gcc/libgfortran/generated/in_unpack_i16.c
Janne Blomqvist 7a15726687 Use pointer sized array indices.
Using pointer sized variables (e.g. size_t / ptrdiff_t) when the
variables are used as array indices allows accessing larger arrays,
and can be a slight performance improvement due to no need for sign or
zero extending, or masking.

Regtested on x86_64-pc-linux-gnu.

libgfortran/ChangeLog:

2018-01-31  Janne Blomqvist  <jb@gcc.gnu.org>

	* generated/cshift1_16.c (cshift1): Regenerated.
	* generated/cshift1_4.c (cshift1): Regenerated.
	* generated/cshift1_8.c (cshift1): Regenerated.
	* generated/eoshift1_16.c (eoshift1): Regenerated.
	* generated/eoshift1_4.c (eoshift1): Regenerated.
	* generated/eoshift1_8.c (eoshift1): Regenerated.
	* generated/eoshift3_16.c (eoshift3): Regenerated.
	* generated/eoshift3_4.c (eoshift3): Regenerated.
	* generated/eoshift3_8.c (eoshift3): Regenerated.
	* generated/in_pack_c10.c (internal_pack_c10): Regenerated.
	* generated/in_pack_c16.c (internal_pack_c16): Regenerated.
	* generated/in_pack_c4.c (internal_pack_c4): Regenerated.
	* generated/in_pack_c8.c (internal_pack_c8): Regenerated.
	* generated/in_pack_i1.c (internal_pack_1): Regenerated.
	* generated/in_pack_i16.c (internal_pack_16): Regenerated.
	* generated/in_pack_i2.c (internal_pack_2): Regenerated.
	* generated/in_pack_i4.c (internal_pack_4): Regenerated.
	* generated/in_pack_i8.c (internal_pack_8): Regenerated.
	* generated/in_pack_r10.c (internal_pack_r10): Regenerated.
	* generated/in_pack_r16.c (internal_pack_r16): Regenerated.
	* generated/in_pack_r4.c (internal_pack_r4): Regenerated.
	* generated/in_pack_r8.c (internal_pack_r8): Regenerated.
	* generated/in_unpack_c10.c (internal_unpack_c10): Regenerated.
	* generated/in_unpack_c16.c (internal_unpack_c16): Regenerated.
	* generated/in_unpack_c4.c (internal_unpack_c4): Regenerated.
	* generated/in_unpack_c8.c (internal_unpack_c8): Regenerated.
	* generated/in_unpack_i1.c (internal_unpack_1): Regenerated.
	* generated/in_unpack_i16.c (internal_unpack_16): Regenerated.
	* generated/in_unpack_i2.c (internal_unpack_2): Regenerated.
	* generated/in_unpack_i4.c (internal_unpack_4): Regenerated.
	* generated/in_unpack_i8.c (internal_unpack_8): Regenerated.
	* generated/in_unpack_r10.c (internal_unpack_r10): Regenerated.
	* generated/in_unpack_r16.c (internal_unpack_r16): Regenerated.
	* generated/in_unpack_r4.c (internal_unpack_r4): Regenerated.
	* generated/in_unpack_r8.c (internal_unpack_r8): Regenerated.
	* generated/reshape_c10.c (reshape_c10): Regenerated.
	* generated/reshape_c16.c (reshape_c16): Regenerated.
	* generated/reshape_c4.c (reshape_c4): Regenerated.
	* generated/reshape_c8.c (reshape_c8): Regenerated.
	* generated/reshape_i16.c (reshape_16): Regenerated.
	* generated/reshape_i4.c (reshape_4): Regenerated.
	* generated/reshape_i8.c (reshape_8): Regenerated.
	* generated/reshape_r10.c (reshape_r10): Regenerated.
	* generated/reshape_r16.c (reshape_r16): Regenerated.
	* generated/reshape_r4.c (reshape_r4): Regenerated.
	* generated/reshape_r8.c (reshape_r8): Regenerated.
	* generated/shape_i1.c (shape_1): Regenerated.
	* generated/shape_i16.c (shape_16): Regenerated.
	* generated/shape_i2.c (shape_2): Regenerated.
	* generated/shape_i4.c (shape_4): Regenerated.
	* generated/shape_i8.c (shape_8): Regenerated.
	* generated/spread_c10.c (spread_scalar_c10): Regenerated.
	* generated/spread_c16.c (spread_scalar_c16): Regenerated.
	* generated/spread_c4.c (spread_scalar_c4): Regenerated.
	* generated/spread_c8.c (spread_scalar_c8): Regenerated.
	* generated/spread_i1.c (spread_scalar_i1): Regenerated.
	* generated/spread_i16.c (spread_scalar_i16): Regenerated.
	* generated/spread_i2.c (spread_scalar_i2): Regenerated.
	* generated/spread_i4.c (spread_scalar_i4): Regenerated.
	* generated/spread_i8.c (spread_scalar_i8): Regenerated.
	* generated/spread_r10.c (spread_scalar_r10): Regenerated.
	* generated/spread_r16.c (spread_scalar_r16): Regenerated.
	* generated/spread_r4.c (spread_scalar_r4): Regenerated.
	* generated/spread_r8.c (spread_scalar_r8): Regenerated.
	* intrinsics/random.c (jump): Use size_t for array index in loop.
	(getosrandom): Likewise.
	(arandom_r4): Make n an index_type.
	(arandom_r8): Likewise.
	(arandom_r10): Likewise.
	(arandom_r16): Likewise.
	(scramble_seed): Use size_t for array index in loop.
	* m4/cshift1.m4: Make i an index_type.
	* m4/eoshift1.m4: Likewise.
	* m4/eoshift3.m4: Likewise.
	* m4/in_pack.m4: Make n an index_type.
	* m4/in_unpack.m4: Likewise.
	* m4/reshape.m4: Make n and dim index_type's.
	* m4/shape.m4: Make n an index_type.
	* m4/spread.m4: Likewise, use index_type argument rather than
	copying to int.
	* runtime/bounds.c (bounds_ifunction_return): Make n an
	index_type.
	* runtime/in_pack_generic.c (internal_pack): Likewise.
	* runtime/in_unpack_generic.c (internal_unpack): Make n and size
	index_type's.

