fa23b18209
PR fortran/46416 * quadmath.h (cacosq, cacoshq, casinq, casinhq, catanq, catanhq): New prototypes. (M_Eq, M_LOG2Eq, M_LOG10Eq, M_LN2q, M_LN10q, M_PIq, M_PI_2q, M_PI_4q, M_1_PIq, M_2_PIq, M_2_SQRTPIq, M_SQRT2q, M_SQRT1_2q): Define. * quadmath_weak.h (cacosq, cacoshq, casinq, casinhq, catanq, catanhq): Add. * quadmath-imp.h (fpclassifyq, QUADFP_NAN, QUADFP_INFINITE, QUADFP_ZERO, QUADFP_SUBNORMAL, QUADFP_NORMAL): Define. * quadmath.map (QUADMATH_1.0): Add cacosq, cacoshq, casinq, casinhq, catanq and catanhq. * Makefile.am (libquadmath_la_SOURCES): Add math/cacosq.c, math/cacoshq.c, math/casinq.c, math/casinhq.c, math/catanq.c and math/catanhq.c. * Makefile.in: Regenerated. * libquadmath.texi (cacosq, cacoshq, casinq, casinhq, catanq, catanhq): Add. * math/cacoshq.c: New file. * math/cacosq.c: New file. * math/catanq.c: New file. * math/catanhq.c: New file. * math/casinq.c: New file. * math/casinhq.c: New file. * math/hypotq.c (hypotq): Use Q suffix instead of L. * math/atan2q.c (tiny, pi_o_4, pi_o_2, pi, pi_lo, atan2q): Likewise. * math/cosq.c (cosq): Likewise. From-SVN: r168853
83 lines
2.2 KiB
C
83 lines
2.2 KiB
C
/* s_cosl.c -- long double version of s_cos.c.
|
|
* Conversion to long double by Jakub Jelinek, jj@ultra.linux.cz.
|
|
*/
|
|
|
|
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
|
|
/* cosl(x)
|
|
* Return cosine function of x.
|
|
*
|
|
* kernel function:
|
|
* __kernel_sinl ... sine function on [-pi/4,pi/4]
|
|
* __kernel_cosl ... cosine function on [-pi/4,pi/4]
|
|
* __ieee754_rem_pio2l ... argument reduction routine
|
|
*
|
|
* Method.
|
|
* Let S,C and T denote the sin, cos and tan respectively on
|
|
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
|
|
* in [-pi/4 , +pi/4], and let n = k mod 4.
|
|
* We have
|
|
*
|
|
* n sin(x) cos(x) tan(x)
|
|
* ----------------------------------------------------------
|
|
* 0 S C T
|
|
* 1 C -S -1/T
|
|
* 2 -S -C T
|
|
* 3 -C S -1/T
|
|
* ----------------------------------------------------------
|
|
*
|
|
* Special cases:
|
|
* Let trig be any of sin, cos, or tan.
|
|
* trig(+-INF) is NaN, with signals;
|
|
* trig(NaN) is that NaN;
|
|
*
|
|
* Accuracy:
|
|
* TRIG(x) returns trig(x) nearly rounded
|
|
*/
|
|
|
|
#include "quadmath-imp.h"
|
|
|
|
__float128
|
|
cosq (__float128 x)
|
|
{
|
|
__float128 y[2],z=0.0Q;
|
|
int64_t n, ix;
|
|
|
|
/* High word of x. */
|
|
GET_FLT128_MSW64(ix,x);
|
|
|
|
/* |x| ~< pi/4 */
|
|
ix &= 0x7fffffffffffffffLL;
|
|
if(ix <= 0x3ffe921fb54442d1LL)
|
|
return __quadmath_kernel_cosq(x,z);
|
|
|
|
/* cos(Inf or NaN) is NaN */
|
|
else if (ix>=0x7fff000000000000LL) {
|
|
if (ix == 0x7fff000000000000LL) {
|
|
GET_FLT128_LSW64(n,x);
|
|
}
|
|
return x-x;
|
|
}
|
|
|
|
/* argument reduction needed */
|
|
else {
|
|
n = __quadmath_rem_pio2q(x,y);
|
|
switch(n&3) {
|
|
case 0: return __quadmath_kernel_cosq(y[0],y[1]);
|
|
case 1: return -__quadmath_kernel_sinq(y[0],y[1],1);
|
|
case 2: return -__quadmath_kernel_cosq(y[0],y[1]);
|
|
default:
|
|
return __quadmath_kernel_sinq(y[0],y[1],1);
|
|
}
|
|
}
|
|
}
|