gcc/libquadmath/math/cosq.c
Jakub Jelinek fa23b18209 re PR fortran/46416 (libquadmath: missing functions)
PR fortran/46416
	* quadmath.h (cacosq, cacoshq, casinq, casinhq, catanq, catanhq):
	New prototypes.
	(M_Eq, M_LOG2Eq, M_LOG10Eq, M_LN2q, M_LN10q, M_PIq, M_PI_2q, M_PI_4q,
	M_1_PIq, M_2_PIq, M_2_SQRTPIq, M_SQRT2q, M_SQRT1_2q): Define.
	* quadmath_weak.h (cacosq, cacoshq, casinq, casinhq, catanq,
	catanhq): Add.
	* quadmath-imp.h (fpclassifyq, QUADFP_NAN, QUADFP_INFINITE,
	QUADFP_ZERO, QUADFP_SUBNORMAL, QUADFP_NORMAL): Define.
	* quadmath.map (QUADMATH_1.0): Add cacosq, cacoshq, casinq, casinhq,
	catanq and catanhq.
	* Makefile.am (libquadmath_la_SOURCES): Add math/cacosq.c,
	math/cacoshq.c, math/casinq.c, math/casinhq.c, math/catanq.c
	and math/catanhq.c.
	* Makefile.in: Regenerated.
	* libquadmath.texi (cacosq, cacoshq, casinq, casinhq,
	catanq, catanhq): Add.
	* math/cacoshq.c: New file.
	* math/cacosq.c: New file.
	* math/catanq.c: New file.
	* math/catanhq.c: New file.
	* math/casinq.c: New file.
	* math/casinhq.c: New file.

	* math/hypotq.c (hypotq): Use Q suffix instead of L.
	* math/atan2q.c (tiny, pi_o_4, pi_o_2, pi, pi_lo, atan2q): Likewise.
	* math/cosq.c (cosq): Likewise.

From-SVN: r168853
2011-01-16 17:42:37 +01:00

83 lines
2.2 KiB
C

/* s_cosl.c -- long double version of s_cos.c.
* Conversion to long double by Jakub Jelinek, jj@ultra.linux.cz.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* cosl(x)
* Return cosine function of x.
*
* kernel function:
* __kernel_sinl ... sine function on [-pi/4,pi/4]
* __kernel_cosl ... cosine function on [-pi/4,pi/4]
* __ieee754_rem_pio2l ... argument reduction routine
*
* Method.
* Let S,C and T denote the sin, cos and tan respectively on
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
* in [-pi/4 , +pi/4], and let n = k mod 4.
* We have
*
* n sin(x) cos(x) tan(x)
* ----------------------------------------------------------
* 0 S C T
* 1 C -S -1/T
* 2 -S -C T
* 3 -C S -1/T
* ----------------------------------------------------------
*
* Special cases:
* Let trig be any of sin, cos, or tan.
* trig(+-INF) is NaN, with signals;
* trig(NaN) is that NaN;
*
* Accuracy:
* TRIG(x) returns trig(x) nearly rounded
*/
#include "quadmath-imp.h"
__float128
cosq (__float128 x)
{
__float128 y[2],z=0.0Q;
int64_t n, ix;
/* High word of x. */
GET_FLT128_MSW64(ix,x);
/* |x| ~< pi/4 */
ix &= 0x7fffffffffffffffLL;
if(ix <= 0x3ffe921fb54442d1LL)
return __quadmath_kernel_cosq(x,z);
/* cos(Inf or NaN) is NaN */
else if (ix>=0x7fff000000000000LL) {
if (ix == 0x7fff000000000000LL) {
GET_FLT128_LSW64(n,x);
}
return x-x;
}
/* argument reduction needed */
else {
n = __quadmath_rem_pio2q(x,y);
switch(n&3) {
case 0: return __quadmath_kernel_cosq(y[0],y[1]);
case 1: return -__quadmath_kernel_sinq(y[0],y[1],1);
case 2: return -__quadmath_kernel_cosq(y[0],y[1]);
default:
return __quadmath_kernel_sinq(y[0],y[1],1);
}
}
}