||
Adapted to use control dependence by Steven Bosscher, SUSE Labs.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it
|
||
under the terms of the GNU General Public License as published by the
|
||
Free Software Foundation; either version 2, or (at your option) any
|
||
later version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT
|
||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
|
||
02111-1307, USA. */
|
||
|
||
/* Dead code elimination.
|
||
|
||
References:
|
||
|
||
Building an Optimizing Compiler,
|
||
Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
|
||
|
||
Advanced Compiler Design and Implementation,
|
||
Steven Muchnick, Morgan Kaufmann, 1997, Section 18.10.
|
||
|
||
Dead-code elimination is the removal of statements which have no
|
||
impact on the program's output. "Dead statements" have no impact
|
||
on the program's output, while "necessary statements" may have
|
||
impact on the output.
|
||
|
||
The algorithm consists of three phases:
|
||
1. Marking as necessary all statements known to be necessary,
|
||
e.g. most function calls, writing a value to memory, etc;
|
||
2. Propagating necessary statements, e.g., the statements
|
||
giving values to operands in necessary statements; and
|
||
3. Removing dead statements. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "errors.h"
|
||
#include "ggc.h"
|
||
|
||
/* These RTL headers are needed for basic-block.h. */
|
||
#include "rtl.h"
|
||
#include "tm_p.h"
|
||
#include "hard-reg-set.h"
|
||
#include "basic-block.h"
|
||
|
||
#include "tree.h"
|
||
#include "diagnostic.h"
|
||
#include "tree-flow.h"
|
||
#include "tree-gimple.h"
|
||
#include "tree-dump.h"
|
||
#include "tree-pass.h"
|
||
#include "timevar.h"
|
||
#include "flags.h"
|
||
|
||
static struct stmt_stats
|
||
{
|
||
int total;
|
||
int total_phis;
|
||
int removed;
|
||
int removed_phis;
|
||
} stats;
|
||
|
||
static varray_type worklist;
|
||
|
||
/* Vector indicating an SSA name has already been processed and marked
|
||
as necessary. */
|
||
static sbitmap processed;
|
||
|
||
/* Vector indicating that last_stmt if a basic block has already been
|
||
marked as necessary. */
|
||
static sbitmap last_stmt_necessary;
|
||
|
||
/* Before we can determine whether a control branch is dead, we need to
|
||
compute which blocks are control dependent on which edges.
|
||
|
||
We expect each block to be control dependent on very few edges so we
|
||
use a bitmap for each block recording its edges. An array holds the
|
||
bitmap. The Ith bit in the bitmap is set if that block is dependent
|
||
on the Ith edge. */
|
||
bitmap *control_dependence_map;
|
||
|
||
/* Execute CODE for each edge (given number EDGE_NUMBER within the CODE)
|
||
for which the block with index N is control dependent. */
|
||
#define EXECUTE_IF_CONTROL_DEPENDENT(N, EDGE_NUMBER, CODE) \
|
||
EXECUTE_IF_SET_IN_BITMAP (control_dependence_map[N], 0, EDGE_NUMBER, CODE)
|
||
|
||
/* Local function prototypes. */
|
||
static inline void set_control_dependence_map_bit (basic_block, int);
|
||
static inline void clear_control_dependence_bitmap (basic_block);
