ac376b15df
Use alignof rather than assuming a 16 byte alignment. Reviewed-on: https://go-review.googlesource.com/28913 From-SVN: r240047
3547 lines
86 KiB
C
3547 lines
86 KiB
C
// Copyright 2009 The Go Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
#include <limits.h>
|
||
#include <signal.h>
|
||
#include <stdlib.h>
|
||
#include <pthread.h>
|
||
#include <unistd.h>
|
||
|
||
#include "config.h"
|
||
|
||
#ifdef HAVE_DL_ITERATE_PHDR
|
||
#include <link.h>
|
||
#endif
|
||
|
||
#include "runtime.h"
|
||
#include "arch.h"
|
||
#include "defs.h"
|
||
#include "malloc.h"
|
||
#include "go-type.h"
|
||
|
||
#ifdef USING_SPLIT_STACK
|
||
|
||
/* FIXME: These are not declared anywhere. */
|
||
|
||
extern void __splitstack_getcontext(void *context[10]);
|
||
|
||
extern void __splitstack_setcontext(void *context[10]);
|
||
|
||
extern void *__splitstack_makecontext(size_t, void *context[10], size_t *);
|
||
|
||
extern void * __splitstack_resetcontext(void *context[10], size_t *);
|
||
|
||
extern void *__splitstack_find(void *, void *, size_t *, void **, void **,
|
||
void **);
|
||
|
||
extern void __splitstack_block_signals (int *, int *);
|
||
|
||
extern void __splitstack_block_signals_context (void *context[10], int *,
|
||
int *);
|
||
|
||
#endif
|
||
|
||
#ifndef PTHREAD_STACK_MIN
|
||
# define PTHREAD_STACK_MIN 8192
|
||
#endif
|
||
|
||
#if defined(USING_SPLIT_STACK) && defined(LINKER_SUPPORTS_SPLIT_STACK)
|
||
# define StackMin PTHREAD_STACK_MIN
|
||
#else
|
||
# define StackMin ((sizeof(char *) < 8) ? 2 * 1024 * 1024 : 4 * 1024 * 1024)
|
||
#endif
|
||
|
||
uintptr runtime_stacks_sys;
|
||
|
||
static void gtraceback(G*);
|
||
|
||
#ifdef __rtems__
|
||
#define __thread
|
||
#endif
|
||
|
||
static __thread G *g;
|
||
|
||
#ifndef SETCONTEXT_CLOBBERS_TLS
|
||
|
||
static inline void
|
||
initcontext(void)
|
||
{
|
||
}
|
||
|
||
static inline void
|
||
fixcontext(ucontext_t *c __attribute__ ((unused)))
|
||
{
|
||
}
|
||
|
||
#else
|
||
|
||
# if defined(__x86_64__) && defined(__sun__)
|
||
|
||
// x86_64 Solaris 10 and 11 have a bug: setcontext switches the %fs
|
||
// register to that of the thread which called getcontext. The effect
|
||
// is that the address of all __thread variables changes. This bug
|
||
// also affects pthread_self() and pthread_getspecific. We work
|
||
// around it by clobbering the context field directly to keep %fs the
|
||
// same.
|
||
|
||
static __thread greg_t fs;
|
||
|
||
static inline void
|
||
initcontext(void)
|
||
{
|
||
ucontext_t c;
|
||
|
||
getcontext(&c);
|
||
fs = c.uc_mcontext.gregs[REG_FSBASE];
|
||
}
|
||
|
||
static inline void
|
||
fixcontext(ucontext_t* c)
|
||
{
|
||
c->uc_mcontext.gregs[REG_FSBASE] = fs;
|
||
}
|
||
|
||
# elif defined(__NetBSD__)
|
||
|
||
// NetBSD has a bug: setcontext clobbers tlsbase, we need to save
|
||
// and restore it ourselves.
|
||
|
||
static __thread __greg_t tlsbase;
|
||
|
||
static inline void
|
||
initcontext(void)
|
||
{
|
||
ucontext_t c;
|
||
|
||
getcontext(&c);
|
||
tlsbase = c.uc_mcontext._mc_tlsbase;
|
||
}
|
||
|
||
static inline void
|
||
fixcontext(ucontext_t* c)
|
||
{
|
||
c->uc_mcontext._mc_tlsbase = tlsbase;
|
||
}
|
||
|
||
# elif defined(__sparc__)
|
||
|
||
static inline void
|
||
initcontext(void)
|
||
{
|
||
}
|
||
|
||
static inline void
|
||
fixcontext(ucontext_t *c)
|
||
{
|
||
/* ??? Using
|
||
register unsigned long thread __asm__("%g7");
|
||
c->uc_mcontext.gregs[REG_G7] = thread;
|
||
results in
|
||
error: variable ‘thread’ might be clobbered by \
|
||
‘longjmp’ or ‘vfork’ [-Werror=clobbered]
|
||
which ought to be false, as %g7 is a fixed register. */
|
||
|
||
if (sizeof (c->uc_mcontext.gregs[REG_G7]) == 8)
|
||
asm ("stx %%g7, %0" : "=m"(c->uc_mcontext.gregs[REG_G7]));
|
||
else
|
||
asm ("st %%g7, %0" : "=m"(c->uc_mcontext.gregs[REG_G7]));
|
||
}
|
||
|
||
# else
|
||
|
||
# error unknown case for SETCONTEXT_CLOBBERS_TLS
|
||
|
||
# endif
|
||
|
||
#endif
|
||
|
||
// ucontext_arg returns a properly aligned ucontext_t value. On some
|
||
// systems a ucontext_t value must be aligned to a 16-byte boundary.
|
||
// The g structure that has fields of type ucontext_t is defined in
|
||
// Go, and Go has no simple way to align a field to such a boundary.
|
||
// So we make the field larger in runtime2.go and pick an appropriate
|
||
// offset within the field here.
|
||
static ucontext_t*
|
||
ucontext_arg(void** go_ucontext)
|
||
{
|
||
uintptr_t p = (uintptr_t)go_ucontext;
|
||
size_t align = __alignof__(ucontext_t);
|
||
if(align > 16) {
|
||
// We only ensured space for up to a 16 byte alignment
|
||
// in libgo/go/runtime/runtime2.go.
|
||
runtime_throw("required alignment of ucontext_t too large");
|
||
}
|
||
p = (p + align - 1) &~ (uintptr_t)(align - 1);
|
||
return (ucontext_t*)p;
|
||
}
|
||
|
||
// We can not always refer to the TLS variables directly. The
|
||
// compiler will call tls_get_addr to get the address of the variable,
|
||
// and it may hold it in a register across a call to schedule. When
|
||
// we get back from the call we may be running in a different thread,
|
||
// in which case the register now points to the TLS variable for a
|
||
// different thread. We use non-inlinable functions to avoid this
|
||
// when necessary.
|
||
|
||
G* runtime_g(void) __attribute__ ((noinline, no_split_stack));
|
||
|
||
G*
|
||
runtime_g(void)
|
||
{
|
||
return g;
|
||
}
|
||
|
||
M* runtime_m(void) __attribute__ ((noinline, no_split_stack));
|
||
|
||
M*
|
||
runtime_m(void)
|
||
{
|
||
if(g == nil)
|
||
return nil;
|
||
return g->m;
|
||
}
|
||
|
||
// Set g.
|
||
void
|
||
runtime_setg(G* gp)
|
||
{
|
||
g = gp;
|
||
}
|
||
|
||
// Start a new thread.
|
||
static void
|
||
runtime_newosproc(M *mp)
|
||
{
|
||
pthread_attr_t attr;
|
||
sigset_t clear, old;
|
||
pthread_t tid;
|
||
int ret;
|
||
|
||
if(pthread_attr_init(&attr) != 0)
|
||
runtime_throw("pthread_attr_init");
|
||
if(pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED) != 0)
|
||
runtime_throw("pthread_attr_setdetachstate");
|
||
|
||
// Block signals during pthread_create so that the new thread
|
||
// starts with signals disabled. It will enable them in minit.
|
||
sigfillset(&clear);
|
||
|
||
#ifdef SIGTRAP
|
||
// Blocking SIGTRAP reportedly breaks gdb on Alpha GNU/Linux.
|
||
sigdelset(&clear, SIGTRAP);
|
||
#endif
|
||
|
||
sigemptyset(&old);
|
||
pthread_sigmask(SIG_BLOCK, &clear, &old);
|
||
ret = pthread_create(&tid, &attr, runtime_mstart, mp);
|
||
pthread_sigmask(SIG_SETMASK, &old, nil);
|
||
|
||
if (ret != 0)
|
||
runtime_throw("pthread_create");
|
||
}
|
||
|
||
// First function run by a new goroutine. This replaces gogocall.
|
||
static void
|
||
kickoff(void)
|
||
{
|
||
void (*fn)(void*);
|
||
|
||
if(g->traceback != nil)
|
||
gtraceback(g);
|
||
|
||
fn = (void (*)(void*))(g->entry);
|
||
fn(g->param);
|
||
runtime_goexit();
|
||
}
|
||
|
||
// Switch context to a different goroutine. This is like longjmp.
|
||
void runtime_gogo(G*) __attribute__ ((noinline));
|
||
void
|
||
runtime_gogo(G* newg)
|
||
{
|
||
#ifdef USING_SPLIT_STACK
|
||
__splitstack_setcontext(&newg->stackcontext[0]);
|
||
#endif
|
||
g = newg;
|
||
newg->fromgogo = true;
|
||
fixcontext(ucontext_arg(&newg->context[0]));
|
||
setcontext(ucontext_arg(&newg->context[0]));
|
||
runtime_throw("gogo setcontext returned");
|
||
}
|
||
|
||
// Save context and call fn passing g as a parameter. This is like
|
||
// setjmp. Because getcontext always returns 0, unlike setjmp, we use
|
||
// g->fromgogo as a code. It will be true if we got here via
|
||
// setcontext. g == nil the first time this is called in a new m.
|
||
void runtime_mcall(void (*)(G*)) __attribute__ ((noinline));
|
||
void
|
||
runtime_mcall(void (*pfn)(G*))
|
||
{
|
||
M *mp;
|
||
G *gp;
|
||
|
||
// Ensure that all registers are on the stack for the garbage
|
||
// collector.
|
||
__builtin_unwind_init();
|
||
|
||
gp = g;
|
||
mp = gp->m;
|
||
if(gp == mp->g0)
|
||
runtime_throw("runtime: mcall called on m->g0 stack");
|
||
|
||
if(gp != nil) {
|
||
|
||
#ifdef USING_SPLIT_STACK
|
||
__splitstack_getcontext(&g->stackcontext[0]);
|
||
#else
|
||
gp->gcnextsp = &pfn;
|
||
#endif
|
||
gp->fromgogo = false;
|
||
getcontext(ucontext_arg(&gp->context[0]));
|
||
|
||
// When we return from getcontext, we may be running
|
||
// in a new thread. That means that g may have
|
||
// changed. It is a global variables so we will
|
||
// reload it, but the address of g may be cached in
|
||
// our local stack frame, and that address may be
|
||
// wrong. Call the function to reload the value for
|
||
// this thread.
|
||
gp = runtime_g();
|
||
mp = gp->m;
|
||
|
||
if(gp->traceback != nil)
|
||
gtraceback(gp);
|
||
}
|
||
if (gp == nil || !gp->fromgogo) {
|
||
#ifdef USING_SPLIT_STACK
|
||
__splitstack_setcontext(&mp->g0->stackcontext[0]);
|
||
#endif
|
||
mp->g0->entry = (byte*)pfn;
|
||
mp->g0->param = gp;
|
||
|
||
// It's OK to set g directly here because this case
|
||
// can not occur if we got here via a setcontext to
|
||
// the getcontext call just above.
|
||
g = mp->g0;
|
||
|
||
fixcontext(ucontext_arg(&mp->g0->context[0]));
|
||
setcontext(ucontext_arg(&mp->g0->context[0]));
|
||
runtime_throw("runtime: mcall function returned");
|
||
}
|
||
}
|
||
|
||
// Goroutine scheduler
|
||
// The scheduler's job is to distribute ready-to-run goroutines over worker threads.
|
||
//
|
||
// The main concepts are:
|
||
// G - goroutine.
|
||
// M - worker thread, or machine.
|
||
// P - processor, a resource that is required to execute Go code.
|
||
// M must have an associated P to execute Go code, however it can be
|
||
// blocked or in a syscall w/o an associated P.
|
||
//
|
||
// Design doc at http://golang.org/s/go11sched.
|
||
|
||
typedef struct Sched Sched;
|
||
struct Sched {
|
||
Lock;
|
||
|
||
uint64 goidgen;
|
||
M* midle; // idle m's waiting for work
|
||
int32 nmidle; // number of idle m's waiting for work
|
||
int32 nmidlelocked; // number of locked m's waiting for work
|
||
int32 mcount; // number of m's that have been created
|
||
int32 maxmcount; // maximum number of m's allowed (or die)
|
||
|
||
P* pidle; // idle P's
|
||
uint32 npidle;
|
||
uint32 nmspinning;
|
||
|
||
// Global runnable queue.
|
||
G* runqhead;
|
||
G* runqtail;
|
||
int32 runqsize;
|
||
|
||
// Global cache of dead G's.
|
||
Lock gflock;
|
||
G* gfree;
|
||
|
||
uint32 gcwaiting; // gc is waiting to run
|
||
int32 stopwait;
|
||
Note stopnote;
|
||
uint32 sysmonwait;
|
||
Note sysmonnote;
|
||
uint64 lastpoll;
|
||
|
||
int32 profilehz; // cpu profiling rate
|
||
};
|
||
|
||
enum
|
||
{
|
||
// Number of goroutine ids to grab from runtime_sched.goidgen to local per-P cache at once.
|
||
// 16 seems to provide enough amortization, but other than that it's mostly arbitrary number.
|
||
GoidCacheBatch = 16,
|
||
};
|
||
|
||
Sched runtime_sched;
|
||
int32 runtime_gomaxprocs;
|
||
uint32 runtime_needextram = 1;
|
||
M runtime_m0;
|
||
G runtime_g0; // idle goroutine for m0
|
||
G* runtime_lastg;
|
||
M* runtime_allm;
|
||
P** runtime_allp;
|
||
M* runtime_extram;
|
||
int8* runtime_goos;
|
||
int32 runtime_ncpu;
|
||
bool runtime_precisestack;
|
||
static int32 newprocs;
|
||
|
||
static Lock allglock; // the following vars are protected by this lock or by stoptheworld
|
||
G** runtime_allg;
|
||
uintptr runtime_allglen;
|
||
static uintptr allgcap;
|
||
|
||
bool runtime_isarchive;
|
||
|
||
void* runtime_mstart(void*);
|
||
static void runqput(P*, G*);
|
||
static G* runqget(P*);
|
||
static bool runqputslow(P*, G*, uint32, uint32);
|
||
static G* runqsteal(P*, P*);
|
||
static void mput(M*);
|
||
static M* mget(void);
|
||
static void mcommoninit(M*);
|
||
static void schedule(void);
|
||
static void procresize(int32);
|
||
static void acquirep(P*);
|
||
static P* releasep(void);
|
||
static void newm(void(*)(void), P*);
|
||
static void stopm(void);
|
||
static void startm(P*, bool);
|
||
static void handoffp(P*);
|
||
static void wakep(void);
|
||
static void stoplockedm(void);
|
||
static void startlockedm(G*);
|
||
static void sysmon(void);
|
||
static uint32 retake(int64);
|
||
static void incidlelocked(int32);
|
||
static void checkdead(void);
|
||
static void exitsyscall0(G*);
|
||
static void park0(G*);
|
||
static void goexit0(G*);
|
||
static void gfput(P*, G*);
|
||
static G* gfget(P*);
|
||
static void gfpurge(P*);
|
||
static void globrunqput(G*);
|
||
static void globrunqputbatch(G*, G*, int32);
|
||
static G* globrunqget(P*, int32);
|
||
static P* pidleget(void);
|
||
static void pidleput(P*);
|
||
static void injectglist(G*);
|
||
static bool preemptall(void);
|
||
static bool exitsyscallfast(void);
|
||
static void allgadd(G*);
|
||
|
||
bool runtime_isstarted;
|
||
|
||
// The bootstrap sequence is:
|
||
//
|
||
// call osinit
|
||
// call schedinit
|
||
// make & queue new G
|
||
// call runtime_mstart
|
||
//
|
||
// The new G calls runtime_main.
