aa8901e9bb
Reviewed-on: https://go-review.googlesource.com/c/gofrontend/+/193497 From-SVN: r275473
1230 lines
34 KiB
Go
1230 lines
34 KiB
Go
// Copyright 2014 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package runtime
|
|
|
|
import (
|
|
"runtime/internal/atomic"
|
|
"unsafe"
|
|
)
|
|
|
|
// For gccgo, use go:linkname to export compiler-called functions.
|
|
//
|
|
//go:linkname deferproc
|
|
//go:linkname deferprocStack
|
|
//go:linkname deferreturn
|
|
//go:linkname setdeferretaddr
|
|
//go:linkname checkdefer
|
|
//go:linkname gopanic
|
|
//go:linkname canrecover
|
|
//go:linkname makefuncfficanrecover
|
|
//go:linkname makefuncreturning
|
|
//go:linkname gorecover
|
|
//go:linkname deferredrecover
|
|
//go:linkname goPanicIndex
|
|
//go:linkname goPanicIndexU
|
|
//go:linkname goPanicSliceAlen
|
|
//go:linkname goPanicSliceAlenU
|
|
//go:linkname goPanicSliceAcap
|
|
//go:linkname goPanicSliceAcapU
|
|
//go:linkname goPanicSliceB
|
|
//go:linkname goPanicSliceBU
|
|
//go:linkname goPanicSlice3Alen
|
|
//go:linkname goPanicSlice3AlenU
|
|
//go:linkname goPanicSlice3Acap
|
|
//go:linkname goPanicSlice3AcapU
|
|
//go:linkname goPanicSlice3B
|
|
//go:linkname goPanicSlice3BU
|
|
//go:linkname goPanicSlice3C
|
|
//go:linkname goPanicSlice3CU
|
|
//go:linkname panicmem
|
|
// Temporary for C code to call:
|
|
//go:linkname throw
|
|
|
|
// Check to make sure we can really generate a panic. If the panic
|
|
// was generated from the runtime, or from inside malloc, then convert
|
|
// to a throw of msg.
|
|
// pc should be the program counter of the compiler-generated code that
|
|
// triggered this panic.
|
|
func panicCheck1(pc uintptr, msg string) {
|
|
name, _, _, _ := funcfileline(pc-1, -1)
|
|
if hasPrefix(name, "runtime.") {
|
|
throw(msg)
|
|
}
|
|
// TODO: is this redundant? How could we be in malloc
|
|
// but not in the runtime? runtime/internal/*, maybe?
|
|
gp := getg()
|
|
if gp != nil && gp.m != nil && gp.m.mallocing != 0 {
|
|
throw(msg)
|
|
}
|
|
}
|
|
|
|
// Same as above, but calling from the runtime is allowed.
|
|
func panicCheck2(err string) {
|
|
gp := getg()
|
|
if gp != nil && gp.m != nil && gp.m.mallocing != 0 {
|
|
throw(err)
|
|
}
|
|
}
|
|
|
|
// The panic{Index,Slice,divide,shift} functions are called by
|
|
// code generated by the compiler for out of bounds index expressions,
|
|
// out of bounds slice expressions, division by zero, and shift by negative.
|
|
// The panicdivide (again), panicoverflow, panicfloat, and panicmem
|
|
// functions are called by the signal handler when a signal occurs
|
|
// indicating the respective problem.
|
|
//
|
|
// Since panic{Index,Slice,shift} are never called directly, and
|
|
// since the runtime package should never have an out of bounds slice
|
|
// or array reference or negative shift, if we see those functions called from the
|
|
// runtime package we turn the panic into a throw. That will dump the
|
|
// entire runtime stack for easier debugging.
|
|
//
|
|
// The entry points called by the signal handler will be called from
|
|
// runtime.sigpanic, so we can't disallow calls from the runtime to
|
|
// these (they always look like they're called from the runtime).
|
|
// Hence, for these, we just check for clearly bad runtime conditions.
|
|
|
|
// failures in the comparisons for s[x], 0 <= x < y (y == len(s))
|
|
func goPanicIndex(x int, y int) {
|
|
panicCheck1(getcallerpc(), "index out of range")
|
|
panic(boundsError{x: int64(x), signed: true, y: y, code: boundsIndex})
|
|
}
|
|
func goPanicIndexU(x uint, y int) {
|
|
panicCheck1(getcallerpc(), "index out of range")
|
|
panic(boundsError{x: int64(x), signed: false, y: y, code: boundsIndex})
|
|
}
|
|
|
|
// failures in the comparisons for s[:x], 0 <= x <= y (y == len(s) or cap(s))
|
|
func goPanicSliceAlen(x int, y int) {
|
|
panicCheck1(getcallerpc(), "slice bounds out of range")
|
|
panic(boundsError{x: int64(x), signed: true, y: y, code: boundsSliceAlen})
|
|
}
|
|
func goPanicSliceAlenU(x uint, y int) {
|
|
panicCheck1(getcallerpc(), "slice bounds out of range")
|
|
panic(boundsError{x: int64(x), signed: false, y: y, code: boundsSliceAlen})
|
|
}
|
|
func goPanicSliceAcap(x int, y int) {
|
|
panicCheck1(getcallerpc(), "slice bounds out of range")
|
|
panic(boundsError{x: int64(x), signed: true, y: y, code: boundsSliceAcap})
|
|
}
|
|
func goPanicSliceAcapU(x uint, y int) {
|
|
panicCheck1(getcallerpc(), "slice bounds out of range")
|
|
panic(boundsError{x: int64(x), signed: false, y: y, code: boundsSliceAcap})
|
|
}
|
|
|
|
// failures in the comparisons for s[x:y], 0 <= x <= y
