gcc/libgo/go/encoding/base32/base32.go
Ian Lance Taylor f8d9fa9e80 libgo, compiler: Upgrade libgo to Go 1.4, except for runtime.
This upgrades all of libgo other than the runtime package to
the Go 1.4 release.  In Go 1.4 much of the runtime was
rewritten into Go.  Merging that code will take more time and
will not change the API, so I'm putting it off for now.

There are a few runtime changes anyhow, to accomodate other
packages that rely on minor modifications to the runtime
support.

The compiler changes slightly to add a one-bit flag to each
type descriptor kind that is stored directly in an interface,
which for gccgo is currently only pointer types.  Another
one-bit flag (gcprog) is reserved because it is used by the gc
compiler, but gccgo does not currently use it.

There is another error check in the compiler since I ran
across it during testing.

gotools/:
	* Makefile.am (go_cmd_go_files): Sort entries.  Add generate.go.
	* Makefile.in: Rebuild.

From-SVN: r219627
2015-01-15 00:27:56 +00:00

427 lines
9.9 KiB
Go

// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package base32 implements base32 encoding as specified by RFC 4648.
package base32
import (
"bytes"
"io"
"strconv"
"strings"
)
/*
* Encodings
*/
// An Encoding is a radix 32 encoding/decoding scheme, defined by a
// 32-character alphabet. The most common is the "base32" encoding
// introduced for SASL GSSAPI and standardized in RFC 4648.
// The alternate "base32hex" encoding is used in DNSSEC.
type Encoding struct {
encode string
decodeMap [256]byte
}
const encodeStd = "ABCDEFGHIJKLMNOPQRSTUVWXYZ234567"
const encodeHex = "0123456789ABCDEFGHIJKLMNOPQRSTUV"
// NewEncoding returns a new Encoding defined by the given alphabet,
// which must be a 32-byte string.
func NewEncoding(encoder string) *Encoding {
e := new(Encoding)
e.encode = encoder
for i := 0; i < len(e.decodeMap); i++ {
e.decodeMap[i] = 0xFF
}
for i := 0; i < len(encoder); i++ {
e.decodeMap[encoder[i]] = byte(i)
}
return e
}
// StdEncoding is the standard base32 encoding, as defined in
// RFC 4648.
var StdEncoding = NewEncoding(encodeStd)
// HexEncoding is the ``Extended Hex Alphabet'' defined in RFC 4648.
// It is typically used in DNS.
var HexEncoding = NewEncoding(encodeHex)
var removeNewlinesMapper = func(r rune) rune {
if r == '\r' || r == '\n' {
return -1
}
return r
}
/*
* Encoder
*/
// Encode encodes src using the encoding enc, writing
// EncodedLen(len(src)) bytes to dst.
//
// The encoding pads the output to a multiple of 8 bytes,
// so Encode is not appropriate for use on individual blocks
// of a large data stream. Use NewEncoder() instead.
func (enc *Encoding) Encode(dst, src []byte) {
if len(src) == 0 {
return
}
for len(src) > 0 {
var b0, b1, b2, b3, b4, b5, b6, b7 byte
// Unpack 8x 5-bit source blocks into a 5 byte
// destination quantum
switch len(src) {
default:
b7 = src[4] & 0x1F
b6 = src[4] >> 5
fallthrough
case 4:
b6 |= (src[3] << 3) & 0x1F
b5 = (src[3] >> 2) & 0x1F
b4 = src[3] >> 7
fallthrough
case 3:
b4 |= (src[2] << 1) & 0x1F
b3 = (src[2] >> 4) & 0x1F
fallthrough
case 2:
b3 |= (src[1] << 4) & 0x1F
b2 = (src[1] >> 1) & 0x1F
b1 = (src[1] >> 6) & 0x1F
fallthrough
case 1:
b1 |= (src[0] << 2) & 0x1F
b0 = src[0] >> 3
}
// Encode 5-bit blocks using the base32 alphabet
dst[0] = enc.encode[b0]
dst[1] = enc.encode[b1]
dst[2] = enc.encode[b2]
dst[3] = enc.encode[b3]
dst[4] = enc.encode[b4]
dst[5] = enc.encode[b5]
dst[6] = enc.encode[b6]
dst[7] = enc.encode[b7]