|
||
void
|
||
runtime_schedinit(void)
|
||
{
|
||
M *m;
|
||
int32 n, procs;
|
||
String s;
|
||
const byte *p;
|
||
Eface i;
|
||
|
||
m = &runtime_m0;
|
||
g = &runtime_g0;
|
||
m->g0 = g;
|
||
m->curg = g;
|
||
g->m = m;
|
||
|
||
initcontext();
|
||
|
||
runtime_sched.maxmcount = 10000;
|
||
runtime_precisestack = 0;
|
||
|
||
// runtime_symtabinit();
|
||
runtime_mallocinit();
|
||
mcommoninit(m);
|
||
|
||
// Initialize the itable value for newErrorCString,
|
||
// so that the next time it gets called, possibly
|
||
// in a fault during a garbage collection, it will not
|
||
// need to allocated memory.
|
||
runtime_newErrorCString(0, &i);
|
||
|
||
// Initialize the cached gotraceback value, since
|
||
// gotraceback calls getenv, which mallocs on Plan 9.
|
||
runtime_gotraceback(nil);
|
||
|
||
runtime_goargs();
|
||
runtime_goenvs();
|
||
runtime_parsedebugvars();
|
||
|
||
runtime_sched.lastpoll = runtime_nanotime();
|
||
procs = 1;
|
||
s = runtime_getenv("GOMAXPROCS");
|
||
p = s.str;
|
||
if(p != nil && (n = runtime_atoi(p, s.len)) > 0) {
|
||
if(n > _MaxGomaxprocs)
|
||
n = _MaxGomaxprocs;
|
||
procs = n;
|
||
}
|
||
runtime_allp = runtime_malloc((_MaxGomaxprocs+1)*sizeof(runtime_allp[0]));
|
||
procresize(procs);
|
||
|
||
// Can not enable GC until all roots are registered.
|
||
// mstats.enablegc = 1;
|
||
}
|
||
|
||
extern void main_init(void) __asm__ (GOSYM_PREFIX "__go_init_main");
|
||
extern void main_main(void) __asm__ (GOSYM_PREFIX "main.main");
|
||
|
||
// Used to determine the field alignment.
|
||
|
||
struct field_align
|
||
{
|
||
char c;
|
||
Hchan *p;
|
||
};
|
||
|
||
// main_init_done is a signal used by cgocallbackg that initialization
|
||
// has been completed. It is made before _cgo_notify_runtime_init_done,
|
||
// so all cgo calls can rely on it existing. When main_init is
|
||
// complete, it is closed, meaning cgocallbackg can reliably receive
|
||
// from it.
|
||
Hchan *runtime_main_init_done;
|
||
|
||
// The chan bool type, for runtime_main_init_done.
|
||
|
||
extern const struct __go_type_descriptor bool_type_descriptor
|
||
__asm__ (GOSYM_PREFIX "__go_tdn_bool");
|
||
|
||
static struct __go_channel_type chan_bool_type_descriptor =
|
||
{
|
||
/* __common */
|
||
{
|
||
/* __code */
|
||
GO_CHAN,
|
||
/* __align */
|
||
__alignof (Hchan *),
|
||
/* __field_align */
|
||
offsetof (struct field_align, p) - 1,
|
||
/* __size */
|
||
sizeof (Hchan *),
|
||
/* __hash */
|
||
0, /* This value doesn't matter. */
|
||
/* __hashfn */
|
||
&__go_type_hash_error_descriptor,
|
||
/* __equalfn */
|
||
&__go_type_equal_error_descriptor,
|
||
/* __gc */
|
||
NULL, /* This value doesn't matter */
|
||
/* __reflection */
|
||
NULL, /* This value doesn't matter */
|
||
/* __uncommon */
|
||
NULL,
|
||
/* __pointer_to_this */
|
||
NULL
|
||
},
|
||
/* __element_type */
|
||
&bool_type_descriptor,
|
||
/* __dir */
|
||
CHANNEL_BOTH_DIR
|
||
};
|
||
|
||
extern Hchan *__go_new_channel (ChanType *, uintptr);
|
||
extern void closechan(Hchan *) __asm__ (GOSYM_PREFIX "runtime.closechan");
|
||
|
||
static void
|
||
initDone(void *arg __attribute__ ((unused))) {
|
||
runtime_unlockOSThread();
|
||
};
|
||
|
||
// The main goroutine.
|
||
// Note: C frames in general are not copyable during stack growth, for two reasons:
|
||
// 1) We don't know where in a frame to find pointers to other stack locations.
|
||
// 2) There's no guarantee that globals or heap values do not point into the frame.
|
||
//
|
||
// The C frame for runtime.main is copyable, because:
|
||
// 1) There are no pointers to other stack locations in the frame
|
||
// (d.fn points at a global, d.link is nil, d.argp is -1).
|
||
// 2) The only pointer into this frame is from the defer chain,
|
||
// which is explicitly handled during stack copying.
|
||
void
|
||
runtime_main(void* dummy __attribute__((unused)))
|
||
{
|
||
Defer d;
|
||
_Bool frame;
|
||
|
||
newm(sysmon, nil);
|
||
|
||
// Lock the main goroutine onto this, the main OS thread,
|
||
// during initialization. Most programs won't care, but a few
|
||
// do require certain calls to be made by the main thread.
|
||
// Those can arrange for main.main to run in the main thread
|
||
// by calling runtime.LockOSThread during initialization
|
||
// to preserve the lock.
|
||
runtime_lockOSThread();
|
||
|
||
// Defer unlock so that runtime.Goexit during init does the unlock too.
|
||
d.pfn = (uintptr)(void*)initDone;
|
||
d.next = g->_defer;
|
||
d.arg = (void*)-1;
|
||
d._panic = g->_panic;
|
||
d.retaddr = 0;
|
||
d.makefunccanrecover = 0;
|
||
d.frame = &frame;
|
||
d.special = true;
|
||
g->_defer = &d;
|
||
|
||
if(g->m != &runtime_m0)
|
||
runtime_throw("runtime_main not on m0");
|
||
__go_go(runtime_MHeap_Scavenger, nil);
|
||
|
||
runtime_main_init_done = __go_new_channel(&chan_bool_type_descriptor, 0);
|
||
|
||
_cgo_notify_runtime_init_done();
|
||
|
||
main_init();
|
||
|
||
closechan(runtime_main_init_done);
|
||
|
||
if(g->_defer != &d || (void*)d.pfn != initDone)
|
||
runtime_throw("runtime: bad defer entry after init");
|
||
g->_defer = d.next;
|
||
runtime_unlockOSThread();
|
||
|
||
// For gccgo we have to wait until after main is initialized
|
||
// to enable GC, because initializing main registers the GC
|
||
// roots.
|
||
mstats.enablegc = 1;
|
||
|
||
if(runtime_isarchive) {
|
||
// This is not a complete program, but is instead a
|
||
// library built using -buildmode=c-archive or
|
||
// c-shared. Now that we are initialized, there is
|
||
// nothing further to do.
|
||
return;
|
||
}
|
||
|
||
main_main();
|
||
|
||
// Make racy client program work: if panicking on
|
||
// another goroutine at the same time as main returns,
|
||
// let the other goroutine finish printing the panic trace.
|
||
// Once it does, it will exit. See issue 3934.
|
||
if(runtime_panicking)
|
||
runtime_park(nil, nil, "panicwait");
|
||
|
||
runtime_exit(0);
|
||
for(;;)
|
||
*(int32*)0 = 0;
|
||
}
|
||
|
||
void
|
||
runtime_goroutineheader(G *gp)
|
||
{
|
||
String status;
|
||
int64 waitfor;
|
||
|
||
switch(gp->atomicstatus) {
|
||
case _Gidle:
|
||
status = runtime_gostringnocopy((const byte*)"idle");
|
||
break;
|
||
case _Grunnable:
|
||
status = runtime_gostringnocopy((const byte*)"runnable");
|
||
break;
|
||
case _Grunning:
|
||
status = runtime_gostringnocopy((const byte*)"running");
|
||
break;
|
||
case _Gsyscall:
|
||
status = runtime_gostringnocopy((const byte*)"syscall");
|
||
break;
|
||
case _Gwaiting:
|
||
if(gp->waitreason.len > 0)
|
||
status = gp->waitreason;
|
||
else
|
||
status = runtime_gostringnocopy((const byte*)"waiting");
|
||
break;
|
||
default:
|
||
status = runtime_gostringnocopy((const byte*)"???");
|
||
break;
|
||
}
|
||
|
||
// approx time the G is blocked, in minutes
|
||
waitfor = 0;
|
||
if((gp->atomicstatus == _Gwaiting || gp->atomicstatus == _Gsyscall) && gp->waitsince != 0)
|
||
waitfor = (runtime_nanotime() - gp->waitsince) / (60LL*1000*1000*1000);
|
||
|
||
if(waitfor < 1)
|
||
runtime_printf("goroutine %D [%S]:\n", gp->goid, status);
|
||
else
|
||
runtime_printf("goroutine %D [%S, %D minutes]:\n", gp->goid, status, waitfor);
|
||
}
|
||
|
||
void
|
||
runtime_printcreatedby(G *g)
|
||
{
|
||
if(g != nil && g->gopc != 0 && g->goid != 1) {
|
||
String fn;
|
||
String file;
|
||
intgo line;
|
||
|
||
if(__go_file_line(g->gopc - 1, -1, &fn, &file, &line)) {
|
||
runtime_printf("created by %S\n", fn);
|
||
runtime_printf("\t%S:%D\n", file, (int64) line);
|
||
}
|
||
}
|
||
}
|
||
|
||
void
|
||
runtime_tracebackothers(G * volatile me)
|
||
{
|
||
G * volatile gp;
|
||
Traceback tb;
|
||
int32 traceback;
|
||
volatile uintptr i;
|
||
|
||
tb.gp = me;
|
||
traceback = runtime_gotraceback(nil);
|
||
|
||
// Show the current goroutine first, if we haven't already.
|
||
if((gp = g->m->curg) != nil && gp != me) {
|
||
runtime_printf("\n");
|
||
runtime_goroutineheader(gp);
|
||
gp->traceback = &tb;
|
||
|
||
#ifdef USING_SPLIT_STACK
|
||
__splitstack_getcontext(&me->stackcontext[0]);
|
||
#endif
|
||
getcontext(ucontext_arg(&me->context[0]));
|
||
|
||
if(gp->traceback != nil) {
|
||
runtime_gogo(gp);
|
||
}
|
||
|
||
runtime_printtrace(tb.locbuf, tb.c, false);
|
||
runtime_printcreatedby(gp);
|
||
}
|
||
|
||
runtime_lock(&allglock);
|
||
for(i = 0; i < runtime_allglen; i++) {
|
||
gp = runtime_allg[i];
|
||
if(gp == me || gp == g->m->curg || gp->atomicstatus == _Gdead)
|
||
continue;
|
||
if(gp->issystem && traceback < 2)
|
||
continue;
|
||
runtime_printf("\n");
|
||
runtime_goroutineheader(gp);
|
||
|
||
// Our only mechanism for doing a stack trace is
|
||
// _Unwind_Backtrace. And that only works for the
|
||
// current thread, not for other random goroutines.
|
||
// So we need to switch context to the goroutine, get
|
||
// the backtrace, and then switch back.
|
||
|
||
// This means that if g is running or in a syscall, we
|
||
// can't reliably print a stack trace. FIXME.
|
||
|
||
if(gp->atomicstatus == _Grunning) {
|
||
runtime_printf("\tgoroutine running on other thread; stack unavailable\n");
|
||
runtime_printcreatedby(gp);
|
||
} else if(gp->atomicstatus == _Gsyscall) {
|
||
runtime_printf("\tgoroutine in C code; stack unavailable\n");
|
||
runtime_printcreatedby(gp);
|
||
} else {
|
||
gp->traceback = &tb;
|
||
|
||
#ifdef USING_SPLIT_STACK
|
||
__splitstack_getcontext(&me->stackcontext[0]);
|
||
#endif
|
||
getcontext(ucontext_arg(&me->context[0]));
|
||
|
||
if(gp->traceback != nil) {
|
||
runtime_gogo(gp);
|
||
}
|
||
|
||
runtime_printtrace(tb.locbuf, tb.c, false);
|
||
runtime_printcreatedby(gp);
|
||
}
|
||
}
|
||
runtime_unlock(&allglock);
|
||
}
|
||
|
||
static void
|
||
checkmcount(void)
|
||
{
|
||
// sched lock is held
|
||
if(runtime_sched.mcount > runtime_sched.maxmcount) {
|
||
runtime_printf("runtime: program exceeds %d-thread limit\n", runtime_sched.maxmcount);
|
||
runtime_throw("thread exhaustion");
|
||
}
|
||
}
|
||
|
||
// Do a stack trace of gp, and then restore the context to
|
||
// gp->dotraceback.
|
||
|
||
static void
|
||
gtraceback(G* gp)
|
||
{
|
||
Traceback* traceback;
|
||
|
||
traceback = gp->traceback;
|
||
gp->traceback = nil;
|
||
if(gp->m != nil)
|
||
runtime_throw("gtraceback: m is not nil");
|
||
gp->m = traceback->gp->m;
|
||
traceback->c = runtime_callers(1, traceback->locbuf,
|
||
sizeof traceback->locbuf / sizeof traceback->locbuf[0], false);
|
||
gp->m = nil;
|
||
runtime_gogo(traceback->gp);
|
||
}
|
||
|
||
static void
|
||
mcommoninit(M *mp)
|
||
{
|
||
// If there is no mcache runtime_callers() will crash,
|
||
// and we are most likely in sysmon thread so the stack is senseless anyway.
|
||
if(g->m->mcache)
|
||
runtime_callers(1, mp->createstack, nelem(mp->createstack), false);
|
||
|
||
mp->fastrand = 0x49f6428aUL + mp->id + runtime_cputicks();
|
||
|
||
runtime_lock(&runtime_sched);
|
||
mp->id = runtime_sched.mcount++;
|
||
checkmcount();
|
||
runtime_mpreinit(mp);
|
||
|
||
// Add to runtime_allm so garbage collector doesn't free m
|
||
// when it is just in a register or thread-local storage.
|
||
mp->alllink = runtime_allm;
|
||
// runtime_NumCgoCall() iterates over allm w/o schedlock,
|
||
// so we need to publish it safely.
|
||
runtime_atomicstorep(&runtime_allm, mp);
|
||
runtime_unlock(&runtime_sched);
|
||
}
|
||
|
||
// Mark gp ready to run.
|
||
void
|
||
runtime_ready(G *gp)
|
||
{
|
||
// Mark runnable.
|
||
g->m->locks++; // disable preemption because it can be holding p in a local var
|
||
if(gp->atomicstatus != _Gwaiting) {
|
||
runtime_printf("goroutine %D has status %d\n", gp->goid, gp->atomicstatus);
|
||
runtime_throw("bad g->atomicstatus in ready");
|
||
}
|
||
gp->atomicstatus = _Grunnable;
|
||
runqput((P*)g->m->p, gp);
|
||
if(runtime_atomicload(&runtime_sched.npidle) != 0 && runtime_atomicload(&runtime_sched.nmspinning) == 0) // TODO: fast atomic
|
||
wakep();
|
||
g->m->locks--;
|
||
}
|
||
|
||
int32
|
||
runtime_gcprocs(void)
|
||
{
|
||
int32 n;
|
||
|
||
// Figure out how many CPUs to use during GC.
|
||
// Limited by gomaxprocs, number of actual CPUs, and MaxGcproc.
|
||
runtime_lock(&runtime_sched);
|
||
n = runtime_gomaxprocs;
|
||
if(n > runtime_ncpu)
|
||
n = runtime_ncpu > 0 ? runtime_ncpu : 1;
|
||
if(n > MaxGcproc)
|
||
n = MaxGcproc;
|
||
if(n > runtime_sched.nmidle+1) // one M is currently running
|
||
n = runtime_sched.nmidle+1;
|
||
runtime_unlock(&runtime_sched);
|
||
return n;
|
||
}
|
||
|
||
static bool
|
||
needaddgcproc(void)
|
||
{
|
||
int32 n;
|
||
|
||
runtime_lock(&runtime_sched);
|
||
n = runtime_gomaxprocs;
|
||
if(n > runtime_ncpu)
|
||
n = runtime_ncpu;
|
||
if(n > MaxGcproc)
|
||
n = MaxGcproc;
|
||
n -= runtime_sched.nmidle+1; // one M is currently running
|
||
runtime_unlock(&runtime_sched);
|
||
return n > 0;
|
||
}
|
||
|
||
void
|
||
runtime_helpgc(int32 nproc)
|
||
{
|
||
M *mp;
|
||
int32 n, pos;
|
||
|
||
runtime_lock(&runtime_sched);
|
||
pos = 0;
|
||
for(n = 1; n < nproc; n++) { // one M is currently running
|
||
if(runtime_allp[pos]->mcache == g->m->mcache)
|
||
pos++;
|
||
mp = mget();
|
||
if(mp == nil)
|
||
runtime_throw("runtime_gcprocs inconsistency");
|
||
mp->helpgc = n;
|
||
mp->mcache = runtime_allp[pos]->mcache;
|
||
pos++;
|
||
runtime_notewakeup(&mp->park);
|
||
}
|
||
runtime_unlock(&runtime_sched);
|
||
}
|
||
|
||
// Similar to stoptheworld but best-effort and can be called several times.
