6791469314
2019-01-09 Sandra Loosemore <sandra@codesourcery.com> PR other/16615 [1/5] contrib/ * mklog: Mechanically replace "can not" with "cannot". gcc/ * Makefile.in: Mechanically replace "can not" with "cannot". * alias.c: Likewise. * builtins.c: Likewise. * calls.c: Likewise. * cgraph.c: Likewise. * cgraph.h: Likewise. * cgraphclones.c: Likewise. * cgraphunit.c: Likewise. * combine-stack-adj.c: Likewise. * combine.c: Likewise. * common/config/i386/i386-common.c: Likewise. * config/aarch64/aarch64.c: Likewise. * config/alpha/sync.md: Likewise. * config/arc/arc.c: Likewise. * config/arc/predicates.md: Likewise. * config/arm/arm-c.c: Likewise. * config/arm/arm.c: Likewise. * config/arm/arm.h: Likewise. * config/arm/arm.md: Likewise. * config/arm/cortex-r4f.md: Likewise. * config/csky/csky.c: Likewise. * config/csky/csky.h: Likewise. * config/darwin-f.c: Likewise. * config/epiphany/epiphany.md: Likewise. * config/i386/i386.c: Likewise. * config/i386/sol2.h: Likewise. * config/m68k/m68k.c: Likewise. * config/mcore/mcore.h: Likewise. * config/microblaze/microblaze.md: Likewise. * config/mips/20kc.md: Likewise. * config/mips/sb1.md: Likewise. * config/nds32/nds32.c: Likewise. * config/nds32/predicates.md: Likewise. * config/pa/pa.c: Likewise. * config/rs6000/e300c2c3.md: Likewise. * config/rs6000/rs6000.c: Likewise. * config/s390/s390.h: Likewise. * config/sh/sh.c: Likewise. * config/sh/sh.md: Likewise. * config/spu/vmx2spu.h: Likewise. * cprop.c: Likewise. * dbxout.c: Likewise. * df-scan.c: Likewise. * doc/cfg.texi: Likewise. * doc/extend.texi: Likewise. * doc/fragments.texi: Likewise. * doc/gty.texi: Likewise. * doc/invoke.texi: Likewise. * doc/lto.texi: Likewise. * doc/md.texi: Likewise. * doc/objc.texi: Likewise. * doc/rtl.texi: Likewise. * doc/tm.texi: Likewise. * dse.c: Likewise. * emit-rtl.c: Likewise. * emit-rtl.h: Likewise. * except.c: Likewise. * expmed.c: Likewise. * expr.c: Likewise. * fold-const.c: Likewise. * genautomata.c: Likewise. * gimple-fold.c: Likewise. * hard-reg-set.h: Likewise. * ifcvt.c: Likewise. * ipa-comdats.c: Likewise. * ipa-cp.c: Likewise. * ipa-devirt.c: Likewise. * ipa-fnsummary.c: Likewise. * ipa-icf.c: Likewise. * ipa-inline-transform.c: Likewise. * ipa-inline.c: Likewise. * ipa-polymorphic-call.c: Likewise. * ipa-profile.c: Likewise. * ipa-prop.c: Likewise. * ipa-pure-const.c: Likewise. * ipa-reference.c: Likewise. * ipa-split.c: Likewise. * ipa-visibility.c: Likewise. * ipa.c: Likewise. * ira-build.c: Likewise. * ira-color.c: Likewise. * ira-conflicts.c: Likewise. * ira-costs.c: Likewise. * ira-int.h: Likewise. * ira-lives.c: Likewise. * ira.c: Likewise. * ira.h: Likewise. * loop-invariant.c: Likewise. * loop-unroll.c: Likewise. * lower-subreg.c: Likewise. * lra-assigns.c: Likewise. * lra-constraints.c: Likewise. * lra-eliminations.c: Likewise. * lra-lives.c: Likewise. * lra-remat.c: Likewise. * lra-spills.c: Likewise. * lra.c: Likewise. * lto-cgraph.c: Likewise. * lto-streamer-out.c: Likewise. * postreload-gcse.c: Likewise. * predict.c: Likewise. * profile-count.h: Likewise. * profile.c: Likewise. * recog.c: Likewise. * ree.c: Likewise. * reload.c: Likewise. * reload1.c: Likewise. * reorg.c: Likewise. * resource.c: Likewise. * rtl.def: Likewise. * rtl.h: Likewise. * rtlanal.c: Likewise. * sched-deps.c: Likewise. * sched-ebb.c: Likewise. * sched-rgn.c: Likewise. * sel-sched-ir.c: Likewise. * sel-sched.c: Likewise. * shrink-wrap.c: Likewise. * simplify-rtx.c: Likewise. * symtab.c: Likewise. * target.def: Likewise. * toplev.c: Likewise. * tree-call-cdce.c: Likewise. * tree-cfg.c: Likewise. * tree-complex.c: Likewise. * tree-core.h: Likewise. * tree-eh.c: Likewise. * tree-inline.c: Likewise. * tree-loop-distribution.c: Likewise. * tree-nrv.c: Likewise. * tree-profile.c: Likewise. * tree-sra.c: Likewise. * tree-ssa-alias.c: Likewise. * tree-ssa-dce.c: Likewise. * tree-ssa-dom.c: Likewise. * tree-ssa-forwprop.c: Likewise. * tree-ssa-loop-im.c: Likewise. * tree-ssa-loop-ivcanon.c: Likewise. * tree-ssa-loop-ivopts.c: Likewise. * tree-ssa-loop-niter.c: Likewise. * tree-ssa-phionlycprop.c: Likewise. * tree-ssa-phiopt.c: Likewise. * tree-ssa-propagate.c: Likewise. * tree-ssa-threadedge.c: Likewise. * tree-ssa-threadupdate.c: Likewise. * tree-ssa-uninit.c: Likewise. * tree-ssanames.c: Likewise. * tree-streamer-out.c: Likewise. * tree.c: Likewise. * tree.h: Likewise. * vr-values.c: Likewise. gcc/ada/ * exp_ch9.adb: Mechanically replace "can not" with "cannot". * libgnat/s-regpat.ads: Likewise. * par-ch4.adb: Likewise. * set_targ.adb: Likewise. * types.ads: Likewise. gcc/cp/ * cp-tree.h: Mechanically replace "can not" with "cannot". * parser.c: Likewise. * pt.c: Likewise. gcc/fortran/ * class.c: Mechanically replace "can not" with "cannot". * decl.c: Likewise. * expr.c: Likewise. * gfc-internals.texi: Likewise. * intrinsic.texi: Likewise. * invoke.texi: Likewise. * io.c: Likewise. * match.c: Likewise. * parse.c: Likewise. * primary.c: Likewise. * resolve.c: Likewise. * symbol.c: Likewise. * trans-array.c: Likewise. * trans-decl.c: Likewise. * trans-intrinsic.c: Likewise. * trans-stmt.c: Likewise. gcc/go/ * go-backend.c: Mechanically replace "can not" with "cannot". * go-gcc.cc: Likewise. gcc/lto/ * lto-partition.c: Mechanically replace "can not" with "cannot". * lto-symtab.c: Likewise. * lto.c: Likewise. gcc/objc/ * objc-act.c: Mechanically replace "can not" with "cannot". libbacktrace/ * backtrace.h: Mechanically replace "can not" with "cannot". libgcc/ * config/c6x/libunwind.S: Mechanically replace "can not" with "cannot". * config/tilepro/atomic.h: Likewise. * config/vxlib-tls.c: Likewise. * generic-morestack-thread.c: Likewise. * generic-morestack.c: Likewise. * mkmap-symver.awk: Likewise. libgfortran/ * caf/single.c: Mechanically replace "can not" with "cannot". * io/unit.c: Likewise. libobjc/ * class.c: Mechanically replace "can not" with "cannot". * objc/runtime.h: Likewise. * sendmsg.c: Likewise. liboffloadmic/ * include/coi/common/COIResult_common.h: Mechanically replace "can not" with "cannot". * include/coi/source/COIBuffer_source.h: Likewise. libstdc++-v3/ * include/ext/bitmap_allocator.h: Mechanically replace "can not" with "cannot". From-SVN: r267783
371 lines
10 KiB
C
371 lines
10 KiB
C
/* Copyright (C) 2002-2019 Free Software Foundation, Inc.
|
|
Contributed by Zack Weinberg <zack@codesourcery.com>
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
Under Section 7 of GPL version 3, you are granted additional
|
|
permissions described in the GCC Runtime Library Exception, version
|
|
3.1, as published by the Free Software Foundation.
|
|
|
|
You should have received a copy of the GNU General Public License and
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
/* Threads compatibility routines for libgcc2 for VxWorks.