// Pad the final quantum
if len(src) < 5 {
dst[7] = '='
if len(src) < 4 {
dst[6] = '='
dst[5] = '='
if len(src) < 3 {
dst[4] = '='
if len(src) < 2 {
dst[3] = '='
dst[2] = '='
}
}
}
break
}
src = src[5:]
dst = dst[8:]
}
}
// EncodeToString returns the base32 encoding of src.
func (enc *Encoding) EncodeToString(src []byte) string {
buf := make([]byte, enc.EncodedLen(len(src)))
enc.Encode(buf, src)
return string(buf)
}
type encoder struct {
err error
enc *Encoding
w io.Writer
buf [5]byte // buffered data waiting to be encoded
nbuf int // number of bytes in buf
out [1024]byte // output buffer
}
func (e *encoder) Write(p []byte) (n int, err error) {
if e.err != nil {
return 0, e.err
}
// Leading fringe.
if e.nbuf > 0 {
var i int
for i = 0; i < len(p) && e.nbuf < 5; i++ {
e.buf[e.nbuf] = p[i]
e.nbuf++
}
n += i
p = p[i:]
if e.nbuf < 5 {
return
}
e.enc.Encode(e.out[0:], e.buf[0:])
if _, e.err = e.w.Write(e.out[0:8]); e.err != nil {
return n, e.err
}
e.nbuf = 0
}
// Large interior chunks.
for len(p) >= 5 {
nn := len(e.out) / 8 * 5
if nn > len(p) {
nn = len(p)
nn -= nn % 5
}
e.enc.Encode(e.out[0:], p[0:nn])
if _, e.err = e.w.Write(e.out[0 : nn/5*8]); e.err != nil {
return n, e.err
}
n += nn
p = p[nn:]
}
// Trailing fringe.
for i := 0; i < len(p); i++ {
e.buf[i] = p[i]
}
e.nbuf = len(p)
n += len(p)
return
}
// Close flushes any pending output from the encoder.
// It is an error to call Write after calling Close.
func (e *encoder) Close() error {
// If there's anything left in the buffer, flush it out
if e.err == nil && e.nbuf > 0 {
e.enc.Encode(e.out[0:], e.buf[0:e.nbuf])
e.nbuf = 0
_, e.err = e.w.Write(e.out[0:8])
}
return e.err
}
// NewEncoder returns a new base32 stream encoder. Data written to
// the returned writer will be encoded using enc and then written to w.
// Base32 encodings operate in 5-byte blocks; when finished
// writing, the caller must Close the returned encoder to flush any
// partially written blocks.
func NewEncoder(enc *Encoding, w io.Writer) io.WriteCloser {
return &encoder{enc: enc, w: w}
}
// EncodedLen returns the length in bytes of the base32 encoding
// of an input buffer of length n.
func (enc *Encoding) EncodedLen(n int) int { return (n + 4) / 5 * 8 }
/*
* Decoder
*/
type CorruptInputError int64
func (e CorruptInputError) Error() string {
return "illegal base32 data at input byte " + strconv.FormatInt(int64(e), 10)
}
// decode is like Decode but returns an additional 'end' value, which
// indicates if end-of-message padding was encountered and thus any
// additional data is an error. This method assumes that src has been
// stripped of all supported whitespace ('\r' and '\n').
func (enc *Encoding) decode(dst, src []byte) (n int, end bool, err error) {
olen := len(src)
for len(src) > 0 && !end {
// Decode quantum using the base32 alphabet
var dbuf [8]byte
dlen := 8
for j := 0; j < 8; {
if len(src) == 0 {
return n, false, CorruptInputError(olen - len(src) - j)
}
in := src[0]
src = src[1:]
if in == '=' && j >= 2 && len(src) < 8 {
// We've reached the end and there's padding
if len(src)+j < 8-1 {
// not enough padding
return n, false, CorruptInputError(olen)
}
for k := 0; k < 8-1-j; k++ {
if len(src) > k && src[k] != '=' {
// incorrect padding
return n, false, CorruptInputError(olen - len(src) + k - 1)
}
}
dlen, end = j, true
// 7, 5 and 2 are not valid padding lengths, and so 1, 3 and 6 are not
// valid dlen values. See RFC 4648 Section 6 "Base 32 Encoding" listing