|
||
// There is no reverse operation, used during crashing.
|
||
// This function must not lock any mutexes.
|
||
void
|
||
runtime_freezetheworld(void)
|
||
{
|
||
int32 i;
|
||
|
||
if(runtime_gomaxprocs == 1)
|
||
return;
|
||
// stopwait and preemption requests can be lost
|
||
// due to races with concurrently executing threads,
|
||
// so try several times
|
||
for(i = 0; i < 5; i++) {
|
||
// this should tell the scheduler to not start any new goroutines
|
||
runtime_sched.stopwait = 0x7fffffff;
|
||
runtime_atomicstore((uint32*)&runtime_sched.gcwaiting, 1);
|
||
// this should stop running goroutines
|
||
if(!preemptall())
|
||
break; // no running goroutines
|
||
runtime_usleep(1000);
|
||
}
|
||
// to be sure
|
||
runtime_usleep(1000);
|
||
preemptall();
|
||
runtime_usleep(1000);
|
||
}
|
||
|
||
void
|
||
runtime_stoptheworld(void)
|
||
{
|
||
int32 i;
|
||
uint32 s;
|
||
P *p;
|
||
bool wait;
|
||
|
||
runtime_lock(&runtime_sched);
|
||
runtime_sched.stopwait = runtime_gomaxprocs;
|
||
runtime_atomicstore((uint32*)&runtime_sched.gcwaiting, 1);
|
||
preemptall();
|
||
// stop current P
|
||
((P*)g->m->p)->status = _Pgcstop;
|
||
runtime_sched.stopwait--;
|
||
// try to retake all P's in _Psyscall status
|
||
for(i = 0; i < runtime_gomaxprocs; i++) {
|
||
p = runtime_allp[i];
|
||
s = p->status;
|
||
if(s == _Psyscall && runtime_cas(&p->status, s, _Pgcstop))
|
||
runtime_sched.stopwait--;
|
||
}
|
||
// stop idle P's
|
||
while((p = pidleget()) != nil) {
|
||
p->status = _Pgcstop;
|
||
runtime_sched.stopwait--;
|
||
}
|
||
wait = runtime_sched.stopwait > 0;
|
||
runtime_unlock(&runtime_sched);
|
||
|
||
// wait for remaining P's to stop voluntarily
|
||
if(wait) {
|
||
runtime_notesleep(&runtime_sched.stopnote);
|
||
runtime_noteclear(&runtime_sched.stopnote);
|
||
}
|
||
if(runtime_sched.stopwait)
|
||
runtime_throw("stoptheworld: not stopped");
|
||
for(i = 0; i < runtime_gomaxprocs; i++) {
|
||
p = runtime_allp[i];
|
||
if(p->status != _Pgcstop)
|
||
runtime_throw("stoptheworld: not stopped");
|
||
}
|
||
}
|
||
|
||
static void
|
||
mhelpgc(void)
|
||
{
|
||
g->m->helpgc = -1;
|
||
}
|
||
|
||
void
|
||
runtime_starttheworld(void)
|
||
{
|
||
P *p, *p1;
|
||
M *mp;
|
||
G *gp;
|
||
bool add;
|
||
|
||
g->m->locks++; // disable preemption because it can be holding p in a local var
|
||
gp = runtime_netpoll(false); // non-blocking
|
||
injectglist(gp);
|
||
add = needaddgcproc();
|
||
runtime_lock(&runtime_sched);
|
||
if(newprocs) {
|
||
procresize(newprocs);
|
||
newprocs = 0;
|
||
} else
|
||
procresize(runtime_gomaxprocs);
|
||
runtime_sched.gcwaiting = 0;
|
||
|
||
p1 = nil;
|
||
while((p = pidleget()) != nil) {
|
||
// procresize() puts p's with work at the beginning of the list.
|
||
// Once we reach a p without a run queue, the rest don't have one either.
|
||
if(p->runqhead == p->runqtail) {
|
||
pidleput(p);
|
||
break;
|
||
}
|
||
p->m = (uintptr)mget();
|
||
p->link = (uintptr)p1;
|
||
p1 = p;
|
||
}
|
||
if(runtime_sched.sysmonwait) {
|
||
runtime_sched.sysmonwait = false;
|
||
runtime_notewakeup(&runtime_sched.sysmonnote);
|
||
}
|
||
runtime_unlock(&runtime_sched);
|
||
|
||
while(p1) {
|
||
p = p1;
|
||
p1 = (P*)p1->link;
|
||
if(p->m) {
|
||
mp = (M*)p->m;
|
||
p->m = 0;
|
||
if(mp->nextp)
|
||
runtime_throw("starttheworld: inconsistent mp->nextp");
|
||
mp->nextp = (uintptr)p;
|
||
runtime_notewakeup(&mp->park);
|
||
} else {
|
||
// Start M to run P. Do not start another M below.
|
||
newm(nil, p);
|
||
add = false;
|
||
}
|
||
}
|
||
|
||
if(add) {
|
||
// If GC could have used another helper proc, start one now,
|
||
// in the hope that it will be available next time.
|
||
// It would have been even better to start it before the collection,
|
||
// but doing so requires allocating memory, so it's tricky to
|
||
// coordinate. This lazy approach works out in practice:
|
||
// we don't mind if the first couple gc rounds don't have quite
|
||
// the maximum number of procs.
|
||
newm(mhelpgc, nil);
|
||
}
|
||
g->m->locks--;
|
||
}
|
||
|
||
// Called to start an M.
|
||
void*
|
||
runtime_mstart(void* mp)
|
||
{
|
||
M *m;
|
||
|
||
m = (M*)mp;
|
||
g = m->g0;
|
||
g->m = m;
|
||
|
||
initcontext();
|
||
|
||
g->entry = nil;
|
||
g->param = nil;
|
||
|
||
// Record top of stack for use by mcall.
|
||
// Once we call schedule we're never coming back,
|
||
// so other calls can reuse this stack space.
|
||
#ifdef USING_SPLIT_STACK
|
||
__splitstack_getcontext(&g->stackcontext[0]);
|
||
#else
|
||
g->gcinitialsp = ∓
|
||
// Setting gcstacksize to 0 is a marker meaning that gcinitialsp
|
||
// is the top of the stack, not the bottom.
|
||
g->gcstacksize = 0;
|
||
g->gcnextsp = ∓
|
||
#endif
|
||
getcontext(ucontext_arg(&g->context[0]));
|
||
|
||
if(g->entry != nil) {
|
||
// Got here from mcall.
|
||
void (*pfn)(G*) = (void (*)(G*))g->entry;
|
||
G* gp = (G*)g->param;
|
||
pfn(gp);
|
||
*(int*)0x21 = 0x21;
|
||
}
|
||
runtime_minit();
|
||
|
||
#ifdef USING_SPLIT_STACK
|
||
{
|
||
int dont_block_signals = 0;
|
||
__splitstack_block_signals(&dont_block_signals, nil);
|
||
}
|
||
#endif
|
||
|
||
// Install signal handlers; after minit so that minit can
|
||
// prepare the thread to be able to handle the signals.
|
||
if(m == &runtime_m0) {
|
||
if(runtime_iscgo && !runtime_cgoHasExtraM) {
|
||
runtime_cgoHasExtraM = true;
|
||
runtime_newextram();
|
||
runtime_needextram = 0;
|
||
}
|
||
runtime_initsig(false);
|
||
}
|
||
|
||
if(m->mstartfn)
|
||
((void (*)(void))m->mstartfn)();
|
||
|
||
if(m->helpgc) {
|
||
m->helpgc = 0;
|
||
stopm();
|
||
} else if(m != &runtime_m0) {
|
||
acquirep((P*)m->nextp);
|
||
m->nextp = 0;
|
||
}
|
||
schedule();
|
||
|
||
// TODO(brainman): This point is never reached, because scheduler
|
||
// does not release os threads at the moment. But once this path
|
||
// is enabled, we must remove our seh here.
|
||
|
||
return nil;
|
||
}
|
||
|
||
typedef struct CgoThreadStart CgoThreadStart;
|
||
struct CgoThreadStart
|
||
{
|
||
M *m;
|
||
G *g;
|
||
uintptr *tls;
|
||
void (*fn)(void);
|
||
};
|
||
|
||
// Allocate a new m unassociated with any thread.
|
||
// Can use p for allocation context if needed.
|
||
M*
|
||
runtime_allocm(P *p, int32 stacksize, byte** ret_g0_stack, uintptr* ret_g0_stacksize)
|
||
{
|
||
M *mp;
|
||
|
||
g->m->locks++; // disable GC because it can be called from sysmon
|
||
if(g->m->p == 0)
|
||
acquirep(p); // temporarily borrow p for mallocs in this function
|
||
#if 0
|
||
if(mtype == nil) {
|
||
Eface e;
|
||
runtime_gc_m_ptr(&e);
|
||
mtype = ((const PtrType*)e.__type_descriptor)->__element_type;
|
||
}
|
||
#endif
|
||
|
||
mp = runtime_mal(sizeof *mp);
|
||
mcommoninit(mp);
|
||
mp->g0 = runtime_malg(stacksize, ret_g0_stack, ret_g0_stacksize);
|
||
mp->g0->m = mp;
|
||
|
||
if(p == (P*)g->m->p)
|
||
releasep();
|
||
g->m->locks--;
|
||
|
||
return mp;
|
||
}
|
||
|
||
static G*
|
||
allocg(void)
|
||
{
|
||
G *gp;
|
||
// static Type *gtype;
|
||
|
||
// if(gtype == nil) {
|
||
// Eface e;
|
||
// runtime_gc_g_ptr(&e);
|
||
// gtype = ((PtrType*)e.__type_descriptor)->__element_type;
|
||
// }
|
||
// gp = runtime_cnew(gtype);
|
||
gp = runtime_malloc(sizeof(G));
|
||
return gp;
|
||
}
|
||
|
||
static M* lockextra(bool nilokay);
|
||
static void unlockextra(M*);
|
||
|
||
// needm is called when a cgo callback happens on a
|
||
// thread without an m (a thread not created by Go).
|
||
// In this case, needm is expected to find an m to use
|
||
// and return with m, g initialized correctly.
|
||
// Since m and g are not set now (likely nil, but see below)
|
||
// needm is limited in what routines it can call. In particular
|
||
// it can only call nosplit functions (textflag 7) and cannot
|
||
// do any scheduling that requires an m.
|
||
//
|
||
// In order to avoid needing heavy lifting here, we adopt
|
||
// the following strategy: there is a stack of available m's
|
||
// that can be stolen. Using compare-and-swap
|
||
// to pop from the stack has ABA races, so we simulate
|
||
// a lock by doing an exchange (via casp) to steal the stack
|
||
// head and replace the top pointer with MLOCKED (1).
|
||
// This serves as a simple spin lock that we can use even
|
||
// without an m. The thread that locks the stack in this way
|
||
// unlocks the stack by storing a valid stack head pointer.
|
||
//
|
||
// In order to make sure that there is always an m structure
|
||
// available to be stolen, we maintain the invariant that there
|
||
// is always one more than needed. At the beginning of the
|
||
// program (if cgo is in use) the list is seeded with a single m.
|
||
// If needm finds that it has taken the last m off the list, its job
|
||
// is - once it has installed its own m so that it can do things like
|
||
// allocate memory - to create a spare m and put it on the list.
|
||
//
|
||
// Each of these extra m's also has a g0 and a curg that are
|
||
// pressed into service as the scheduling stack and current
|
||
// goroutine for the duration of the cgo callback.
|
||
//
|
||
// When the callback is done with the m, it calls dropm to
|
||
// put the m back on the list.
|
||
//
|
||
// Unlike the gc toolchain, we start running on curg, since we are
|
||
// just going to return and let the caller continue.
|
||
void
|
||
runtime_needm(void)
|
||
{
|
||
M *mp;
|
||
|
||
if(runtime_needextram) {
|
||
// Can happen if C/C++ code calls Go from a global ctor.
|
||
// Can not throw, because scheduler is not initialized yet.
|
||
int rv __attribute__((unused));
|
||
rv = runtime_write(2, "fatal error: cgo callback before cgo call\n",
|
||
sizeof("fatal error: cgo callback before cgo call\n")-1);
|
||
runtime_exit(1);
|
||
}
|
||
|
||
// Lock extra list, take head, unlock popped list.
|
||
// nilokay=false is safe here because of the invariant above,
|
||
// that the extra list always contains or will soon contain
|
||
// at least one m.
|
||
mp = lockextra(false);
|
||
|
||
// Set needextram when we've just emptied the list,
|
||
// so that the eventual call into cgocallbackg will
|
||
// allocate a new m for the extra list. We delay the
|
||
// allocation until then so that it can be done
|
||
// after exitsyscall makes sure it is okay to be
|
||
// running at all (that is, there's no garbage collection
|
||
// running right now).
|
||
mp->needextram = mp->schedlink == 0;
|
||
unlockextra((M*)mp->schedlink);
|
||
|
||
// Install g (= m->curg).
|
||
runtime_setg(mp->curg);
|
||
|
||
// Initialize g's context as in mstart.
|
||
initcontext();
|
||
g->atomicstatus = _Gsyscall;
|
||
g->entry = nil;
|
||
g->param = nil;
|
||
#ifdef USING_SPLIT_STACK
|
||
__splitstack_getcontext(&g->stackcontext[0]);
|
||
#else
|
||
g->gcinitialsp = ∓
|
||
g->gcstack = nil;
|
||
g->gcstacksize = 0;
|
||
g->gcnextsp = ∓
|
||
#endif
|
||
getcontext(ucontext_arg(&g->context[0]));
|
||
|
||
if(g->entry != nil) {
|
||
// Got here from mcall.
|
||
void (*pfn)(G*) = (void (*)(G*))g->entry;
|
||
G* gp = (G*)g->param;
|
||
pfn(gp);
|
||
*(int*)0x22 = 0x22;
|
||
}
|
||
|
||
// Initialize this thread to use the m.
|
||
runtime_minit();
|
||
|
||
#ifdef USING_SPLIT_STACK
|
||
{
|
||
int dont_block_signals = 0;
|
||
__splitstack_block_signals(&dont_block_signals, nil);
|
||
}
|
||
#endif
|
||
}
|
||
|
||
// newextram allocates an m and puts it on the extra list.
|
||
// It is called with a working local m, so that it can do things
|
||
// like call schedlock and allocate.
|
||
void
|
||
runtime_newextram(void)
|
||
{
|
||
M *mp, *mnext;
|
||
G *gp;
|
||
byte *g0_sp, *sp;
|
||
uintptr g0_spsize, spsize;
|
||
ucontext_t *uc;
|
||
|
||
// Create extra goroutine locked to extra m.
|
||
// The goroutine is the context in which the cgo callback will run.
|
||
// The sched.pc will never be returned to, but setting it to
|
||
// runtime.goexit makes clear to the traceback routines where
|
||
// the goroutine stack ends.
|
||
mp = runtime_allocm(nil, StackMin, &g0_sp, &g0_spsize);
|
||
gp = runtime_malg(StackMin, &sp, &spsize);
|
||
gp->atomicstatus = _Gdead;
|
||
gp->m = mp;
|
||
mp->curg = gp;
|
||
mp->locked = _LockInternal;
|
||
mp->lockedg = gp;
|
||
gp->lockedm = mp;
|
||
gp->goid = runtime_xadd64(&runtime_sched.goidgen, 1);
|
||
// put on allg for garbage collector
|
||
allgadd(gp);
|
||
|
||
// The context for gp will be set up in runtime_needm. But
|
||
// here we need to set up the context for g0.
|
||
uc = ucontext_arg(&mp->g0->context[0]);
|
||
getcontext(uc);
|
||
uc->uc_stack.ss_sp = g0_sp;
|
||
uc->uc_stack.ss_size = (size_t)g0_spsize;
|
||
makecontext(uc, kickoff, 0);
|
||
|
||
// Add m to the extra list.
|
||
mnext = lockextra(true);
|
||
mp->schedlink = (uintptr)mnext;
|
||
unlockextra(mp);
|
||
}
|
||
|
||
// dropm is called when a cgo callback has called needm but is now
|
||
// done with the callback and returning back into the non-Go thread.
|
||
// It puts the current m back onto the extra list.
|
||
//
|
||
// The main expense here is the call to signalstack to release the
|
||
// m's signal stack, and then the call to needm on the next callback
|
||
// from this thread. It is tempting to try to save the m for next time,
|
||
// which would eliminate both these costs, but there might not be
|
||
// a next time: the current thread (which Go does not control) might exit.