|
|
These are out-of-line routines called from gthr-vxworks.h.
|
|
|
|
This file provides the TLS related support routines, calling specific
|
|
VxWorks kernel entry points for this purpose. The base VxWorks 5.x kernels
|
|
don't feature these entry points, and we provide gthr_supp_vxw_5x.c as an
|
|
option to fill this gap. Asking users to rebuild a kernel is not to be
|
|
taken lightly, still, so we have isolated these routines from the rest of
|
|
vxlib to ensure that the kernel dependencies are only dragged when really
|
|
necessary. */
|
|
|
|
#include "tconfig.h"
|
|
#include "tsystem.h"
|
|
#include "gthr.h"
|
|
|
|
#if defined(__GTHREADS)
|
|
#include <vxWorks.h>
|
|
#ifndef __RTP__
|
|
#include <vxLib.h>
|
|
#endif
|
|
#include <taskLib.h>
|
|
#ifndef __RTP__
|
|
#include <taskHookLib.h>
|
|
#else
|
|
# include <errno.h>
|
|
#endif
|
|
|
|
/* Thread-local storage.
|
|
|
|
We reserve a field in the TCB to point to a dynamically allocated
|
|
array which is used to store TLS values. A TLS key is simply an
|
|
offset in this array. The exact location of the TCB field is not
|
|
known to this code nor to vxlib.c -- all access to it indirects
|
|
through the routines __gthread_get_tls_data and
|
|
__gthread_set_tls_data, which are provided by the VxWorks kernel.
|
|
|
|
There is also a global array which records which keys are valid and
|
|
which have destructors.
|
|
|
|
A task delete hook is installed to execute key destructors. The
|
|
routines __gthread_enter_tls_dtor_context and
|
|
__gthread_leave_tls_dtor_context, which are also provided by the
|
|
kernel, ensure that it is safe to call free() on memory allocated
|
|
by the task being deleted. (This is a no-op on VxWorks 5, but
|
|
a major undertaking on AE.)
|
|
|
|
The task delete hook is only installed when at least one thread
|
|
has TLS data. This is a necessary precaution, to allow this module
|
|
to be unloaded - a module with a hook cannot be removed.
|
|
|
|
Since this interface is used to allocate only a small number of
|
|
keys, the table size is small and static, which simplifies the
|
|
code quite a bit. Revisit this if and when it becomes necessary. */
|
|
|
|
#define MAX_KEYS 4
|
|
|
|
/* This is the structure pointed to by the pointer returned
|
|
by __gthread_get_tls_data. */
|
|
struct tls_data
|
|
{
|
|
int *owner;
|
|
void *values[MAX_KEYS];
|
|
unsigned int generation[MAX_KEYS];
|
|
};
|
|
|
|
/* To make sure we only delete TLS data associated with this object,
|
|
include a pointer to a local variable in the TLS data object. */
|
|
static int self_owner;
|
|
|
|
/* Flag to check whether the delete hook is installed. Once installed
|
|
it is only removed when unloading this module. */
|
|
static volatile int delete_hook_installed;
|
|
|
|
/* kernel provided routines */
|
|
extern void *__gthread_get_tls_data (void);
|
|
extern void __gthread_set_tls_data (void *data);
|
|
|
|
extern void __gthread_enter_tls_dtor_context (void);
|
|
extern void __gthread_leave_tls_dtor_context (void);
|
|
|
|
#ifndef __RTP__
|
|
|
|
extern void *__gthread_get_tsd_data (WIND_TCB *tcb);
|
|
extern void __gthread_set_tsd_data (WIND_TCB *tcb, void *data);
|
|
extern void __gthread_enter_tsd_dtor_context (WIND_TCB *tcb);
|
|
extern void __gthread_leave_tsd_dtor_context (WIND_TCB *tcb);
|
|
|
|
#endif /* __RTP__ */
|
|
|
|
/* This is a global structure which records all of the active keys.
|
|
|
|
A key is potentially valid (i.e. has been handed out by
|
|
__gthread_key_create) iff its generation count in this structure is
|
|
even. In that case, the matching entry in the dtors array is a
|
|
routine to be called when a thread terminates with a valid,
|
|
non-NULL specific value for that key.