|
||
static void find_all_control_dependences (struct edge_list *);
|
||
static void find_control_dependence (struct edge_list *, int);
|
||
static inline basic_block find_pdom (basic_block);
|
||
|
||
static inline void mark_stmt_necessary (tree, bool);
|
||
static inline void mark_operand_necessary (tree);
|
||
|
||
static bool need_to_preserve_store (tree);
|
||
static void mark_stmt_if_obviously_necessary (tree, bool);
|
||
static void find_obviously_necessary_stmts (struct edge_list *);
|
||
|
||
static void mark_control_dependent_edges_necessary (basic_block, struct edge_list *);
|
||
static void propagate_necessity (struct edge_list *);
|
||
|
||
static void eliminate_unnecessary_stmts (void);
|
||
static void remove_dead_phis (basic_block);
|
||
static void remove_dead_stmt (block_stmt_iterator *, basic_block);
|
||
|
||
static void print_stats (void);
|
||
static void tree_dce_init (bool);
|
||
static void tree_dce_done (bool);
|
||
|
||
/* Indicate block BB is control dependent on an edge with index EDGE_INDEX. */
|
||
static inline void
|
||
set_control_dependence_map_bit (basic_block bb, int edge_index)
|
||
{
|
||
if (bb == ENTRY_BLOCK_PTR)
|
||
return;
|
||
if (bb == EXIT_BLOCK_PTR)
|
||
abort ();
|
||
bitmap_set_bit (control_dependence_map[bb->index], edge_index);
|
||
}
|
||
|
||
/* Clear all control dependences for block BB. */
|
||
static inline
|
||
void clear_control_dependence_bitmap (basic_block bb)
|
||
{
|
||
bitmap_clear (control_dependence_map[bb->index]);
|
||
}
|
||
|
||
/* Record all blocks' control dependences on all edges in the edge
|
||
list EL, ala Morgan, Section 3.6. */
|
||
|
||
static void
|
||
find_all_control_dependences (struct edge_list *el)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < NUM_EDGES (el); ++i)
|
||
find_control_dependence (el, i);
|
||
}
|
||
|
||
/* Determine all blocks' control dependences on the given edge with edge_list
|
||
EL index EDGE_INDEX, ala Morgan, Section 3.6. */
|
||
|
||
static void
|
||
find_control_dependence (struct edge_list *el, int edge_index)
|
||
{
|
||
basic_block current_block;
|
||
basic_block ending_block;
|
||
|
||
#ifdef ENABLE_CHECKING
|
||
if (INDEX_EDGE_PRED_BB (el, edge_index) == EXIT_BLOCK_PTR)
|
||
abort ();
|
||
#endif
|
||
|
||
if (INDEX_EDGE_PRED_BB (el, edge_index) == ENTRY_BLOCK_PTR)
|
||
ending_block = ENTRY_BLOCK_PTR->next_bb;
|
||
else
|
||
ending_block = find_pdom (INDEX_EDGE_PRED_BB (el, edge_index));
|
||
|
||
for (current_block = INDEX_EDGE_SUCC_BB (el, edge_index);
|
||
current_block != ending_block && current_block != EXIT_BLOCK_PTR;
|
||
current_block = find_pdom (current_block))
|
||
{
|
||
edge e = INDEX_EDGE (el, edge_index);
|
||
|
||
/* For abnormal edges, we don't make current_block control
|
||
dependent because instructions that throw are always necessary
|
||
anyway. */
|
||
if (e->flags & EDGE_ABNORMAL)
|
||
continue;
|
||
|
||
set_control_dependence_map_bit (current_block, edge_index);
|
||
}
|
||
}
|
||
|
||
/* Find the immediate postdominator PDOM of the specified basic block BLOCK.
