c08472eaf6
* predict.c (expr_expected_value_1): Assume compare-and-swap builtin boolean return is true. From-SVN: r181862
2388 lines
65 KiB
C
2388 lines
65 KiB
C
/* Branch prediction routines for the GNU compiler.
|
||
Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
/* References:
|
||
|
||
[1] "Branch Prediction for Free"
|
||
Ball and Larus; PLDI '93.
|
||
[2] "Static Branch Frequency and Program Profile Analysis"
|
||
Wu and Larus; MICRO-27.
|
||
[3] "Corpus-based Static Branch Prediction"
|
||
Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
|
||
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "tree.h"
|
||
#include "rtl.h"
|
||
#include "tm_p.h"
|
||
#include "hard-reg-set.h"
|
||
#include "basic-block.h"
|
||
#include "insn-config.h"
|
||
#include "regs.h"
|
||
#include "flags.h"
|
||
#include "output.h"
|
||
#include "function.h"
|
||
#include "except.h"
|
||
#include "diagnostic-core.h"
|
||
#include "recog.h"
|
||
#include "expr.h"
|
||
#include "predict.h"
|
||
#include "coverage.h"
|
||
#include "sreal.h"
|
||
#include "params.h"
|
||
#include "target.h"
|
||
#include "cfgloop.h"
|
||
#include "tree-flow.h"
|
||
#include "ggc.h"
|
||
#include "tree-dump.h"
|
||
#include "tree-pass.h"
|
||
#include "timevar.h"
|
||
#include "tree-scalar-evolution.h"
|
||
#include "cfgloop.h"
|
||
#include "pointer-set.h"
|
||
|
||
/* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
|
||
1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
|
||
static sreal real_zero, real_one, real_almost_one, real_br_prob_base,
|
||
real_inv_br_prob_base, real_one_half, real_bb_freq_max;
|
||
|
||
/* Random guesstimation given names.
|
||
PROV_VERY_UNLIKELY should be small enough so basic block predicted
|
||
by it gets bellow HOT_BB_FREQUENCY_FRANCTION. */
|
||
#define PROB_VERY_UNLIKELY (REG_BR_PROB_BASE / 2000 - 1)
|
||
#define PROB_EVEN (REG_BR_PROB_BASE / 2)
|
||
#define PROB_VERY_LIKELY (REG_BR_PROB_BASE - PROB_VERY_UNLIKELY)
|
||
#define PROB_ALWAYS (REG_BR_PROB_BASE)
|
||
|
||
static void combine_predictions_for_insn (rtx, basic_block);
|
||
static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
|
||
static void predict_paths_leading_to (basic_block, enum br_predictor, enum prediction);
|
||
static void predict_paths_leading_to_edge (edge, enum br_predictor, enum prediction);
|
||
static bool can_predict_insn_p (const_rtx);
|
||
|
||
/* Information we hold about each branch predictor.
|
||
Filled using information from predict.def. */
|
||
|
||
struct predictor_info
|
||
{
|
||
const char *const name; /* Name used in the debugging dumps. */
|
||
const int hitrate; /* Expected hitrate used by
|
||
predict_insn_def call. */
|
||
const int flags;
|
||
};
|
||
|
||
/* Use given predictor without Dempster-Shaffer theory if it matches
|
||
using first_match heuristics. */
|
||
#define PRED_FLAG_FIRST_MATCH 1
|
||
|
||
/* Recompute hitrate in percent to our representation. */
|
||
|
||
#define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
|
||
|
||
#define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
|
||
static const struct predictor_info predictor_info[]= {
|
||
#include "predict.def"
|
||
|
||
/* Upper bound on predictors. */
|
||
{NULL, 0, 0}
|
||
};
|
||
#undef DEF_PREDICTOR
|
||
|
||
/* Return TRUE if frequency FREQ is considered to be hot. */
|
||
|
||
static inline bool
|
||
maybe_hot_frequency_p (int freq)
|
||
{
|
||
struct cgraph_node *node = cgraph_get_node (current_function_decl);
|
||
if (!profile_info || !flag_branch_probabilities)
|
||
{
|
||
if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
|
||
return false;
|
||
if (node->frequency == NODE_FREQUENCY_HOT)
|
||
return true;
|
||
}
|
||
if (profile_status == PROFILE_ABSENT)
|
||
return true;
|
||
if (node->frequency == NODE_FREQUENCY_EXECUTED_ONCE
|
||
&& freq < (ENTRY_BLOCK_PTR->frequency * 2 / 3))
|
||
return false;
|
||
if (freq < ENTRY_BLOCK_PTR->frequency / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))
|
||
return false;
|
||
return true;
|
||
}
|
||
|
||
/* Return TRUE if frequency FREQ is considered to be hot. */
|
||
|
||
static inline bool
|
||
maybe_hot_count_p (gcov_type count)
|
||
{
|
||
if (profile_status != PROFILE_READ)
|
||
return true;
|
||
/* Code executed at most once is not hot. */
|
||
if (profile_info->runs >= count)
|
||
return false;
|
||
return (count
|
||
> profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION));
|
||
}
|
||
|
||
/* Return true in case BB can be CPU intensive and should be optimized
|
||
for maximal performance. */
|
||
|
||
bool
|
||
maybe_hot_bb_p (const_basic_block bb)
|
||
{
|
||
if (profile_status == PROFILE_READ)
|
||
return maybe_hot_count_p (bb->count);
|
||
return maybe_hot_frequency_p (bb->frequency);
|
||
}
|
||
|
||
/* Return true if the call can be hot. */
|
||
|
||
bool
|
||
cgraph_maybe_hot_edge_p (struct cgraph_edge *edge)
|
||
{
|
||
if (profile_info && flag_branch_probabilities
|
||
&& (edge->count
|
||
<= profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
|
||
return false;
|
||
if (edge->caller->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED
|
||
|| edge->callee->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
|
||
return false;
|
||
if (edge->caller->frequency > NODE_FREQUENCY_UNLIKELY_EXECUTED
|
||
&& edge->callee->frequency <= NODE_FREQUENCY_EXECUTED_ONCE)
|
||
return false;
|
||
if (optimize_size)
|
||
return false;
|
||
if (edge->caller->frequency == NODE_FREQUENCY_HOT)
|
||
return true;
|
||
if (edge->caller->frequency == NODE_FREQUENCY_EXECUTED_ONCE
|
||
&& edge->frequency < CGRAPH_FREQ_BASE * 3 / 2)
|
||
return false;
|
||
if (flag_guess_branch_prob
|
||
&& edge->frequency <= (CGRAPH_FREQ_BASE
|
||
/ PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
|
||
return false;
|
||
return true;
|
||
}
|
||
|
||
/* Return true in case BB can be CPU intensive and should be optimized
|
||
for maximal performance. */
|
||
|
||
bool
|
||
maybe_hot_edge_p (edge e)
|
||
{
|
||
if (profile_status == PROFILE_READ)
|
||
return maybe_hot_count_p (e->count);
|
||
return maybe_hot_frequency_p (EDGE_FREQUENCY (e));
|
||
}
|
||
|
||
|
||
/* Return true in case BB is probably never executed. */
|
||
|
||
bool
|
||
probably_never_executed_bb_p (const_basic_block bb)
|
||
{
|
||
if (profile_info && flag_branch_probabilities)
|
||
return ((bb->count + profile_info->runs / 2) / profile_info->runs) == 0;
|
||
if ((!profile_info || !flag_branch_probabilities)
|
||
&& (cgraph_get_node (current_function_decl)->frequency
|
||
== NODE_FREQUENCY_UNLIKELY_EXECUTED))
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
/* Return true if NODE should be optimized for size. */
|
||
|
||
bool
|
||
cgraph_optimize_for_size_p (struct cgraph_node *node)
|
||
{
|
||
if (optimize_size)
|
||
return true;
|
||
if (node && (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED))
|
||
return true;
|
||
else
|
||
return false;
|
||
}
|
||
|
||
/* Return true when current function should always be optimized for size. */
|
||
|
||
bool
|
||
optimize_function_for_size_p (struct function *fun)
|
||
{
|
||
if (optimize_size)
|
||
return true;
|
||
if (!fun || !fun->decl)
|
||
return false;
|
||
return cgraph_optimize_for_size_p (cgraph_get_node (fun->decl));
|
||
}
|
||
|
||
/* Return true when current function should always be optimized for speed. */
|
||
|
||
bool
|
||
optimize_function_for_speed_p (struct function *fun)
|
||
{
|
||
return !optimize_function_for_size_p (fun);
|
||
}
|
||
|
||
/* Return TRUE when BB should be optimized for size. */
|
||
|
||
bool
|
||
optimize_bb_for_size_p (const_basic_block bb)
|
||
{
|
||
return optimize_function_for_size_p (cfun) || !maybe_hot_bb_p (bb);
|
||
}
|
||
|
||
/* Return TRUE when BB should be optimized for speed. */
|
||
|
||
bool
|
||
optimize_bb_for_speed_p (const_basic_block bb)
|
||
{
|
||
return !optimize_bb_for_size_p (bb);
|
||
}
|
||
|
||
/* Return TRUE when BB should be optimized for size. */
|
||
|
||
bool
|
||
optimize_edge_for_size_p (edge e)
|
||
{
|
||
return optimize_function_for_size_p (cfun) || !maybe_hot_edge_p (e);
|
||
}
|
||
|
||
/* Return TRUE when BB should be optimized for speed. */
|
||
|
||
bool
|
||
optimize_edge_for_speed_p (edge e)
|
||
{
|
||
return !optimize_edge_for_size_p (e);
|
||
}
|
||
|
||
/* Return TRUE when BB should be optimized for size. */
|
||
|
||
bool
|
||
optimize_insn_for_size_p (void)
|
||
{
|
||
return optimize_function_for_size_p (cfun) || !crtl->maybe_hot_insn_p;