|
|
func goPanicSliceB(x int, y int) {
|
|
panicCheck1(getcallerpc(), "slice bounds out of range")
|
|
panic(boundsError{x: int64(x), signed: true, y: y, code: boundsSliceB})
|
|
}
|
|
func goPanicSliceBU(x uint, y int) {
|
|
panicCheck1(getcallerpc(), "slice bounds out of range")
|
|
panic(boundsError{x: int64(x), signed: false, y: y, code: boundsSliceB})
|
|
}
|
|
|
|
// failures in the comparisons for s[::x], 0 <= x <= y (y == len(s) or cap(s))
|
|
func goPanicSlice3Alen(x int, y int) {
|
|
panicCheck1(getcallerpc(), "slice bounds out of range")
|
|
panic(boundsError{x: int64(x), signed: true, y: y, code: boundsSlice3Alen})
|
|
}
|
|
func goPanicSlice3AlenU(x uint, y int) {
|
|
panicCheck1(getcallerpc(), "slice bounds out of range")
|
|
panic(boundsError{x: int64(x), signed: false, y: y, code: boundsSlice3Alen})
|
|
}
|
|
func goPanicSlice3Acap(x int, y int) {
|
|
panicCheck1(getcallerpc(), "slice bounds out of range")
|
|
panic(boundsError{x: int64(x), signed: true, y: y, code: boundsSlice3Acap})
|
|
}
|
|
func goPanicSlice3AcapU(x uint, y int) {
|
|
panicCheck1(getcallerpc(), "slice bounds out of range")
|
|
panic(boundsError{x: int64(x), signed: false, y: y, code: boundsSlice3Acap})
|
|
}
|
|
|
|
// failures in the comparisons for s[:x:y], 0 <= x <= y
|
|
func goPanicSlice3B(x int, y int) {
|
|
panicCheck1(getcallerpc(), "slice bounds out of range")
|
|
panic(boundsError{x: int64(x), signed: true, y: y, code: boundsSlice3B})
|
|
}
|
|
func goPanicSlice3BU(x uint, y int) {
|
|
panicCheck1(getcallerpc(), "slice bounds out of range")
|
|
panic(boundsError{x: int64(x), signed: false, y: y, code: boundsSlice3B})
|
|
}
|
|
|
|
// failures in the comparisons for s[x:y:], 0 <= x <= y
|
|
func goPanicSlice3C(x int, y int) {
|
|
panicCheck1(getcallerpc(), "slice bounds out of range")
|
|
panic(boundsError{x: int64(x), signed: true, y: y, code: boundsSlice3C})
|
|
}
|
|
func goPanicSlice3CU(x uint, y int) {
|
|
panicCheck1(getcallerpc(), "slice bounds out of range")
|
|
panic(boundsError{x: int64(x), signed: false, y: y, code: boundsSlice3C})
|
|
}
|
|
|
|
var shiftError = error(errorString("negative shift amount"))
|
|
|
|
func panicshift() {
|
|
panicCheck1(getcallerpc(), "negative shift amount")
|
|
panic(shiftError)
|
|
}
|
|
|
|
var divideError = error(errorString("integer divide by zero"))
|
|
|
|
func panicdivide() {
|
|
panicCheck2("integer divide by zero")
|
|
panic(divideError)
|
|
}
|
|
|
|
var overflowError = error(errorString("integer overflow"))
|
|
|
|
func panicoverflow() {
|
|
panicCheck2("integer overflow")
|
|
panic(overflowError)
|
|
}
|
|
|
|
var floatError = error(errorString("floating point error"))
|
|
|
|
func panicfloat() {
|
|
panicCheck2("floating point error")
|
|
panic(floatError)
|
|
}
|
|
|
|
var memoryError = error(errorString("invalid memory address or nil pointer dereference"))
|
|
|
|
func panicmem() {
|
|
panicCheck2("invalid memory address or nil pointer dereference")
|
|
panic(memoryError)
|
|
}
|
|
|
|
// deferproc creates a new deferred function.
|
|
// The compiler turns a defer statement into a call to this.
|
|
// frame points into the stack frame; it is used to determine which
|
|
// deferred functions are for the current stack frame, and whether we
|
|
// have already deferred functions for this frame.
|
|
// pfn is a C function pointer.
|
|
// arg is a value to pass to pfn.
|
|
func deferproc(frame *bool, pfn uintptr, arg unsafe.Pointer) {
|
|
d := newdefer()
|
|
if d._panic != nil {
|
|
throw("deferproc: d.panic != nil after newdefer")
|
|
}
|
|
d.frame = frame
|
|
d.panicStack = getg()._panic
|
|
d.pfn = pfn
|
|
d.arg = arg
|
|
d.retaddr = 0
|
|
d.makefunccanrecover = false
|
|
}
|
|
|
|
// deferprocStack queues a new deferred function with a defer record on the stack.
|
|
// The defer record, d, does not need to be initialized.
|
|
// Other arguments are the same as in deferproc.
|
|
//go:nosplit
|
|
func deferprocStack(d *_defer, frame *bool, pfn uintptr, arg unsafe.Pointer) {
|
|
gp := getg()
|
|
if gp.m.curg != gp {
|
|
// go code on the system stack can't defer
|
|
throw("defer on system stack")
|
|
}
|
|
d.pfn = pfn
|
|
d.retaddr = 0
|
|
d.makefunccanrecover = false
|
|
d.heap = false
|
|
// The lines below implement:
|
|
// d.frame = frame
|
|
// d.arg = arg
|
|
// d._panic = nil
|
|
// d.panicStack = gp._panic
|
|
// d.link = gp._defer
|
|
// But without write barriers. They are writes to the stack so they
|
|
// don't need a write barrier, and furthermore are to uninitialized
|
|
// memory, so they must not use a write barrier.