|
||
This function is necessary because some blocks have negative numbers. */
|
||
|
||
static inline basic_block
|
||
find_pdom (basic_block block)
|
||
{
|
||
if (block == ENTRY_BLOCK_PTR)
|
||
abort ();
|
||
else if (block == EXIT_BLOCK_PTR)
|
||
return EXIT_BLOCK_PTR;
|
||
else
|
||
{
|
||
basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
|
||
if (! bb)
|
||
return EXIT_BLOCK_PTR;
|
||
return bb;
|
||
}
|
||
}
|
||
|
||
#define NECESSARY(stmt) stmt->common.asm_written_flag
|
||
|
||
/* If STMT is not already marked necessary, mark it, and add it to the
|
||
worklist if ADD_TO_WORKLIST is true. */
|
||
static inline void
|
||
mark_stmt_necessary (tree stmt, bool add_to_worklist)
|
||
{
|
||
#ifdef ENABLE_CHECKING
|
||
if (stmt == NULL
|
||
|| stmt == error_mark_node
|
||
|| (stmt && DECL_P (stmt)))
|
||
abort ();
|
||
#endif
|
||
|
||
if (NECESSARY (stmt))
|
||
return;
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, "Marking useful stmt: ");
|
||
print_generic_stmt (dump_file, stmt, TDF_SLIM);
|
||
fprintf (dump_file, "\n");
|
||
}
|
||
|
||
NECESSARY (stmt) = 1;
|
||
if (add_to_worklist)
|
||
VARRAY_PUSH_TREE (worklist, stmt);
|
||
}
|
||
|
||
/* Mark the statement defining operand OP as necessary. */
|
||
|
||
static inline void
|
||
mark_operand_necessary (tree op)
|
||
{
|
||
tree stmt;
|
||
int ver;
|
||
|
||
#ifdef ENABLE_CHECKING
|
||
if (op == NULL)
|
||
abort ();
|
||
#endif
|
||
|
||
ver = SSA_NAME_VERSION (op);
|
||
if (TEST_BIT (processed, ver))
|
||
return;
|
||
SET_BIT (processed, ver);
|
||
|
||
stmt = SSA_NAME_DEF_STMT (op);
|
||
#ifdef ENABLE_CHECKING
|
||
if (stmt == NULL)
|
||
abort ();
|
||
#endif
|
||
|
||
if (NECESSARY (stmt)
|
||
|| IS_EMPTY_STMT (stmt))
|
||
return;
|
||
|
||
NECESSARY (stmt) = 1;
|
||
VARRAY_PUSH_TREE (worklist, stmt);
|
||
}
|
||
|
||
/* Return true if a store to a variable needs to be preserved. */
|
||
|
||
static inline bool
|
||
need_to_preserve_store (tree ssa_name)
|
||
{
|
||
return (needs_to_live_in_memory (SSA_NAME_VAR (ssa_name)));
|
||
}
|
||
|
||
|
||
/* Mark STMT as necessary if it is obviously is. Add it to the worklist if
|
||
it can make other statements necessary.
|
||
|
||
If AGGRESSIVE is false, control statements are conservatively marked as
|
||
necessary. */
|
||
|
||
static void
|
||
mark_stmt_if_obviously_necessary (tree stmt, bool aggressive)
|
||
{
|
||
def_optype defs;
|
||
vdef_optype vdefs;
|
||
stmt_ann_t ann;
|
||
size_t i;
|
||
|
||
/* Statements that are implicitly live. Most function calls, asm and return
|
||
statements are required. Labels and BIND_EXPR nodes are kept because
|
||
they are control flow, and we have no way of knowing whether they can be
|
||
removed. DCE can eliminate all the other statements in a block, and CFG
|
||
can then remove the block and labels. */
|
||
switch (TREE_CODE (stmt))
|
||
{
|
||
case BIND_EXPR:
|
||
case LABEL_EXPR:
|
||
case CASE_LABEL_EXPR:
|
||
mark_stmt_necessary (stmt, false);
|
||
return;
|
||
|
||
case ASM_EXPR:
|
||
case RESX_EXPR:
|
||
case RETURN_EXPR:
|
||
mark_stmt_necessary (stmt, true);
|
||
return;
|
||
|
||
case CALL_EXPR:
|
||
/* Most, but not all function calls are required. Function calls that
|
||
produce no result and have no side effects (i.e. const pure
|
||
functions) are unnecessary. */
|
||
if (TREE_SIDE_EFFECTS (stmt))
|
||
mark_stmt_necessary (stmt, true);
|
||
return;
|
||
|
||
case MODIFY_EXPR:
|
||
if (TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR
|
||
&& TREE_SIDE_EFFECTS (TREE_OPERAND (stmt, 1)))
|
||
{
|
||
mark_stmt_necessary (stmt, true);
|
||
return;
|
||
}
|
||
|
||
/* These values are mildly magic bits of the EH runtime. We can't
|
||
see the entire lifetime of these values until landing pads are
|
||
generated. */
|
||
if (TREE_CODE (TREE_OPERAND (stmt, 0)) == EXC_PTR_EXPR
|
||
|| TREE_CODE (TREE_OPERAND (stmt, 0)) == FILTER_EXPR)
|
||
{
|
||
mark_stmt_necessary (stmt, true);
|
||
return;
|
||
}
|
||
break;
|
||
|
||
case GOTO_EXPR:
|
||
if (! simple_goto_p (stmt))
|
||
mark_stmt_necessary (stmt, true);
|
||
return;
|
||
|
||
case COND_EXPR:
|
||
if (GOTO_DESTINATION (COND_EXPR_THEN (stmt))
|
||
== GOTO_DESTINATION (COND_EXPR_ELSE (stmt)))
|
||
{
|
||
/* A COND_EXPR is obviously dead if the target labels are the same.