|
||
}
|
||
|
||
/* Return TRUE when BB should be optimized for speed. */
|
||
|
||
bool
|
||
optimize_insn_for_speed_p (void)
|
||
{
|
||
return !optimize_insn_for_size_p ();
|
||
}
|
||
|
||
/* Return TRUE when LOOP should be optimized for size. */
|
||
|
||
bool
|
||
optimize_loop_for_size_p (struct loop *loop)
|
||
{
|
||
return optimize_bb_for_size_p (loop->header);
|
||
}
|
||
|
||
/* Return TRUE when LOOP should be optimized for speed. */
|
||
|
||
bool
|
||
optimize_loop_for_speed_p (struct loop *loop)
|
||
{
|
||
return optimize_bb_for_speed_p (loop->header);
|
||
}
|
||
|
||
/* Return TRUE when LOOP nest should be optimized for speed. */
|
||
|
||
bool
|
||
optimize_loop_nest_for_speed_p (struct loop *loop)
|
||
{
|
||
struct loop *l = loop;
|
||
if (optimize_loop_for_speed_p (loop))
|
||
return true;
|
||
l = loop->inner;
|
||
while (l && l != loop)
|
||
{
|
||
if (optimize_loop_for_speed_p (l))
|
||
return true;
|
||
if (l->inner)
|
||
l = l->inner;
|
||
else if (l->next)
|
||
l = l->next;
|
||
else
|
||
{
|
||
while (l != loop && !l->next)
|
||
l = loop_outer (l);
|
||
if (l != loop)
|
||
l = l->next;
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* Return TRUE when LOOP nest should be optimized for size. */
|
||
|
||
bool
|
||
optimize_loop_nest_for_size_p (struct loop *loop)
|
||
{
|
||
return !optimize_loop_nest_for_speed_p (loop);
|
||
}
|
||
|
||
/* Return true when edge E is likely to be well predictable by branch
|
||
predictor. */
|
||
|
||
bool
|
||
predictable_edge_p (edge e)
|
||
{
|
||
if (profile_status == PROFILE_ABSENT)
|
||
return false;
|
||
if ((e->probability
|
||
<= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100)
|
||
|| (REG_BR_PROB_BASE - e->probability
|
||
<= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100))
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
|
||
/* Set RTL expansion for BB profile. */
|
||
|
||
void
|
||
rtl_profile_for_bb (basic_block bb)
|
||
{
|
||
crtl->maybe_hot_insn_p = maybe_hot_bb_p (bb);
|
||
}
|
||
|
||
/* Set RTL expansion for edge profile. */
|
||
|
||
void
|
||
rtl_profile_for_edge (edge e)
|
||
{
|
||
crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
|
||
}
|
||
|
||
/* Set RTL expansion to default mode (i.e. when profile info is not known). */
|
||
void
|
||
default_rtl_profile (void)
|
||
{
|
||
crtl->maybe_hot_insn_p = true;
|
||
}
|
||
|
||
/* Return true if the one of outgoing edges is already predicted by
|
||
PREDICTOR. */
|
||
|
||
bool
|
||
rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
|
||
{
|
||
rtx note;
|
||
if (!INSN_P (BB_END (bb)))
|
||
return false;
|
||
for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
|
||
if (REG_NOTE_KIND (note) == REG_BR_PRED
|
||
&& INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
/* This map contains for a basic block the list of predictions for the
|
||
outgoing edges. */
|
||
|
||
static struct pointer_map_t *bb_predictions;
|
||
|
||
/* Structure representing predictions in tree level. */
|
||
|
||
struct edge_prediction {
|
||
struct edge_prediction *ep_next;
|
||
edge ep_edge;
|
||
enum br_predictor ep_predictor;
|
||
int ep_probability;
|
||
};
|
||
|
||
/* Return true if the one of outgoing edges is already predicted by
|
||
PREDICTOR. */
|
||
|
||
bool
|
||
gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
|
||
{
|
||
struct edge_prediction *i;
|
||
void **preds = pointer_map_contains (bb_predictions, bb);
|
||
|
||
if (!preds)
|
||
return false;
|
||
|
||
for (i = (struct edge_prediction *) *preds; i; i = i->ep_next)
|
||
if (i->ep_predictor == predictor)
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
/* Return true when the probability of edge is reliable.
|
||
|
||
The profile guessing code is good at predicting branch outcome (ie.
|
||
taken/not taken), that is predicted right slightly over 75% of time.
|
||
It is however notoriously poor on predicting the probability itself.
|
||
In general the profile appear a lot flatter (with probabilities closer
|
||
to 50%) than the reality so it is bad idea to use it to drive optimization
|
||
such as those disabling dynamic branch prediction for well predictable
|
||
branches.
|
||
|
||
There are two exceptions - edges leading to noreturn edges and edges
|
||
predicted by number of iterations heuristics are predicted well. This macro
|
||
should be able to distinguish those, but at the moment it simply check for
|
||
noreturn heuristic that is only one giving probability over 99% or bellow
|
||
1%. In future we might want to propagate reliability information across the
|
||
CFG if we find this information useful on multiple places. */
|
||
static bool
|
||
probability_reliable_p (int prob)
|
||
{
|
||
return (profile_status == PROFILE_READ
|
||
|| (profile_status == PROFILE_GUESSED
|
||
&& (prob <= HITRATE (1) || prob >= HITRATE (99))));
|
||
}
|
||
|
||
/* Same predicate as above, working on edges. */
|
||
bool
|
||
edge_probability_reliable_p (const_edge e)
|
||
{
|
||
return probability_reliable_p (e->probability);
|
||
}
|
||
|
||
/* Same predicate as edge_probability_reliable_p, working on notes. */
|
||
bool
|
||
br_prob_note_reliable_p (const_rtx note)
|
||
{
|
||
gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
|
||
return probability_reliable_p (INTVAL (XEXP (note, 0)));
|
||
}
|
||
|
||
static void
|
||
predict_insn (rtx insn, enum br_predictor predictor, int probability)
|
||
{
|
||
gcc_assert (any_condjump_p (insn));
|
||
if (!flag_guess_branch_prob)
|
||
return;
|
||
|
||
add_reg_note (insn, REG_BR_PRED,
|
||
gen_rtx_CONCAT (VOIDmode,
|
||
GEN_INT ((int) predictor),
|
||
GEN_INT ((int) probability)));
|
||
}
|
||
|
||
/* Predict insn by given predictor. */
|
||
|
||
void
|
||
predict_insn_def (rtx insn, enum br_predictor predictor,
|
||
enum prediction taken)
|
||
{
|
||
int probability = predictor_info[(int) predictor].hitrate;
|
||
|
||
if (taken != TAKEN)
|
||
probability = REG_BR_PROB_BASE - probability;
|
||
|
||
predict_insn (insn, predictor, probability);
|
||
}
|
||
|
||
/* Predict edge E with given probability if possible. */
|
||
|
||
void
|
||
rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
|
||
{
|
||
rtx last_insn;
|
||
last_insn = BB_END (e->src);
|
||
|
||
/* We can store the branch prediction information only about
|
||
conditional jumps. */
|
||
if (!any_condjump_p (last_insn))
|
||
return;
|
||
|
||
/* We always store probability of branching. */
|
||
if (e->flags & EDGE_FALLTHRU)
|
||
probability = REG_BR_PROB_BASE - probability;
|
||
|
||
predict_insn (last_insn, predictor, probability);
|
||
}
|
||
|
||
/* Predict edge E with the given PROBABILITY. */
|
||
void
|
||
gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
|
||
{
|
||
gcc_assert (profile_status != PROFILE_GUESSED);
|
||
if ((e->src != ENTRY_BLOCK_PTR && EDGE_COUNT (e->src->succs) > 1)
|
||
&& flag_guess_branch_prob && optimize)
|
||
{
|
||
struct edge_prediction *i = XNEW (struct edge_prediction);
|
||
void **preds = pointer_map_insert (bb_predictions, e->src);
|
||
|
||
i->ep_next = (struct edge_prediction *) *preds;
|
||
*preds = i;
|
||
i->ep_probability = probability;
|
||
i->ep_predictor = predictor;
|
||
i->ep_edge = e;
|
||
}
|
||
}
|
||
|
||
/* Remove all predictions on given basic block that are attached
|
||
to edge E. */
|
||
void
|
||
remove_predictions_associated_with_edge (edge e)
|
||
{
|
||
void **preds;
|
||
|
||
if (!bb_predictions)
|
||
return;
|
||
|
||
preds = pointer_map_contains (bb_predictions, e->src);
|
||
|
||
if (preds)
|
||
{
|
||
struct edge_prediction **prediction = (struct edge_prediction **) preds;
|
||
struct edge_prediction *next;
|
||
|
||
while (*prediction)
|
||
{
|
||
if ((*prediction)->ep_edge == e)
|
||
{
|
||
next = (*prediction)->ep_next;
|
||
free (*prediction);
|
||
*prediction = next;
|
||
}
|
||
else
|
||
prediction = &((*prediction)->ep_next);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Clears the list of predictions stored for BB. */
|
||
|
||
static void
|
||
clear_bb_predictions (basic_block bb)
|
||
{
|
||
void **preds = pointer_map_contains (bb_predictions, bb);
|
||
struct edge_prediction *pred, *next;
|
||
|
||
if (!preds)
|
||
return;
|
||
|
||
for (pred = (struct edge_prediction *) *preds; pred; pred = next)
|
||
{
|
||
next = pred->ep_next;
|
||
free (pred);
|
||
}
|
||
*preds = NULL;
|
||
}
|
||
|
||
/* Return true when we can store prediction on insn INSN.
