gcc/libgo/syscalls/exec_helpers.go
Ian Lance Taylor 7a9389330e Add Go frontend, libgo library, and Go testsuite.
gcc/:
	* gcc.c (default_compilers): Add entry for ".go".
	* common.opt: Add -static-libgo as a driver option.
	* doc/install.texi (Configuration): Mention libgo as an option for
	--enable-shared.  Mention go as an option for --enable-languages.
	* doc/invoke.texi (Overall Options): Mention .go as a file name
	suffix.  Mention go as a -x option.
	* doc/frontends.texi (G++ and GCC): Mention Go as a supported
	language.
	* doc/sourcebuild.texi (Top Level): Mention libgo.
	* doc/standards.texi (Standards): Add section on Go language.
	Move references for other languages into their own section.
	* doc/contrib.texi (Contributors): Mention that I contributed the
	Go frontend.
gcc/testsuite/:
	* lib/go.exp: New file.
	* lib/go-dg.exp: New file.
	* lib/go-torture.exp: New file.
	* lib/target-supports.exp (check_compile): Match // Go.

From-SVN: r167407
2010-12-03 04:34:57 +00:00

155 lines
4.4 KiB
Go

// exec_helpers.go -- helper functions used with fork, exec, wait.
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package syscall
import "sync"
// Lock synchronizing creation of new file descriptors with fork.
//
// We want the child in a fork/exec sequence to inherit only the
// file descriptors we intend. To do that, we mark all file
// descriptors close-on-exec and then, in the child, explicitly
// unmark the ones we want the exec'ed program to keep.
// Unix doesn't make this easy: there is, in general, no way to
// allocate a new file descriptor close-on-exec. Instead you
// have to allocate the descriptor and then mark it close-on-exec.
// If a fork happens between those two events, the child's exec
// will inherit an unwanted file descriptor.
//
// This lock solves that race: the create new fd/mark close-on-exec
// operation is done holding ForkLock for reading, and the fork itself
// is done holding ForkLock for writing. At least, that's the idea.
// There are some complications.
//
// Some system calls that create new file descriptors can block
// for arbitrarily long times: open on a hung NFS server or named
// pipe, accept on a socket, and so on. We can't reasonably grab
// the lock across those operations.
//
// It is worse to inherit some file descriptors than others.
// If a non-malicious child accidentally inherits an open ordinary file,
// that's not a big deal. On the other hand, if a long-lived child
// accidentally inherits the write end of a pipe, then the reader
// of that pipe will not see EOF until that child exits, potentially
// causing the parent program to hang. This is a common problem
// in threaded C programs that use popen.
//
// Luckily, the file descriptors that are most important not to
// inherit are not the ones that can take an arbitrarily long time
// to create: pipe returns instantly, and the net package uses
// non-blocking I/O to accept on a listening socket.
// The rules for which file descriptor-creating operations use the
// ForkLock are as follows:
//
// 1) Pipe. Does not block. Use the ForkLock.
// 2) Socket. Does not block. Use the ForkLock.
// 3) Accept. If using non-blocking mode, use the ForkLock.
// Otherwise, live with the race.
// 4) Open. Can block. Use O_CLOEXEC if available (Linux).
// Otherwise, live with the race.
// 5) Dup. Does not block. Use the ForkLock.
// On Linux, could use fcntl F_DUPFD_CLOEXEC
// instead of the ForkLock, but only for dup(fd, -1).
type WaitStatus int
var ForkLock sync.RWMutex
// Convert array of string to array
// of NUL-terminated byte pointer.
func StringArrayPtr(ss []string) []*byte {
bb := make([]*byte, len(ss)+1);
for i := 0; i < len(ss); i++ {
bb[i] = StringBytePtr(ss[i]);
}
bb[len(ss)] = nil;
return bb;
}
func CloseOnExec(fd int) {
fcntl(fd, F_SETFD, FD_CLOEXEC);
}
func SetNonblock(fd int, nonblocking bool) (errno int) {
flag, err := fcntl(fd, F_GETFL, 0);
if err != 0 {
return err;
}
if nonblocking {
flag |= O_NONBLOCK;
} else {
flag &= ^O_NONBLOCK;
}
flag, err = fcntl(fd, F_SETFL, flag);
return err;
}
// Wait status is 7 bits at bottom, either 0 (exited),
// 0x7F (stopped), or a signal number that caused an exit.
// The 0x80 bit is whether there was a core dump.
// An extra number (exit code, signal causing a stop)
// is in the high bits. At least that's the idea.
// There are various irregularities. For example, the
// "continued" status is 0xFFFF, distinguishing itself
// from stopped via the core dump bit.
const (
mask = 0x7F;
core = 0x80;
exited = 0x00;
stopped = 0x7F;
shift = 8;
)
func (w WaitStatus) Exited() bool {
return w&mask == exited;
}
func (w WaitStatus) Signaled() bool {
return w&mask != stopped && w&mask != exited;
}
func (w WaitStatus) Stopped() bool {
return w&0xFF == stopped;
}
func (w WaitStatus) Continued() bool {
return w == 0xFFFF;
}
func (w WaitStatus) CoreDump() bool {
return w.Signaled() && w&core != 0;
}
func (w WaitStatus) ExitStatus() int {
if !w.Exited() {
return -1;
}
return int(w >> shift) & 0xFF;
}
func (w WaitStatus) Signal() int {
if !w.Signaled() {
return -1;
}
return int(w & mask);
}
func (w WaitStatus) StopSignal() int {
if !w.Stopped() {
return -1;
}
return int(w >> shift) & 0xFF;
}
func (w WaitStatus) TrapCause() int {
if w.StopSignal() != SIGTRAP {
return -1;
}
return int(w >> shift) >> 8;
}