|
||
We cannot kill the statement at this point, so to prevent the
|
||
statement from being marked necessary, we replace the condition
|
||
with a constant. The stmt is killed later on in cfg_cleanup. */
|
||
COND_EXPR_COND (stmt) = integer_zero_node;
|
||
modify_stmt (stmt);
|
||
return;
|
||
}
|
||
/* Fall through. */
|
||
|
||
case SWITCH_EXPR:
|
||
if (! aggressive)
|
||
mark_stmt_necessary (stmt, true);
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
ann = stmt_ann (stmt);
|
||
/* If the statement has volatile operands, it needs to be preserved. Same
|
||
for statements that can alter control flow in unpredictable ways. */
|
||
if (ann->has_volatile_ops
|
||
|| is_ctrl_altering_stmt (stmt))
|
||
{
|
||
mark_stmt_necessary (stmt, true);
|
||
return;
|
||
}
|
||
|
||
get_stmt_operands (stmt);
|
||
|
||
defs = DEF_OPS (ann);
|
||
for (i = 0; i < NUM_DEFS (defs); i++)
|
||
{
|
||
tree def = DEF_OP (defs, i);
|
||
if (need_to_preserve_store (def))
|
||
{
|
||
mark_stmt_necessary (stmt, true);
|
||
return;
|
||
}
|
||
}
|
||
|
||
vdefs = VDEF_OPS (ann);
|
||
for (i = 0; i < NUM_VDEFS (vdefs); i++)
|
||
{
|
||
tree vdef = VDEF_RESULT (vdefs, i);
|
||
if (need_to_preserve_store (vdef))
|
||
{
|
||
mark_stmt_necessary (stmt, true);
|
||
return;
|
||
}
|
||
}
|
||
|
||
return;
|
||
}
|
||
|
||
/* Find obviously necessary statements. These are things like most function
|
||
calls, and stores to file level variables.
|
||
|
||
If EL is NULL, control statements are conservatively marked as
|
||
necessary. Otherwise it contains the list of edges used by control
|
||
dependence analysis. */
|
||
|
||
static void
|
||
find_obviously_necessary_stmts (struct edge_list *el)
|
||
{
|
||
basic_block bb;
|
||
block_stmt_iterator i;
|
||
edge e;
|
||
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
tree phi;
|
||
|
||
/* Check any PHI nodes in the block. */
|
||
for (phi = phi_nodes (bb); phi; phi = TREE_CHAIN (phi))
|
||
{
|
||
NECESSARY (phi) = 0;
|
||
|
||
/* PHIs for virtual variables do not directly affect code
|
||
generation and need not be considered inherently necessary
|
||
regardless of the bits set in their decl.