|
||
At the moment we represent predictions only on conditional
|
||
jumps, not at computed jump or other complicated cases. */
|
||
static bool
|
||
can_predict_insn_p (const_rtx insn)
|
||
{
|
||
return (JUMP_P (insn)
|
||
&& any_condjump_p (insn)
|
||
&& EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
|
||
}
|
||
|
||
/* Predict edge E by given predictor if possible. */
|
||
|
||
void
|
||
predict_edge_def (edge e, enum br_predictor predictor,
|
||
enum prediction taken)
|
||
{
|
||
int probability = predictor_info[(int) predictor].hitrate;
|
||
|
||
if (taken != TAKEN)
|
||
probability = REG_BR_PROB_BASE - probability;
|
||
|
||
predict_edge (e, predictor, probability);
|
||
}
|
||
|
||
/* Invert all branch predictions or probability notes in the INSN. This needs
|
||
to be done each time we invert the condition used by the jump. */
|
||
|
||
void
|
||
invert_br_probabilities (rtx insn)
|
||
{
|
||
rtx note;
|
||
|
||
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
|
||
if (REG_NOTE_KIND (note) == REG_BR_PROB)
|
||
XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0)));
|
||
else if (REG_NOTE_KIND (note) == REG_BR_PRED)
|
||
XEXP (XEXP (note, 0), 1)
|
||
= GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
|
||
}
|
||
|
||
/* Dump information about the branch prediction to the output file. */
|
||
|
||
static void
|
||
dump_prediction (FILE *file, enum br_predictor predictor, int probability,
|
||
basic_block bb, int used)
|
||
{
|
||
edge e;
|
||
edge_iterator ei;
|
||
|
||
if (!file)
|
||
return;
|
||
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
if (! (e->flags & EDGE_FALLTHRU))
|
||
break;
|
||
|
||
fprintf (file, " %s heuristics%s: %.1f%%",
|
||
predictor_info[predictor].name,
|
||
used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
|
||
|
||
if (bb->count)
|
||
{
|
||
fprintf (file, " exec ");
|
||
fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
|
||
if (e)
|
||
{
|
||
fprintf (file, " hit ");
|
||
fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
|
||
fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
|
||
}
|
||
}
|
||
|
||
fprintf (file, "\n");
|
||
}
|
||
|
||
/* We can not predict the probabilities of outgoing edges of bb. Set them
|
||
evenly and hope for the best. */
|
||
static void
|
||
set_even_probabilities (basic_block bb)
|
||
{
|
||
int nedges = 0;
|
||
edge e;
|
||
edge_iterator ei;
|
||
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
|
||
nedges ++;
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
|
||
e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
|
||
else
|
||
e->probability = 0;
|
||
}
|
||
|
||
/* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
|
||
note if not already present. Remove now useless REG_BR_PRED notes. */
|
||
|
||
static void
|
||
combine_predictions_for_insn (rtx insn, basic_block bb)
|
||
{
|
||
rtx prob_note;
|
||
rtx *pnote;
|
||
rtx note;
|
||
int best_probability = PROB_EVEN;
|
||
enum br_predictor best_predictor = END_PREDICTORS;
|
||
int combined_probability = REG_BR_PROB_BASE / 2;
|
||
int d;
|
||
bool first_match = false;
|
||
bool found = false;
|
||
|
||
if (!can_predict_insn_p (insn))
|
||
{
|
||
set_even_probabilities (bb);
|
||
return;
|
||
}
|
||
|
||
prob_note = find_reg_note (insn, REG_BR_PROB, 0);
|
||
pnote = ®_NOTES (insn);
|
||
if (dump_file)
|
||
fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
|
||
bb->index);
|
||
|
||
/* We implement "first match" heuristics and use probability guessed
|
||
by predictor with smallest index. */
|
||
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
|
||
if (REG_NOTE_KIND (note) == REG_BR_PRED)
|
||
{
|
||
enum br_predictor predictor = ((enum br_predictor)
|
||
INTVAL (XEXP (XEXP (note, 0), 0)));
|
||
int probability = INTVAL (XEXP (XEXP (note, 0), 1));
|
||
|
||
found = true;
|
||
if (best_predictor > predictor)
|
||
best_probability = probability, best_predictor = predictor;
|
||
|
||
d = (combined_probability * probability
|
||
+ (REG_BR_PROB_BASE - combined_probability)
|
||
* (REG_BR_PROB_BASE - probability));
|
||
|
||
/* Use FP math to avoid overflows of 32bit integers. */
|
||
if (d == 0)
|
||
/* If one probability is 0% and one 100%, avoid division by zero. */
|
||
combined_probability = REG_BR_PROB_BASE / 2;
|
||
else
|
||
combined_probability = (((double) combined_probability) * probability
|
||
* REG_BR_PROB_BASE / d + 0.5);
|
||
}
|
||
|
||
/* Decide which heuristic to use. In case we didn't match anything,
|
||
use no_prediction heuristic, in case we did match, use either
|
||
first match or Dempster-Shaffer theory depending on the flags. */
|
||
|
||
if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
|
||
first_match = true;
|
||
|
||
if (!found)
|
||
dump_prediction (dump_file, PRED_NO_PREDICTION,
|
||
combined_probability, bb, true);
|
||
else
|
||
{
|
||
dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
|
||
bb, !first_match);
|
||
dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
|
||
bb, first_match);
|
||
}
|
||
|
||
if (first_match)
|
||
combined_probability = best_probability;
|
||
dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
|
||
|
||
while (*pnote)
|
||
{
|
||
if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
|
||
{
|
||
enum br_predictor predictor = ((enum br_predictor)
|
||
INTVAL (XEXP (XEXP (*pnote, 0), 0)));
|
||
int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
|
||
|
||
dump_prediction (dump_file, predictor, probability, bb,
|
||
!first_match || best_predictor == predictor);
|
||
*pnote = XEXP (*pnote, 1);
|
||
}
|
||
else
|
||
pnote = &XEXP (*pnote, 1);
|
||
}
|
||
|
||
if (!prob_note)
|
||
{
|
||
add_reg_note (insn, REG_BR_PROB, GEN_INT (combined_probability));
|
||
|
||
/* Save the prediction into CFG in case we are seeing non-degenerated
|
||
conditional jump. */
|
||
if (!single_succ_p (bb))
|
||
{
|
||
BRANCH_EDGE (bb)->probability = combined_probability;
|
||
FALLTHRU_EDGE (bb)->probability
|
||
= REG_BR_PROB_BASE - combined_probability;
|
||
}
|
||
}
|
||
else if (!single_succ_p (bb))
|
||
{
|
||
int prob = INTVAL (XEXP (prob_note, 0));
|
||
|
||
BRANCH_EDGE (bb)->probability = prob;
|
||
FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
|
||
}
|
||
else
|
||
single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
|
||
}
|
||
|
||
/* Combine predictions into single probability and store them into CFG.
|
||
Remove now useless prediction entries. */
|
||
|
||
static void
|
||
combine_predictions_for_bb (basic_block bb)
|
||
{
|
||
int best_probability = PROB_EVEN;
|
||
enum br_predictor best_predictor = END_PREDICTORS;
|
||
int combined_probability = REG_BR_PROB_BASE / 2;
|
||
int d;
|
||
bool first_match = false;
|
||
bool found = false;
|
||
struct edge_prediction *pred;
|
||
int nedges = 0;
|
||
edge e, first = NULL, second = NULL;
|
||
edge_iterator ei;
|
||
void **preds;
|
||
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
|
||
{
|
||
nedges ++;
|
||
if (first && !second)
|
||
second = e;
|
||
if (!first)
|
||
first = e;
|
||
}
|
||
|
||
/* When there is no successor or only one choice, prediction is easy.