|
|
*(*uintptr)(unsafe.Pointer(&d.frame)) = uintptr(unsafe.Pointer(frame))
|
|
*(*uintptr)(unsafe.Pointer(&d.arg)) = uintptr(unsafe.Pointer(arg))
|
|
*(*uintptr)(unsafe.Pointer(&d._panic)) = 0
|
|
*(*uintptr)(unsafe.Pointer(&d.panicStack)) = uintptr(unsafe.Pointer(gp._panic))
|
|
*(*uintptr)(unsafe.Pointer(&d.link)) = uintptr(unsafe.Pointer(gp._defer))
|
|
|
|
gp._defer = d
|
|
}
|
|
|
|
// Allocate a Defer, usually using per-P pool.
|
|
// Each defer must be released with freedefer.
|
|
func newdefer() *_defer {
|
|
var d *_defer
|
|
gp := getg()
|
|
pp := gp.m.p.ptr()
|
|
if len(pp.deferpool) == 0 && sched.deferpool != nil {
|
|
systemstack(func() {
|
|
lock(&sched.deferlock)
|
|
for len(pp.deferpool) < cap(pp.deferpool)/2 && sched.deferpool != nil {
|
|
d := sched.deferpool
|
|
sched.deferpool = d.link
|
|
d.link = nil
|
|
pp.deferpool = append(pp.deferpool, d)
|
|
}
|
|
unlock(&sched.deferlock)
|
|
})
|
|
}
|
|
if n := len(pp.deferpool); n > 0 {
|
|
d = pp.deferpool[n-1]
|
|
pp.deferpool[n-1] = nil
|
|
pp.deferpool = pp.deferpool[:n-1]
|
|
}
|
|
if d == nil {
|
|
systemstack(func() {
|
|
d = new(_defer)
|
|
})
|
|
if debugCachedWork {
|
|
// Duplicate the tail below so if there's a
|
|
// crash in checkPut we can tell if d was just
|
|
// allocated or came from the pool.
|
|
d.heap = true
|
|
d.link = gp._defer
|
|
gp._defer = d
|
|
return d
|
|
}
|
|
}
|
|
d.heap = true
|
|
d.link = gp._defer
|
|
gp._defer = d
|
|
return d
|
|
}
|
|
|
|
// Free the given defer.
|
|
// The defer cannot be used after this call.
|
|
//
|
|
// This must not grow the stack because there may be a frame without a
|
|
// stack map when this is called.
|
|
//
|
|
//go:nosplit
|
|
func freedefer(d *_defer) {
|
|
if d._panic != nil {
|
|
freedeferpanic()
|
|
}
|
|
if d.pfn != 0 {
|
|
freedeferfn()
|
|
}
|
|
if !d.heap {
|
|
return
|
|
}
|
|
pp := getg().m.p.ptr()
|
|
if len(pp.deferpool) == cap(pp.deferpool) {
|
|
// Transfer half of local cache to the central cache.
|
|
//
|
|
// Take this slow path on the system stack so
|
|
// we don't grow freedefer's stack.
|
|
systemstack(func() {
|
|
var first, last *_defer
|
|
for len(pp.deferpool) > cap(pp.deferpool)/2 {
|
|
n := len(pp.deferpool)
|
|
d := pp.deferpool[n-1]
|
|
pp.deferpool[n-1] = nil
|
|
pp.deferpool = pp.deferpool[:n-1]
|
|
if first == nil {
|
|
first = d
|
|
} else {
|
|
last.link = d
|
|
}
|
|
last = d
|
|
}
|
|
lock(&sched.deferlock)
|
|
last.link = sched.deferpool
|
|
sched.deferpool = first
|
|
unlock(&sched.deferlock)
|
|
})
|
|
}
|
|
|
|
// These lines used to be simply `*d = _defer{}` but that
|
|
// started causing a nosplit stack overflow via typedmemmove.
|
|
d.link = nil
|
|
d.frame = nil
|
|
d.panicStack = nil
|
|
d.arg = nil
|
|
d.retaddr = 0
|
|
d.makefunccanrecover = false
|
|
// d._panic and d.pfn must be nil already.
|
|
// If not, we would have called freedeferpanic or freedeferfn above,
|
|
// both of which throw.
|
|
|
|
pp.deferpool = append(pp.deferpool, d)
|
|
}
|
|
|
|
// Separate function so that it can split stack.
|
|
// Windows otherwise runs out of stack space.
|
|
func freedeferpanic() {
|
|
// _panic must be cleared before d is unlinked from gp.
|
|
throw("freedefer with d._panic != nil")
|
|
}
|
|
|
|
func freedeferfn() {
|
|
// fn must be cleared before d is unlinked from gp.
|
|
throw("freedefer with d.fn != nil")
|
|
}
|
|
|
|
// deferreturn is called to undefer the stack.
|
|
// The compiler inserts a call to this function as a finally clause
|
|
// wrapped around the body of any function that calls defer.
|
|
// The frame argument points to the stack frame of the function.
|
|
func deferreturn(frame *bool) {
|
|
gp := getg()
|
|
for gp._defer != nil && gp._defer.frame == frame {
|
|
d := gp._defer
|
|
pfn := d.pfn
|
|
d.pfn = 0
|
|
|
|
if pfn != 0 {
|
|
// This is rather awkward.
|
|
// The gc compiler does this using assembler
|
|
// code in jmpdefer.
|
|
var fn func(unsafe.Pointer)
|
|
*(*uintptr)(unsafe.Pointer(&fn)) = uintptr(noescape(unsafe.Pointer(&pfn)))
|
|
gp.deferring = true
|
|
fn(d.arg)
|
|
gp.deferring = false
|
|
}
|
|
|
|
// If that was CgocallBackDone, it will have freed the
|
|
// defer for us, since we are no longer running as Go code.
|
|
if getg() == nil {
|
|
*frame = true
|
|
return
|
|
}
|
|
if gp.ranCgocallBackDone {
|
|
gp.ranCgocallBackDone = false
|
|
*frame = true
|
|
return
|
|
}
|
|
|
|
gp._defer = d.link
|
|
|
|
freedefer(d)
|
|
|
|
// Since we are executing a defer function now, we
|
|
// know that we are returning from the calling
|
|
// function. If the calling function, or one of its
|
|
// callees, panicked, then the defer functions would
|
|
// be executed by panic.
