7e5aeda340
The NetBSD libc provides an architecture-independent macro that can extract the PC from a ucontext struct. Reviewed-on: https://go-review.googlesource.com/c/gofrontend/+/261740
379 lines
12 KiB
C
379 lines
12 KiB
C
/* go-signal.c -- signal handling for Go.
|
|
|
|
Copyright 2009 The Go Authors. All rights reserved.
|
|
Use of this source code is governed by a BSD-style
|
|
license that can be found in the LICENSE file. */
|
|
|
|
#include <signal.h>
|
|
#include <stdlib.h>
|
|
#include <unistd.h>
|
|
#include <sys/time.h>
|
|
#include <ucontext.h>
|
|
|
|
#include "runtime.h"
|
|
|
|
#ifndef SA_RESTART
|
|
#define SA_RESTART 0
|
|
#endif
|
|
|
|
#ifdef USING_SPLIT_STACK
|
|
|
|
extern void __splitstack_getcontext(void *context[10]);
|
|
|
|
extern void __splitstack_setcontext(void *context[10]);
|
|
|
|
extern void *__splitstack_find_context(void *context[10], size_t *,
|
|
void **, void **, void **);
|
|
|
|
#endif
|
|
|
|
// The rest of the signal handler, written in Go.
|
|
|
|
extern void sigtrampgo(uint32, siginfo_t *, void *)
|
|
__asm__(GOSYM_PREFIX "runtime.sigtrampgo");
|
|
|
|
// The Go signal handler, written in C. This should be running on the
|
|
// alternate signal stack. This is responsible for setting up the
|
|
// split stack context so that stack guard checks will work as
|
|
// expected.
|
|
|
|
void sigtramp(int, siginfo_t *, void *)
|
|
__attribute__ ((no_split_stack));
|
|
|
|
void sigtramp(int, siginfo_t *, void *)
|
|
__asm__ (GOSYM_PREFIX "runtime.sigtramp");
|
|
|
|
#ifndef USING_SPLIT_STACK
|
|
|
|
// When not using split stacks, there are no stack checks, and there
|
|
// is nothing special for this function to do.
|
|
|
|
void
|
|
sigtramp(int sig, siginfo_t *info, void *context)
|
|
{
|
|
sigtrampgo(sig, info, context);
|
|
}
|
|
|
|
#else // USING_SPLIT_STACK
|
|
|
|
void
|
|
sigtramp(int sig, siginfo_t *info, void *context)
|
|
{
|
|
G *gp;
|
|
void *stack_context[10];
|
|
void *stack;
|
|
size_t stack_size;
|
|
void *next_segment;
|
|
void *next_sp;
|
|
void *initial_sp;
|
|
uintptr sp;
|
|
stack_t st;
|
|
uintptr stsp;
|
|
|
|
gp = runtime_g();
|
|
|
|
if (gp == nil) {
|
|
// Let the Go code handle this case.
|
|
// It should only call nosplit functions in this case.
|
|
sigtrampgo(sig, info, context);
|
|
return;
|
|
}
|
|
|
|
// If this signal is one for which we will panic, we are not
|
|
// on the alternate signal stack. It's OK to call split-stack
|
|
// functions here.
|
|
if (sig == SIGBUS || sig == SIGFPE || sig == SIGSEGV) {
|
|
sigtrampgo(sig, info, context);
|
|
return;
|
|
}
|
|
|
|
// We are running on the alternate signal stack.
|
|
|
|
__splitstack_getcontext(&stack_context[0]);
|
|
|
|
stack = __splitstack_find_context((void*)(&gp->m->gsignal->stackcontext[0]),
|
|
&stack_size, &next_segment,
|
|
&next_sp, &initial_sp);
|
|
|
|
// If some non-Go code called sigaltstack, adjust.
|
|
sp = (uintptr)(&stack_size);
|
|
if (sp < (uintptr)(stack) || sp >= (uintptr)(stack) + stack_size) {
|
|
sigaltstack(nil, &st);
|
|
if ((st.ss_flags & SS_DISABLE) != 0) {
|
|
runtime_printf("signal %d received on thread with no signal stack\n", (int32)(sig));
|
|
runtime_throw("non-Go code disabled sigaltstack");
|
|
}
|
|
|
|
stsp = (uintptr)(st.ss_sp);
|
|
if (sp < stsp || sp >= stsp + st.ss_size) {
|
|
runtime_printf("signal %d received but handler not on signal stack\n", (int32)(sig));
|
|
runtime_throw("non-Go code set up signal handler without SA_ONSTACK flag");
|
|
}
|
|
|
|
// Unfortunately __splitstack_find_context will return NULL
|
|
// when it is called on a context that has never been used.
|
|
// There isn't much we can do but assume all is well.