|
||
|
||
We are lazy for now and predict only basic blocks with two outgoing
|
||
edges. It is possible to predict generic case too, but we have to
|
||
ignore first match heuristics and do more involved combining. Implement
|
||
this later. */
|
||
if (nedges != 2)
|
||
{
|
||
if (!bb->count)
|
||
set_even_probabilities (bb);
|
||
clear_bb_predictions (bb);
|
||
if (dump_file)
|
||
fprintf (dump_file, "%i edges in bb %i predicted to even probabilities\n",
|
||
nedges, bb->index);
|
||
return;
|
||
}
|
||
|
||
if (dump_file)
|
||
fprintf (dump_file, "Predictions for bb %i\n", bb->index);
|
||
|
||
preds = pointer_map_contains (bb_predictions, bb);
|
||
if (preds)
|
||
{
|
||
/* We implement "first match" heuristics and use probability guessed
|
||
by predictor with smallest index. */
|
||
for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
|
||
{
|
||
enum br_predictor predictor = pred->ep_predictor;
|
||
int probability = pred->ep_probability;
|
||
|
||
if (pred->ep_edge != first)
|
||
probability = REG_BR_PROB_BASE - probability;
|
||
|
||
found = true;
|
||
/* First match heuristics would be widly confused if we predicted
|
||
both directions. */
|
||
if (best_predictor > predictor)
|
||
{
|
||
struct edge_prediction *pred2;
|
||
int prob = probability;
|
||
|
||
for (pred2 = (struct edge_prediction *) *preds; pred2; pred2 = pred2->ep_next)
|
||
if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor)
|
||
{
|
||
int probability2 = pred->ep_probability;
|
||
|
||
if (pred2->ep_edge != first)
|
||
probability2 = REG_BR_PROB_BASE - probability2;
|
||
|
||
if ((probability < REG_BR_PROB_BASE / 2) !=
|
||
(probability2 < REG_BR_PROB_BASE / 2))
|
||
break;
|
||
|
||
/* If the same predictor later gave better result, go for it! */
|
||
if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability))
|
||
|| (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability)))
|
||
prob = probability2;
|
||
}
|
||
if (!pred2)
|
||
best_probability = prob, best_predictor = predictor;
|
||
}
|
||
|
||
d = (combined_probability * probability
|
||
+ (REG_BR_PROB_BASE - combined_probability)
|
||
* (REG_BR_PROB_BASE - probability));
|
||
|
||
/* Use FP math to avoid overflows of 32bit integers. */
|
||
if (d == 0)
|
||
/* If one probability is 0% and one 100%, avoid division by zero. */
|
||
combined_probability = REG_BR_PROB_BASE / 2;
|
||
else
|
||
combined_probability = (((double) combined_probability)
|
||
* probability
|
||
* REG_BR_PROB_BASE / d + 0.5);
|
||
}
|
||
}
|
||
|
||
/* Decide which heuristic to use. In case we didn't match anything,
|
||
use no_prediction heuristic, in case we did match, use either
|
||
first match or Dempster-Shaffer theory depending on the flags. */
|
||
|
||
if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
|
||
first_match = true;
|
||
|
||
if (!found)
|
||
dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb, true);
|
||
else
|
||
{
|
||
dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
|
||
!first_match);
|
||
dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
|
||
first_match);
|
||
}
|
||
|
||
if (first_match)
|
||
combined_probability = best_probability;
|
||
dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
|
||
|
||
if (preds)
|
||
{
|
||
for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
|
||
{
|
||
enum br_predictor predictor = pred->ep_predictor;
|
||
int probability = pred->ep_probability;
|
||
|
||
if (pred->ep_edge != EDGE_SUCC (bb, 0))
|
||
probability = REG_BR_PROB_BASE - probability;
|
||
dump_prediction (dump_file, predictor, probability, bb,
|
||
!first_match || best_predictor == predictor);
|
||
}
|
||
}
|
||
clear_bb_predictions (bb);
|
||
|
||
if (!bb->count)
|
||
{
|
||
first->probability = combined_probability;
|
||
second->probability = REG_BR_PROB_BASE - combined_probability;
|
||
}
|
||
}
|
||
|
||
/* Predict edge probabilities by exploiting loop structure. */
|
||
|
||
static void
|
||
predict_loops (void)
|
||
{
|
||
loop_iterator li;
|
||
struct loop *loop;
|
||
|
||
/* Try to predict out blocks in a loop that are not part of a
|
||
natural loop. */
|
||
FOR_EACH_LOOP (li, loop, 0)
|
||
{
|
||
basic_block bb, *bbs;
|
||
unsigned j, n_exits;
|
||
VEC (edge, heap) *exits;
|
||
struct tree_niter_desc niter_desc;
|
||
edge ex;
|
||
|
||
exits = get_loop_exit_edges (loop);
|
||
n_exits = VEC_length (edge, exits);
|
||
|
||
FOR_EACH_VEC_ELT (edge, exits, j, ex)
|
||
{
|
||
tree niter = NULL;
|
||
HOST_WIDE_INT nitercst;
|
||
int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
|
||
int probability;
|
||
enum br_predictor predictor;
|
||
|
||
if (number_of_iterations_exit (loop, ex, &niter_desc, false))
|
||
niter = niter_desc.niter;
|
||
if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
|
||
niter = loop_niter_by_eval (loop, ex);
|
||
|
||
if (TREE_CODE (niter) == INTEGER_CST)
|
||
{
|
||
if (host_integerp (niter, 1)
|
||
&& compare_tree_int (niter, max-1) == -1)
|
||
nitercst = tree_low_cst (niter, 1) + 1;
|
||
else
|
||
nitercst = max;
|
||
predictor = PRED_LOOP_ITERATIONS;
|
||
}
|
||
/* If we have just one exit and we can derive some information about
|
||
the number of iterations of the loop from the statements inside
|
||
the loop, use it to predict this exit. */
|
||
else if (n_exits == 1)
|
||
{
|
||
nitercst = max_stmt_executions_int (loop, false);
|
||
if (nitercst < 0)
|
||
continue;
|
||
if (nitercst > max)
|
||
nitercst = max;
|
||
|
||
predictor = PRED_LOOP_ITERATIONS_GUESSED;
|
||
}
|
||
else
|
||
continue;
|
||
|
||
probability = ((REG_BR_PROB_BASE + nitercst / 2) / nitercst);
|
||
predict_edge (ex, predictor, probability);
|
||
}
|
||
VEC_free (edge, heap, exits);
|
||
|
||
bbs = get_loop_body (loop);
|
||
|
||
for (j = 0; j < loop->num_nodes; j++)
|
||
{
|
||
int header_found = 0;
|
||
edge e;
|
||
edge_iterator ei;
|
||
|
||
bb = bbs[j];
|
||
|
||
/* Bypass loop heuristics on continue statement. These
|
||
statements construct loops via "non-loop" constructs
|
||
in the source language and are better to be handled
|
||
separately. */
|
||
if (predicted_by_p (bb, PRED_CONTINUE))
|
||
continue;
|
||
|
||
/* Loop branch heuristics - predict an edge back to a
|
||
loop's head as taken. */
|
||
if (bb == loop->latch)
|
||
{
|
||
e = find_edge (loop->latch, loop->header);
|
||
if (e)
|
||
{
|
||
header_found = 1;
|
||
predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
|
||
}
|
||
}
|
||
|
||
/* Loop exit heuristics - predict an edge exiting the loop if the
|
||
conditional has no loop header successors as not taken. */
|
||
if (!header_found
|
||
/* If we already used more reliable loop exit predictors, do not
|
||
bother with PRED_LOOP_EXIT. */
|
||
&& !predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
|
||
&& !predicted_by_p (bb, PRED_LOOP_ITERATIONS))
|
||
{
|
||
/* For loop with many exits we don't want to predict all exits
|
||
with the pretty large probability, because if all exits are
|
||
considered in row, the loop would be predicted to iterate
|
||
almost never. The code to divide probability by number of
|
||
exits is very rough. It should compute the number of exits
|
||
taken in each patch through function (not the overall number
|
||
of exits that might be a lot higher for loops with wide switch
|
||
statements in them) and compute n-th square root.
|
||
|
||
We limit the minimal probability by 2% to avoid
|
||
EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
|
||
as this was causing regression in perl benchmark containing such
|
||
a wide loop. */
|
||
|
||
int probability = ((REG_BR_PROB_BASE
|
||
- predictor_info [(int) PRED_LOOP_EXIT].hitrate)
|
||
/ n_exits);
|
||
if (probability < HITRATE (2))
|
||
probability = HITRATE (2);
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
if (e->dest->index < NUM_FIXED_BLOCKS
|
||
|| !flow_bb_inside_loop_p (loop, e->dest))
|
||
predict_edge (e, PRED_LOOP_EXIT, probability);
|
||
}
|
||
}
|
||
|
||
/* Free basic blocks from get_loop_body. */
|
||
free (bbs);
|
||
}
|
||
}
|
||
|
||
/* Attempt to predict probabilities of BB outgoing edges using local
|
||
properties. */
|
||
static void
|
||
bb_estimate_probability_locally (basic_block bb)
|
||
{
|
||
rtx last_insn = BB_END (bb);
|
||
rtx cond;
|
||
|
||
if (! can_predict_insn_p (last_insn))
|
||
return;
|
||
cond = get_condition (last_insn, NULL, false, false);
|
||
if (! cond)
|
||
return;
|
||
|
||
/* Try "pointer heuristic."
|
||
A comparison ptr == 0 is predicted as false.
|
||
Similarly, a comparison ptr1 == ptr2 is predicted as false. */
|
||
if (COMPARISON_P (cond)
|
||
&& ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
|
||
|| (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
|
||
{
|
||
if (GET_CODE (cond) == EQ)
|
||
predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
|
||
else if (GET_CODE (cond) == NE)
|
||
predict_insn_def (last_insn, PRED_POINTER, TAKEN);
|
||
}
|
||
else
|
||
|
||
/* Try "opcode heuristic."
|
||
EQ tests are usually false and NE tests are usually true. Also,
|
||
most quantities are positive, so we can make the appropriate guesses
|
||
about signed comparisons against zero. */
|
||
switch (GET_CODE (cond))
|
||
{
|
||
case CONST_INT:
|
||
/* Unconditional branch. */
|
||
predict_insn_def (last_insn, PRED_UNCONDITIONAL,
|
||
cond == const0_rtx ? NOT_TAKEN : TAKEN);
|
||
break;
|
||
|
||
case EQ:
|
||
case UNEQ:
|
||
/* Floating point comparisons appears to behave in a very
|
||
unpredictable way because of special role of = tests in
|
||
FP code. */
|
||
if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
|
||
;
|
||
/* Comparisons with 0 are often used for booleans and there is
|
||
nothing useful to predict about them. */
|
||
else if (XEXP (cond, 1) == const0_rtx
|
||
|| XEXP (cond, 0) == const0_rtx)
|
||
;
|
||
else
|
||
predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
|
||
break;
|
||
|
||
case NE:
|
||
case LTGT:
|
||
/* Floating point comparisons appears to behave in a very
|
||
unpredictable way because of special role of = tests in
|
||
FP code. */
|
||
if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
|
||
;
|
||
/* Comparisons with 0 are often used for booleans and there is
|
||
nothing useful to predict about them. */
|
||
else if (XEXP (cond, 1) == const0_rtx
|
||
|| XEXP (cond, 0) == const0_rtx)
|
||
;
|
||
else
|
||
predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
|
||
break;
|
||
|
||
case ORDERED:
|
||
predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
|
||
break;
|
||
|
||
case UNORDERED:
|
||
predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
|
||
break;
|
||
|
||
case LE:
|
||
case LT:
|
||