|
||
// If we saved the m for that thread, there would be an m leak each time
|
||
// such a thread exited. Instead, we acquire and release an m on each
|
||
// call. These should typically not be scheduling operations, just a few
|
||
// atomics, so the cost should be small.
|
||
//
|
||
// TODO(rsc): An alternative would be to allocate a dummy pthread per-thread
|
||
// variable using pthread_key_create. Unlike the pthread keys we already use
|
||
// on OS X, this dummy key would never be read by Go code. It would exist
|
||
// only so that we could register at thread-exit-time destructor.
|
||
// That destructor would put the m back onto the extra list.
|
||
// This is purely a performance optimization. The current version,
|
||
// in which dropm happens on each cgo call, is still correct too.
|
||
// We may have to keep the current version on systems with cgo
|
||
// but without pthreads, like Windows.
|
||
void
|
||
runtime_dropm(void)
|
||
{
|
||
M *mp, *mnext;
|
||
|
||
// Undo whatever initialization minit did during needm.
|
||
runtime_unminit();
|
||
|
||
// Clear m and g, and return m to the extra list.
|
||
// After the call to setg we can only call nosplit functions.
|
||
mp = g->m;
|
||
runtime_setg(nil);
|
||
|
||
mp->curg->atomicstatus = _Gdead;
|
||
mp->curg->gcstack = nil;
|
||
mp->curg->gcnextsp = nil;
|
||
|
||
mnext = lockextra(true);
|
||
mp->schedlink = (uintptr)mnext;
|
||
unlockextra(mp);
|
||
}
|
||
|
||
#define MLOCKED ((M*)1)
|
||
|
||
// lockextra locks the extra list and returns the list head.
|
||
// The caller must unlock the list by storing a new list head
|
||
// to runtime.extram. If nilokay is true, then lockextra will
|
||
// return a nil list head if that's what it finds. If nilokay is false,
|
||
// lockextra will keep waiting until the list head is no longer nil.
|
||
static M*
|
||
lockextra(bool nilokay)
|
||
{
|
||
M *mp;
|
||
void (*yield)(void);
|
||
|
||
for(;;) {
|
||
mp = runtime_atomicloadp(&runtime_extram);
|
||
if(mp == MLOCKED) {
|
||
yield = runtime_osyield;
|
||
yield();
|
||
continue;
|
||
}
|
||
if(mp == nil && !nilokay) {
|
||
runtime_usleep(1);
|
||
continue;
|
||
}
|
||
if(!runtime_casp(&runtime_extram, mp, MLOCKED)) {
|
||
yield = runtime_osyield;
|
||
yield();
|
||
continue;
|
||
}
|
||
break;
|
||
}
|
||
return mp;
|
||
}
|
||
|
||
static void
|
||
unlockextra(M *mp)
|
||
{
|
||
runtime_atomicstorep(&runtime_extram, mp);
|
||
}
|
||
|
||
static int32
|
||
countextra()
|
||
{
|
||
M *mp, *mc;
|
||
int32 c;
|
||
|
||
for(;;) {
|
||
mp = runtime_atomicloadp(&runtime_extram);
|
||
if(mp == MLOCKED) {
|
||
runtime_osyield();
|
||
continue;
|
||
}
|
||
if(!runtime_casp(&runtime_extram, mp, MLOCKED)) {
|
||
runtime_osyield();
|
||
continue;
|
||
}
|
||
c = 0;
|
||
for(mc = mp; mc != nil; mc = (M*)mc->schedlink)
|
||
c++;
|
||
runtime_atomicstorep(&runtime_extram, mp);
|
||
return c;
|
||
}
|
||
}
|
||
|
||
// Create a new m. It will start off with a call to fn, or else the scheduler.
|
||
static void
|
||
newm(void(*fn)(void), P *p)
|
||
{
|
||
M *mp;
|
||
|
||
mp = runtime_allocm(p, -1, nil, nil);
|
||
mp->nextp = (uintptr)p;
|
||
mp->mstartfn = (uintptr)(void*)fn;
|
||
|
||
runtime_newosproc(mp);
|
||
}
|
||
|
||
// Stops execution of the current m until new work is available.
|
||
// Returns with acquired P.
|
||
static void
|
||
stopm(void)
|
||
{
|
||
M* m;
|
||
|
||
m = g->m;
|
||
if(m->locks)
|
||
runtime_throw("stopm holding locks");
|
||
if(m->p)
|
||
runtime_throw("stopm holding p");
|
||
if(m->spinning) {
|
||
m->spinning = false;
|
||
runtime_xadd(&runtime_sched.nmspinning, -1);
|
||
}
|
||
|
||
retry:
|
||
runtime_lock(&runtime_sched);
|
||
mput(m);
|
||
runtime_unlock(&runtime_sched);
|
||
runtime_notesleep(&m->park);
|
||
m = g->m;
|
||
runtime_noteclear(&m->park);
|
||
if(m->helpgc) {
|
||
runtime_gchelper();
|
||
m->helpgc = 0;
|
||
m->mcache = nil;
|
||
goto retry;
|
||
}
|
||
acquirep((P*)m->nextp);
|
||
m->nextp = 0;
|
||
}
|
||
|
||
static void
|
||
mspinning(void)
|
||
{
|
||
g->m->spinning = true;
|
||
}
|
||
|
||
// Schedules some M to run the p (creates an M if necessary).
|
||
// If p==nil, tries to get an idle P, if no idle P's does nothing.
|
||
static void
|
||
startm(P *p, bool spinning)
|
||
{
|
||
M *mp;
|
||
void (*fn)(void);
|
||
|
||
runtime_lock(&runtime_sched);
|
||
if(p == nil) {
|
||
p = pidleget();
|
||
if(p == nil) {
|
||
runtime_unlock(&runtime_sched);
|
||
if(spinning)
|
||
runtime_xadd(&runtime_sched.nmspinning, -1);
|
||
return;
|
||
}
|
||
}
|
||
mp = mget();
|
||
runtime_unlock(&runtime_sched);
|
||
if(mp == nil) {
|
||
fn = nil;
|
||
if(spinning)
|
||
fn = mspinning;
|
||
newm(fn, p);
|
||
return;
|
||
}
|
||
if(mp->spinning)
|
||
runtime_throw("startm: m is spinning");
|
||
if(mp->nextp)
|
||
runtime_throw("startm: m has p");
|
||
mp->spinning = spinning;
|
||
mp->nextp = (uintptr)p;
|
||
runtime_notewakeup(&mp->park);
|
||
}
|
||
|
||
// Hands off P from syscall or locked M.
|
||
static void
|
||
handoffp(P *p)
|
||
{
|
||
// if it has local work, start it straight away
|
||
if(p->runqhead != p->runqtail || runtime_sched.runqsize) {
|
||
startm(p, false);
|
||
return;
|
||
}
|
||
// no local work, check that there are no spinning/idle M's,
|
||
// otherwise our help is not required
|
||
if(runtime_atomicload(&runtime_sched.nmspinning) + runtime_atomicload(&runtime_sched.npidle) == 0 && // TODO: fast atomic
|
||
runtime_cas(&runtime_sched.nmspinning, 0, 1)) {
|
||
startm(p, true);
|
||
return;
|
||
}
|
||
runtime_lock(&runtime_sched);
|
||
if(runtime_sched.gcwaiting) {
|
||
p->status = _Pgcstop;
|
||
if(--runtime_sched.stopwait == 0)
|
||
runtime_notewakeup(&runtime_sched.stopnote);
|
||
runtime_unlock(&runtime_sched);
|
||
return;
|
||
}
|
||
if(runtime_sched.runqsize) {
|
||
runtime_unlock(&runtime_sched);
|
||
startm(p, false);
|
||
return;
|
||
}
|
||
// If this is the last running P and nobody is polling network,
|
||
// need to wakeup another M to poll network.
|
||
if(runtime_sched.npidle == (uint32)runtime_gomaxprocs-1 && runtime_atomicload64(&runtime_sched.lastpoll) != 0) {
|
||
runtime_unlock(&runtime_sched);
|
||
startm(p, false);
|
||
return;
|
||
}
|
||
pidleput(p);
|
||
runtime_unlock(&runtime_sched);
|
||
}
|
||
|
||
// Tries to add one more P to execute G's.
|
||
// Called when a G is made runnable (newproc, ready).
|
||
static void
|
||
wakep(void)
|
||
{
|
||
// be conservative about spinning threads
|
||
if(!runtime_cas(&runtime_sched.nmspinning, 0, 1))
|
||
return;
|
||
startm(nil, true);
|
||
}
|
||
|
||
// Stops execution of the current m that is locked to a g until the g is runnable again.
|
||
// Returns with acquired P.
|
||
static void
|
||
stoplockedm(void)
|
||
{
|
||
M *m;
|
||
P *p;
|
||
|
||
m = g->m;
|
||
if(m->lockedg == nil || m->lockedg->lockedm != m)
|
||
runtime_throw("stoplockedm: inconsistent locking");
|
||
if(m->p) {
|
||
// Schedule another M to run this p.
|
||
p = releasep();
|
||
handoffp(p);
|
||
}
|
||
incidlelocked(1);
|
||
// Wait until another thread schedules lockedg again.
|
||
runtime_notesleep(&m->park);
|
||
m = g->m;
|
||
runtime_noteclear(&m->park);
|
||
if(m->lockedg->atomicstatus != _Grunnable)
|
||
runtime_throw("stoplockedm: not runnable");
|
||
acquirep((P*)m->nextp);
|
||
m->nextp = 0;
|
||
}
|
||
|
||
// Schedules the locked m to run the locked gp.
|
||
static void
|
||
startlockedm(G *gp)
|
||
{
|
||
M *mp;
|
||
P *p;
|
||
|
||
mp = gp->lockedm;
|
||
if(mp == g->m)
|
||
runtime_throw("startlockedm: locked to me");
|
||
if(mp->nextp)
|
||
runtime_throw("startlockedm: m has p");
|
||
// directly handoff current P to the locked m
|
||
incidlelocked(-1);
|
||
p = releasep();
|
||
mp->nextp = (uintptr)p;
|
||
runtime_notewakeup(&mp->park);
|
||
stopm();
|
||
}
|
||
|
||
// Stops the current m for stoptheworld.
|
||
// Returns when the world is restarted.
|
||
static void
|
||
gcstopm(void)
|
||
{
|
||
P *p;
|
||
|
||
if(!runtime_sched.gcwaiting)
|
||
runtime_throw("gcstopm: not waiting for gc");
|
||
if(g->m->spinning) {
|
||
g->m->spinning = false;
|
||
runtime_xadd(&runtime_sched.nmspinning, -1);
|
||
}
|
||
p = releasep();
|
||
runtime_lock(&runtime_sched);
|
||
p->status = _Pgcstop;
|
||
if(--runtime_sched.stopwait == 0)
|
||
runtime_notewakeup(&runtime_sched.stopnote);
|
||
runtime_unlock(&runtime_sched);
|
||
stopm();
|
||
}
|
||
|
||
// Schedules gp to run on the current M.
|
||
// Never returns.
|
||
static void
|
||
execute(G *gp)
|
||
{
|
||
int32 hz;
|
||
|
||
if(gp->atomicstatus != _Grunnable) {
|
||
runtime_printf("execute: bad g status %d\n", gp->atomicstatus);
|
||
runtime_throw("execute: bad g status");
|
||
}
|
||
gp->atomicstatus = _Grunning;
|
||
gp->waitsince = 0;
|
||
((P*)g->m->p)->schedtick++;
|
||
g->m->curg = gp;
|
||
gp->m = g->m;
|
||
|
||
// Check whether the profiler needs to be turned on or off.
|
||
hz = runtime_sched.profilehz;
|
||
if(g->m->profilehz != hz)
|
||
runtime_resetcpuprofiler(hz);
|
||
|
||
runtime_gogo(gp);
|
||
}
|
||
|
||
// Finds a runnable goroutine to execute.
|
||
// Tries to steal from other P's, get g from global queue, poll network.
|
||
static G*
|
||
findrunnable(void)
|
||
{
|
||
G *gp;
|
||
P *p;
|
||
int32 i;
|
||
|
||
top:
|
||
if(runtime_sched.gcwaiting) {
|
||
gcstopm();
|
||
goto top;
|
||
}
|
||
if(runtime_fingwait && runtime_fingwake && (gp = runtime_wakefing()) != nil)
|
||
runtime_ready(gp);
|
||
// local runq
|
||
gp = runqget((P*)g->m->p);
|
||
if(gp)
|
||
return gp;
|
||
// global runq
|
||
if(runtime_sched.runqsize) {
|
||
runtime_lock(&runtime_sched);
|
||
gp = globrunqget((P*)g->m->p, 0);
|
||
runtime_unlock(&runtime_sched);
|
||
if(gp)
|
||
return gp;
|
||
}
|
||
// poll network
|
||
gp = runtime_netpoll(false); // non-blocking
|
||
if(gp) {
|
||
injectglist((G*)gp->schedlink);
|
||
gp->atomicstatus = _Grunnable;
|
||
return gp;
|
||
}
|
||
// If number of spinning M's >= number of busy P's, block.
|
||
// This is necessary to prevent excessive CPU consumption
|
||
// when GOMAXPROCS>>1 but the program parallelism is low.
|
||
if(!g->m->spinning && 2 * runtime_atomicload(&runtime_sched.nmspinning) >= runtime_gomaxprocs - runtime_atomicload(&runtime_sched.npidle)) // TODO: fast atomic
|
||
goto stop;
|
||
if(!g->m->spinning) {
|
||
g->m->spinning = true;
|
||
runtime_xadd(&runtime_sched.nmspinning, 1);
|
||
}
|
||
// random steal from other P's
|
||
for(i = 0; i < 2*runtime_gomaxprocs; i++) {
|
||
if(runtime_sched.gcwaiting)
|
||
goto top;
|
||
p = runtime_allp[runtime_fastrand1()%runtime_gomaxprocs];
|
||
if(p == (P*)g->m->p)
|
||
gp = runqget(p);
|
||
else
|
||
gp = runqsteal((P*)g->m->p, p);
|
||
if(gp)
|
||
return gp;
|
||
}
|
||
stop:
|
||
// return P and block
|
||
runtime_lock(&runtime_sched);
|
||
if(runtime_sched.gcwaiting) {
|
||
runtime_unlock(&runtime_sched);
|
||
goto top;
|
||
}
|
||
if(runtime_sched.runqsize) {
|
||
gp = globrunqget((P*)g->m->p, 0);
|
||
runtime_unlock(&runtime_sched);
|
||
return gp;
|
||
}
|
||
p = releasep();
|
||
pidleput(p);
|
||
runtime_unlock(&runtime_sched);
|
||
if(g->m->spinning) {
|
||
g->m->spinning = false;
|
||
runtime_xadd(&runtime_sched.nmspinning, -1);
|
||
}
|
||
// check all runqueues once again
|
||
for(i = 0; i < runtime_gomaxprocs; i++) {
|
||
p = runtime_allp[i];
|
||
if(p && p->runqhead != p->runqtail) {
|
||
runtime_lock(&runtime_sched);
|
||
p = pidleget();
|
||
runtime_unlock(&runtime_sched);
|
||
if(p) {
|
||
acquirep(p);
|
||
goto top;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
// poll network
|
||
if(runtime_xchg64(&runtime_sched.lastpoll, 0) != 0) {
|
||
if(g->m->p)
|
||
runtime_throw("findrunnable: netpoll with p");
|
||
if(g->m->spinning)
|
||
runtime_throw("findrunnable: netpoll with spinning");
|
||
gp = runtime_netpoll(true); // block until new work is available
|
||
runtime_atomicstore64(&runtime_sched.lastpoll, runtime_nanotime());
|
||
if(gp) {
|
||
runtime_lock(&runtime_sched);
|
||
p = pidleget();
|
||
runtime_unlock(&runtime_sched);
|
||
if(p) {
|
||
acquirep(p);
|
||
injectglist((G*)gp->schedlink);
|
||
gp->atomicstatus = _Grunnable;
|
||
return gp;
|
||
}
|
||
injectglist(gp);
|
||
}
|
||
}
|
||
stopm();
|
||
goto top;
|
||
}
|
||
|
||
static void
|
||
resetspinning(void)
|
||
{
|
||
int32 nmspinning;
|
||
|
||
if(g->m->spinning) {
|
||
g->m->spinning = false;
|
||
nmspinning = runtime_xadd(&runtime_sched.nmspinning, -1);
|
||
if(nmspinning < 0)
|
||
runtime_throw("findrunnable: negative nmspinning");
|
||
} else
|
||
nmspinning = runtime_atomicload(&runtime_sched.nmspinning);
|
||
|
||
// M wakeup policy is deliberately somewhat conservative (see nmspinning handling),
|
||
// so see if we need to wakeup another P here.