|
|
*frame = true
|
|
}
|
|
}
|
|
|
|
// __builtin_extract_return_addr is a GCC intrinsic that converts an
|
|
// address returned by __builtin_return_address(0) to a real address.
|
|
// On most architectures this is a nop.
|
|
//extern __builtin_extract_return_addr
|
|
func __builtin_extract_return_addr(uintptr) uintptr
|
|
|
|
// setdeferretaddr records the address to which the deferred function
|
|
// returns. This is check by canrecover. The frontend relies on this
|
|
// function returning false.
|
|
func setdeferretaddr(retaddr uintptr) bool {
|
|
gp := getg()
|
|
if gp._defer != nil {
|
|
gp._defer.retaddr = __builtin_extract_return_addr(retaddr)
|
|
}
|
|
return false
|
|
}
|
|
|
|
// checkdefer is called by exception handlers used when unwinding the
|
|
// stack after a recovered panic. The exception handler is simply
|
|
// checkdefer(frame)
|
|
// return;
|
|
// If we have not yet reached the frame we are looking for, we
|
|
// continue unwinding.
|
|
func checkdefer(frame *bool) {
|
|
gp := getg()
|
|
if gp == nil {
|
|
// We should never wind up here. Even if some other
|
|
// language throws an exception, the cgo code
|
|
// should ensure that g is set.
|
|
throw("no g in checkdefer")
|
|
} else if gp.isforeign {
|
|
// Some other language has thrown an exception.
|
|
// We need to run the local defer handlers.
|
|
// If they call recover, we stop unwinding here.
|
|
var p _panic
|
|
p.isforeign = true
|
|
p.link = gp._panic
|
|
gp._panic = (*_panic)(noescape(unsafe.Pointer(&p)))
|
|
for {
|
|
d := gp._defer
|
|
if d == nil || d.frame != frame || d.pfn == 0 {
|
|
break
|
|
}
|
|
|
|
pfn := d.pfn
|
|
gp._defer = d.link
|
|
|
|
var fn func(unsafe.Pointer)
|
|
*(*uintptr)(unsafe.Pointer(&fn)) = uintptr(noescape(unsafe.Pointer(&pfn)))
|
|
gp.deferring = true
|
|
fn(d.arg)
|
|
gp.deferring = false
|
|
|
|
freedefer(d)
|
|
|
|
if p.recovered {
|
|
// The recover function caught the panic
|
|
// thrown by some other language.
|
|
break
|
|
}
|
|
}
|
|
|
|
recovered := p.recovered
|
|
gp._panic = p.link
|
|
|
|
if recovered {
|
|
// Just return and continue executing Go code.
|
|
*frame = true
|
|
return
|
|
}
|
|
|
|
// We are panicking through this function.
|
|
*frame = false
|
|
} else if gp._defer != nil && gp._defer.pfn == 0 && gp._defer.frame == frame {
|
|
// This is the defer function that called recover.
|
|
// Simply return to stop the stack unwind, and let the
|
|
// Go code continue to execute.
|
|
d := gp._defer
|
|
gp._defer = d.link
|
|
freedefer(d)
|
|
|
|
// We are returning from this function.
|
|
*frame = true
|
|
|
|
return
|
|
}
|
|
|
|
// This is some other defer function. It was already run by
|
|
// the call to panic, or just above. Rethrow the exception.
|
|
rethrowException()
|
|
throw("rethrowException returned")
|
|
}
|
|
|
|
// unwindStack starts unwinding the stack for a panic. We unwind
|
|
// function calls until we reach the one which used a defer function
|
|
// which called recover. Each function which uses a defer statement
|
|
// will have an exception handler, as shown above for checkdefer.
|
|
func unwindStack() {
|
|
// Allocate the exception type used by the unwind ABI.
|
|
// It would be nice to define it in runtime_sysinfo.go,
|
|
// but current definitions don't work because the required
|
|
// alignment is larger than can be represented in Go.
|
|
// The type never contains any Go pointers.
|
|
size := unwindExceptionSize()
|
|
usize := uintptr(unsafe.Sizeof(uintptr(0)))
|
|
c := (size + usize - 1) / usize
|
|
s := make([]uintptr, c)
|
|
getg().exception = unsafe.Pointer(&s[0])
|
|
throwException()
|
|
}
|
|
|
|
// Goexit terminates the goroutine that calls it. No other goroutine is affected.
|
|
// Goexit runs all deferred calls before terminating the goroutine. Because Goexit
|
|
// is not a panic, any recover calls in those deferred functions will return nil.
|
|
//
|
|
// Calling Goexit from the main goroutine terminates that goroutine
|
|
// without func main returning. Since func main has not returned,
|
|
// the program continues execution of other goroutines.
|
|
// If all other goroutines exit, the program crashes.
|
|
func Goexit() {
|
|
// Run all deferred functions for the current goroutine.
|
|
// This code is similar to gopanic, see that implementation
|
|
// for detailed comments.
|
|
gp := getg()
|
|
gp.goexiting = true
|
|
for {
|
|
d := gp._defer
|
|
if d == nil {
|
|
break
|
|
}
|
|
|
|
pfn := d.pfn
|
|
if pfn == 0 {
|
|
if d._panic != nil {
|
|
d._panic.aborted = true
|
|
d._panic = nil
|
|
}
|
|
gp._defer = d.link
|
|
freedefer(d)
|
|
continue
|
|
}
|
|
d.pfn = 0
|
|
|
|
var fn func(unsafe.Pointer)
|
|
*(*uintptr)(unsafe.Pointer(&fn)) = uintptr(noescape(unsafe.Pointer(&pfn)))
|
|
gp.deferring = true
|
|
fn(d.arg)
|
|
gp.deferring = false
|
|
|
|
if gp._defer != d {
|
|
throw("bad defer entry in Goexit")
|
|
}
|
|
d._panic = nil
|
|
gp._defer = d.link
|
|
freedefer(d)
|
|
// Note: we ignore recovers here because Goexit isn't a panic
|
|
}
|
|
gp.goexiting = false
|
|
goexit1()
|
|
}
|
|
|
|
// Call all Error and String methods before freezing the world.