if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
|
||
|| XEXP (cond, 1) == constm1_rtx)
|
||
predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
|
||
break;
|
||
|
||
case GE:
|
||
case GT:
|
||
if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
|
||
|| XEXP (cond, 1) == constm1_rtx)
|
||
predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Set edge->probability for each successor edge of BB. */
|
||
void
|
||
guess_outgoing_edge_probabilities (basic_block bb)
|
||
{
|
||
bb_estimate_probability_locally (bb);
|
||
combine_predictions_for_insn (BB_END (bb), bb);
|
||
}
|
||
|
||
static tree expr_expected_value (tree, bitmap);
|
||
|
||
/* Helper function for expr_expected_value. */
|
||
|
||
static tree
|
||
expr_expected_value_1 (tree type, tree op0, enum tree_code code,
|
||
tree op1, bitmap visited)
|
||
{
|
||
gimple def;
|
||
|
||
if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
|
||
{
|
||
if (TREE_CONSTANT (op0))
|
||
return op0;
|
||
|
||
if (code != SSA_NAME)
|
||
return NULL_TREE;
|
||
|
||
def = SSA_NAME_DEF_STMT (op0);
|
||
|
||
/* If we were already here, break the infinite cycle. */
|
||
if (!bitmap_set_bit (visited, SSA_NAME_VERSION (op0)))
|
||
return NULL;
|
||
|
||
if (gimple_code (def) == GIMPLE_PHI)
|
||
{
|
||
/* All the arguments of the PHI node must have the same constant
|
||
length. */
|
||
int i, n = gimple_phi_num_args (def);
|
||
tree val = NULL, new_val;
|
||
|
||
for (i = 0; i < n; i++)
|
||
{
|
||
tree arg = PHI_ARG_DEF (def, i);
|
||
|
||
/* If this PHI has itself as an argument, we cannot
|
||
determine the string length of this argument. However,
|
||
if we can find an expected constant value for the other
|
||
PHI args then we can still be sure that this is
|
||
likely a constant. So be optimistic and just
|
||
continue with the next argument. */
|
||
if (arg == PHI_RESULT (def))
|
||
continue;
|
||
|
||
new_val = expr_expected_value (arg, visited);
|
||
if (!new_val)
|
||
return NULL;
|
||
if (!val)
|
||
val = new_val;
|
||
else if (!operand_equal_p (val, new_val, false))
|
||
return NULL;
|
||
}
|
||
return val;
|
||
}
|
||
if (is_gimple_assign (def))
|
||
{
|
||
if (gimple_assign_lhs (def) != op0)
|
||
return NULL;
|
||
|
||
return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
|
||
gimple_assign_rhs1 (def),
|
||
gimple_assign_rhs_code (def),
|
||
gimple_assign_rhs2 (def),
|
||
visited);
|
||
}
|
||
|
||
if (is_gimple_call (def))
|
||
{
|
||
tree decl = gimple_call_fndecl (def);
|
||
if (!decl)
|
||
return NULL;
|
||
if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
|
||
switch (DECL_FUNCTION_CODE (decl))
|
||
{
|
||
case BUILT_IN_EXPECT:
|
||
{
|
||
tree val;
|
||
if (gimple_call_num_args (def) != 2)
|
||
return NULL;
|
||
val = gimple_call_arg (def, 0);
|
||
if (TREE_CONSTANT (val))
|
||
return val;
|
||
return gimple_call_arg (def, 1);
|
||
}
|
||
|
||
case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N:
|
||
case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
|
||
case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
|
||
case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
|
||
case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
|
||
case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
|
||
case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
|
||
case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N:
|
||
case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
|
||
case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
|
||
case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
|
||
case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
|
||
case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
|
||
/* Assume that any given atomic operation has low contention,
|
||
and thus the compare-and-swap operation succeeds. */
|
||
return boolean_true_node;
|
||
}
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
|
||
{
|
||
tree res;
|
||
op0 = expr_expected_value (op0, visited);
|
||
if (!op0)
|
||
return NULL;
|
||
op1 = expr_expected_value (op1, visited);
|
||
if (!op1)
|
||
return NULL;
|
||
res = fold_build2 (code, type, op0, op1);
|
||
if (TREE_CONSTANT (res))
|
||
return res;
|
||
return NULL;
|
||
}
|
||
if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
|
||
{
|
||
tree res;
|
||
op0 = expr_expected_value (op0, visited);
|
||
if (!op0)
|
||
return NULL;
|
||
res = fold_build1 (code, type, op0);
|
||
if (TREE_CONSTANT (res))
|
||
return res;
|
||
return NULL;
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
/* Return constant EXPR will likely have at execution time, NULL if unknown.
|
||
The function is used by builtin_expect branch predictor so the evidence
|
||
must come from this construct and additional possible constant folding.
|
||
|
||
We may want to implement more involved value guess (such as value range
|
||
propagation based prediction), but such tricks shall go to new
|
||
implementation. */
|
||
|
||
static tree
|
||
expr_expected_value (tree expr, bitmap visited)
|
||
{
|
||
enum tree_code code;
|
||
tree op0, op1;
|
||
|
||
if (TREE_CONSTANT (expr))
|
||
return expr;
|
||
|
||
extract_ops_from_tree (expr, &code, &op0, &op1);
|
||
return expr_expected_value_1 (TREE_TYPE (expr),
|
||
op0, code, op1, visited);
|
||
}
|
||
|
||
|
||
/* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
|
||
we no longer need. */
|
||
static unsigned int
|
||
strip_predict_hints (void)
|
||
{
|
||
basic_block bb;
|
||
gimple ass_stmt;
|
||
tree var;
|
||
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
gimple_stmt_iterator bi;
|
||
for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
|
||
{
|
||
gimple stmt = gsi_stmt (bi);
|
||
|
||
if (gimple_code (stmt) == GIMPLE_PREDICT)
|
||
{
|
||
gsi_remove (&bi, true);
|
||
continue;
|
||
}
|
||
else if (gimple_code (stmt) == GIMPLE_CALL)
|
||
{
|
||
tree fndecl = gimple_call_fndecl (stmt);
|
||
|
||
if (fndecl
|
||
&& DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
|
||
&& DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
|
||
&& gimple_call_num_args (stmt) == 2)
|
||
{
|
||
var = gimple_call_lhs (stmt);
|
||
if (var)
|
||
{
|
||
ass_stmt
|
||
= gimple_build_assign (var, gimple_call_arg (stmt, 0));
|
||
gsi_replace (&bi, ass_stmt, true);
|
||
}
|
||
else
|
||
{
|
||
gsi_remove (&bi, true);
|
||
continue;
|
||
}
|
||
}
|
||
}
|
||
gsi_next (&bi);
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Predict using opcode of the last statement in basic block. */
|
||
static void
|
||
tree_predict_by_opcode (basic_block bb)
|
||
{
|
||
gimple stmt = last_stmt (bb);
|
||
edge then_edge;
|
||
tree op0, op1;
|
||
tree type;
|
||
tree val;
|
||
enum tree_code cmp;
|
||
bitmap visited;
|
||
edge_iterator ei;
|
||
|
||
if (!stmt || gimple_code (stmt) != GIMPLE_COND)
|
||
return;
|
||
FOR_EACH_EDGE (then_edge, ei, bb->succs)
|
||
if (then_edge->flags & EDGE_TRUE_VALUE)
|
||
break;
|
||
op0 = gimple_cond_lhs (stmt);
|
||
op1 = gimple_cond_rhs (stmt);
|
||
cmp = gimple_cond_code (stmt);
|
||
type = TREE_TYPE (op0);
|
||
visited = BITMAP_ALLOC (NULL);
|
||
val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, visited);
|
||
BITMAP_FREE (visited);
|
||
if (val)
|
||
{
|
||
if (integer_zerop (val))
|
||
predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, NOT_TAKEN);
|
||
else
|
||
predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, TAKEN);
|
||
return;
|
||
}
|
||
/* Try "pointer heuristic."
|
||
A comparison ptr == 0 is predicted as false.
|
||
Similarly, a comparison ptr1 == ptr2 is predicted as false. */
|
||
if (POINTER_TYPE_P (type))
|
||
{
|
||
if (cmp == EQ_EXPR)
|
||
predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
|
||
else if (cmp == NE_EXPR)
|
||
predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
|
||
}
|
||
else
|
||
|
||
/* Try "opcode heuristic."
|
||
EQ tests are usually false and NE tests are usually true. Also,
|
||
most quantities are positive, so we can make the appropriate guesses
|
||
about signed comparisons against zero. */
|
||
switch (cmp)
|
||
{
|
||
case EQ_EXPR:
|
||
case UNEQ_EXPR:
|
||
/* Floating point comparisons appears to behave in a very
|
||
unpredictable way because of special role of = tests in
|
||
FP code. */
|
||
if (FLOAT_TYPE_P (type))
|
||
;
|
||
/* Comparisons with 0 are often used for booleans and there is
|
||
nothing useful to predict about them. */
|
||
else if (integer_zerop (op0) || integer_zerop (op1))
|
||
;
|
||
else
|
||
predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
|
||
break;
|
||
|
||
case NE_EXPR:
|
||
case LTGT_EXPR:
|
||
/* Floating point comparisons appears to behave in a very
|
||
unpredictable way because of special role of = tests in
|
||
FP code. */
|
||
if (FLOAT_TYPE_P (type))
|
||
;
|
||
/* Comparisons with 0 are often used for booleans and there is
|
||
nothing useful to predict about them. */
|
||
else if (integer_zerop (op0)
|
||
|| integer_zerop (op1))
|
||
;
|
||
else
|
||
predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
|
||
break;
|
||
|
||
case ORDERED_EXPR:
|
||
predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
|
||
break;
|
||
|
||
case UNORDERED_EXPR:
|
||
predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
|
||
break;
|
||
|
||
case LE_EXPR:
|
||
case LT_EXPR:
|
||
if (integer_zerop (op1)
|
||
|| integer_onep (op1)
|
||
|| integer_all_onesp (op1)
|
||
|| real_zerop (op1)
|
||
|| real_onep (op1)
|
||
|| real_minus_onep (op1))
|
||
predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
|
||
break;
|
||
|
||
case GE_EXPR:
|
||
case GT_EXPR:
|
||
if (integer_zerop (op1)
|
||
|| integer_onep (op1)
|
||
|| integer_all_onesp (op1)
|
||
|| real_zerop (op1)
|
||
|| real_onep (op1)
|
||
|| real_minus_onep (op1))
|
||
predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Try to guess whether the value of return means error code. */
|
||
|
||
static enum br_predictor
|
||
return_prediction (tree val, enum prediction *prediction)
|
||
{
|
||
/* VOID. */
|
||
if (!val)
|
||
return PRED_NO_PREDICTION;
|
||
/* Different heuristics for pointers and scalars. */
|
||
if (POINTER_TYPE_P (TREE_TYPE (val)))
|
||
{
|
||
/* NULL is usually not returned. */
|
||
if (integer_zerop (val))
|
||
{
|
||
*prediction = NOT_TAKEN;
|
||
return PRED_NULL_RETURN;
|
||
}
|
||
}
|
||
else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
|
||
{
|
||
/* Negative return values are often used to indicate
|
||
errors. */
|
||
if (TREE_CODE (val) == INTEGER_CST
|
||
&& tree_int_cst_sgn (val) < 0)
|
||
{
|
||
*prediction = NOT_TAKEN;
|
||
return PRED_NEGATIVE_RETURN;
|
||
}
|
||
/* Constant return values seems to be commonly taken.