|
||
|
||
Thus, we only need to mark PHIs for real variables which
|
||
need their result preserved as being inherently necessary. */
|
||
if (is_gimple_reg (PHI_RESULT (phi))
|
||
&& need_to_preserve_store (PHI_RESULT (phi)))
|
||
mark_stmt_necessary (phi, true);
|
||
}
|
||
|
||
/* Check all statements in the block. */
|
||
for (i = bsi_start (bb); ! bsi_end_p (i); bsi_next (&i))
|
||
{
|
||
tree stmt = bsi_stmt (i);
|
||
NECESSARY (stmt) = 0;
|
||
mark_stmt_if_obviously_necessary (stmt, el != NULL);
|
||
}
|
||
|
||
/* Mark this basic block as `not visited'. A block will be marked
|
||
visited when the edges that it is control dependent on have been
|
||
marked. */
|
||
bb->flags &= ~BB_VISITED;
|
||
}
|
||
|
||
if (el)
|
||
{
|
||
/* Prevent the loops from being removed. We must keep the infinite loops,
|
||
and we currently do not have a means to recognize the finite ones. */
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
for (e = bb->succ; e; e = e->succ_next)
|
||
if (e->flags & EDGE_DFS_BACK)
|
||
mark_control_dependent_edges_necessary (e->dest, el);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Make corresponding control dependent edges necessary. We only
|
||
have to do this once for each basic block, so we clear the bitmap
|
||
after we're done. */
|
||
static void
|
||
mark_control_dependent_edges_necessary (basic_block bb, struct edge_list *el)
|
||
{
|
||
int edge_number;
|
||
|
||
EXECUTE_IF_CONTROL_DEPENDENT (bb->index, edge_number,
|
||
{
|
||
tree t;
|
||
basic_block cd_bb = INDEX_EDGE_PRED_BB (el, edge_number);
|
||
|
||
if (TEST_BIT (last_stmt_necessary, cd_bb->index))
|
||
continue;
|
||
SET_BIT (last_stmt_necessary, cd_bb->index);
|
||
|
||
t = last_stmt (cd_bb);
|
||
if (is_ctrl_stmt (t))
|
||
mark_stmt_necessary (t, true);
|
||
});
|
||
}
|
||
|
||
/* Propagate necessity using the operands of necessary statements. Process
|
||
the uses on each statement in the worklist, and add all feeding statements
|
||
which contribute to the calculation of this value to the worklist.
|
||
|
||
In conservative mode, EL is NULL. */
|
||
|
||
static void
|
||
propagate_necessity (struct edge_list *el)
|
||
{
|
||
tree i;
|
||
bool aggressive = (el ? true : false);
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "\nProcessing worklist:\n");
|
||
|
||
while (VARRAY_ACTIVE_SIZE (worklist) > 0)
|
||
{
|
||
/* Take `i' from worklist. */
|
||
i = VARRAY_TOP_TREE (worklist);
|
||
VARRAY_POP (worklist);
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, "processing: ");
|
||
print_generic_stmt (dump_file, i, TDF_SLIM);
|
||
fprintf (dump_file, "\n");
|
||
}
|
||
|
||
if (aggressive)
|
||
{
|
||
/* Mark the last statements of the basic blocks that the block
|
||
containing `i' is control dependent on, but only if we haven't
|
||
already done so. */
|
||
basic_block bb = bb_for_stmt (i);
|
||
if (! (bb->flags & BB_VISITED))
|
||
{
|
||
bb->flags |= BB_VISITED;
|
||
mark_control_dependent_edges_necessary (bb, el);
|
||
}
|
||
}
|
||
|
||
if (TREE_CODE (i) == PHI_NODE)
|
||
{
|
||
/* PHI nodes are somewhat special in that each PHI alternative has
|
||
data and control dependencies. All the statements feeding the
|
||
PHI node's arguments are always necessary. In aggressive mode,
|
||
we also consider the control dependent edges leading to the
|
||
predecessor block associated with each PHI alternative as
|
||
necessary. */
|
||
int k;
|
||
for (k = 0; k < PHI_NUM_ARGS (i); k++)
|
||
{
|
||
tree arg = PHI_ARG_DEF (i, k);
|
||
if (TREE_CODE (arg) == SSA_NAME)
|
||
mark_operand_necessary (arg);