|
|
// Used when crashing with panicking.
|
|
func preprintpanics(p *_panic) {
|
|
defer func() {
|
|
if recover() != nil {
|
|
throw("panic while printing panic value")
|
|
}
|
|
}()
|
|
for p != nil {
|
|
switch v := p.arg.(type) {
|
|
case error:
|
|
p.arg = v.Error()
|
|
case stringer:
|
|
p.arg = v.String()
|
|
}
|
|
p = p.link
|
|
}
|
|
}
|
|
|
|
// Print all currently active panics. Used when crashing.
|
|
// Should only be called after preprintpanics.
|
|
func printpanics(p *_panic) {
|
|
if p.link != nil {
|
|
printpanics(p.link)
|
|
print("\t")
|
|
}
|
|
print("panic: ")
|
|
printany(p.arg)
|
|
if p.recovered {
|
|
print(" [recovered]")
|
|
}
|
|
print("\n")
|
|
}
|
|
|
|
// The implementation of the predeclared function panic.
|
|
func gopanic(e interface{}) {
|
|
gp := getg()
|
|
if gp.m.curg != gp {
|
|
print("panic: ")
|
|
printany(e)
|
|
print("\n")
|
|
throw("panic on system stack")
|
|
}
|
|
|
|
if gp.m.mallocing != 0 {
|
|
print("panic: ")
|
|
printany(e)
|
|
print("\n")
|
|
throw("panic during malloc")
|
|
}
|
|
if gp.m.preemptoff != "" {
|
|
print("panic: ")
|
|
printany(e)
|
|
print("\n")
|
|
print("preempt off reason: ")
|
|
print(gp.m.preemptoff)
|
|
print("\n")
|
|
throw("panic during preemptoff")
|
|
}
|
|
if gp.m.locks != 0 {
|
|
print("panic: ")
|
|
printany(e)
|
|
print("\n")
|
|
throw("panic holding locks")
|
|
}
|
|
|
|
// The gc compiler allocates this new _panic struct on the
|
|
// stack. We can't do that, because when a deferred function
|
|
// recovers the panic we unwind the stack. We unlink this
|
|
// entry before unwinding the stack, but that doesn't help in
|
|
// the case where we panic, a deferred function recovers and
|
|
// then panics itself, that panic is in turn recovered, and
|
|
// unwinds the stack past this stack frame.
|
|
|
|
p := &_panic{
|
|
arg: e,
|
|
link: gp._panic,
|
|
}
|
|
gp._panic = p
|
|
|
|
atomic.Xadd(&runningPanicDefers, 1)
|
|
|
|
for {
|
|
d := gp._defer
|
|
if d == nil {
|
|
break
|
|
}
|
|
|
|
pfn := d.pfn
|
|
|
|
// If defer was started by earlier panic or Goexit (and, since we're back here, that triggered a new panic),
|
|
// take defer off list. The earlier panic or Goexit will not continue running.
|
|
if pfn == 0 {
|
|
if d._panic != nil {
|
|
d._panic.aborted = true
|
|
}
|
|
d._panic = nil
|
|
gp._defer = d.link
|
|
freedefer(d)
|
|
continue
|
|
}
|
|
d.pfn = 0
|
|
|
|
// Record the panic that is running the defer.
|
|
// If there is a new panic during the deferred call, that panic
|
|
// will find d in the list and will mark d._panic (this panic) aborted.
|
|
d._panic = p
|
|
|
|
var fn func(unsafe.Pointer)
|
|
*(*uintptr)(unsafe.Pointer(&fn)) = uintptr(noescape(unsafe.Pointer(&pfn)))
|
|
gp.deferring = true
|
|
fn(d.arg)
|
|
gp.deferring = false
|
|
|
|
if gp._defer != d {
|
|
throw("bad defer entry in panic")
|
|
}
|
|
d._panic = nil
|
|
|
|
if p.recovered {
|
|
atomic.Xadd(&runningPanicDefers, -1)
|
|
|
|
gp._panic = p.link
|
|
|
|
// Aborted panics are marked but remain on the g.panic list.
|
|
// Remove them from the list.
|
|
for gp._panic != nil && gp._panic.aborted {
|
|
gp._panic = gp._panic.link
|
|
}
|
|
if gp._panic == nil { // must be done with signal
|
|
gp.sig = 0
|
|
}
|
|
|
|
// Unwind the stack by throwing an exception.
|
|
// The compiler has arranged to create
|
|
// exception handlers in each function
|
|
// that uses a defer statement. These
|
|
// exception handlers will check whether
|
|
// the entry on the top of the defer stack
|
|
// is from the current function. If it is,
|
|
// we have unwound the stack far enough.
|
|
unwindStack()
|
|
|
|
throw("unwindStack returned")
|
|
}
|
|
|
|
// Because we executed that defer function by a panic,
|
|
// and it did not call recover, we know that we are
|
|
// not returning from the calling function--we are
|
|
// panicking through it.
|
|
*d.frame = false
|
|
|
|
// Deferred function did not panic. Remove d.
|
|
// In the p.recovered case, d will be removed by checkdefer.
|
|
gp._defer = d.link
|
|
|
|
freedefer(d)
|
|
}
|
|
|
|
// ran out of deferred calls - old-school panic now
|
|
// Because it is unsafe to call arbitrary user code after freezing
|
|
// the world, we call preprintpanics to invoke all necessary Error
|
|
// and String methods to prepare the panic strings before startpanic.