|
||
Zero/one often represent booleans so exclude them from the
|
||
heuristics. */
|
||
if (TREE_CONSTANT (val)
|
||
&& (!integer_zerop (val) && !integer_onep (val)))
|
||
{
|
||
*prediction = TAKEN;
|
||
return PRED_CONST_RETURN;
|
||
}
|
||
}
|
||
return PRED_NO_PREDICTION;
|
||
}
|
||
|
||
/* Find the basic block with return expression and look up for possible
|
||
return value trying to apply RETURN_PREDICTION heuristics. */
|
||
static void
|
||
apply_return_prediction (void)
|
||
{
|
||
gimple return_stmt = NULL;
|
||
tree return_val;
|
||
edge e;
|
||
gimple phi;
|
||
int phi_num_args, i;
|
||
enum br_predictor pred;
|
||
enum prediction direction;
|
||
edge_iterator ei;
|
||
|
||
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
|
||
{
|
||
return_stmt = last_stmt (e->src);
|
||
if (return_stmt
|
||
&& gimple_code (return_stmt) == GIMPLE_RETURN)
|
||
break;
|
||
}
|
||
if (!e)
|
||
return;
|
||
return_val = gimple_return_retval (return_stmt);
|
||
if (!return_val)
|
||
return;
|
||
if (TREE_CODE (return_val) != SSA_NAME
|
||
|| !SSA_NAME_DEF_STMT (return_val)
|
||
|| gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
|
||
return;
|
||
phi = SSA_NAME_DEF_STMT (return_val);
|
||
phi_num_args = gimple_phi_num_args (phi);
|
||
pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
|
||
|
||
/* Avoid the degenerate case where all return values form the function
|
||
belongs to same category (ie they are all positive constants)
|
||
so we can hardly say something about them. */
|
||
for (i = 1; i < phi_num_args; i++)
|
||
if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
|
||
break;
|
||
if (i != phi_num_args)
|
||
for (i = 0; i < phi_num_args; i++)
|
||
{
|
||
pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
|
||
if (pred != PRED_NO_PREDICTION)
|
||
predict_paths_leading_to_edge (gimple_phi_arg_edge (phi, i), pred,
|
||
direction);
|
||
}
|
||
}
|
||
|
||
/* Look for basic block that contains unlikely to happen events
|
||
(such as noreturn calls) and mark all paths leading to execution
|
||
of this basic blocks as unlikely. */
|
||
|
||
static void
|
||
tree_bb_level_predictions (void)
|
||
{
|
||
basic_block bb;
|
||
bool has_return_edges = false;
|
||
edge e;
|
||
edge_iterator ei;
|
||
|
||
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
|
||
if (!(e->flags & (EDGE_ABNORMAL | EDGE_FAKE | EDGE_EH)))
|
||
{
|
||
has_return_edges = true;
|
||
break;
|
||
}
|
||
|
||
apply_return_prediction ();
|
||
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
gimple_stmt_iterator gsi;
|
||
|
||
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
||
{
|
||
gimple stmt = gsi_stmt (gsi);
|
||
tree decl;
|
||
|
||
if (is_gimple_call (stmt))
|
||
{
|
||
if ((gimple_call_flags (stmt) & ECF_NORETURN)
|
||
&& has_return_edges)
|
||
predict_paths_leading_to (bb, PRED_NORETURN,
|
||
NOT_TAKEN);
|
||
decl = gimple_call_fndecl (stmt);
|
||
if (decl
|
||
&& lookup_attribute ("cold",
|
||
DECL_ATTRIBUTES (decl)))
|
||
predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
|
||
NOT_TAKEN);
|
||
}
|
||
else if (gimple_code (stmt) == GIMPLE_PREDICT)
|
||
{
|
||
predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
|
||
gimple_predict_outcome (stmt));
|
||
/* Keep GIMPLE_PREDICT around so early inlining will propagate
|
||
hints to callers. */
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
#ifdef ENABLE_CHECKING
|
||
|
||
/* Callback for pointer_map_traverse, asserts that the pointer map is
|
||
empty. */
|
||
|
||
static bool
|
||
assert_is_empty (const void *key ATTRIBUTE_UNUSED, void **value,
|
||
void *data ATTRIBUTE_UNUSED)
|
||
{
|
||
gcc_assert (!*value);
|
||
return false;
|
||
}
|
||
#endif
|
||
|
||
/* Predict branch probabilities and estimate profile for basic block BB. */
|
||
|
||
static void
|
||
tree_estimate_probability_bb (basic_block bb)
|
||
{
|
||
edge e;
|
||
edge_iterator ei;
|
||
gimple last;
|
||
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
{
|
||
/* Predict early returns to be probable, as we've already taken
|
||
care for error returns and other cases are often used for
|
||
fast paths through function.
|
||
|
||
Since we've already removed the return statements, we are
|
||
looking for CFG like:
|
||
|
||
if (conditional)
|
||
{
|
||
..
|
||
goto return_block
|
||
}
|
||
some other blocks
|
||
return_block:
|
||
return_stmt. */
|
||
if (e->dest != bb->next_bb
|
||
&& e->dest != EXIT_BLOCK_PTR
|
||
&& single_succ_p (e->dest)
|
||
&& single_succ_edge (e->dest)->dest == EXIT_BLOCK_PTR
|
||
&& (last = last_stmt (e->dest)) != NULL
|
||
&& gimple_code (last) == GIMPLE_RETURN)
|
||
{
|
||
edge e1;
|
||
edge_iterator ei1;
|
||
|
||
if (single_succ_p (bb))
|
||
{
|
||
FOR_EACH_EDGE (e1, ei1, bb->preds)
|
||
if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
|
||
&& !predicted_by_p (e1->src, PRED_CONST_RETURN)
|
||
&& !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN))
|
||
predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
|
||
}
|
||
else
|
||
if (!predicted_by_p (e->src, PRED_NULL_RETURN)
|
||
&& !predicted_by_p (e->src, PRED_CONST_RETURN)
|
||
&& !predicted_by_p (e->src, PRED_NEGATIVE_RETURN))
|
||
predict_edge_def (e, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
|
||
}
|
||
|
||
/* Look for block we are guarding (ie we dominate it,
|
||
but it doesn't postdominate us). */
|
||
if (e->dest != EXIT_BLOCK_PTR && e->dest != bb
|
||
&& dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
|
||
&& !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
|
||
{
|
||
gimple_stmt_iterator bi;
|
||
|
||
/* The call heuristic claims that a guarded function call
|
||
is improbable. This is because such calls are often used
|
||
to signal exceptional situations such as printing error
|
||
messages. */
|
||
for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
|
||
gsi_next (&bi))
|
||
{
|
||
gimple stmt = gsi_stmt (bi);
|
||
if (is_gimple_call (stmt)
|
||
/* Constant and pure calls are hardly used to signalize
|
||
something exceptional. */
|
||
&& gimple_has_side_effects (stmt))
|
||
{
|
||
predict_edge_def (e, PRED_CALL, NOT_TAKEN);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
tree_predict_by_opcode (bb);
|
||
}
|
||
|
||
/* Predict branch probabilities and estimate profile of the tree CFG.
|
||
This function can be called from the loop optimizers to recompute
|
||
the profile information. */
|
||
|
||
void
|
||
tree_estimate_probability (void)
|
||
{
|
||
basic_block bb;
|
||
|
||
add_noreturn_fake_exit_edges ();
|
||
connect_infinite_loops_to_exit ();
|
||
/* We use loop_niter_by_eval, which requires that the loops have
|
||
preheaders. */
|
||
create_preheaders (CP_SIMPLE_PREHEADERS);
|
||
calculate_dominance_info (CDI_POST_DOMINATORS);
|
||
|
||
bb_predictions = pointer_map_create ();
|
||
tree_bb_level_predictions ();
|
||
record_loop_exits ();
|
||
|
||
if (number_of_loops () > 1)
|
||
predict_loops ();
|
||
|
||
FOR_EACH_BB (bb)
|
||
tree_estimate_probability_bb (bb);
|
||
|
||
FOR_EACH_BB (bb)
|
||
combine_predictions_for_bb (bb);
|
||
|
||
#ifdef ENABLE_CHECKING
|
||
pointer_map_traverse (bb_predictions, assert_is_empty, NULL);
|
||
#endif
|
||
pointer_map_destroy (bb_predictions);
|
||
bb_predictions = NULL;
|
||
|
||
estimate_bb_frequencies ();
|
||
free_dominance_info (CDI_POST_DOMINATORS);
|
||
remove_fake_exit_edges ();
|
||
}
|
||
|
||
/* Predict branch probabilities and estimate profile of the tree CFG.