|
||
if (nmspinning == 0 && runtime_atomicload(&runtime_sched.npidle) > 0)
|
||
wakep();
|
||
}
|
||
|
||
// Injects the list of runnable G's into the scheduler.
|
||
// Can run concurrently with GC.
|
||
static void
|
||
injectglist(G *glist)
|
||
{
|
||
int32 n;
|
||
G *gp;
|
||
|
||
if(glist == nil)
|
||
return;
|
||
runtime_lock(&runtime_sched);
|
||
for(n = 0; glist; n++) {
|
||
gp = glist;
|
||
glist = (G*)gp->schedlink;
|
||
gp->atomicstatus = _Grunnable;
|
||
globrunqput(gp);
|
||
}
|
||
runtime_unlock(&runtime_sched);
|
||
|
||
for(; n && runtime_sched.npidle; n--)
|
||
startm(nil, false);
|
||
}
|
||
|
||
// One round of scheduler: find a runnable goroutine and execute it.
|
||
// Never returns.
|
||
static void
|
||
schedule(void)
|
||
{
|
||
G *gp;
|
||
uint32 tick;
|
||
|
||
if(g->m->locks)
|
||
runtime_throw("schedule: holding locks");
|
||
|
||
top:
|
||
if(runtime_sched.gcwaiting) {
|
||
gcstopm();
|
||
goto top;
|
||
}
|
||
|
||
gp = nil;
|
||
// Check the global runnable queue once in a while to ensure fairness.
|
||
// Otherwise two goroutines can completely occupy the local runqueue
|
||
// by constantly respawning each other.
|
||
tick = ((P*)g->m->p)->schedtick;
|
||
// This is a fancy way to say tick%61==0,
|
||
// it uses 2 MUL instructions instead of a single DIV and so is faster on modern processors.
|
||
if(tick - (((uint64)tick*0x4325c53fu)>>36)*61 == 0 && runtime_sched.runqsize > 0) {
|
||
runtime_lock(&runtime_sched);
|
||
gp = globrunqget((P*)g->m->p, 1);
|
||
runtime_unlock(&runtime_sched);
|
||
if(gp)
|
||
resetspinning();
|
||
}
|
||
if(gp == nil) {
|
||
gp = runqget((P*)g->m->p);
|
||
if(gp && g->m->spinning)
|
||
runtime_throw("schedule: spinning with local work");
|
||
}
|
||
if(gp == nil) {
|
||
gp = findrunnable(); // blocks until work is available
|
||
resetspinning();
|
||
}
|
||
|
||
if(gp->lockedm) {
|
||
// Hands off own p to the locked m,
|
||
// then blocks waiting for a new p.
|
||
startlockedm(gp);
|
||
goto top;
|
||
}
|
||
|
||
execute(gp);
|
||
}
|
||
|
||
// Puts the current goroutine into a waiting state and calls unlockf.
|
||
// If unlockf returns false, the goroutine is resumed.
|
||
void
|
||
runtime_park(bool(*unlockf)(G*, void*), void *lock, const char *reason)
|
||
{
|
||
if(g->atomicstatus != _Grunning)
|
||
runtime_throw("bad g status");
|
||
g->m->waitlock = lock;
|
||
g->m->waitunlockf = unlockf;
|
||
g->waitreason = runtime_gostringnocopy((const byte*)reason);
|
||
runtime_mcall(park0);
|
||
}
|
||
|
||
static bool
|
||
parkunlock(G *gp, void *lock)
|
||
{
|
||
USED(gp);
|
||
runtime_unlock(lock);
|
||
return true;
|
||
}
|
||
|
||
// Puts the current goroutine into a waiting state and unlocks the lock.
|
||
// The goroutine can be made runnable again by calling runtime_ready(gp).
|
||
void
|
||
runtime_parkunlock(Lock *lock, const char *reason)
|
||
{
|
||
runtime_park(parkunlock, lock, reason);
|
||
}
|
||
|
||
// runtime_park continuation on g0.
|
||
static void
|
||
park0(G *gp)
|
||
{
|
||
M *m;
|
||
bool ok;
|
||
|
||
m = g->m;
|
||
gp->atomicstatus = _Gwaiting;
|
||
gp->m = nil;
|
||
m->curg = nil;
|
||
if(m->waitunlockf) {
|
||
ok = ((bool (*)(G*, void*))m->waitunlockf)(gp, m->waitlock);
|
||
m->waitunlockf = nil;
|
||
m->waitlock = nil;
|
||
if(!ok) {
|
||
gp->atomicstatus = _Grunnable;
|
||
execute(gp); // Schedule it back, never returns.
|
||
}
|
||
}
|
||
if(m->lockedg) {
|
||
stoplockedm();
|
||
execute(gp); // Never returns.
|
||
}
|
||
schedule();
|
||
}
|
||
|
||
// Scheduler yield.
|
||
void
|
||
runtime_gosched(void)
|
||
{
|
||
if(g->atomicstatus != _Grunning)
|
||
runtime_throw("bad g status");
|
||
runtime_mcall(runtime_gosched0);
|
||
}
|
||
|
||
// runtime_gosched continuation on g0.
|
||
void
|
||
runtime_gosched0(G *gp)
|
||
{
|
||
M *m;
|
||
|
||
m = g->m;
|
||
gp->atomicstatus = _Grunnable;
|
||
gp->m = nil;
|
||
m->curg = nil;
|
||
runtime_lock(&runtime_sched);
|
||
globrunqput(gp);
|
||
runtime_unlock(&runtime_sched);
|
||
if(m->lockedg) {
|
||
stoplockedm();
|
||
execute(gp); // Never returns.
|
||
}
|
||
schedule();
|
||
}
|
||
|
||
// Finishes execution of the current goroutine.
|
||
// Need to mark it as nosplit, because it runs with sp > stackbase (as runtime_lessstack).
|
||
// Since it does not return it does not matter. But if it is preempted
|
||
// at the split stack check, GC will complain about inconsistent sp.
|
||
void runtime_goexit(void) __attribute__ ((noinline));
|
||
void
|
||
runtime_goexit(void)
|
||
{
|
||
if(g->atomicstatus != _Grunning)
|
||
runtime_throw("bad g status");
|
||
runtime_mcall(goexit0);
|
||
}
|
||
|
||
// runtime_goexit continuation on g0.
|
||
static void
|
||
goexit0(G *gp)
|
||
{
|
||
M *m;
|
||
|
||
m = g->m;
|
||
gp->atomicstatus = _Gdead;
|
||
gp->entry = nil;
|
||
gp->m = nil;
|
||
gp->lockedm = nil;
|
||
gp->paniconfault = 0;
|
||
gp->_defer = nil; // should be true already but just in case.
|
||
gp->_panic = nil; // non-nil for Goexit during panic. points at stack-allocated data.
|
||
gp->writenbuf = 0;
|
||
gp->writebuf = nil;
|
||
gp->waitreason = runtime_gostringnocopy(nil);
|
||
gp->param = nil;
|
||
m->curg = nil;
|
||
m->lockedg = nil;
|
||
if(m->locked & ~_LockExternal) {
|
||
runtime_printf("invalid m->locked = %d\n", m->locked);
|
||
runtime_throw("internal lockOSThread error");
|
||
}
|
||
m->locked = 0;
|
||
gfput((P*)m->p, gp);
|
||
schedule();
|
||
}
|
||
|
||
// The goroutine g is about to enter a system call.
|
||
// Record that it's not using the cpu anymore.
|
||
// This is called only from the go syscall library and cgocall,
|
||
// not from the low-level system calls used by the runtime.
|
||
//
|
||
// Entersyscall cannot split the stack: the runtime_gosave must
|
||
// make g->sched refer to the caller's stack segment, because
|
||
// entersyscall is going to return immediately after.
|
||
|
||
void runtime_entersyscall(void) __attribute__ ((no_split_stack));
|
||
static void doentersyscall(void) __attribute__ ((no_split_stack, noinline));
|
||
|
||
void
|
||
runtime_entersyscall()
|
||
{
|
||
// Save the registers in the g structure so that any pointers
|
||
// held in registers will be seen by the garbage collector.
|
||
getcontext(ucontext_arg(&g->gcregs[0]));
|
||
|
||
// Do the work in a separate function, so that this function
|
||
// doesn't save any registers on its own stack. If this
|
||
// function does save any registers, we might store the wrong
|
||
// value in the call to getcontext.
|
||
//
|
||
// FIXME: This assumes that we do not need to save any
|
||
// callee-saved registers to access the TLS variable g. We
|
||
// don't want to put the ucontext_t on the stack because it is
|
||
// large and we can not split the stack here.
|
||
doentersyscall();
|
||
}
|
||
|
||
static void
|
||
doentersyscall()
|
||
{
|
||
// Disable preemption because during this function g is in _Gsyscall status,
|
||
// but can have inconsistent g->sched, do not let GC observe it.
|
||
g->m->locks++;
|
||
|
||
// Leave SP around for GC and traceback.
|
||
#ifdef USING_SPLIT_STACK
|
||
g->gcstack = __splitstack_find(nil, nil, &g->gcstacksize,
|
||
&g->gcnextsegment, &g->gcnextsp,
|
||
&g->gcinitialsp);
|
||
#else
|
||
{
|
||
void *v;
|
||
|
||
g->gcnextsp = (byte *) &v;
|
||
}
|
||
#endif
|
||
|
||
g->atomicstatus = _Gsyscall;
|
||
|
||
if(runtime_atomicload(&runtime_sched.sysmonwait)) { // TODO: fast atomic
|
||
runtime_lock(&runtime_sched);
|
||
if(runtime_atomicload(&runtime_sched.sysmonwait)) {
|
||
runtime_atomicstore(&runtime_sched.sysmonwait, 0);
|
||
runtime_notewakeup(&runtime_sched.sysmonnote);
|
||
}
|
||
runtime_unlock(&runtime_sched);
|
||
}
|
||
|
||
g->m->mcache = nil;
|
||
((P*)(g->m->p))->m = 0;
|
||
runtime_atomicstore(&((P*)g->m->p)->status, _Psyscall);
|
||
if(runtime_atomicload(&runtime_sched.gcwaiting)) {
|
||
runtime_lock(&runtime_sched);
|
||
if (runtime_sched.stopwait > 0 && runtime_cas(&((P*)g->m->p)->status, _Psyscall, _Pgcstop)) {
|
||
if(--runtime_sched.stopwait == 0)
|
||
runtime_notewakeup(&runtime_sched.stopnote);
|
||
}
|
||
runtime_unlock(&runtime_sched);
|
||
}
|
||
|
||
g->m->locks--;
|
||
}
|
||
|
||
// The same as runtime_entersyscall(), but with a hint that the syscall is blocking.
|
||
void
|
||
runtime_entersyscallblock(void)
|
||
{
|
||
P *p;
|
||
|
||
g->m->locks++; // see comment in entersyscall
|
||
|
||
// Leave SP around for GC and traceback.
|
||
#ifdef USING_SPLIT_STACK
|
||
g->gcstack = __splitstack_find(nil, nil, &g->gcstacksize,
|
||
&g->gcnextsegment, &g->gcnextsp,
|
||
&g->gcinitialsp);
|
||
#else
|
||
g->gcnextsp = (byte *) &p;
|
||
#endif
|
||
|
||
// Save the registers in the g structure so that any pointers
|
||
// held in registers will be seen by the garbage collector.
|
||
getcontext(ucontext_arg(&g->gcregs[0]));
|
||
|
||
g->atomicstatus = _Gsyscall;
|
||
|
||
p = releasep();
|
||
handoffp(p);
|
||
if(g->isbackground) // do not consider blocked scavenger for deadlock detection
|
||
incidlelocked(1);
|
||
|
||
g->m->locks--;
|
||
}
|
||
|
||
// The goroutine g exited its system call.
|
||
// Arrange for it to run on a cpu again.
|
||
// This is called only from the go syscall library, not
|
||
// from the low-level system calls used by the runtime.
|
||
void
|
||
runtime_exitsyscall(void)
|
||
{
|
||
G *gp;
|
||
|
||
gp = g;
|
||
gp->m->locks++; // see comment in entersyscall
|
||
|
||
if(gp->isbackground) // do not consider blocked scavenger for deadlock detection
|
||
incidlelocked(-1);
|
||
|
||
gp->waitsince = 0;
|
||
if(exitsyscallfast()) {
|
||
// There's a cpu for us, so we can run.
|
||
((P*)gp->m->p)->syscalltick++;
|
||
gp->atomicstatus = _Grunning;
|
||
// Garbage collector isn't running (since we are),
|
||
// so okay to clear gcstack and gcsp.
|
||
#ifdef USING_SPLIT_STACK
|
||
gp->gcstack = nil;
|
||
#endif
|
||
gp->gcnextsp = nil;
|
||
runtime_memclr(&gp->gcregs[0], sizeof gp->gcregs);
|
||
gp->m->locks--;
|
||
return;
|
||
}
|
||
|
||
gp->m->locks--;
|
||
|
||
// Call the scheduler.
|
||
runtime_mcall(exitsyscall0);
|
||
|
||
// Scheduler returned, so we're allowed to run now.
|
||
// Delete the gcstack information that we left for
|
||
// the garbage collector during the system call.
|
||
// Must wait until now because until gosched returns
|
||
// we don't know for sure that the garbage collector
|
||
// is not running.
|
||
#ifdef USING_SPLIT_STACK
|
||
gp->gcstack = nil;
|
||
#endif
|
||
gp->gcnextsp = nil;
|
||
runtime_memclr(&gp->gcregs[0], sizeof gp->gcregs);
|
||
|
||
// Note that this gp->m might be different than the earlier
|
||
// gp->m after returning from runtime_mcall.
|
||
((P*)gp->m->p)->syscalltick++;
|
||
}
|
||
|
||
static bool
|
||
exitsyscallfast(void)
|
||
{
|
||
G *gp;
|
||
P *p;
|
||
|
||
gp = g;
|
||
|
||
// Freezetheworld sets stopwait but does not retake P's.
|
||
if(runtime_sched.stopwait) {
|
||
gp->m->p = 0;
|
||
return false;
|
||
}
|
||
|
||
// Try to re-acquire the last P.
|
||
if(gp->m->p && ((P*)gp->m->p)->status == _Psyscall && runtime_cas(&((P*)gp->m->p)->status, _Psyscall, _Prunning)) {
|
||
// There's a cpu for us, so we can run.
|
||
gp->m->mcache = ((P*)gp->m->p)->mcache;
|
||
((P*)gp->m->p)->m = (uintptr)gp->m;
|
||
return true;
|
||
}
|
||
// Try to get any other idle P.
|
||
gp->m->p = 0;
|
||
if(runtime_sched.pidle) {
|
||
runtime_lock(&runtime_sched);
|
||
p = pidleget();
|
||
if(p && runtime_atomicload(&runtime_sched.sysmonwait)) {
|
||
runtime_atomicstore(&runtime_sched.sysmonwait, 0);
|
||
runtime_notewakeup(&runtime_sched.sysmonnote);
|
||
}
|
||
runtime_unlock(&runtime_sched);
|
||
if(p) {
|
||
acquirep(p);
|
||
return true;
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
// runtime_exitsyscall slow path on g0.
|
||
// Failed to acquire P, enqueue gp as runnable.
|
||
static void
|
||
exitsyscall0(G *gp)
|
||
{
|
||
M *m;
|
||
P *p;
|
||
|
||
m = g->m;
|
||
gp->atomicstatus = _Grunnable;
|
||
gp->m = nil;
|
||
m->curg = nil;
|
||
runtime_lock(&runtime_sched);
|
||
p = pidleget();
|
||
if(p == nil)
|
||
globrunqput(gp);
|
||
else if(runtime_atomicload(&runtime_sched.sysmonwait)) {
|
||
runtime_atomicstore(&runtime_sched.sysmonwait, 0);
|
||
runtime_notewakeup(&runtime_sched.sysmonnote);
|
||
}
|
||
runtime_unlock(&runtime_sched);
|
||
if(p) {
|
||
acquirep(p);
|
||
execute(gp); // Never returns.
|
||
}
|
||
if(m->lockedg) {
|
||
// Wait until another thread schedules gp and so m again.
|
||
stoplockedm();
|
||
execute(gp); // Never returns.
|
||
}
|
||
stopm();
|
||
schedule(); // Never returns.
|
||
}
|
||
|
||
// Called from syscall package before fork.
|
||
void syscall_runtime_BeforeFork(void)
|
||
__asm__(GOSYM_PREFIX "syscall.runtime_BeforeFork");
|
||
void
|
||
syscall_runtime_BeforeFork(void)
|
||
{
|
||
// Fork can hang if preempted with signals frequently enough (see issue 5517).
|
||
// Ensure that we stay on the same M where we disable profiling.
|
||
runtime_m()->locks++;
|
||
if(runtime_m()->profilehz != 0)
|
||
runtime_resetcpuprofiler(0);
|
||
}
|
||
|
||
// Called from syscall package after fork in parent.