|
||
}
|
||
|
||
if (aggressive)
|
||
{
|
||
for (k = 0; k < PHI_NUM_ARGS (i); k++)
|
||
{
|
||
basic_block arg_bb = PHI_ARG_EDGE (i, k)->src;
|
||
if (! (arg_bb->flags & BB_VISITED))
|
||
{
|
||
arg_bb->flags |= BB_VISITED;
|
||
mark_control_dependent_edges_necessary (arg_bb, el);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Propagate through the operands. Examine all the USE, VUSE and
|
||
VDEF operands in this statement. Mark all the statements which
|
||
feed this statement's uses as necessary. */
|
||
vuse_optype vuses;
|
||
vdef_optype vdefs;
|
||
use_optype uses;
|
||
stmt_ann_t ann;
|
||
size_t k;
|
||
|
||
get_stmt_operands (i);
|
||
ann = stmt_ann (i);
|
||
|
||
uses = USE_OPS (ann);
|
||
for (k = 0; k < NUM_USES (uses); k++)
|
||
mark_operand_necessary (USE_OP (uses, k));
|
||
|
||
vuses = VUSE_OPS (ann);
|
||
for (k = 0; k < NUM_VUSES (vuses); k++)
|
||
mark_operand_necessary (VUSE_OP (vuses, k));
|
||
|
||
/* The operands of VDEF expressions are also needed as they
|
||
represent potential definitions that may reach this
|
||
statement (VDEF operands allow us to follow def-def links). */
|
||
vdefs = VDEF_OPS (ann);
|
||
for (k = 0; k < NUM_VDEFS (vdefs); k++)
|
||
mark_operand_necessary (VDEF_OP (vdefs, k));
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Eliminate unnecessary statements. Any instruction not marked as necessary
|
||
contributes nothing to the program, and can be deleted. */
|
||
|
||
static void
|
||
eliminate_unnecessary_stmts (void)
|
||
{
|
||
basic_block bb;
|
||
block_stmt_iterator i;
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "\nEliminating unnecessary statements:\n");
|
||
|
||
clear_special_calls ();
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
/* Remove dead PHI nodes. */
|
||
remove_dead_phis (bb);
|
||
|
||
/* Remove dead statements. */
|
||
for (i = bsi_start (bb); ! bsi_end_p (i) ; )
|
||
{
|
||
tree t = bsi_stmt (i);
|
||
|
||
stats.total++;
|
||
|
||
/* If `i' is not necessary then remove it. */
|
||
if (! NECESSARY (t))
|
||
remove_dead_stmt (&i, bb);
|
||
else
|
||
{
|
||
if (TREE_CODE (t) == CALL_EXPR)
|
||
notice_special_calls (t);
|
||
else if (TREE_CODE (t) == MODIFY_EXPR
|
||
&& TREE_CODE (TREE_OPERAND (t, 1)) == CALL_EXPR)
|
||
notice_special_calls (TREE_OPERAND (t, 1));
|
||
bsi_next (&i);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Remove dead PHI nodes from block BB. */
|
||
|
||
static void
|
||
remove_dead_phis (basic_block bb)
|
||
{
|
||
tree prev, phi;
|
||
|
||
prev = NULL_TREE;
|
||
phi = phi_nodes (bb);
|
||
while (phi)
|
||
{
|
||
stats.total_phis++;
|
||
|
||
if (! NECESSARY (phi))
|
||
{
|
||
tree next = TREE_CHAIN (phi);
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, "Deleting : ");
|
||
print_generic_stmt (dump_file, phi, TDF_SLIM);
|
||
fprintf (dump_file, "\n");
|
||
}
|
||
|
||
remove_phi_node (phi, prev, bb);
|
||
stats.removed_phis++;
|
||
phi = next;
|
||
}
|
||
else
|
||
{
|
||
prev = phi;
|
||
phi = TREE_CHAIN (phi);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Remove dead statement pointed by iterator I. Receives the basic block BB
|
||
containing I so that we don't have to look it up. */
|
||
|
||
static void
|
||
remove_dead_stmt (block_stmt_iterator *i, basic_block bb)
|
||
{
|
||
tree t = bsi_stmt (*i);
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, "Deleting : ");
|
||
print_generic_stmt (dump_file, t, TDF_SLIM);
|
||
fprintf (dump_file, "\n");
|
||
}
|
||
|
||
stats.removed++;
|
||
|
||
/* If we have determined that a conditional branch statement contributes
|
||