|
||
This is the driver function for PASS_PROFILE. */
|
||
|
||
static unsigned int
|
||
tree_estimate_probability_driver (void)
|
||
{
|
||
unsigned nb_loops;
|
||
|
||
loop_optimizer_init (0);
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
flow_loops_dump (dump_file, NULL, 0);
|
||
|
||
mark_irreducible_loops ();
|
||
|
||
nb_loops = number_of_loops ();
|
||
if (nb_loops > 1)
|
||
scev_initialize ();
|
||
|
||
tree_estimate_probability ();
|
||
|
||
if (nb_loops > 1)
|
||
scev_finalize ();
|
||
|
||
loop_optimizer_finalize ();
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
gimple_dump_cfg (dump_file, dump_flags);
|
||
if (profile_status == PROFILE_ABSENT)
|
||
profile_status = PROFILE_GUESSED;
|
||
return 0;
|
||
}
|
||
|
||
/* Predict edges to successors of CUR whose sources are not postdominated by
|
||
BB by PRED and recurse to all postdominators. */
|
||
|
||
static void
|
||
predict_paths_for_bb (basic_block cur, basic_block bb,
|
||
enum br_predictor pred,
|
||
enum prediction taken)
|
||
{
|
||
edge e;
|
||
edge_iterator ei;
|
||
basic_block son;
|
||
|
||
/* We are looking for all edges forming edge cut induced by
|
||
set of all blocks postdominated by BB. */
|
||
FOR_EACH_EDGE (e, ei, cur->preds)
|
||
if (e->src->index >= NUM_FIXED_BLOCKS
|
||
&& !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
|
||
{
|
||
edge e2;
|
||
edge_iterator ei2;
|
||
bool found = false;
|
||
|
||
/* Ignore fake edges and eh, we predict them as not taken anyway. */
|
||
if (e->flags & (EDGE_EH | EDGE_FAKE))
|
||
continue;
|
||
gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
|
||
|
||
/* See if there is how many edge from e->src that is not abnormal
|
||
and does not lead to BB. */
|
||
FOR_EACH_EDGE (e2, ei2, e->src->succs)
|
||
if (e2 != e
|
||
&& !(e2->flags & (EDGE_EH | EDGE_FAKE))
|
||
&& !dominated_by_p (CDI_POST_DOMINATORS, e2->dest, bb))
|
||
{
|
||
found = true;
|
||
break;
|
||
}
|
||
|
||
/* If there is non-abnormal path leaving e->src, predict edge
|
||
using predictor. Otherwise we need to look for paths
|
||
leading to e->src. */
|
||
if (found)
|
||
predict_edge_def (e, pred, taken);
|
||
else
|
||
predict_paths_for_bb (e->src, e->src, pred, taken);
|
||
}
|
||
for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
|
||
son;
|
||
son = next_dom_son (CDI_POST_DOMINATORS, son))
|
||
predict_paths_for_bb (son, bb, pred, taken);
|
||
}
|
||
|
||
/* Sets branch probabilities according to PREDiction and
|
||
FLAGS. */
|
||
|
||
static void
|
||
predict_paths_leading_to (basic_block bb, enum br_predictor pred,
|
||
enum prediction taken)
|
||
{
|
||
predict_paths_for_bb (bb, bb, pred, taken);
|
||
}
|
||
|
||
/* Like predict_paths_leading_to but take edge instead of basic block. */
|
||
|
||
static void
|
||
predict_paths_leading_to_edge (edge e, enum br_predictor pred,
|
||
enum prediction taken)
|
||
{
|
||
bool has_nonloop_edge = false;
|
||
edge_iterator ei;
|
||
edge e2;
|
||
|
||
basic_block bb = e->src;
|
||
FOR_EACH_EDGE (e2, ei, bb->succs)
|
||
if (e2->dest != e->src && e2->dest != e->dest
|
||
&& !(e->flags & (EDGE_EH | EDGE_FAKE))
|
||
&& !dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->dest))
|
||
{
|
||
has_nonloop_edge = true;
|
||
break;
|
||
}
|
||
if (!has_nonloop_edge)
|
||
predict_paths_for_bb (bb, bb, pred, taken);
|
||
else
|
||
predict_edge_def (e, pred, taken);
|
||
}
|
||
|
||
/* This is used to carry information about basic blocks. It is
|
||
attached to the AUX field of the standard CFG block. */
|
||
|
||
typedef struct block_info_def
|
||
{
|
||
/* Estimated frequency of execution of basic_block. */
|
||
sreal frequency;
|
||
|
||
/* To keep queue of basic blocks to process. */
|
||
basic_block next;
|
||
|
||
/* Number of predecessors we need to visit first. */
|
||
int npredecessors;
|
||
} *block_info;
|
||
|
||
/* Similar information for edges. */
|
||
typedef struct edge_info_def
|
||
{
|
||
/* In case edge is a loopback edge, the probability edge will be reached
|
||
in case header is. Estimated number of iterations of the loop can be
|
||
then computed as 1 / (1 - back_edge_prob). */
|
||
sreal back_edge_prob;
|
||
/* True if the edge is a loopback edge in the natural loop. */
|
||
unsigned int back_edge:1;
|
||
} *edge_info;
|
||
|
||
#define BLOCK_INFO(B) ((block_info) (B)->aux)
|
||
#define EDGE_INFO(E) ((edge_info) (E)->aux)
|
||
|
||
/* Helper function for estimate_bb_frequencies.
|
||
Propagate the frequencies in blocks marked in
|
||
TOVISIT, starting in HEAD. */
|
||
|
||
static void
|
||
propagate_freq (basic_block head, bitmap tovisit)
|
||
{
|
||
basic_block bb;
|
||
basic_block last;
|
||
unsigned i;
|
||
edge e;
|
||
basic_block nextbb;
|
||
bitmap_iterator bi;
|
||
|
||
/* For each basic block we need to visit count number of his predecessors
|
||
we need to visit first. */
|
||
EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
|
||
{
|
||
edge_iterator ei;
|
||
int count = 0;
|
||
|
||
bb = BASIC_BLOCK (i);
|
||
|
||
FOR_EACH_EDGE (e, ei, bb->preds)
|
||
{
|
||
bool visit = bitmap_bit_p (tovisit, e->src->index);
|
||
|
||
if (visit && !(e->flags & EDGE_DFS_BACK))
|
||
count++;
|
||
else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
|
||
fprintf (dump_file,
|
||
"Irreducible region hit, ignoring edge to %i->%i\n",
|
||
e->src->index, bb->index);
|
||
}
|
||
BLOCK_INFO (bb)->npredecessors = count;
|
||
/* When function never returns, we will never process exit block. */
|
||
if (!count && bb == EXIT_BLOCK_PTR)
|
||
bb->count = bb->frequency = 0;
|
||
}
|
||
|
||
memcpy (&BLOCK_INFO (head)->frequency, &real_one, sizeof (real_one));
|
||
last = head;
|
||
for (bb = head; bb; bb = nextbb)
|
||
{
|
||
edge_iterator ei;
|
||
sreal cyclic_probability, frequency;
|
||
|
||
memcpy (&cyclic_probability, &real_zero, sizeof (real_zero));
|
||
memcpy (&frequency, &real_zero, sizeof (real_zero));
|
||
|
||
nextbb = BLOCK_INFO (bb)->next;
|
||
BLOCK_INFO (bb)->next = NULL;
|
||
|
||
/* Compute frequency of basic block. */
|
||
if (bb != head)
|
||
{
|
||
#ifdef ENABLE_CHECKING
|
||
FOR_EACH_EDGE (e, ei, bb->preds)
|
||
gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
|
||
|| (e->flags & EDGE_DFS_BACK));
|
||
#endif
|
||
|
||
FOR_EACH_EDGE (e, ei, bb->preds)
|
||
if (EDGE_INFO (e)->back_edge)
|
||
{
|
||
sreal_add (&cyclic_probability, &cyclic_probability,
|
||
&EDGE_INFO (e)->back_edge_prob);
|
||
}
|
||
else if (!(e->flags & EDGE_DFS_BACK))
|
||
{
|
||
sreal tmp;
|
||
|
||
/* frequency += (e->probability
|
||
* BLOCK_INFO (e->src)->frequency /
|
||
REG_BR_PROB_BASE); */
|
||
|
||
sreal_init (&tmp, e->probability, 0);
|
||
sreal_mul (&tmp, &tmp, &BLOCK_INFO (e->src)->frequency);
|
||
sreal_mul (&tmp, &tmp, &real_inv_br_prob_base);
|
||
sreal_add (&frequency, &frequency, &tmp);
|
||
}
|
||
|
||
if (sreal_compare (&cyclic_probability, &real_zero) == 0)
|
||
{
|
||
memcpy (&BLOCK_INFO (bb)->frequency, &frequency,
|
||
sizeof (frequency));
|
||
}
|
||
else
|
||
{
|
||
if (sreal_compare (&cyclic_probability, &real_almost_one) > 0)
|
||
{
|
||
memcpy (&cyclic_probability, &real_almost_one,
|
||
sizeof (real_almost_one));
|
||
}
|
||
|
||
/* BLOCK_INFO (bb)->frequency = frequency
|
||
/ (1 - cyclic_probability) */
|
||
|
||
sreal_sub (&cyclic_probability, &real_one, &cyclic_probability);
|
||
sreal_div (&BLOCK_INFO (bb)->frequency,
|
||
&frequency, &cyclic_probability);
|
||
}
|
||
}
|
||
|
||
bitmap_clear_bit (tovisit, bb->index);
|
||
|
||
e = find_edge (bb, head);
|
||
if (e)
|
||
{
|
||
sreal tmp;
|
||
|
||
/* EDGE_INFO (e)->back_edge_prob
|
||
= ((e->probability * BLOCK_INFO (bb)->frequency)
|
||
/ REG_BR_PROB_BASE); */
|
||
|
||
sreal_init (&tmp, e->probability, 0);
|
||
sreal_mul (&tmp, &tmp, &BLOCK_INFO (bb)->frequency);
|
||
sreal_mul (&EDGE_INFO (e)->back_edge_prob,
|
||
&tmp, &real_inv_br_prob_base);
|
||
}
|
||
|
||
/* Propagate to successor blocks. */
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
if (!(e->flags & EDGE_DFS_BACK)
|
||
&& BLOCK_INFO (e->dest)->npredecessors)
|
||
{
|
||
BLOCK_INFO (e->dest)->npredecessors--;
|
||
if (!BLOCK_INFO (e->dest)->npredecessors)
|
||
{
|
||
if (!nextbb)
|
||
nextbb = e->dest;
|
||
else
|
||
BLOCK_INFO (last)->next = e->dest;
|
||
|
||
last = e->dest;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Estimate probabilities of loopback edges in loops at same nest level. */
|
||
|
||
static void
|
||
estimate_loops_at_level (struct loop *first_loop)
|
||
{
|
||
struct loop *loop;
|
||
|
||
for (loop = first_loop; loop; loop = loop->next)
|
||
{
|
||
edge e;
|
||
basic_block *bbs;
|
||
unsigned i;
|
||
bitmap tovisit = BITMAP_ALLOC (NULL);
|
||
|
||
estimate_loops_at_level (loop->inner);
|
||
|
||
/* Find current loop back edge and mark it. */
|
||
e = loop_latch_edge (loop);
|
||
EDGE_INFO (e)->back_edge = 1;
|
||
|
||
bbs = get_loop_body (loop);
|
||
for (i = 0; i < loop->num_nodes; i++)
|
||
bitmap_set_bit (tovisit, bbs[i]->index);
|
||
free (bbs);
|
||
propagate_freq (loop->header, tovisit);
|
||
BITMAP_FREE (tovisit);
|
||
}
|
||
}
|
||
|
||
/* Propagates frequencies through structure of loops. */
|
||
|
||
static void
|
||
estimate_loops (void)
|
||
{
|
||
bitmap tovisit = BITMAP_ALLOC (NULL);
|
||
basic_block bb;
|
||
|
||
/* Start by estimating the frequencies in the loops. */
|
||
if (number_of_loops () > 1)
|
||
estimate_loops_at_level (current_loops->tree_root->inner);
|
||
|
||
/* Now propagate the frequencies through all the blocks. */
|
||
FOR_ALL_BB (bb)
|
||
{
|
||
bitmap_set_bit (tovisit, bb->index);
|
||
}
|
||
propagate_freq (ENTRY_BLOCK_PTR, tovisit);
|
||
BITMAP_FREE (tovisit);
|
||
}
|
||
|
||
/* Convert counts measured by profile driven feedback to frequencies.