|
||
void syscall_runtime_AfterFork(void)
|
||
__asm__(GOSYM_PREFIX "syscall.runtime_AfterFork");
|
||
void
|
||
syscall_runtime_AfterFork(void)
|
||
{
|
||
int32 hz;
|
||
|
||
hz = runtime_sched.profilehz;
|
||
if(hz != 0)
|
||
runtime_resetcpuprofiler(hz);
|
||
runtime_m()->locks--;
|
||
}
|
||
|
||
// Allocate a new g, with a stack big enough for stacksize bytes.
|
||
G*
|
||
runtime_malg(int32 stacksize, byte** ret_stack, uintptr* ret_stacksize)
|
||
{
|
||
G *newg;
|
||
|
||
newg = allocg();
|
||
if(stacksize >= 0) {
|
||
#if USING_SPLIT_STACK
|
||
int dont_block_signals = 0;
|
||
size_t ss_stacksize;
|
||
|
||
*ret_stack = __splitstack_makecontext(stacksize,
|
||
&newg->stackcontext[0],
|
||
&ss_stacksize);
|
||
*ret_stacksize = (uintptr)ss_stacksize;
|
||
__splitstack_block_signals_context(&newg->stackcontext[0],
|
||
&dont_block_signals, nil);
|
||
#else
|
||
// In 64-bit mode, the maximum Go allocation space is
|
||
// 128G. Our stack size is 4M, which only permits 32K
|
||
// goroutines. In order to not limit ourselves,
|
||
// allocate the stacks out of separate memory. In
|
||
// 32-bit mode, the Go allocation space is all of
|
||
// memory anyhow.
|
||
if(sizeof(void*) == 8) {
|
||
void *p = runtime_SysAlloc(stacksize, &mstats.other_sys);
|
||
if(p == nil)
|
||
runtime_throw("runtime: cannot allocate memory for goroutine stack");
|
||
*ret_stack = (byte*)p;
|
||
} else {
|
||
*ret_stack = runtime_mallocgc(stacksize, 0, FlagNoProfiling|FlagNoGC);
|
||
runtime_xadd(&runtime_stacks_sys, stacksize);
|
||
}
|
||
*ret_stacksize = (uintptr)stacksize;
|
||
newg->gcinitialsp = *ret_stack;
|
||
newg->gcstacksize = (uintptr)stacksize;
|
||
#endif
|
||
}
|
||
return newg;
|
||
}
|
||
|
||
/* For runtime package testing. */
|
||
|
||
|
||
// Create a new g running fn with siz bytes of arguments.
|
||
// Put it on the queue of g's waiting to run.
|
||
// The compiler turns a go statement into a call to this.
|
||
// Cannot split the stack because it assumes that the arguments
|
||
// are available sequentially after &fn; they would not be
|
||
// copied if a stack split occurred. It's OK for this to call
|
||
// functions that split the stack.
|
||
void runtime_testing_entersyscall(int32)
|
||
__asm__ (GOSYM_PREFIX "runtime.entersyscall");
|
||
void
|
||
runtime_testing_entersyscall(int32 dummy __attribute__ ((unused)))
|
||
{
|
||
runtime_entersyscall();
|
||
}
|
||
|
||
void runtime_testing_exitsyscall(int32)
|
||
__asm__ (GOSYM_PREFIX "runtime.exitsyscall");
|
||
|
||
void
|
||
runtime_testing_exitsyscall(int32 dummy __attribute__ ((unused)))
|
||
{
|
||
runtime_exitsyscall();
|
||
}
|
||
|
||
G*
|
||
__go_go(void (*fn)(void*), void* arg)
|
||
{
|
||
byte *sp;
|
||
size_t spsize;
|
||
G *newg;
|
||
P *p;
|
||
|
||
//runtime_printf("newproc1 %p %p narg=%d nret=%d\n", fn->fn, argp, narg, nret);
|
||
if(fn == nil) {
|
||
g->m->throwing = -1; // do not dump full stacks
|
||
runtime_throw("go of nil func value");
|
||
}
|
||
g->m->locks++; // disable preemption because it can be holding p in a local var
|
||
|
||
p = (P*)g->m->p;
|
||
if((newg = gfget(p)) != nil) {
|
||
#ifdef USING_SPLIT_STACK
|
||
int dont_block_signals = 0;
|
||
|
||
sp = __splitstack_resetcontext(&newg->stackcontext[0],
|
||
&spsize);
|
||
__splitstack_block_signals_context(&newg->stackcontext[0],
|
||
&dont_block_signals, nil);
|
||
#else
|
||
sp = newg->gcinitialsp;
|
||
spsize = newg->gcstacksize;
|
||
if(spsize == 0)
|
||
runtime_throw("bad spsize in __go_go");
|
||
newg->gcnextsp = sp;
|
||
#endif
|
||
} else {
|
||
uintptr malsize;
|
||
|
||
newg = runtime_malg(StackMin, &sp, &malsize);
|
||
spsize = (size_t)malsize;
|
||
allgadd(newg);
|
||
}
|
||
|
||
newg->entry = (byte*)fn;
|
||
newg->param = arg;
|
||
newg->gopc = (uintptr)__builtin_return_address(0);
|
||
newg->atomicstatus = _Grunnable;
|
||
if(p->goidcache == p->goidcacheend) {
|
||
p->goidcache = runtime_xadd64(&runtime_sched.goidgen, GoidCacheBatch);
|
||
p->goidcacheend = p->goidcache + GoidCacheBatch;
|
||
}
|
||
newg->goid = p->goidcache++;
|
||
|
||
{
|
||
// Avoid warnings about variables clobbered by
|
||
// longjmp.
|
||
byte * volatile vsp = sp;
|
||
size_t volatile vspsize = spsize;
|
||
G * volatile vnewg = newg;
|
||
ucontext_t * volatile uc;
|
||
|
||
uc = ucontext_arg(&vnewg->context[0]);
|
||
getcontext(uc);
|
||
uc->uc_stack.ss_sp = vsp;
|
||
uc->uc_stack.ss_size = vspsize;
|
||
makecontext(uc, kickoff, 0);
|
||
|
||
runqput(p, vnewg);
|
||
|
||
if(runtime_atomicload(&runtime_sched.npidle) != 0 && runtime_atomicload(&runtime_sched.nmspinning) == 0 && fn != runtime_main) // TODO: fast atomic
|
||
wakep();
|
||
g->m->locks--;
|
||
return vnewg;
|
||
}
|
||
}
|
||
|
||
static void
|
||
allgadd(G *gp)
|
||
{
|
||
G **new;
|
||
uintptr cap;
|
||
|
||
runtime_lock(&allglock);
|
||
if(runtime_allglen >= allgcap) {
|
||
cap = 4096/sizeof(new[0]);
|
||
if(cap < 2*allgcap)
|
||
cap = 2*allgcap;
|
||
new = runtime_malloc(cap*sizeof(new[0]));
|
||
if(new == nil)
|
||
runtime_throw("runtime: cannot allocate memory");
|
||
if(runtime_allg != nil) {
|
||
runtime_memmove(new, runtime_allg, runtime_allglen*sizeof(new[0]));
|
||
runtime_free(runtime_allg);
|
||
}
|
||
runtime_allg = new;
|
||
allgcap = cap;
|
||
}
|
||
runtime_allg[runtime_allglen++] = gp;
|
||
runtime_unlock(&allglock);
|
||
}
|
||
|
||
// Put on gfree list.
|
||
// If local list is too long, transfer a batch to the global list.
|
||
static void
|
||
gfput(P *p, G *gp)
|
||
{
|
||
gp->schedlink = (uintptr)p->gfree;
|
||
p->gfree = gp;
|
||
p->gfreecnt++;
|
||
if(p->gfreecnt >= 64) {
|
||
runtime_lock(&runtime_sched.gflock);
|
||
while(p->gfreecnt >= 32) {
|
||
p->gfreecnt--;
|
||
gp = p->gfree;
|
||
p->gfree = (G*)gp->schedlink;
|
||
gp->schedlink = (uintptr)runtime_sched.gfree;
|
||
runtime_sched.gfree = gp;
|
||
}
|
||
runtime_unlock(&runtime_sched.gflock);
|
||
}
|
||
}
|
||
|
||
// Get from gfree list.
|
||
// If local list is empty, grab a batch from global list.
|
||
static G*
|
||
gfget(P *p)
|
||
{
|
||
G *gp;
|
||
|
||
retry:
|
||
gp = p->gfree;
|
||
if(gp == nil && runtime_sched.gfree) {
|
||
runtime_lock(&runtime_sched.gflock);
|
||
while(p->gfreecnt < 32 && runtime_sched.gfree) {
|
||
p->gfreecnt++;
|
||
gp = runtime_sched.gfree;
|
||
runtime_sched.gfree = (G*)gp->schedlink;
|
||
gp->schedlink = (uintptr)p->gfree;
|
||
p->gfree = gp;
|
||
}
|
||
runtime_unlock(&runtime_sched.gflock);
|
||
goto retry;
|
||
}
|
||
if(gp) {
|
||
p->gfree = (G*)gp->schedlink;
|
||
p->gfreecnt--;
|
||
}
|
||
return gp;
|
||
}
|
||
|
||
// Purge all cached G's from gfree list to the global list.
|
||
static void
|
||
gfpurge(P *p)
|
||
{
|
||
G *gp;
|
||
|
||
runtime_lock(&runtime_sched.gflock);
|
||
while(p->gfreecnt) {
|
||
p->gfreecnt--;
|
||
gp = p->gfree;
|
||
p->gfree = (G*)gp->schedlink;
|
||
gp->schedlink = (uintptr)runtime_sched.gfree;
|
||
runtime_sched.gfree = gp;
|
||
}
|
||
runtime_unlock(&runtime_sched.gflock);
|
||
}
|
||
|
||
void
|
||
runtime_Breakpoint(void)
|
||
{
|
||
runtime_breakpoint();
|
||
}
|
||
|
||
void runtime_Gosched (void) __asm__ (GOSYM_PREFIX "runtime.Gosched");
|
||
|
||
void
|
||
runtime_Gosched(void)
|
||
{
|
||
runtime_gosched();
|
||
}
|
||
|
||
// Implementation of runtime.GOMAXPROCS.
|
||
// delete when scheduler is even stronger
|
||
int32
|
||
runtime_gomaxprocsfunc(int32 n)
|
||
{
|
||
int32 ret;
|
||
|
||
if(n > _MaxGomaxprocs)
|
||
n = _MaxGomaxprocs;
|
||
runtime_lock(&runtime_sched);
|
||
ret = runtime_gomaxprocs;
|
||
if(n <= 0 || n == ret) {
|
||
runtime_unlock(&runtime_sched);
|
||
return ret;
|
||
}
|
||
runtime_unlock(&runtime_sched);
|
||
|
||
runtime_semacquire(&runtime_worldsema, false);
|
||
g->m->gcing = 1;
|
||
runtime_stoptheworld();
|
||
newprocs = n;
|
||
g->m->gcing = 0;
|
||
runtime_semrelease(&runtime_worldsema);
|
||
runtime_starttheworld();
|
||
|
||
return ret;
|
||
}
|
||
|
||
// lockOSThread is called by runtime.LockOSThread and runtime.lockOSThread below
|
||
// after they modify m->locked. Do not allow preemption during this call,
|
||
// or else the m might be different in this function than in the caller.
|
||
static void
|
||
lockOSThread(void)
|
||
{
|
||
g->m->lockedg = g;
|
||
g->lockedm = g->m;
|
||
}
|
||
|
||
void runtime_LockOSThread(void) __asm__ (GOSYM_PREFIX "runtime.LockOSThread");
|
||
void
|
||
runtime_LockOSThread(void)
|
||
{
|
||
g->m->locked |= _LockExternal;
|
||
lockOSThread();
|
||
}
|
||
|
||
void
|
||
runtime_lockOSThread(void)
|
||
{
|
||
g->m->locked += _LockInternal;
|
||
lockOSThread();
|
||
}
|
||
|
||
|
||
// unlockOSThread is called by runtime.UnlockOSThread and runtime.unlockOSThread below
|
||
// after they update m->locked. Do not allow preemption during this call,
|
||
// or else the m might be in different in this function than in the caller.
|
||
static void
|
||
unlockOSThread(void)
|
||
{
|
||
if(g->m->locked != 0)
|
||
return;
|
||
g->m->lockedg = nil;
|
||
g->lockedm = nil;
|
||
}
|
||
|
||
void runtime_UnlockOSThread(void) __asm__ (GOSYM_PREFIX "runtime.UnlockOSThread");
|
||
|
||
void
|
||
runtime_UnlockOSThread(void)
|
||
{
|
||
g->m->locked &= ~_LockExternal;
|
||
unlockOSThread();
|
||
}
|
||
|
||
void
|
||
runtime_unlockOSThread(void)
|
||
{
|
||
if(g->m->locked < _LockInternal)
|
||
runtime_throw("runtime: internal error: misuse of lockOSThread/unlockOSThread");
|
||
g->m->locked -= _LockInternal;
|
||
unlockOSThread();
|
||
}
|
||
|
||
bool
|
||
runtime_lockedOSThread(void)
|
||
{
|
||
return g->lockedm != nil && g->m->lockedg != nil;
|
||
}
|
||
|
||
int32
|
||
runtime_gcount(void)
|
||
{
|
||
G *gp;
|
||
int32 n, s;
|
||
uintptr i;
|
||
|
||
n = 0;
|
||
runtime_lock(&allglock);
|
||
// TODO(dvyukov): runtime.NumGoroutine() is O(N).
|
||
// We do not want to increment/decrement centralized counter in newproc/goexit,
|
||
// just to make runtime.NumGoroutine() faster.
|
||
// Compromise solution is to introduce per-P counters of active goroutines.
|
||
for(i = 0; i < runtime_allglen; i++) {
|
||
gp = runtime_allg[i];
|
||
s = gp->atomicstatus;
|
||
if(s == _Grunnable || s == _Grunning || s == _Gsyscall || s == _Gwaiting)
|
||
n++;
|
||
}
|
||
runtime_unlock(&allglock);
|
||
return n;
|
||
}
|
||
|
||
int32
|
||
runtime_mcount(void)
|
||
{
|
||
return runtime_sched.mcount;
|
||
}
|
||
|
||
static struct {
|
||
Lock;
|
||
void (*fn)(uintptr*, int32);
|
||
int32 hz;
|
||
uintptr pcbuf[TracebackMaxFrames];
|
||
Location locbuf[TracebackMaxFrames];
|
||
} prof;
|
||
|
||
static void System(void) {}
|
||
static void GC(void) {}
|
||
|
||
// Called if we receive a SIGPROF signal.
|
||
void
|
||
runtime_sigprof()
|
||
{
|
||
M *mp = g->m;
|
||
int32 n, i;
|
||
bool traceback;
|
||
|
||
if(prof.fn == nil || prof.hz == 0)
|
||
return;
|
||
|
||
if(mp == nil)
|
||
return;
|
||
|
||
// Profiling runs concurrently with GC, so it must not allocate.
|
||
mp->mallocing++;
|
||
|
||
traceback = true;
|
||
|
||
if(mp->mcache == nil)
|
||
traceback = false;
|
||
|
||
runtime_lock(&prof);
|
||
if(prof.fn == nil) {
|
||
runtime_unlock(&prof);
|
||
mp->mallocing--;
|
||
return;
|
||
}
|
||
n = 0;
|
||
|
||
if(runtime_atomicload(&runtime_in_callers) > 0) {
|
||
// If SIGPROF arrived while already fetching runtime
|
||
// callers we can have trouble on older systems
|
||
// because the unwind library calls dl_iterate_phdr
|
||
// which was not recursive in the past.
|
||
traceback = false;
|
||
}
|
||
|
||
if(traceback) {
|
||
n = runtime_callers(0, prof.locbuf, nelem(prof.locbuf), false);
|
||
for(i = 0; i < n; i++)
|
||
prof.pcbuf[i] = prof.locbuf[i].pc;
|
||
}
|
||
if(!traceback || n <= 0) {
|
||
n = 2;
|
||
prof.pcbuf[0] = (uintptr)runtime_getcallerpc(&n);
|
||
if(mp->gcing || mp->helpgc)
|
||
prof.pcbuf[1] = (uintptr)GC;
|
||
else
|
||
prof.pcbuf[1] = (uintptr)System;
|
||
}
|
||
prof.fn(prof.pcbuf, n);
|
||
runtime_unlock(&prof);
|
||
mp->mallocing--;
|
||
}
|
||
|
||
// Arrange to call fn with a traceback hz times a second.
|
||
void
|
||
runtime_setcpuprofilerate(void (*fn)(uintptr*, int32), int32 hz)
|
||
{
|
||
// Force sane arguments.