nothing to the program, then we not only remove it, but we also change
|
||
the flow graph so that the current block will simply fall-thru to its
|
||
immediate post-dominator. The blocks we are circumventing will be
|
||
removed by cleaup_cfg if this change in the flow graph makes them
|
||
unreachable. */
|
||
if (is_ctrl_stmt (t))
|
||
{
|
||
basic_block post_dom_bb;
|
||
edge e;
|
||
#ifdef ENABLE_CHECKING
|
||
/* The post dominance info has to be up-to-date. */
|
||
if (dom_computed[CDI_POST_DOMINATORS] != DOM_OK)
|
||
abort ();
|
||
#endif
|
||
/* Get the immediate post dominator of bb. */
|
||
post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
|
||
/* Some blocks don't have an immediate post dominator. This can happen
|
||
for example with infinite loops. Removing an infinite loop is an
|
||
inappropriate transformation anyway... */
|
||
if (! post_dom_bb)
|
||
{
|
||
bsi_next (i);
|
||
return;
|
||
}
|
||
|
||
/* Redirect the first edge out of BB to reach POST_DOM_BB. */
|
||
redirect_edge_and_branch (bb->succ, post_dom_bb);
|
||
PENDING_STMT (bb->succ) = NULL;
|
||
|
||
/* The edge is no longer associated with a conditional, so it does
|
||
not have TRUE/FALSE flags. */
|
||
bb->succ->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
|
||
|
||
/* If the edge reaches any block other than the exit, then it is a
|
||
fallthru edge; if it reaches the exit, then it is not a fallthru
|
||
edge. */
|
||
if (post_dom_bb != EXIT_BLOCK_PTR)
|
||
bb->succ->flags |= EDGE_FALLTHRU;
|
||
else
|
||
bb->succ->flags &= ~EDGE_FALLTHRU;
|
||
|
||
/* Remove the remaining the outgoing edges. */
|
||
for (e = bb->succ->succ_next; e != NULL;)
|
||
{
|
||
edge tmp = e;
|
||
e = e->succ_next;
|
||
remove_edge (tmp);
|
||
}
|
||
}
|
||
|
||
bsi_remove (i);
|
||
}
|
||
|
||
/* Print out removed statement statistics. */
|
||
|
||
static void
|
||
print_stats (void)
|
||
{
|
||
if (dump_file && (dump_flags & (TDF_STATS|TDF_DETAILS)))
|
||
{
|
||
float percg;
|
||
|
||
percg = ((float) stats.removed / (float) stats.total) * 100;
|
||
fprintf (dump_file, "Removed %d of %d statements (%d%%)\n",
|
||
stats.removed, stats.total, (int) percg);
|
||
|
||
if (stats.total_phis == 0)
|
||
percg = 0;
|
||
else
|
||
percg = ((float) stats.removed_phis / (float) stats.total_phis) * 100;
|
||
|
||
fprintf (dump_file, "Removed %d of %d PHI nodes (%d%%)\n",
|
||
stats.removed_phis, stats.total_phis, (int) percg);
|
||
}
|
||
}
|
||
|
||
/* Initialization for this pass. Set up the used data structures. */
|
||
|
||
static void
|
||
tree_dce_init (bool aggressive)
|
||
{
|
||
memset ((void *) &stats, 0, sizeof (stats));
|
||
|
||
if (aggressive)
|
||
{
|
||
int i;
|
||
|
||
control_dependence_map
|
||
= xmalloc (last_basic_block * sizeof (bitmap));
|
||
for (i = 0; i < last_basic_block; ++i)
|
||
control_dependence_map[i] = BITMAP_XMALLOC ();
|
||
|
||
last_stmt_necessary = sbitmap_alloc (last_basic_block);
|
||
sbitmap_zero (last_stmt_necessary);
|
||
}
|
||
|
||
processed = sbitmap_alloc (highest_ssa_version + 1);
|
||
sbitmap_zero (processed);
|
||
|
||
VARRAY_TREE_INIT (worklist, 64, "work list");
|
||
}
|
||
|
||
/* Cleanup after this pass. */
|
||
|
||
static void
|
||
tree_dce_done (bool aggressive)
|
||
{
|
||
if (aggressive)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < last_basic_block; ++i)
|
||
BITMAP_XFREE (control_dependence_map[i]);
|
||
free (control_dependence_map);
|
||
|
||
sbitmap_free (last_stmt_necessary);
|
||
}
|
||
|
||
sbitmap_free (processed);
|
||
}
|
||
|
||
/* Main routine to eliminate dead code.