|
|
if (stack != NULL) {
|
|
// Here the gc runtime adjusts the gsignal
|
|
// stack guard to match the values returned by
|
|
// sigaltstack. Unfortunately we have no way
|
|
// to do that.
|
|
runtime_printf("signal %d received on unknown signal stack\n", (int32)(sig));
|
|
runtime_throw("non-Go code changed signal stack");
|
|
}
|
|
}
|
|
|
|
// Set the split stack context so that the stack guards are
|
|
// checked correctly.
|
|
|
|
__splitstack_setcontext((void*)(&gp->m->gsignal->stackcontext[0]));
|
|
|
|
sigtrampgo(sig, info, context);
|
|
|
|
// We are going to return back to the signal trampoline and
|
|
// then to whatever we were doing before we got the signal.
|
|
// Restore the split stack context so that stack guards are
|
|
// checked correctly.
|
|
|
|
__splitstack_setcontext(&stack_context[0]);
|
|
}
|
|
|
|
#endif // USING_SPLIT_STACK
|
|
|
|
// C function to return the address of the sigtramp function.
|
|
uintptr getSigtramp(void) __asm__ (GOSYM_PREFIX "runtime.getSigtramp");
|
|
|
|
uintptr
|
|
getSigtramp()
|
|
{
|
|
return (uintptr)(void*)sigtramp;
|
|
}
|
|
|
|
// C code to manage the sigaction sa_sigaction field, which is
|
|
// typically a union and so hard for mksysinfo.sh to handle.
|
|
|
|
uintptr getSigactionHandler(struct sigaction*)
|
|
__attribute__ ((no_split_stack));
|
|
|
|
uintptr getSigactionHandler(struct sigaction*)
|
|
__asm__ (GOSYM_PREFIX "runtime.getSigactionHandler");
|
|
|
|
uintptr
|
|
getSigactionHandler(struct sigaction* sa)
|
|
{
|
|
return (uintptr)(sa->sa_sigaction);
|
|
}
|
|
|
|
void setSigactionHandler(struct sigaction*, uintptr)
|
|
__attribute__ ((no_split_stack));
|
|
|
|
void setSigactionHandler(struct sigaction*, uintptr)
|
|
__asm__ (GOSYM_PREFIX "runtime.setSigactionHandler");
|
|
|
|
void
|
|
setSigactionHandler(struct sigaction* sa, uintptr handler)
|
|
{
|
|
sa->sa_sigaction = (void*)(handler);
|
|
}
|
|
|
|
// C code to fetch values from the siginfo_t and ucontext_t pointers
|
|
// passed to a signal handler.
|
|
|
|
uintptr getSiginfoCode(siginfo_t *)
|
|
__attribute__ ((no_split_stack));
|
|
|
|
uintptr getSiginfoCode(siginfo_t *)
|
|
__asm__ (GOSYM_PREFIX "runtime.getSiginfoCode");
|
|
|
|
uintptr
|
|
getSiginfoCode(siginfo_t *info)
|
|
{
|
|
return (uintptr)(info->si_code);
|
|
}
|
|
|
|
struct getSiginfoRet {
|
|
uintptr sigaddr;
|
|
uintptr sigpc;
|
|
};
|
|
|
|
struct getSiginfoRet getSiginfo(siginfo_t *, void *)
|
|
__asm__(GOSYM_PREFIX "runtime.getSiginfo");
|
|
|
|
struct getSiginfoRet
|
|
getSiginfo(siginfo_t *info, void *context __attribute__((unused)))
|
|
{
|
|
struct getSiginfoRet ret;
|
|
Location loc[1];
|
|
int32 n;
|
|
|
|
if (info == nil) {
|
|
ret.sigaddr = 0;
|
|
} else {
|
|
ret.sigaddr = (uintptr)(info->si_addr);
|
|
}
|
|
ret.sigpc = 0;
|
|
|
|
// There doesn't seem to be a portable way to get the PC.
|
|
// Use unportable code to pull it from context, and if that fails
|
|
// try a stack backtrace across the signal handler.
|
|
|
|
#if defined(__x86_64__) && defined(__linux__)
|
|
ret.sigpc = ((ucontext_t*)(context))->uc_mcontext.gregs[REG_RIP];
|
|
#elif defined(__i386__) && defined(__linux__)
|
|
ret.sigpc = ((ucontext_t*)(context))->uc_mcontext.gregs[REG_EIP];
|
|
#elif defined(__alpha__) && defined(__linux__)
|
|
ret.sigpc = ((ucontext_t*)(context))->uc_mcontext.sc_pc;
|
|
#elif defined(__PPC__) && defined(__linux__)
|
|
ret.sigpc = ((ucontext_t*)(context))->uc_mcontext.regs->nip;
|
|
#elif defined(__PPC__) && defined(_AIX)
|
|
ret.sigpc = ((ucontext_t*)(context))->uc_mcontext.jmp_context.iar;
|
|
#elif defined(__aarch64__) && defined(__linux__)
|
|
ret.sigpc = ((ucontext_t*)(context))->uc_mcontext.pc;
|
|
#elif defined(__NetBSD__)
|
|
ret.sigpc = _UC_MACHINE_PC(((ucontext_t*)(context)));
|
|
#endif
|
|
|
|
if (ret.sigpc == 0) {
|
|
// Skip getSiginfo/sighandler/sigtrampgo/sigtramp/handler.