|
|
preprintpanics(gp._panic)
|
|
|
|
fatalpanic(gp._panic) // should not return
|
|
*(*int)(nil) = 0 // not reached
|
|
}
|
|
|
|
// currentDefer returns the top of the defer stack if it can be recovered.
|
|
// Otherwise it returns nil.
|
|
func currentDefer() *_defer {
|
|
gp := getg()
|
|
d := gp._defer
|
|
if d == nil {
|
|
return nil
|
|
}
|
|
|
|
// The panic that would be recovered is the one on the top of
|
|
// the panic stack. We do not want to recover it if that panic
|
|
// was on the top of the panic stack when this function was
|
|
// deferred.
|
|
if d.panicStack == gp._panic {
|
|
return nil
|
|
}
|
|
|
|
// The deferred thunk will call setdeferretaddr. If this has
|
|
// not happened, then we have not been called via defer, and
|
|
// we can not recover.
|
|
if d.retaddr == 0 {
|
|
return nil
|
|
}
|
|
|
|
return d
|
|
}
|
|
|
|
// canrecover is called by a thunk to see if the real function would
|
|
// be permitted to recover a panic value. Recovering a value is
|
|
// permitted if the thunk was called directly by defer. retaddr is the
|
|
// return address of the function that is calling canrecover--that is,
|
|
// the thunk.
|
|
func canrecover(retaddr uintptr) bool {
|
|
d := currentDefer()
|
|
if d == nil {
|
|
return false
|
|
}
|
|
|
|
ret := __builtin_extract_return_addr(retaddr)
|
|
dret := d.retaddr
|
|
if ret <= dret && ret+16 >= dret {
|
|
return true
|
|
}
|
|
|
|
// On some systems, in some cases, the return address does not
|
|
// work reliably. See http://gcc.gnu.org/PR60406. If we are
|
|
// permitted to call recover, the call stack will look like this:
|
|
// runtime.gopanic, runtime.deferreturn, etc.
|
|
// thunk to call deferred function (calls __go_set_defer_retaddr)
|
|
// function that calls __go_can_recover (passing return address)
|
|
// runtime.canrecover
|
|
// Calling callers will skip the thunks. So if our caller's
|
|
// caller starts with "runtime.", then we are permitted to
|
|
// call recover.
|
|
var locs [16]location
|
|
if callers(1, locs[:2]) < 2 {
|
|
return false
|
|
}
|
|
|
|
name := locs[1].function
|
|
if hasPrefix(name, "runtime.") {
|
|
return true
|
|
}
|
|
|
|
// If the function calling recover was created by reflect.MakeFunc,
|
|
// then makefuncfficanrecover will have set makefunccanrecover.
|
|
if !d.makefunccanrecover {
|
|
return false
|
|
}
|
|
|
|
// We look up the stack, ignoring libffi functions and
|
|
// functions in the reflect package, until we find
|
|
// reflect.makeFuncStub or reflect.ffi_callback called by FFI
|
|
// functions. Then we check the caller of that function.
|
|
|
|
n := callers(2, locs[:])
|
|
foundFFICallback := false
|
|
i := 0
|
|
for ; i < n; i++ {
|
|
name = locs[i].function
|
|
if name == "" {
|
|
// No function name means this caller isn't Go code.
|
|
// Assume that this is libffi.
|
|
continue
|
|
}
|
|
|
|
// Ignore function in libffi.
|
|
if hasPrefix(name, "ffi_") {
|
|
continue
|
|
}
|
|
|
|
if foundFFICallback {
|
|
break
|
|
}
|
|
|
|
if name == "reflect.ffi_callback" {
|
|
foundFFICallback = true
|
|
continue
|
|
}
|
|
|
|
// Ignore other functions in the reflect package.
|
|
if hasPrefix(name, "reflect.") || hasPrefix(name, ".1reflect.") {
|
|
continue
|
|
}
|
|
|
|
// We should now be looking at the real caller.
|
|
break
|
|
}
|
|
|
|
if i < n {
|
|
name = locs[i].function
|
|
if hasPrefix(name, "runtime.") {
|
|
return true
|
|
}
|
|
}
|
|
|
|
return false
|
|
}
|
|
|
|
// This function is called when code is about to enter a function
|
|
// created by the libffi version of reflect.MakeFunc. This function is
|
|
// passed the names of the callers of the libffi code that called the
|
|
// stub. It uses them to decide whether it is permitted to call
|
|
// recover, and sets d.makefunccanrecover so that gorecover can make
|
|
// the same decision.
|
|
func makefuncfficanrecover(loc []location) {
|
|
d := currentDefer()
|
|
if d == nil {
|
|
return
|
|
}
|
|
|
|
// If we are already in a call stack of MakeFunc functions,
|
|
// there is nothing we can usefully check here.
|
|
if d.makefunccanrecover {
|
|
return
|
|
}
|
|
|
|
// loc starts with the caller of our caller. That will be a thunk.
|
|
// If its caller was a function function, then it was called
|
|
// directly by defer.
|
|
if len(loc) < 2 {
|
|
return
|
|
}
|
|
|
|
name := loc[1].function
|
|
if hasPrefix(name, "runtime.") {
|
|
d.makefunccanrecover = true
|
|
}
|
|
}
|
|
|
|
// makefuncreturning is called when code is about to exit a function
|
|
// created by reflect.MakeFunc. It is called by the function stub used
|
|
// by reflect.MakeFunc. It clears the makefunccanrecover field. It's
|
|
// OK to always clear this field, because canrecover will only be
|
|
// called by a stub created for a function that calls recover. That
|
|
// stub will not call a function created by reflect.MakeFunc, so by
|
|
// the time we get here any caller higher up on the call stack no
|
|
// longer needs the information.