|
||
|
||
AGGRESSIVE controls the aggressiveness of the algorithm.
|
||
In conservative mode, we ignore control dependence and simply declare
|
||
all but the most trivially dead branches necessary. This mode is fast.
|
||
In aggressive mode, control dependences are taken into account, which
|
||
results in more dead code elimination, but at the cost of some time.
|
||
|
||
FIXME: Aggressive mode before PRE doesn't work currently because
|
||
the dominance info is not invalidated after DCE1. This is
|
||
not an issue right now because we only run aggressive DCE
|
||
as the last tree SSA pass, but keep this in mind when you
|
||
start experimenting with pass ordering. */
|
||
|
||
static void
|
||
perform_tree_ssa_dce (bool aggressive)
|
||
{
|
||
struct edge_list *el = NULL;
|
||
|
||
tree_dce_init (aggressive);
|
||
|
||
if (aggressive)
|
||
{
|
||
/* Compute control dependence. */
|
||
timevar_push (TV_CONTROL_DEPENDENCES);
|
||
calculate_dominance_info (CDI_POST_DOMINATORS);
|
||
el = create_edge_list ();
|
||
find_all_control_dependences (el);
|
||
timevar_pop (TV_CONTROL_DEPENDENCES);
|
||
|
||
mark_dfs_back_edges ();
|
||
}
|
||
|
||
find_obviously_necessary_stmts (el);
|
||
|
||
propagate_necessity (el);
|
||
|
||
eliminate_unnecessary_stmts ();
|
||
|
||
if (aggressive)
|
||
free_dominance_info (CDI_POST_DOMINATORS);
|
||
|
||
cleanup_tree_cfg ();
|
||
|
||
/* Debugging dumps. */
|
||
if (dump_file)
|
||
{
|
||
dump_function_to_file (current_function_decl, dump_file, dump_flags);
|
||
print_stats ();
|
||
}
|
||
|
||
tree_dce_done (aggressive);
|
||
|
||
free_edge_list (el);
|
||
}
|
||
|
||
/* Pass entry points. */
|
||
static void
|
||
tree_ssa_dce (void)
|
||
{
|
||
perform_tree_ssa_dce (/*aggressive=*/false);
|
||
}
|
||
|
||
static void
|
||
tree_ssa_cd_dce (void)
|
||
{
|
||
perform_tree_ssa_dce (/*aggressive=*/optimize >= 2);
|
||
}
|
||
|
||
static bool
|
||
gate_dce (void)
|
||
{
|
||
return flag_tree_dce != 0;
|
||
}
|
||
|
||
struct tree_opt_pass pass_dce =
|
||
{
|
||
"dce", /* name */
|
||
gate_dce, /* gate */
|
||
tree_ssa_dce, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
TV_TREE_DCE, /* tv_id */
|
||
PROP_cfg | PROP_ssa, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
|
||
};
|
||
|
||
struct tree_opt_pass pass_cd_dce =
|
||
{
|
||
"cddce", /* name */
|
||
gate_dce, /* gate */
|
||
tree_ssa_cd_dce, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
TV_TREE_CD_DCE, /* tv_id */
|
||
PROP_cfg | PROP_ssa, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
TODO_ggc_collect | TODO_verify_ssa | TODO_verify_flow
|
||
/* todo_flags_finish */
|
||
};
|
||
|