|
||
if(hz < 0)
|
||
hz = 0;
|
||
if(hz == 0)
|
||
fn = nil;
|
||
if(fn == nil)
|
||
hz = 0;
|
||
|
||
// Disable preemption, otherwise we can be rescheduled to another thread
|
||
// that has profiling enabled.
|
||
g->m->locks++;
|
||
|
||
// Stop profiler on this thread so that it is safe to lock prof.
|
||
// if a profiling signal came in while we had prof locked,
|
||
// it would deadlock.
|
||
runtime_resetcpuprofiler(0);
|
||
|
||
runtime_lock(&prof);
|
||
prof.fn = fn;
|
||
prof.hz = hz;
|
||
runtime_unlock(&prof);
|
||
runtime_lock(&runtime_sched);
|
||
runtime_sched.profilehz = hz;
|
||
runtime_unlock(&runtime_sched);
|
||
|
||
if(hz != 0)
|
||
runtime_resetcpuprofiler(hz);
|
||
|
||
g->m->locks--;
|
||
}
|
||
|
||
// Change number of processors. The world is stopped, sched is locked.
|
||
static void
|
||
procresize(int32 new)
|
||
{
|
||
int32 i, old;
|
||
bool empty;
|
||
G *gp;
|
||
P *p;
|
||
|
||
old = runtime_gomaxprocs;
|
||
if(old < 0 || old > _MaxGomaxprocs || new <= 0 || new >_MaxGomaxprocs)
|
||
runtime_throw("procresize: invalid arg");
|
||
// initialize new P's
|
||
for(i = 0; i < new; i++) {
|
||
p = runtime_allp[i];
|
||
if(p == nil) {
|
||
p = (P*)runtime_mallocgc(sizeof(*p), 0, FlagNoInvokeGC);
|
||
p->id = i;
|
||
p->status = _Pgcstop;
|
||
runtime_atomicstorep(&runtime_allp[i], p);
|
||
}
|
||
if(p->mcache == nil) {
|
||
if(old==0 && i==0)
|
||
p->mcache = g->m->mcache; // bootstrap
|
||
else
|
||
p->mcache = runtime_allocmcache();
|
||
}
|
||
}
|
||
|
||
// redistribute runnable G's evenly
|
||
// collect all runnable goroutines in global queue preserving FIFO order
|
||
// FIFO order is required to ensure fairness even during frequent GCs
|
||
// see http://golang.org/issue/7126
|
||
empty = false;
|
||
while(!empty) {
|
||
empty = true;
|
||
for(i = 0; i < old; i++) {
|
||
p = runtime_allp[i];
|
||
if(p->runqhead == p->runqtail)
|
||
continue;
|
||
empty = false;
|
||
// pop from tail of local queue
|
||
p->runqtail--;
|
||
gp = (G*)p->runq[p->runqtail%nelem(p->runq)];
|
||
// push onto head of global queue
|
||
gp->schedlink = (uintptr)runtime_sched.runqhead;
|
||
runtime_sched.runqhead = gp;
|
||
if(runtime_sched.runqtail == nil)
|
||
runtime_sched.runqtail = gp;
|
||
runtime_sched.runqsize++;
|
||
}
|
||
}
|
||
// fill local queues with at most nelem(p->runq)/2 goroutines
|
||
// start at 1 because current M already executes some G and will acquire allp[0] below,
|
||
// so if we have a spare G we want to put it into allp[1].
|
||
for(i = 1; (uint32)i < (uint32)new * nelem(p->runq)/2 && runtime_sched.runqsize > 0; i++) {
|
||
gp = runtime_sched.runqhead;
|
||
runtime_sched.runqhead = (G*)gp->schedlink;
|
||
if(runtime_sched.runqhead == nil)
|
||
runtime_sched.runqtail = nil;
|
||
runtime_sched.runqsize--;
|
||
runqput(runtime_allp[i%new], gp);
|
||
}
|
||
|
||
// free unused P's
|
||
for(i = new; i < old; i++) {
|
||
p = runtime_allp[i];
|
||
runtime_freemcache(p->mcache);
|
||
p->mcache = nil;
|
||
gfpurge(p);
|
||
p->status = _Pdead;
|
||
// can't free P itself because it can be referenced by an M in syscall
|
||
}
|
||
|
||
if(g->m->p)
|
||
((P*)g->m->p)->m = 0;
|
||
g->m->p = 0;
|
||
g->m->mcache = nil;
|
||
p = runtime_allp[0];
|
||
p->m = 0;
|
||
p->status = _Pidle;
|
||
acquirep(p);
|
||
for(i = new-1; i > 0; i--) {
|
||
p = runtime_allp[i];
|
||
p->status = _Pidle;
|
||
pidleput(p);
|
||
}
|
||
runtime_atomicstore((uint32*)&runtime_gomaxprocs, new);
|
||
}
|
||
|
||
// Associate p and the current m.
|
||
static void
|
||
acquirep(P *p)
|
||
{
|
||
M *m;
|
||
|
||
m = g->m;
|
||
if(m->p || m->mcache)
|
||
runtime_throw("acquirep: already in go");
|
||
if(p->m || p->status != _Pidle) {
|
||
runtime_printf("acquirep: p->m=%p(%d) p->status=%d\n", p->m, p->m ? ((M*)p->m)->id : 0, p->status);
|
||
runtime_throw("acquirep: invalid p state");
|
||
}
|
||
m->mcache = p->mcache;
|
||
m->p = (uintptr)p;
|
||
p->m = (uintptr)m;
|
||
p->status = _Prunning;
|
||
}
|
||
|
||
// Disassociate p and the current m.
|
||
static P*
|
||
releasep(void)
|
||
{
|
||
M *m;
|
||
P *p;
|
||
|
||
m = g->m;
|
||
if(m->p == 0 || m->mcache == nil)
|
||
runtime_throw("releasep: invalid arg");
|
||
p = (P*)m->p;
|
||
if((M*)p->m != m || p->mcache != m->mcache || p->status != _Prunning) {
|
||
runtime_printf("releasep: m=%p m->p=%p p->m=%p m->mcache=%p p->mcache=%p p->status=%d\n",
|
||
m, m->p, p->m, m->mcache, p->mcache, p->status);
|
||
runtime_throw("releasep: invalid p state");
|
||
}
|
||
m->p = 0;
|
||
m->mcache = nil;
|
||
p->m = 0;
|
||
p->status = _Pidle;
|
||
return p;
|
||
}
|
||
|
||
static void
|
||
incidlelocked(int32 v)
|
||
{
|
||
runtime_lock(&runtime_sched);
|
||
runtime_sched.nmidlelocked += v;
|
||
if(v > 0)
|
||
checkdead();
|
||
runtime_unlock(&runtime_sched);
|
||
}
|
||
|
||
// Check for deadlock situation.
|
||
// The check is based on number of running M's, if 0 -> deadlock.
|
||
static void
|
||
checkdead(void)
|
||
{
|
||
G *gp;
|
||
int32 run, grunning, s;
|
||
uintptr i;
|
||
|
||
// For -buildmode=c-shared or -buildmode=c-archive it's OK if
|
||
// there are no running goroutines. The calling program is
|
||
// assumed to be running.
|
||
if(runtime_isarchive) {
|
||
return;
|
||
}
|
||
|
||
// -1 for sysmon
|
||
run = runtime_sched.mcount - runtime_sched.nmidle - runtime_sched.nmidlelocked - 1 - countextra();
|
||
if(run > 0)
|
||
return;
|
||
// If we are dying because of a signal caught on an already idle thread,
|
||
// freezetheworld will cause all running threads to block.
|
||
// And runtime will essentially enter into deadlock state,
|
||
// except that there is a thread that will call runtime_exit soon.
|
||
if(runtime_panicking > 0)
|
||
return;
|
||
if(run < 0) {
|
||
runtime_printf("runtime: checkdead: nmidle=%d nmidlelocked=%d mcount=%d\n",
|
||
runtime_sched.nmidle, runtime_sched.nmidlelocked, runtime_sched.mcount);
|
||
runtime_throw("checkdead: inconsistent counts");
|
||
}
|
||
grunning = 0;
|
||
runtime_lock(&allglock);
|
||
for(i = 0; i < runtime_allglen; i++) {
|
||
gp = runtime_allg[i];
|
||
if(gp->isbackground)
|
||
continue;
|
||
s = gp->atomicstatus;
|
||
if(s == _Gwaiting)
|
||
grunning++;
|
||
else if(s == _Grunnable || s == _Grunning || s == _Gsyscall) {
|
||
runtime_unlock(&allglock);
|
||
runtime_printf("runtime: checkdead: find g %D in status %d\n", gp->goid, s);
|
||
runtime_throw("checkdead: runnable g");
|
||
}
|
||
}
|
||
runtime_unlock(&allglock);
|
||
if(grunning == 0) // possible if main goroutine calls runtime_Goexit()
|
||
runtime_throw("no goroutines (main called runtime.Goexit) - deadlock!");
|
||
g->m->throwing = -1; // do not dump full stacks
|
||
runtime_throw("all goroutines are asleep - deadlock!");
|
||
}
|
||
|
||
static void
|
||
sysmon(void)
|
||
{
|
||
uint32 idle, delay;
|
||
int64 now, lastpoll, lasttrace;
|
||
G *gp;
|
||
|
||
lasttrace = 0;
|
||
idle = 0; // how many cycles in succession we had not wokeup somebody
|
||
delay = 0;
|
||
for(;;) {
|
||
if(idle == 0) // start with 20us sleep...
|
||
delay = 20;
|
||
else if(idle > 50) // start doubling the sleep after 1ms...
|
||
delay *= 2;
|
||
if(delay > 10*1000) // up to 10ms
|
||
delay = 10*1000;
|
||
runtime_usleep(delay);
|
||
if(runtime_debug.schedtrace <= 0 &&
|
||
(runtime_sched.gcwaiting || runtime_atomicload(&runtime_sched.npidle) == (uint32)runtime_gomaxprocs)) { // TODO: fast atomic
|
||
runtime_lock(&runtime_sched);
|
||
if(runtime_atomicload(&runtime_sched.gcwaiting) || runtime_atomicload(&runtime_sched.npidle) == (uint32)runtime_gomaxprocs) {
|
||
runtime_atomicstore(&runtime_sched.sysmonwait, 1);
|
||
runtime_unlock(&runtime_sched);
|
||
runtime_notesleep(&runtime_sched.sysmonnote);
|
||
runtime_noteclear(&runtime_sched.sysmonnote);
|
||
idle = 0;
|
||
delay = 20;
|
||
} else
|
||
runtime_unlock(&runtime_sched);
|
||
}
|
||
// poll network if not polled for more than 10ms
|
||
lastpoll = runtime_atomicload64(&runtime_sched.lastpoll);
|
||
now = runtime_nanotime();
|
||
if(lastpoll != 0 && lastpoll + 10*1000*1000 < now) {
|
||
runtime_cas64(&runtime_sched.lastpoll, lastpoll, now);
|
||
gp = runtime_netpoll(false); // non-blocking
|
||
if(gp) {
|
||
// Need to decrement number of idle locked M's
|
||
// (pretending that one more is running) before injectglist.
|
||
// Otherwise it can lead to the following situation:
|
||
// injectglist grabs all P's but before it starts M's to run the P's,
|
||
// another M returns from syscall, finishes running its G,
|
||
// observes that there is no work to do and no other running M's
|
||
// and reports deadlock.
|
||
incidlelocked(-1);
|
||
injectglist(gp);
|
||
incidlelocked(1);
|
||
}
|
||
}
|
||
// retake P's blocked in syscalls
|
||
// and preempt long running G's
|
||
if(retake(now))
|
||
idle = 0;
|
||
else
|
||
idle++;
|
||
|
||
if(runtime_debug.schedtrace > 0 && lasttrace + runtime_debug.schedtrace*1000000ll <= now) {
|
||
lasttrace = now;
|
||
runtime_schedtrace(runtime_debug.scheddetail);
|
||
}
|
||
}
|
||
}
|
||
|
||
typedef struct Pdesc Pdesc;
|
||
struct Pdesc
|
||
{
|
||
uint32 schedtick;
|
||
int64 schedwhen;
|
||
uint32 syscalltick;
|
||
int64 syscallwhen;
|
||
};
|
||
static Pdesc pdesc[_MaxGomaxprocs];
|
||
|
||
static uint32
|
||
retake(int64 now)
|
||
{
|
||
uint32 i, s, n;
|
||
int64 t;
|
||
P *p;
|
||
Pdesc *pd;
|
||
|
||
n = 0;
|
||
for(i = 0; i < (uint32)runtime_gomaxprocs; i++) {
|
||
p = runtime_allp[i];
|
||
if(p==nil)
|
||
continue;
|
||
pd = &pdesc[i];
|
||
s = p->status;
|
||
if(s == _Psyscall) {
|
||
// Retake P from syscall if it's there for more than 1 sysmon tick (at least 20us).
|
||
t = p->syscalltick;
|
||
if(pd->syscalltick != t) {
|
||
pd->syscalltick = t;
|
||
pd->syscallwhen = now;
|
||
continue;
|
||
}
|
||
// On the one hand we don't want to retake Ps if there is no other work to do,
|
||
// but on the other hand we want to retake them eventually
|
||
// because they can prevent the sysmon thread from deep sleep.
|
||
if(p->runqhead == p->runqtail &&
|
||
runtime_atomicload(&runtime_sched.nmspinning) + runtime_atomicload(&runtime_sched.npidle) > 0 &&
|
||
pd->syscallwhen + 10*1000*1000 > now)
|
||
continue;
|
||
// Need to decrement number of idle locked M's
|
||
// (pretending that one more is running) before the CAS.
|
||
// Otherwise the M from which we retake can exit the syscall,
|
||
// increment nmidle and report deadlock.
|
||
incidlelocked(-1);
|
||
if(runtime_cas(&p->status, s, _Pidle)) {
|
||
n++;
|
||
handoffp(p);
|
||
}
|
||
incidlelocked(1);
|
||
} else if(s == _Prunning) {
|
||
// Preempt G if it's running for more than 10ms.
|
||
t = p->schedtick;
|
||
if(pd->schedtick != t) {
|
||
pd->schedtick = t;
|
||
pd->schedwhen = now;
|
||
continue;
|
||
}
|
||
if(pd->schedwhen + 10*1000*1000 > now)
|
||
continue;
|
||
// preemptone(p);
|
||
}
|
||
}
|
||
return n;
|
||
}
|
||
|
||
// Tell all goroutines that they have been preempted and they should stop.
|
||
// This function is purely best-effort. It can fail to inform a goroutine if a
|
||
// processor just started running it.
|
||
// No locks need to be held.
|
||
// Returns true if preemption request was issued to at least one goroutine.
|
||
static bool
|
||
preemptall(void)
|
||
{
|
||
return false;
|
||
}
|
||
|
||
void
|
||
runtime_schedtrace(bool detailed)
|
||
{
|
||
static int64 starttime;
|
||
int64 now;
|
||
int64 id1, id2, id3;
|
||
int32 i, t, h;
|
||
uintptr gi;
|
||
const char *fmt;
|
||
M *mp, *lockedm;
|
||
G *gp, *lockedg;
|
||
P *p;
|
||
|
||
now = runtime_nanotime();
|
||
if(starttime == 0)
|
||
starttime = now;
|
||
|
||
runtime_lock(&runtime_sched);
|
||
runtime_printf("SCHED %Dms: gomaxprocs=%d idleprocs=%d threads=%d idlethreads=%d runqueue=%d",
|
||
(now-starttime)/1000000, runtime_gomaxprocs, runtime_sched.npidle, runtime_sched.mcount,
|
||
runtime_sched.nmidle, runtime_sched.runqsize);
|
||
if(detailed) {
|
||
runtime_printf(" gcwaiting=%d nmidlelocked=%d nmspinning=%d stopwait=%d sysmonwait=%d\n",
|
||
runtime_sched.gcwaiting, runtime_sched.nmidlelocked, runtime_sched.nmspinning,
|
||
runtime_sched.stopwait, runtime_sched.sysmonwait);
|
||
}
|
||
// We must be careful while reading data from P's, M's and G's.
|
||
// Even if we hold schedlock, most data can be changed concurrently.
|
||
// E.g. (p->m ? p->m->id : -1) can crash if p->m changes from non-nil to nil.