|
||
Return nonzero iff there was any nonzero execution count. */
|
||
|
||
int
|
||
counts_to_freqs (void)
|
||
{
|
||
gcov_type count_max, true_count_max = 0;
|
||
basic_block bb;
|
||
|
||
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
|
||
true_count_max = MAX (bb->count, true_count_max);
|
||
|
||
count_max = MAX (true_count_max, 1);
|
||
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
|
||
bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
|
||
|
||
return true_count_max;
|
||
}
|
||
|
||
/* Return true if function is likely to be expensive, so there is no point to
|
||
optimize performance of prologue, epilogue or do inlining at the expense
|
||
of code size growth. THRESHOLD is the limit of number of instructions
|
||
function can execute at average to be still considered not expensive. */
|
||
|
||
bool
|
||
expensive_function_p (int threshold)
|
||
{
|
||
unsigned int sum = 0;
|
||
basic_block bb;
|
||
unsigned int limit;
|
||
|
||
/* We can not compute accurately for large thresholds due to scaled
|
||
frequencies. */
|
||
gcc_assert (threshold <= BB_FREQ_MAX);
|
||
|
||
/* Frequencies are out of range. This either means that function contains
|
||
internal loop executing more than BB_FREQ_MAX times or profile feedback
|
||
is available and function has not been executed at all. */
|
||
if (ENTRY_BLOCK_PTR->frequency == 0)
|
||
return true;
|
||
|
||
/* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
|
||
limit = ENTRY_BLOCK_PTR->frequency * threshold;
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
rtx insn;
|
||
|
||
for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
|
||
insn = NEXT_INSN (insn))
|
||
if (active_insn_p (insn))
|
||
{
|
||
sum += bb->frequency;
|
||
if (sum > limit)
|
||
return true;
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Estimate basic blocks frequency by given branch probabilities. */
|
||
|
||
void
|
||
estimate_bb_frequencies (void)
|
||
{
|
||
basic_block bb;
|
||
sreal freq_max;
|
||
|
||
if (profile_status != PROFILE_READ || !counts_to_freqs ())
|
||
{
|
||
static int real_values_initialized = 0;
|
||
|
||
if (!real_values_initialized)
|
||
{
|
||
real_values_initialized = 1;
|
||
sreal_init (&real_zero, 0, 0);
|
||
sreal_init (&real_one, 1, 0);
|
||
sreal_init (&real_br_prob_base, REG_BR_PROB_BASE, 0);
|
||
sreal_init (&real_bb_freq_max, BB_FREQ_MAX, 0);
|
||
sreal_init (&real_one_half, 1, -1);
|
||
sreal_div (&real_inv_br_prob_base, &real_one, &real_br_prob_base);
|
||
sreal_sub (&real_almost_one, &real_one, &real_inv_br_prob_base);
|
||
}
|
||
|
||
mark_dfs_back_edges ();
|
||
|
||
single_succ_edge (ENTRY_BLOCK_PTR)->probability = REG_BR_PROB_BASE;
|
||
|
||
/* Set up block info for each basic block. */
|
||
alloc_aux_for_blocks (sizeof (struct block_info_def));
|
||
alloc_aux_for_edges (sizeof (struct edge_info_def));
|
||
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
|
||
{
|
||
edge e;
|
||
edge_iterator ei;
|
||
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
{
|
||
sreal_init (&EDGE_INFO (e)->back_edge_prob, e->probability, 0);
|
||
sreal_mul (&EDGE_INFO (e)->back_edge_prob,
|
||
&EDGE_INFO (e)->back_edge_prob,
|
||
&real_inv_br_prob_base);
|
||
}
|
||
}
|
||
|
||
/* First compute probabilities locally for each loop from innermost
|
||
to outermost to examine probabilities for back edges. */
|
||
estimate_loops ();
|
||
|
||
memcpy (&freq_max, &real_zero, sizeof (real_zero));
|
||
FOR_EACH_BB (bb)
|
||
if (sreal_compare (&freq_max, &BLOCK_INFO (bb)->frequency) < 0)
|
||
memcpy (&freq_max, &BLOCK_INFO (bb)->frequency, sizeof (freq_max));
|
||
|
||
sreal_div (&freq_max, &real_bb_freq_max, &freq_max);
|
||
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
|
||
{
|
||
sreal tmp;
|
||
|
||
sreal_mul (&tmp, &BLOCK_INFO (bb)->frequency, &freq_max);
|
||
sreal_add (&tmp, &tmp, &real_one_half);
|
||
bb->frequency = sreal_to_int (&tmp);
|
||
}
|
||
|
||
free_aux_for_blocks ();
|
||
free_aux_for_edges ();
|
||
}
|
||
compute_function_frequency ();
|
||
}
|
||
|
||
/* Decide whether function is hot, cold or unlikely executed. */
|
||
void
|
||
compute_function_frequency (void)
|
||
{
|
||
basic_block bb;
|
||
struct cgraph_node *node = cgraph_get_node (current_function_decl);
|
||
if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
|
||
|| MAIN_NAME_P (DECL_NAME (current_function_decl)))
|
||
node->only_called_at_startup = true;
|
||
if (DECL_STATIC_DESTRUCTOR (current_function_decl))
|
||
node->only_called_at_exit = true;
|
||
|
||
if (!profile_info || !flag_branch_probabilities)
|
||
{
|
||
int flags = flags_from_decl_or_type (current_function_decl);
|
||
if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
|
||
!= NULL)
|
||
node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
|
||
else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
|
||
!= NULL)
|
||
node->frequency = NODE_FREQUENCY_HOT;
|
||
else if (flags & ECF_NORETURN)
|
||
node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
|
||
else if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
|
||
node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
|
||
else if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
|
||
|| DECL_STATIC_DESTRUCTOR (current_function_decl))
|
||
node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
|
||
return;
|
||
}
|
||
node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
if (maybe_hot_bb_p (bb))
|
||
{
|
||
node->frequency = NODE_FREQUENCY_HOT;
|
||
return;
|
||
}
|
||
if (!probably_never_executed_bb_p (bb))
|
||
node->frequency = NODE_FREQUENCY_NORMAL;
|
||
}
|
||
}
|
||
|
||
static bool
|
||
gate_estimate_probability (void)
|
||
{
|
||
return flag_guess_branch_prob;
|
||
}
|
||
|
||
/* Build PREDICT_EXPR. */
|
||
tree
|
||
build_predict_expr (enum br_predictor predictor, enum prediction taken)
|
||
{
|
||
tree t = build1 (PREDICT_EXPR, void_type_node,
|
||
build_int_cst (integer_type_node, predictor));
|
||
SET_PREDICT_EXPR_OUTCOME (t, taken);
|
||
return t;
|
||
}
|
||
|
||
const char *
|
||
predictor_name (enum br_predictor predictor)
|
||
{
|
||
return predictor_info[predictor].name;
|
||
}
|
||
|
||
struct gimple_opt_pass pass_profile =
|
||
{
|
||
{
|
||
GIMPLE_PASS,
|
||
"profile_estimate", /* name */
|
||
gate_estimate_probability, /* gate */
|
||
tree_estimate_probability_driver, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
TV_BRANCH_PROB, /* tv_id */
|
||
PROP_cfg, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
|
||
}
|
||
};
|
||
|
||
struct gimple_opt_pass pass_strip_predict_hints =
|
||
{
|
||
{
|
||
GIMPLE_PASS,
|
||
"*strip_predict_hints", /* name */
|
||
NULL, /* gate */
|
||
strip_predict_hints, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
TV_BRANCH_PROB, /* tv_id */
|
||
PROP_cfg, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
|
||
}
|
||
};
|
||
|
||
/* Rebuild function frequencies. Passes are in general expected to
|
||
maintain profile by hand, however in some cases this is not possible:
|
||
for example when inlining several functions with loops freuqencies might run
|
||
out of scale and thus needs to be recomputed. */
|
||
|
||
void
|
||
rebuild_frequencies (void)
|
||
{
|
||
timevar_push (TV_REBUILD_FREQUENCIES);
|
||
if (profile_status == PROFILE_GUESSED)
|
||
{
|
||
loop_optimizer_init (0);
|
||
add_noreturn_fake_exit_edges ();
|
||
mark_irreducible_loops ();
|
||
connect_infinite_loops_to_exit ();
|
||
estimate_bb_frequencies ();
|
||
remove_fake_exit_edges ();
|
||
loop_optimizer_finalize ();
|
||
}
|
||
else if (profile_status == PROFILE_READ)
|
||
counts_to_freqs ();
|
||
else
|
||
gcc_unreachable ();
|
||
timevar_pop (TV_REBUILD_FREQUENCIES);
|
||
}
|