From-SVN: r257234
2018-01-31 16:16:22 +02:00

105 lines
2.8 KiB
C

/* Helper function for repacking arrays.
Copyright (C) 2003-2018 Free Software Foundation, Inc.
Contributed by Paul Brook <paul@nowt.org>
This file is part of the GNU Fortran runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#include "libgfortran.h"
#include <string.h>
#if defined (HAVE_GFC_INTEGER_16)
void
internal_unpack_16 (gfc_array_i16 * d, const GFC_INTEGER_16 * src)
{
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type stride[GFC_MAX_DIMENSIONS];
index_type stride0;
index_type dim;
index_type dsize;
GFC_INTEGER_16 * restrict dest;
dest = d->base_addr;
if (src == dest || !src)
return;
dim = GFC_DESCRIPTOR_RANK (d);
dsize = 1;
for (index_type n = 0; n < dim; n++)
{
count[n] = 0;
stride[n] = GFC_DESCRIPTOR_STRIDE(d,n);
extent[n] = GFC_DESCRIPTOR_EXTENT(d,n);
if (extent[n] <= 0)
return;
if (dsize == stride[n])
dsize *= extent[n];
else
dsize = 0;
}
if (dsize != 0)
{
memcpy (dest, src, dsize * sizeof (GFC_INTEGER_16));
return;
}
stride0 = stride[0];
while (dest)
{
/* Copy the data. */
*dest = *(src++);
/* Advance to the next element. */
dest += stride0;
count[0]++;
/* Advance to the next source element. */
index_type n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
dest -= stride[n] * extent[n];
n++;
if (n == dim)
{
dest = NULL;
break;
}
else
{
count[n]++;
dest += stride[n];
}
}
}
}
#endif