|
|
n = runtime_callers(5, &loc[0], 1, false);
|
|
if (n > 0) {
|
|
ret.sigpc = loc[0].pc;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
// Dump registers when crashing in a signal.
|
|
// There is no portable way to write this,
|
|
// so we just have some CPU/OS specific implementations.
|
|
|
|
void dumpregs(siginfo_t *, void *)
|
|
__asm__(GOSYM_PREFIX "runtime.dumpregs");
|
|
|
|
void
|
|
dumpregs(siginfo_t *info __attribute__((unused)), void *context __attribute__((unused)))
|
|
{
|
|
#if defined(__x86_64__) && defined(__linux__)
|
|
{
|
|
mcontext_t *m = &((ucontext_t*)(context))->uc_mcontext;
|
|
|
|
runtime_printf("rax %X\n", m->gregs[REG_RAX]);
|
|
runtime_printf("rbx %X\n", m->gregs[REG_RBX]);
|
|
runtime_printf("rcx %X\n", m->gregs[REG_RCX]);
|
|
runtime_printf("rdx %X\n", m->gregs[REG_RDX]);
|
|
runtime_printf("rdi %X\n", m->gregs[REG_RDI]);
|
|
runtime_printf("rsi %X\n", m->gregs[REG_RSI]);
|
|
runtime_printf("rbp %X\n", m->gregs[REG_RBP]);
|
|
runtime_printf("rsp %X\n", m->gregs[REG_RSP]);
|
|
runtime_printf("r8 %X\n", m->gregs[REG_R8]);
|
|
runtime_printf("r9 %X\n", m->gregs[REG_R9]);
|
|
runtime_printf("r10 %X\n", m->gregs[REG_R10]);
|
|
runtime_printf("r11 %X\n", m->gregs[REG_R11]);
|
|
runtime_printf("r12 %X\n", m->gregs[REG_R12]);
|
|
runtime_printf("r13 %X\n", m->gregs[REG_R13]);
|
|
runtime_printf("r14 %X\n", m->gregs[REG_R14]);
|
|
runtime_printf("r15 %X\n", m->gregs[REG_R15]);
|
|
runtime_printf("rip %X\n", m->gregs[REG_RIP]);
|
|
runtime_printf("rflags %X\n", m->gregs[REG_EFL]);
|
|
runtime_printf("cs %X\n", m->gregs[REG_CSGSFS] & 0xffff);
|
|
runtime_printf("fs %X\n", (m->gregs[REG_CSGSFS] >> 16) & 0xffff);
|
|
runtime_printf("gs %X\n", (m->gregs[REG_CSGSFS] >> 32) & 0xffff);
|
|
}
|
|
#elif defined(__i386__) && defined(__linux__)
|
|
{
|
|
mcontext_t *m = &((ucontext_t*)(context))->uc_mcontext;
|
|
|
|
runtime_printf("eax %x\n", m->gregs[REG_EAX]);
|
|
runtime_printf("ebx %x\n", m->gregs[REG_EBX]);
|
|
runtime_printf("ecx %x\n", m->gregs[REG_ECX]);
|
|
runtime_printf("edx %x\n", m->gregs[REG_EDX]);
|
|
runtime_printf("edi %x\n", m->gregs[REG_EDI]);
|
|
runtime_printf("esi %x\n", m->gregs[REG_ESI]);
|
|
runtime_printf("ebp %x\n", m->gregs[REG_EBP]);
|
|
runtime_printf("esp %x\n", m->gregs[REG_ESP]);
|
|
runtime_printf("eip %x\n", m->gregs[REG_EIP]);
|
|
runtime_printf("eflags %x\n", m->gregs[REG_EFL]);
|
|
runtime_printf("cs %x\n", m->gregs[REG_CS]);
|
|
runtime_printf("fs %x\n", m->gregs[REG_FS]);
|
|
runtime_printf("gs %x\n", m->gregs[REG_GS]);
|
|
}
|
|
#elif defined(__alpha__) && defined(__linux__)
|
|
{
|
|
mcontext_t *m = &((ucontext_t*)(context))->uc_mcontext;
|
|
|
|
runtime_printf("v0 %X\n", m->sc_regs[0]);
|
|
runtime_printf("t0 %X\n", m->sc_regs[1]);
|
|
runtime_printf("t1 %X\n", m->sc_regs[2]);