|
|
|
|
A key is actually valid in a thread T iff the generation count
|
|
stored in this structure is equal to the generation count stored in
|
|
T's specific-value structure. */
|
|
|
|
typedef void (*tls_dtor) (void *);
|
|
|
|
struct tls_keys
|
|
{
|
|
tls_dtor dtor[MAX_KEYS];
|
|
unsigned int generation[MAX_KEYS];
|
|
};
|
|
|
|
#define KEY_VALID_P(key) !(tls_keys.generation[key] & 1)
|
|
|
|
/* Note: if MAX_KEYS is increased, this initializer must be updated
|
|
to match. All the generation counts begin at 1, which means no
|
|
key is valid. */
|
|
static struct tls_keys tls_keys =
|
|
{
|
|
{ 0, 0, 0, 0 },
|
|
{ 1, 1, 1, 1 }
|
|
};
|
|
|
|
/* This lock protects the tls_keys structure. */
|
|
static __gthread_mutex_t tls_lock;
|
|
|
|
static __gthread_once_t tls_init_guard = __GTHREAD_ONCE_INIT;
|
|
|
|
/* Internal routines. */
|
|
|
|
/* The task TCB has just been deleted. Call the destructor
|
|
function for each TLS key that has both a destructor and
|
|
a non-NULL specific value in this thread.
|
|
|
|
This routine does not need to take tls_lock; the generation
|
|
count protects us from calling a stale destructor. It does
|
|
need to read tls_keys.dtor[key] atomically. */
|
|
|
|
static void
|
|
tls_delete_hook (void *tcb ATTRIBUTE_UNUSED)
|
|
{
|
|
struct tls_data *data;
|
|
__gthread_key_t key;
|
|
|
|
#ifdef __RTP__
|
|
data = __gthread_get_tls_data ();
|
|
#else
|
|
/* In kernel mode, we can be called in the context of the thread
|
|
doing the killing, so must use the TCB to determine the data of
|
|
the thread being killed. */
|
|
data = __gthread_get_tsd_data (tcb);
|
|
#endif
|
|
|
|
if (data && data->owner == &self_owner)
|
|
{
|
|
#ifdef __RTP__
|
|
__gthread_enter_tls_dtor_context ();
|
|
#else
|
|
__gthread_enter_tsd_dtor_context (tcb);
|
|
#endif
|
|
for (key = 0; key < MAX_KEYS; key++)
|
|
{
|
|
if (data->generation[key] == tls_keys.generation[key])
|
|
{
|
|
tls_dtor dtor = tls_keys.dtor[key];
|
|
|
|
if (dtor)
|
|
dtor (data->values[key]);
|
|
}
|
|
}
|
|
free (data);
|
|
#ifdef __RTP__
|
|
__gthread_leave_tls_dtor_context ();
|
|
#else
|
|
__gthread_leave_tsd_dtor_context (tcb);
|
|
#endif
|
|
|
|
#ifdef __RTP__
|
|
__gthread_set_tls_data (0);
|
|
#else
|
|
__gthread_set_tsd_data (tcb, 0);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/* Initialize global data used by the TLS system. */
|
|
static void
|
|
tls_init (void)
|
|
{
|
|
__GTHREAD_MUTEX_INIT_FUNCTION (&tls_lock);
|
|
}
|
|
|
|
static void tls_destructor (void) __attribute__ ((destructor));
|
|
static void
|
|
tls_destructor (void)
|
|
{
|
|
#ifdef __RTP__
|
|
/* All threads but this one should have exited by now. */
|
|
tls_delete_hook (NULL);
|
|
#endif
|
|
/* Unregister the hook. */
|
|
if (delete_hook_installed)
|
|
taskDeleteHookDelete ((FUNCPTR)tls_delete_hook);
|
|
|
|
if (tls_init_guard.done && __gthread_mutex_lock (&tls_lock) != ERROR)
|
|
semDelete (tls_lock);
|
|
}
|
|
|
|
/* External interface */
|
|
|
|
/* Store in KEYP a value which can be passed to __gthread_setspecific/
|
|
__gthread_getspecific to store and retrieve a value which is
|
|
specific to each calling thread. If DTOR is not NULL, it will be
|
|
called when a thread terminates with a non-NULL specific value for
|
|
this key, with the value as its sole argument. */
|
|
|
|
int
|
|