|
|
func makefuncreturning() {
|
|
d := getg()._defer
|
|
if d != nil {
|
|
d.makefunccanrecover = false
|
|
}
|
|
}
|
|
|
|
// The implementation of the predeclared function recover.
|
|
func gorecover() interface{} {
|
|
gp := getg()
|
|
p := gp._panic
|
|
if p != nil && !p.recovered {
|
|
p.recovered = true
|
|
return p.arg
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// deferredrecover is called when a call to recover is deferred. That
|
|
// is, something like
|
|
// defer recover()
|
|
//
|
|
// We need to handle this specially. In gc, the recover function
|
|
// looks up the stack frame. In particular, that means that a deferred
|
|
// recover will not recover a panic thrown in the same function that
|
|
// defers the recover. It will only recover a panic thrown in a
|
|
// function that defers the deferred call to recover.
|
|
//
|
|
// In other words:
|
|
//
|
|
// func f1() {
|
|
// defer recover() // does not stop panic
|
|
// panic(0)
|
|
// }
|
|
//
|
|
// func f2() {
|
|
// defer func() {
|
|
// defer recover() // stops panic(0)
|
|
// }()
|
|
// panic(0)
|
|
// }
|
|
//
|
|
// func f3() {
|
|
// defer func() {
|
|
// defer recover() // does not stop panic
|
|
// panic(0)
|
|
// }()
|
|
// panic(1)
|
|
// }
|
|
//
|
|
// func f4() {
|
|
// defer func() {
|
|
// defer func() {
|
|
// defer recover() // stops panic(0)
|
|
// }()
|
|
// panic(0)
|
|
// }()
|
|
// panic(1)
|
|
// }
|
|
//
|
|
// The interesting case here is f3. As can be seen from f2, the
|
|
// deferred recover could pick up panic(1). However, this does not
|
|
// happen because it is blocked by the panic(0).
|
|
//
|
|
// When a function calls recover, then when we invoke it we pass a
|
|
// hidden parameter indicating whether it should recover something.
|
|
// This parameter is set based on whether the function is being
|
|
// invoked directly from defer. The parameter winds up determining
|
|
// whether __go_recover or __go_deferred_recover is called at all.
|
|
//
|
|
// In the case of a deferred recover, the hidden parameter that
|
|
// controls the call is actually the one set up for the function that
|
|
// runs the defer recover() statement. That is the right thing in all
|
|
// the cases above except for f3. In f3 the function is permitted to
|
|
// call recover, but the deferred recover call is not. We address that
|
|
// here by checking for that specific case before calling recover. If
|
|
// this function was deferred when there is already a panic on the
|
|
// panic stack, then we can only recover that panic, not any other.
|
|
|
|
// Note that we can get away with using a special function here
|
|
// because you are not permitted to take the address of a predeclared
|
|
// function like recover.
|
|
func deferredrecover() interface{} {
|
|
gp := getg()
|
|
if gp._defer == nil || gp._defer.panicStack != gp._panic {
|
|
return nil
|
|
}
|
|
return gorecover()
|
|
}
|
|
|
|
//go:linkname sync_throw sync.throw
|
|
func sync_throw(s string) {
|
|
throw(s)
|
|
}
|
|
|
|
//go:nosplit
|
|
func throw(s string) {
|
|
// Everything throw does should be recursively nosplit so it
|
|
// can be called even when it's unsafe to grow the stack.
|
|
systemstack(func() {
|
|
print("fatal error: ", s, "\n")
|
|
})
|
|
gp := getg()
|
|
if gp.m.throwing == 0 {
|
|
gp.m.throwing = 1
|
|
}
|
|
fatalthrow()
|
|
*(*int)(nil) = 0 // not reached
|
|
}
|
|
|
|
// runningPanicDefers is non-zero while running deferred functions for panic.
|
|
// runningPanicDefers is incremented and decremented atomically.
|
|
// This is used to try hard to get a panic stack trace out when exiting.
|
|
var runningPanicDefers uint32
|
|
|
|
// panicking is non-zero when crashing the program for an unrecovered panic.
|
|
// panicking is incremented and decremented atomically.
|
|
var panicking uint32
|
|
|
|
// paniclk is held while printing the panic information and stack trace,
|
|
// so that two concurrent panics don't overlap their output.
|
|
var paniclk mutex
|
|
|
|
// fatalthrow implements an unrecoverable runtime throw. It freezes the
|
|
// system, prints stack traces starting from its caller, and terminates the
|
|
// process.
|
|
//
|
|
//go:nosplit
|
|
func fatalthrow() {
|
|
pc := getcallerpc()
|
|
sp := getcallersp()
|
|
gp := getg()
|
|
|
|
startpanic_m()
|
|
|
|
if dopanic_m(gp, pc, sp) {
|
|
crash()
|
|
}
|
|
|
|
exit(2)
|
|
|
|
*(*int)(nil) = 0 // not reached
|
|
}
|
|
|
|
// fatalpanic implements an unrecoverable panic. It is like fatalthrow, except
|
|
// that if msgs != nil, fatalpanic also prints panic messages and decrements
|
|
// runningPanicDefers once main is blocked from exiting.
|
|
//
|
|
//go:nosplit
|
|
func fatalpanic(msgs *_panic) {
|
|
pc := getcallerpc()
|
|
sp := getcallersp()
|
|
gp := getg()
|
|
var docrash bool
|
|
|
|
if startpanic_m() && msgs != nil {
|
|
// There were panic messages and startpanic_m
|
|
// says it's okay to try to print them.
|
|
|
|
// startpanic_m set panicking, which will
|
|
// block main from exiting, so now OK to
|
|
// decrement runningPanicDefers.
|
|
atomic.Xadd(&runningPanicDefers, -1)
|
|
|
|
printpanics(msgs)
|
|
}
|
|
|
|
docrash = dopanic_m(gp, pc, sp)
|
|
|
|
if docrash {
|
|
// By crashing outside the above systemstack call, debuggers
|
|
// will not be confused when generating a backtrace.
