gcc/libquadmath/math/cexpq.c
Richard Sandiford 1b78544ffe Revert libquadmath and libssp copyright patches.
From-SVN: r195820
2013-02-06 22:03:54 +00:00

153 lines
3.7 KiB
C

/* Return value of complex exponential function for complex __float128 value.
Copyright (C) 1997-2012 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include "quadmath-imp.h"
#ifdef HAVE_FENV_H
# include <fenv.h>
#endif
__complex128
cexpq (__complex128 x)
{
__complex128 retval;
int rcls = fpclassifyq (__real__ x);
int icls = fpclassifyq (__imag__ x);
if (__builtin_expect (rcls >= QUADFP_ZERO, 1))
{
/* Real part is finite. */
if (__builtin_expect (icls >= QUADFP_ZERO, 1))
{
/* Imaginary part is finite. */
const int t = (int) ((FLT128_MAX_EXP - 1) * M_LN2q);
__float128 sinix, cosix;
if (__builtin_expect (icls != QUADFP_SUBNORMAL, 1))
{
sincosq (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1.0Q;
}
if (__real__ x > t)
{
__float128 exp_t = expq (t);
__real__ x -= t;
sinix *= exp_t;
cosix *= exp_t;
if (__real__ x > t)
{
__real__ x -= t;
sinix *= exp_t;
cosix *= exp_t;
}
}
if (__real__ x > t)
{
/* Overflow (original real part of x > 3t). */
__real__ retval = FLT128_MAX * cosix;
__imag__ retval = FLT128_MAX * sinix;
}
else
{
__float128 exp_val = expq (__real__ x);
__real__ retval = exp_val * cosix;
__imag__ retval = exp_val * sinix;
}
}
else
{
/* If the imaginary part is +-inf or NaN and the real part
is not +-inf the result is NaN + iNaN. */
__real__ retval = nanq ("");
__imag__ retval = nanq ("");
#ifdef HAVE_FENV_H
feraiseexcept (FE_INVALID);
#endif
}
}
else if (__builtin_expect (rcls == QUADFP_INFINITE, 1))
{
/* Real part is infinite. */
if (__builtin_expect (icls >= QUADFP_ZERO, 1))
{
/* Imaginary part is finite. */
__float128 value = signbitq (__real__ x) ? 0.0Q : HUGE_VALQ;
if (icls == QUADFP_ZERO)
{
/* Imaginary part is 0.0. */
__real__ retval = value;
__imag__ retval = __imag__ x;
}
else
{
__float128 sinix, cosix;
if (__builtin_expect (icls != QUADFP_SUBNORMAL, 1))
{
sincosq (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1.0Q;
}
__real__ retval = copysignq (value, cosix);
__imag__ retval = copysignq (value, sinix);
}
}
else if (signbitq (__real__ x) == 0)
{
__real__ retval = HUGE_VALQ;
__imag__ retval = nanq ("");
#ifdef HAVE_FENV_H
if (icls == QUADFP_INFINITE)
feraiseexcept (FE_INVALID);
#endif
}
else
{
__real__ retval = 0.0Q;
__imag__ retval = copysignq (0.0Q, __imag__ x);
}
}
else
{
/* If the real part is NaN the result is NaN + iNaN. */
__real__ retval = nanq ("");
__imag__ retval = nanq ("");
#ifdef HAVE_FENV_H
if (rcls != QUADFP_NAN || icls != QUADFP_NAN)
feraiseexcept (FE_INVALID);
#endif
}
return retval;
}