// the five valid padding lengths, and Section 9 "Illustrations and
// Examples" for an illustration for how the 1st, 3rd and 6th base32
// src bytes do not yield enough information to decode a dst byte.
if dlen == 1 || dlen == 3 || dlen == 6 {
return n, false, CorruptInputError(olen - len(src) - 1)
}
break
}
dbuf[j] = enc.decodeMap[in]
if dbuf[j] == 0xFF {
return n, false, CorruptInputError(olen - len(src) - 1)
}
j++
}
// Pack 8x 5-bit source blocks into 5 byte destination
// quantum
switch dlen {
case 8:
dst[4] = dbuf[6]<<5 | dbuf[7]
fallthrough
case 7:
dst[3] = dbuf[4]<<7 | dbuf[5]<<2 | dbuf[6]>>3
fallthrough
case 5:
dst[2] = dbuf[3]<<4 | dbuf[4]>>1
fallthrough
case 4:
dst[1] = dbuf[1]<<6 | dbuf[2]<<1 | dbuf[3]>>4
fallthrough
case 2:
dst[0] = dbuf[0]<<3 | dbuf[1]>>2
}
dst = dst[5:]
switch dlen {
case 2:
n += 1
case 4:
n += 2
case 5:
n += 3
case 7:
n += 4
case 8:
n += 5
}
}
return n, end, nil
}
// Decode decodes src using the encoding enc. It writes at most
// DecodedLen(len(src)) bytes to dst and returns the number of bytes
// written. If src contains invalid base32 data, it will return the
// number of bytes successfully written and CorruptInputError.
// New line characters (\r and \n) are ignored.
func (enc *Encoding) Decode(dst, src []byte) (n int, err error) {
src = bytes.Map(removeNewlinesMapper, src)
n, _, err = enc.decode(dst, src)
return
}
// DecodeString returns the bytes represented by the base32 string s.
func (enc *Encoding) DecodeString(s string) ([]byte, error) {
s = strings.Map(removeNewlinesMapper, s)
dbuf := make([]byte, enc.DecodedLen(len(s)))
n, _, err := enc.decode(dbuf, []byte(s))
return dbuf[:n], err
}
type decoder struct {
err error
enc *Encoding
r io.Reader
end bool // saw end of message
buf [1024]byte // leftover input
nbuf int
out []byte // leftover decoded output
outbuf [1024 / 8 * 5]byte
}
func (d *decoder) Read(p []byte) (n int, err error) {
if d.err != nil {
return 0, d.err
}
// Use leftover decoded output from last read.
if len(d.out) > 0 {
n = copy(p, d.out)
d.out = d.out[n:]
return n, nil
}
// Read a chunk.
nn := len(p) / 5 * 8
if nn < 8 {
nn = 8
}
if nn > len(d.buf) {
nn = len(d.buf)
}
nn, d.err = io.ReadAtLeast(d.r, d.buf[d.nbuf:nn], 8-d.nbuf)
d.nbuf += nn
if d.nbuf < 8 {
return 0, d.err
}
// Decode chunk into p, or d.out and then p if p is too small.
nr := d.nbuf / 8 * 8
nw := d.nbuf / 8 * 5
if nw > len(p) {
nw, d.end, d.err = d.enc.decode(d.outbuf[0:], d.buf[0:nr])
d.out = d.outbuf[0:nw]
n = copy(p, d.out)
d.out = d.out[n:]
} else {
n, d.end, d.err = d.enc.decode(p, d.buf[0:nr])
}
d.nbuf -= nr
for i := 0; i < d.nbuf; i++ {
d.buf[i] = d.buf[i+nr]
}
if d.err == nil {
d.err = err
}
return n, d.err
}
type newlineFilteringReader struct {
wrapped io.Reader
}
func (r *newlineFilteringReader) Read(p []byte) (int, error) {
n, err := r.wrapped.Read(p)
for n > 0 {
offset := 0
for i, b := range p[0:n] {
if b != '\r' && b != '\n' {
if i != offset {
p[offset] = b
}
offset++
}
}
if offset > 0 {
return offset, err
}
// Previous buffer entirely whitespace, read again
n, err = r.wrapped.Read(p)
}
return n, err
}
// NewDecoder constructs a new base32 stream decoder.
func NewDecoder(enc *Encoding, r io.Reader) io.Reader {
return &decoder{enc: enc, r: &newlineFilteringReader{r}}
}
// DecodedLen returns the maximum length in bytes of the decoded data
// corresponding to n bytes of base32-encoded data.
func (enc *Encoding) DecodedLen(n int) int { return n / 8 * 5 }