|
|
// Function crash is marked nosplit to avoid stack growth.
|
|
crash()
|
|
}
|
|
|
|
systemstack(func() {
|
|
exit(2)
|
|
})
|
|
|
|
*(*int)(nil) = 0 // not reached
|
|
}
|
|
|
|
// startpanic_m prepares for an unrecoverable panic.
|
|
//
|
|
// It returns true if panic messages should be printed, or false if
|
|
// the runtime is in bad shape and should just print stacks.
|
|
//
|
|
// It must not have write barriers even though the write barrier
|
|
// explicitly ignores writes once dying > 0. Write barriers still
|
|
// assume that g.m.p != nil, and this function may not have P
|
|
// in some contexts (e.g. a panic in a signal handler for a signal
|
|
// sent to an M with no P).
|
|
//
|
|
//go:nowritebarrierrec
|
|
func startpanic_m() bool {
|
|
_g_ := getg()
|
|
if mheap_.cachealloc.size == 0 { // very early
|
|
print("runtime: panic before malloc heap initialized\n")
|
|
}
|
|
// Disallow malloc during an unrecoverable panic. A panic
|
|
// could happen in a signal handler, or in a throw, or inside
|
|
// malloc itself. We want to catch if an allocation ever does
|
|
// happen (even if we're not in one of these situations).
|
|
_g_.m.mallocing++
|
|
|
|
// If we're dying because of a bad lock count, set it to a
|
|
// good lock count so we don't recursively panic below.
|
|
if _g_.m.locks < 0 {
|
|
_g_.m.locks = 1
|
|
}
|
|
|
|
switch _g_.m.dying {
|
|
case 0:
|
|
// Setting dying >0 has the side-effect of disabling this G's writebuf.
|
|
_g_.m.dying = 1
|
|
atomic.Xadd(&panicking, 1)
|
|
lock(&paniclk)
|
|
if debug.schedtrace > 0 || debug.scheddetail > 0 {
|
|
schedtrace(true)
|
|
}
|
|
freezetheworld()
|
|
return true
|
|
case 1:
|
|
// Something failed while panicking.
|
|
// Just print a stack trace and exit.
|
|
_g_.m.dying = 2
|
|
print("panic during panic\n")
|
|
return false
|
|
case 2:
|
|
// This is a genuine bug in the runtime, we couldn't even
|
|
// print the stack trace successfully.
|
|
_g_.m.dying = 3
|
|
print("stack trace unavailable\n")
|
|
exit(4)
|
|
fallthrough
|
|
default:
|
|
// Can't even print! Just exit.
|
|
exit(5)
|
|
return false // Need to return something.
|
|
}
|
|
}
|
|
|
|
var didothers bool
|
|
var deadlock mutex
|
|
|
|
func dopanic_m(gp *g, pc, sp uintptr) bool {
|
|
if gp.sig != 0 {
|
|
signame := signame(gp.sig)
|
|
if signame != "" {
|
|
print("[signal ", signame)
|
|
} else {
|
|
print("[signal ", hex(gp.sig))
|
|
}
|
|
print(" code=", hex(gp.sigcode0), " addr=", hex(gp.sigcode1), " pc=", hex(gp.sigpc), "]\n")
|
|
}
|
|
|
|
level, all, docrash := gotraceback()
|
|
_g_ := getg()
|
|
if level > 0 {
|
|
if gp != gp.m.curg {
|
|
all = true
|
|
}
|
|
if gp != gp.m.g0 {
|
|
print("\n")
|
|
goroutineheader(gp)
|
|
traceback(0)
|
|
} else if level >= 2 || _g_.m.throwing > 0 {
|
|
print("\nruntime stack:\n")
|
|
traceback(0)
|
|
}
|
|
if !didothers && all {
|
|
didothers = true
|
|
tracebackothers(gp)
|
|
}
|
|
}
|
|
unlock(&paniclk)
|
|
|
|
if atomic.Xadd(&panicking, -1) != 0 {
|
|
// Some other m is panicking too.
|
|
// Let it print what it needs to print.
|
|
// Wait forever without chewing up cpu.
|
|
// It will exit when it's done.
|
|
lock(&deadlock)
|
|
lock(&deadlock)
|
|
}
|
|
|
|
printDebugLog()
|
|
|
|
return docrash
|
|
}
|
|
|
|
// canpanic returns false if a signal should throw instead of
|
|
// panicking.
|
|
//
|
|
//go:nosplit
|
|
func canpanic(gp *g) bool {
|
|
// Note that g is m->gsignal, different from gp.
|
|
// Note also that g->m can change at preemption, so m can go stale
|
|
// if this function ever makes a function call.
|
|
_g_ := getg()
|
|
_m_ := _g_.m
|
|
|
|
// Is it okay for gp to panic instead of crashing the program?
|
|
// Yes, as long as it is running Go code, not runtime code,
|
|
// and not stuck in a system call.
|
|
if gp == nil || gp != _m_.curg {
|
|
return false
|
|
}
|
|
if _m_.locks != 0 || _m_.mallocing != 0 || _m_.throwing != 0 || _m_.preemptoff != "" || _m_.dying != 0 {
|
|
return false
|
|
}
|
|
status := readgstatus(gp)
|
|
if status&^_Gscan != _Grunning || gp.syscallsp != 0 {
|
|
return false
|
|
}
|
|
return true
|
|
}
|
|
|
|
// isAbortPC reports whether pc is the program counter at which
|
|
// runtime.abort raises a signal.
|
|
//
|
|
// It is nosplit because it's part of the isgoexception
|
|
// implementation.
|
|
//
|
|
//go:nosplit
|
|
func isAbortPC(pc uintptr) bool {
|
|
return false
|
|
}
|