|
|
runtime_printf("t2 %X\n", m->sc_regs[3]);
|
|
runtime_printf("t3 %X\n", m->sc_regs[4]);
|
|
runtime_printf("t4 %X\n", m->sc_regs[5]);
|
|
runtime_printf("t5 %X\n", m->sc_regs[6]);
|
|
runtime_printf("t6 %X\n", m->sc_regs[7]);
|
|
runtime_printf("t7 %X\n", m->sc_regs[8]);
|
|
runtime_printf("s0 %X\n", m->sc_regs[9]);
|
|
runtime_printf("s1 %X\n", m->sc_regs[10]);
|
|
runtime_printf("s2 %X\n", m->sc_regs[11]);
|
|
runtime_printf("s3 %X\n", m->sc_regs[12]);
|
|
runtime_printf("s4 %X\n", m->sc_regs[13]);
|
|
runtime_printf("s5 %X\n", m->sc_regs[14]);
|
|
runtime_printf("fp %X\n", m->sc_regs[15]);
|
|
runtime_printf("a0 %X\n", m->sc_regs[16]);
|
|
runtime_printf("a1 %X\n", m->sc_regs[17]);
|
|
runtime_printf("a2 %X\n", m->sc_regs[18]);
|
|
runtime_printf("a3 %X\n", m->sc_regs[19]);
|
|
runtime_printf("a4 %X\n", m->sc_regs[20]);
|
|
runtime_printf("a5 %X\n", m->sc_regs[21]);
|
|
runtime_printf("t8 %X\n", m->sc_regs[22]);
|
|
runtime_printf("t9 %X\n", m->sc_regs[23]);
|
|
runtime_printf("t10 %X\n", m->sc_regs[24]);
|
|
runtime_printf("t11 %X\n", m->sc_regs[25]);
|
|
runtime_printf("ra %X\n", m->sc_regs[26]);
|
|
runtime_printf("t12 %X\n", m->sc_regs[27]);
|
|
runtime_printf("at %X\n", m->sc_regs[28]);
|
|
runtime_printf("gp %X\n", m->sc_regs[29]);
|
|
runtime_printf("sp %X\n", m->sc_regs[30]);
|
|
runtime_printf("pc %X\n", m->sc_pc);
|
|
}
|
|
#elif defined(__PPC__) && defined(__LITTLE_ENDIAN__) && defined(__linux__)
|
|
{
|
|
mcontext_t *m = &((ucontext_t*)(context))->uc_mcontext;
|
|
int i;
|
|
|
|
for (i = 0; i < 32; i++)
|
|
runtime_printf("r%d %X\n", i, m->regs->gpr[i]);
|
|
runtime_printf("pc %X\n", m->regs->nip);
|
|
runtime_printf("msr %X\n", m->regs->msr);
|
|
runtime_printf("cr %X\n", m->regs->ccr);
|
|
runtime_printf("lr %X\n", m->regs->link);
|
|
runtime_printf("ctr %X\n", m->regs->ctr);
|
|
runtime_printf("xer %X\n", m->regs->xer);
|
|
}
|
|
#elif defined(__PPC__) && defined(_AIX)
|
|
{
|
|
mcontext_t *m = &((ucontext_t*)(context))->uc_mcontext;
|
|
int i;
|
|
|
|
for (i = 0; i < 32; i++)
|
|
runtime_printf("r%d %p\n", i, m->jmp_context.gpr[i]);
|
|
runtime_printf("pc %p\n", m->jmp_context.iar);
|
|
runtime_printf("msr %p\n", m->jmp_context.msr);
|
|
runtime_printf("cr %x\n", m->jmp_context.cr);
|
|
runtime_printf("lr %p\n", m->jmp_context.lr);
|
|
runtime_printf("ctr %p\n", m->jmp_context.ctr);
|
|
runtime_printf("xer %x\n", m->jmp_context.xer);
|
|
}
|
|
#elif defined(__aarch64__) && defined(__linux__)
|
|
{
|
|
mcontext_t *m = &((ucontext_t*)(context))->uc_mcontext;
|
|
int i;
|
|
|
|
for (i = 0; i < 31; i++)
|
|
runtime_printf("x%d %X\n", i, m->regs[i]);
|
|
runtime_printf("sp %X\n", m->sp);
|
|
runtime_printf("pc %X\n", m->pc);
|
|
runtime_printf("pstate %X\n", m->pstate);
|
|
}
|
|
#endif
|
|
}
|