|
||
for(i = 0; i < runtime_gomaxprocs; i++) {
|
||
p = runtime_allp[i];
|
||
if(p == nil)
|
||
continue;
|
||
mp = (M*)p->m;
|
||
h = runtime_atomicload(&p->runqhead);
|
||
t = runtime_atomicload(&p->runqtail);
|
||
if(detailed)
|
||
runtime_printf(" P%d: status=%d schedtick=%d syscalltick=%d m=%d runqsize=%d gfreecnt=%d\n",
|
||
i, p->status, p->schedtick, p->syscalltick, mp ? mp->id : -1, t-h, p->gfreecnt);
|
||
else {
|
||
// In non-detailed mode format lengths of per-P run queues as:
|
||
// [len1 len2 len3 len4]
|
||
fmt = " %d";
|
||
if(runtime_gomaxprocs == 1)
|
||
fmt = " [%d]\n";
|
||
else if(i == 0)
|
||
fmt = " [%d";
|
||
else if(i == runtime_gomaxprocs-1)
|
||
fmt = " %d]\n";
|
||
runtime_printf(fmt, t-h);
|
||
}
|
||
}
|
||
if(!detailed) {
|
||
runtime_unlock(&runtime_sched);
|
||
return;
|
||
}
|
||
for(mp = runtime_allm; mp; mp = mp->alllink) {
|
||
p = (P*)mp->p;
|
||
gp = mp->curg;
|
||
lockedg = mp->lockedg;
|
||
id1 = -1;
|
||
if(p)
|
||
id1 = p->id;
|
||
id2 = -1;
|
||
if(gp)
|
||
id2 = gp->goid;
|
||
id3 = -1;
|
||
if(lockedg)
|
||
id3 = lockedg->goid;
|
||
runtime_printf(" M%d: p=%D curg=%D mallocing=%d throwing=%d gcing=%d"
|
||
" locks=%d dying=%d helpgc=%d spinning=%d blocked=%d lockedg=%D\n",
|
||
mp->id, id1, id2,
|
||
mp->mallocing, mp->throwing, mp->gcing, mp->locks, mp->dying, mp->helpgc,
|
||
mp->spinning, mp->blocked, id3);
|
||
}
|
||
runtime_lock(&allglock);
|
||
for(gi = 0; gi < runtime_allglen; gi++) {
|
||
gp = runtime_allg[gi];
|
||
mp = gp->m;
|
||
lockedm = gp->lockedm;
|
||
runtime_printf(" G%D: status=%d(%S) m=%d lockedm=%d\n",
|
||
gp->goid, gp->atomicstatus, gp->waitreason, mp ? mp->id : -1,
|
||
lockedm ? lockedm->id : -1);
|
||
}
|
||
runtime_unlock(&allglock);
|
||
runtime_unlock(&runtime_sched);
|
||
}
|
||
|
||
// Put mp on midle list.
|
||
// Sched must be locked.
|
||
static void
|
||
mput(M *mp)
|
||
{
|
||
mp->schedlink = (uintptr)runtime_sched.midle;
|
||
runtime_sched.midle = mp;
|
||
runtime_sched.nmidle++;
|
||
checkdead();
|
||
}
|
||
|
||
// Try to get an m from midle list.
|
||
// Sched must be locked.
|
||
static M*
|
||
mget(void)
|
||
{
|
||
M *mp;
|
||
|
||
if((mp = runtime_sched.midle) != nil){
|
||
runtime_sched.midle = (M*)mp->schedlink;
|
||
runtime_sched.nmidle--;
|
||
}
|
||
return mp;
|
||
}
|
||
|
||
// Put gp on the global runnable queue.
|
||
// Sched must be locked.
|
||
static void
|
||
globrunqput(G *gp)
|
||
{
|
||
gp->schedlink = 0;
|
||
if(runtime_sched.runqtail)
|
||
runtime_sched.runqtail->schedlink = (uintptr)gp;
|
||
else
|
||
runtime_sched.runqhead = gp;
|
||
runtime_sched.runqtail = gp;
|
||
runtime_sched.runqsize++;
|
||
}
|
||
|
||
// Put a batch of runnable goroutines on the global runnable queue.
|
||
// Sched must be locked.
|
||
static void
|
||
globrunqputbatch(G *ghead, G *gtail, int32 n)
|
||
{
|
||
gtail->schedlink = 0;
|
||
if(runtime_sched.runqtail)
|
||
runtime_sched.runqtail->schedlink = (uintptr)ghead;
|
||
else
|
||
runtime_sched.runqhead = ghead;
|
||
runtime_sched.runqtail = gtail;
|
||
runtime_sched.runqsize += n;
|
||
}
|
||
|
||
// Try get a batch of G's from the global runnable queue.
|
||
// Sched must be locked.
|
||
static G*
|
||
globrunqget(P *p, int32 max)
|
||
{
|
||
G *gp, *gp1;
|
||
int32 n;
|
||
|
||
if(runtime_sched.runqsize == 0)
|
||
return nil;
|
||
n = runtime_sched.runqsize/runtime_gomaxprocs+1;
|
||
if(n > runtime_sched.runqsize)
|
||
n = runtime_sched.runqsize;
|
||
if(max > 0 && n > max)
|
||
n = max;
|
||
if((uint32)n > nelem(p->runq)/2)
|
||
n = nelem(p->runq)/2;
|
||
runtime_sched.runqsize -= n;
|
||
if(runtime_sched.runqsize == 0)
|
||
runtime_sched.runqtail = nil;
|
||
gp = runtime_sched.runqhead;
|
||
runtime_sched.runqhead = (G*)gp->schedlink;
|
||
n--;
|
||
while(n--) {
|
||
gp1 = runtime_sched.runqhead;
|
||
runtime_sched.runqhead = (G*)gp1->schedlink;
|
||
runqput(p, gp1);
|
||
}
|
||
return gp;
|
||
}
|
||
|
||
// Put p to on pidle list.
|
||
// Sched must be locked.
|
||
static void
|
||
pidleput(P *p)
|
||
{
|
||
p->link = (uintptr)runtime_sched.pidle;
|
||
runtime_sched.pidle = p;
|
||
runtime_xadd(&runtime_sched.npidle, 1); // TODO: fast atomic
|
||
}
|
||
|
||
// Try get a p from pidle list.
|
||
// Sched must be locked.
|
||
static P*
|
||
pidleget(void)
|
||
{
|
||
P *p;
|
||
|
||
p = runtime_sched.pidle;
|
||
if(p) {
|
||
runtime_sched.pidle = (P*)p->link;
|
||
runtime_xadd(&runtime_sched.npidle, -1); // TODO: fast atomic
|
||
}
|
||
return p;
|
||
}
|
||
|
||
// Try to put g on local runnable queue.
|
||
// If it's full, put onto global queue.
|
||
// Executed only by the owner P.
|
||
static void
|
||
runqput(P *p, G *gp)
|
||
{
|
||
uint32 h, t;
|
||
|
||
retry:
|
||
h = runtime_atomicload(&p->runqhead); // load-acquire, synchronize with consumers
|
||
t = p->runqtail;
|
||
if(t - h < nelem(p->runq)) {
|
||
p->runq[t%nelem(p->runq)] = (uintptr)gp;
|
||
runtime_atomicstore(&p->runqtail, t+1); // store-release, makes the item available for consumption
|
||
return;
|
||
}
|
||
if(runqputslow(p, gp, h, t))
|
||
return;
|
||
// the queue is not full, now the put above must suceed
|
||
goto retry;
|
||
}
|
||
|
||
// Put g and a batch of work from local runnable queue on global queue.
|
||
// Executed only by the owner P.
|
||
static bool
|
||
runqputslow(P *p, G *gp, uint32 h, uint32 t)
|
||
{
|
||
G *batch[nelem(p->runq)/2+1];
|
||
uint32 n, i;
|
||
|
||
// First, grab a batch from local queue.
|
||
n = t-h;
|
||
n = n/2;
|
||
if(n != nelem(p->runq)/2)
|
||
runtime_throw("runqputslow: queue is not full");
|
||
for(i=0; i<n; i++)
|
||
batch[i] = (G*)p->runq[(h+i)%nelem(p->runq)];
|
||
if(!runtime_cas(&p->runqhead, h, h+n)) // cas-release, commits consume
|
||
return false;
|
||
batch[n] = gp;
|
||
// Link the goroutines.
|
||
for(i=0; i<n; i++)
|
||
batch[i]->schedlink = (uintptr)batch[i+1];
|
||
// Now put the batch on global queue.
|
||
runtime_lock(&runtime_sched);
|
||
globrunqputbatch(batch[0], batch[n], n+1);
|
||
runtime_unlock(&runtime_sched);
|
||
return true;
|
||
}
|
||
|
||
// Get g from local runnable queue.
|
||
// Executed only by the owner P.
|
||
static G*
|
||
runqget(P *p)
|
||
{
|
||
G *gp;
|
||
uint32 t, h;
|
||
|
||
for(;;) {
|
||
h = runtime_atomicload(&p->runqhead); // load-acquire, synchronize with other consumers
|
||
t = p->runqtail;
|
||
if(t == h)
|
||
return nil;
|
||
gp = (G*)p->runq[h%nelem(p->runq)];
|
||
if(runtime_cas(&p->runqhead, h, h+1)) // cas-release, commits consume
|
||
return gp;
|
||
}
|
||
}
|
||
|
||
// Grabs a batch of goroutines from local runnable queue.
|
||
// batch array must be of size nelem(p->runq)/2. Returns number of grabbed goroutines.
|
||
// Can be executed by any P.
|
||
static uint32
|
||
runqgrab(P *p, G **batch)
|
||
{
|
||
uint32 t, h, n, i;
|
||
|
||
for(;;) {
|
||
h = runtime_atomicload(&p->runqhead); // load-acquire, synchronize with other consumers
|
||
t = runtime_atomicload(&p->runqtail); // load-acquire, synchronize with the producer
|
||
n = t-h;
|
||
n = n - n/2;
|
||
if(n == 0)
|
||
break;
|
||
if(n > nelem(p->runq)/2) // read inconsistent h and t
|
||
continue;
|
||
for(i=0; i<n; i++)
|
||
batch[i] = (G*)p->runq[(h+i)%nelem(p->runq)];
|
||
if(runtime_cas(&p->runqhead, h, h+n)) // cas-release, commits consume
|
||
break;
|
||
}
|
||
return n;
|
||
}
|
||
|
||
// Steal half of elements from local runnable queue of p2
|
||
// and put onto local runnable queue of p.
|
||
// Returns one of the stolen elements (or nil if failed).
|
||
static G*
|
||
runqsteal(P *p, P *p2)
|
||
{
|
||
G *gp;
|
||
G *batch[nelem(p->runq)/2];
|
||
uint32 t, h, n, i;
|
||
|
||
n = runqgrab(p2, batch);
|
||
if(n == 0)
|
||
return nil;
|
||
n--;
|
||
gp = batch[n];
|
||
if(n == 0)
|
||
return gp;
|
||
h = runtime_atomicload(&p->runqhead); // load-acquire, synchronize with consumers
|
||
t = p->runqtail;
|
||
if(t - h + n >= nelem(p->runq))
|
||
runtime_throw("runqsteal: runq overflow");
|
||
for(i=0; i<n; i++, t++)
|
||
p->runq[t%nelem(p->runq)] = (uintptr)batch[i];
|
||
runtime_atomicstore(&p->runqtail, t); // store-release, makes the item available for consumption
|
||
return gp;
|
||
}
|
||
|
||
void runtime_testSchedLocalQueue(void)
|
||
__asm__("runtime.testSchedLocalQueue");
|
||
|
||
void
|
||
runtime_testSchedLocalQueue(void)
|
||
{
|
||
P p;
|
||
G gs[nelem(p.runq)];
|
||
int32 i, j;
|
||
|
||
runtime_memclr((byte*)&p, sizeof(p));
|
||
|
||
for(i = 0; i < (int32)nelem(gs); i++) {
|
||
if(runqget(&p) != nil)
|
||
runtime_throw("runq is not empty initially");
|
||
for(j = 0; j < i; j++)
|
||
runqput(&p, &gs[i]);
|
||
for(j = 0; j < i; j++) {
|
||
if(runqget(&p) != &gs[i]) {
|
||
runtime_printf("bad element at iter %d/%d\n", i, j);
|
||
runtime_throw("bad element");
|
||
}
|
||
}
|
||
if(runqget(&p) != nil)
|
||
runtime_throw("runq is not empty afterwards");
|
||
}
|
||
}
|
||
|
||
void runtime_testSchedLocalQueueSteal(void)
|
||
__asm__("runtime.testSchedLocalQueueSteal");
|
||
|
||
void
|
||
runtime_testSchedLocalQueueSteal(void)
|
||
{
|
||
P p1, p2;
|
||
G gs[nelem(p1.runq)], *gp;
|
||
int32 i, j, s;
|
||
|
||
runtime_memclr((byte*)&p1, sizeof(p1));
|
||
runtime_memclr((byte*)&p2, sizeof(p2));
|
||
|
||
for(i = 0; i < (int32)nelem(gs); i++) {
|
||
for(j = 0; j < i; j++) {
|
||
gs[j].sig = 0;
|
||
runqput(&p1, &gs[j]);
|
||
}
|
||
gp = runqsteal(&p2, &p1);
|
||
s = 0;
|
||
if(gp) {
|
||
s++;
|
||
gp->sig++;
|
||
}
|
||
while((gp = runqget(&p2)) != nil) {
|
||
s++;
|
||
gp->sig++;
|
||
}
|
||
while((gp = runqget(&p1)) != nil)
|
||
gp->sig++;
|
||
for(j = 0; j < i; j++) {
|
||
if(gs[j].sig != 1) {
|
||
runtime_printf("bad element %d(%d) at iter %d\n", j, gs[j].sig, i);
|
||
runtime_throw("bad element");
|
||
}
|
||
}
|
||
if(s != i/2 && s != i/2+1) {
|
||
runtime_printf("bad steal %d, want %d or %d, iter %d\n",
|
||
s, i/2, i/2+1, i);
|
||
runtime_throw("bad steal");
|
||
}
|
||
}
|
||
}
|
||
|
||
int32
|
||
runtime_setmaxthreads(int32 in)
|
||
{
|
||
int32 out;
|
||
|
||
runtime_lock(&runtime_sched);
|
||
out = runtime_sched.maxmcount;
|
||
runtime_sched.maxmcount = in;
|
||
checkmcount();
|
||
runtime_unlock(&runtime_sched);
|
||
return out;
|
||
}
|
||
|
||
void
|
||
runtime_proc_scan(struct Workbuf** wbufp, void (*enqueue1)(struct Workbuf**, Obj))
|
||
{
|
||
enqueue1(wbufp, (Obj){(byte*)&runtime_sched, sizeof runtime_sched, 0});
|
||
enqueue1(wbufp, (Obj){(byte*)&runtime_main_init_done, sizeof runtime_main_init_done, 0});
|
||
}
|
||
|
||
// Return whether we are waiting for a GC. This gc toolchain uses
|
||
// preemption instead.
|
||
bool
|
||
runtime_gcwaiting(void)
|
||
{
|
||
return runtime_sched.gcwaiting;
|
||
}
|
||
|
||
// os_beforeExit is called from os.Exit(0).
|
||
//go:linkname os_beforeExit os.runtime_beforeExit
|
||
|
||
extern void os_beforeExit() __asm__ (GOSYM_PREFIX "os.runtime_beforeExit");
|
||
|
||
void
|
||
os_beforeExit()
|
||
{
|
||
}
|
||
|
||
// Active spinning for sync.Mutex.
|
||
//go:linkname sync_runtime_canSpin sync.runtime_canSpin
|
||
|
||
enum
|
||
{
|
||
ACTIVE_SPIN = 4,
|
||
ACTIVE_SPIN_CNT = 30,
|
||
};
|
||
|
||
extern _Bool sync_runtime_canSpin(intgo i)
|
||
__asm__ (GOSYM_PREFIX "sync.runtime_canSpin");
|
||
|
||
_Bool
|
||
sync_runtime_canSpin(intgo i)
|
||
{
|
||
P *p;
|
||
|
||
// sync.Mutex is cooperative, so we are conservative with spinning.
|
||
// Spin only few times and only if running on a multicore machine and
|
||
// GOMAXPROCS>1 and there is at least one other running P and local runq is empty.
|
||
// As opposed to runtime mutex we don't do passive spinning here,
|
||
// because there can be work on global runq on on other Ps.
|
||
if (i >= ACTIVE_SPIN || runtime_ncpu <= 1 || runtime_gomaxprocs <= (int32)(runtime_sched.npidle+runtime_sched.nmspinning)+1) {
|
||
return false;
|
||
}
|
||
p = (P*)g->m->p;
|
||
return p != nil && p->runqhead == p->runqtail;
|
||
}
|
||
|
||
//go:linkname sync_runtime_doSpin sync.runtime_doSpin
|
||
//go:nosplit
|
||
|
||
extern void sync_runtime_doSpin(void)
|
||
__asm__ (GOSYM_PREFIX "sync.runtime_doSpin");
|
||
|
||
void
|
||
sync_runtime_doSpin()
|
||
{
|
||
runtime_procyield(ACTIVE_SPIN_CNT);
|
||
}
|