__gthread_key_create (__gthread_key_t *keyp, tls_dtor dtor)
|
|
{
|
|
__gthread_key_t key;
|
|
|
|
__gthread_once (&tls_init_guard, tls_init);
|
|
|
|
if (__gthread_mutex_lock (&tls_lock) == ERROR)
|
|
return errno;
|
|
|
|
for (key = 0; key < MAX_KEYS; key++)
|
|
if (!KEY_VALID_P (key))
|
|
goto found_slot;
|
|
|
|
/* no room */
|
|
__gthread_mutex_unlock (&tls_lock);
|
|
return EAGAIN;
|
|
|
|
found_slot:
|
|
tls_keys.generation[key]++; /* making it even */
|
|
tls_keys.dtor[key] = dtor;
|
|
*keyp = key;
|
|
__gthread_mutex_unlock (&tls_lock);
|
|
return 0;
|
|
}
|
|
|
|
/* Invalidate KEY; it can no longer be used as an argument to
|
|
setspecific/getspecific. Note that this does NOT call destructor
|
|
functions for any live values for this key. */
|
|
int
|
|
__gthread_key_delete (__gthread_key_t key)
|
|
{
|
|
if (key >= MAX_KEYS)
|
|
return EINVAL;
|
|
|
|
__gthread_once (&tls_init_guard, tls_init);
|
|
|
|
if (__gthread_mutex_lock (&tls_lock) == ERROR)
|
|
return errno;
|
|
|
|
if (!KEY_VALID_P (key))
|
|
{
|
|
__gthread_mutex_unlock (&tls_lock);
|
|
return EINVAL;
|
|
}
|
|
|
|
tls_keys.generation[key]++; /* making it odd */
|
|
tls_keys.dtor[key] = 0;
|
|
|
|
__gthread_mutex_unlock (&tls_lock);
|
|
return 0;
|
|
}
|
|
|
|
/* Retrieve the thread-specific value for KEY. If it has never been
|
|
set in this thread, or KEY is invalid, returns NULL.
|
|
|
|
It does not matter if this function races with key_create or
|
|
key_delete; the worst that can happen is you get a value other than
|
|
the one that a serialized implementation would have provided. */
|
|
|
|
void *
|
|
__gthread_getspecific (__gthread_key_t key)
|
|
{
|
|
struct tls_data *data;
|
|
|
|
if (key >= MAX_KEYS)
|
|
return 0;
|
|
|
|
data = __gthread_get_tls_data ();
|
|
|
|
if (!data)
|
|
return 0;
|
|
|
|
if (data->generation[key] != tls_keys.generation[key])
|
|
return 0;
|
|
|
|
return data->values[key];
|
|
}
|
|
|
|
/* Set the thread-specific value for KEY. If KEY is invalid, or
|
|
memory allocation fails, returns -1, otherwise 0.
|
|
|
|
The generation count protects this function against races with
|
|
key_create/key_delete; the worst thing that can happen is that a
|
|
value is successfully stored into a dead generation (and then
|
|
immediately becomes invalid). However, we do have to make sure
|
|
to read tls_keys.generation[key] atomically. */
|
|
|
|
int
|
|
__gthread_setspecific (__gthread_key_t key, void *value)
|
|
{
|
|
struct tls_data *data;
|
|
unsigned int generation;
|
|
|
|
if (key >= MAX_KEYS)
|
|
return EINVAL;
|
|
|
|
data = __gthread_get_tls_data ();
|
|
if (!data)
|
|
{
|
|
if (!delete_hook_installed)
|
|
{
|
|
/* Install the delete hook. */
|
|
if (__gthread_mutex_lock (&tls_lock) == ERROR)
|
|
return ENOMEM;
|
|
if (!delete_hook_installed)
|
|
{
|
|
taskDeleteHookAdd ((FUNCPTR)tls_delete_hook);
|
|
delete_hook_installed = 1;
|
|
}
|
|
__gthread_mutex_unlock (&tls_lock);
|
|
}
|
|
|
|
data = malloc (sizeof (struct tls_data));
|
|
if (!data)
|
|
return ENOMEM;
|
|
|
|
memset (data, 0, sizeof (struct tls_data));
|
|
data->owner = &self_owner;
|
|
__gthread_set_tls_data (data);
|
|
}
|
|
|
|
generation = tls_keys.generation[key];
|
|
|
|
if (generation & 1)
|
|
return EINVAL;
|
|
|
|
data->generation[key] = generation;
|
|
data->values[key] = value;
|
|
|
|
return 0;
|
|
}
|
|
#endif /* __GTHREADS */
|