700d4cb08c
In the r10-7197-gbae7b38cf8a21e068ad5c0bab089dedb78af3346 commit I've noticed duplicated word in a message, which lead me to grep for those and we have a tons of them. I've used grep -v 'long long\|optab optab\|template template\|double double' *.[chS] */*.[chS] *.def config/*/* 2>/dev/null | grep ' \([a-zA-Z]\+\) \1 ' Note, the command will not detect the doubled words at the start or end of line or when one of the words is at the end of line and the next one at the start of another one. Some of it is fairly obvious, e.g. all the "the the" cases which is something I've posted and committed patch for already e.g. in 2016, other cases are often valid, e.g. "that that" seems to look mostly ok to me. Some cases are quite hard to figure out, I've left out some of them from the patch (e.g. "and and" in some cases isn't talking about bitwise/logical and and so looks incorrect, but in other cases it is talking about those operations). In most cases the right solution seems to be to remove one of the duplicated words, but not always. I think most important are the ones with user visible messages (in the patch 3 of the first 4 hunks), the rest is just comments (and internal documentation; for that see the doc/tm.texi changes). 2020-03-17 Jakub Jelinek <jakub@redhat.com> * lra-spills.c (remove_pseudos): Fix up duplicated word issue in a dump message. * tree-sra.c (create_access_replacement): Fix up duplicated word issue in a comment. * read-rtl-function.c (find_param_by_name, function_reader::parse_enum_value, function_reader::get_insn_by_uid): Likewise. * spellcheck.c (get_edit_distance_cutoff): Likewise. * tree-data-ref.c (create_ifn_alias_checks): Likewise. * tree.def (SWITCH_EXPR): Likewise. * selftest.c (assert_str_contains): Likewise. * ipa-param-manipulation.h (class ipa_param_body_adjustments): Likewise. * tree-ssa-math-opts.c (convert_expand_mult_copysign): Likewise. * tree-ssa-loop-split.c (find_vdef_in_loop): Likewise. * langhooks.h (struct lang_hooks_for_decls): Likewise. * ipa-prop.h (struct ipa_param_descriptor): Likewise. * tree-ssa-strlen.c (handle_builtin_string_cmp, handle_store): Likewise. * tree-ssa-dom.c (simplify_stmt_for_jump_threading): Likewise. * tree-ssa-reassoc.c (reassociate_bb): Likewise. * tree.c (component_ref_size): Likewise. * hsa-common.c (hsa_init_compilation_unit_data): Likewise. * gimple-ssa-sprintf.c (get_string_length, format_string, format_directive): Likewise. * omp-grid.c (grid_process_kernel_body_copy): Likewise. * input.c (string_concat_db::get_string_concatenation, test_lexer_string_locations_ucn4): Likewise. * cfgexpand.c (pass_expand::execute): Likewise. * gimple-ssa-warn-restrict.c (builtin_memref::offset_out_of_bounds, maybe_diag_overlap): Likewise. * rtl.c (RTX_CODE_HWINT_P_1): Likewise. * shrink-wrap.c (spread_components): Likewise. * tree-ssa-dse.c (initialize_ao_ref_for_dse, valid_ao_ref_for_dse): Likewise. * tree-call-cdce.c (shrink_wrap_one_built_in_call_with_conds): Likewise. * dwarf2out.c (dwarf2out_early_finish): Likewise. * gimple-ssa-store-merging.c: Likewise. * ira-costs.c (record_operand_costs): Likewise. * tree-vect-loop.c (vectorizable_reduction): Likewise. * target.def (dispatch): Likewise. (validate_dims, gen_ccmp_first): Fix up duplicated word issue in documentation text. * doc/tm.texi: Regenerated. * config/i386/x86-tune.def (X86_TUNE_PARTIAL_FLAG_REG_STALL): Fix up duplicated word issue in a comment. * config/i386/i386.c (ix86_test_loading_unspec): Likewise. * config/i386/i386-features.c (remove_partial_avx_dependency): Likewise. * config/msp430/msp430.c (msp430_select_section): Likewise. * config/gcn/gcn-run.c (load_image): Likewise. * config/aarch64/aarch64-sve.md (sve_ld1r<mode>): Likewise. * config/aarch64/aarch64.c (aarch64_gen_adjusted_ldpstp): Likewise. * config/aarch64/falkor-tag-collision-avoidance.c (single_dest_per_chain): Likewise. * config/nvptx/nvptx.c (nvptx_record_fndecl): Likewise. * config/fr30/fr30.c (fr30_arg_partial_bytes): Likewise. * config/rs6000/rs6000-string.c (expand_cmp_vec_sequence): Likewise. * config/rs6000/rs6000-p8swap.c (replace_swapped_load_constant): Likewise. * config/rs6000/rs6000-c.c (rs6000_target_modify_macros): Likewise. * config/rs6000/rs6000.c (rs6000_option_override_internal): Likewise. * config/rs6000/rs6000-logue.c (rs6000_emit_probe_stack_range_stack_clash): Likewise. * config/nds32/nds32-md-auxiliary.c (nds32_split_ashiftdi3): Likewise. Fix various other issues in the comment. c-family/ * c-common.c (resolve_overloaded_builtin): Fix up duplicated word issue in a diagnostic message. cp/ * pt.c (tsubst): Fix up duplicated word issue in a diagnostic message. (lookup_template_class_1, tsubst_expr): Fix up duplicated word issue in a comment. * parser.c (cp_parser_statement, cp_parser_linkage_specification, cp_parser_placeholder_type_specifier, cp_parser_constraint_requires_parens): Likewise. * name-lookup.c (suggest_alternative_in_explicit_scope): Likewise. fortran/ * array.c (gfc_check_iter_variable): Fix up duplicated word issue in a comment. * arith.c (gfc_arith_concat): Likewise. * resolve.c (gfc_resolve_ref): Likewise. * frontend-passes.c (matmul_lhs_realloc): Likewise. * module.c (gfc_match_submodule, load_needed): Likewise. * trans-expr.c (gfc_init_se): Likewise.
873 lines
28 KiB
C
873 lines
28 KiB
C
/* Change pseudos by memory.
|
|
Copyright (C) 2010-2020 Free Software Foundation, Inc.
|
|
Contributed by Vladimir Makarov <vmakarov@redhat.com>.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
|
|
/* This file contains code for a pass to change spilled pseudos into
|
|
memory.
|
|
|
|
The pass creates necessary stack slots and assigns spilled pseudos
|
|
to the stack slots in following way:
|
|
|
|
for all spilled pseudos P most frequently used first do
|
|
for all stack slots S do
|
|
if P doesn't conflict with pseudos assigned to S then
|
|
assign S to P and goto to the next pseudo process
|
|
end
|
|
end
|
|
create new stack slot S and assign P to S
|
|
end
|
|
|
|
The actual algorithm is bit more complicated because of different
|
|
pseudo sizes.
|
|
|
|
After that the code changes spilled pseudos (except ones created
|
|
from scratches) by corresponding stack slot memory in RTL.
|
|
|
|
If at least one stack slot was created, we need to run more passes
|
|
because we have new addresses which should be checked and because
|
|
the old address displacements might change and address constraints
|
|
(or insn memory constraints) might not be satisfied any more.
|
|
|
|
For some targets, the pass can spill some pseudos into hard
|
|
registers of different class (usually into vector registers)
|
|
instead of spilling them into memory if it is possible and
|
|
profitable. Spilling GENERAL_REGS pseudo into SSE registers for
|
|
Intel Corei7 is an example of such optimization. And this is
|
|
actually recommended by Intel optimization guide.
|
|
|
|
The file also contains code for final change of pseudos on hard
|
|
regs correspondingly assigned to them. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "backend.h"
|
|
#include "target.h"
|
|
#include "rtl.h"
|
|
#include "df.h"
|
|
#include "insn-config.h"
|
|
#include "regs.h"
|
|
#include "memmodel.h"
|
|
#include "ira.h"
|
|
#include "recog.h"
|
|
#include "output.h"
|
|
#include "cfgrtl.h"
|
|
#include "lra.h"
|
|
#include "lra-int.h"
|
|
|
|
|
|
/* Max regno at the start of the pass. */
|
|
static int regs_num;
|
|
|
|
/* Map spilled regno -> hard regno used instead of memory for
|
|
spilling. */
|
|
static rtx *spill_hard_reg;
|
|
|
|
/* The structure describes stack slot of a spilled pseudo. */
|
|
struct pseudo_slot
|
|
{
|
|
/* Number (0, 1, ...) of the stack slot to which given pseudo
|
|
belongs. */
|
|
int slot_num;
|
|
/* First or next slot with the same slot number. */
|
|
struct pseudo_slot *next, *first;
|
|
/* Memory representing the spilled pseudo. */
|
|
rtx mem;
|
|
};
|
|
|
|
/* The stack slots for each spilled pseudo. Indexed by regnos. */
|
|
static struct pseudo_slot *pseudo_slots;
|
|
|
|
/* The structure describes a register or a stack slot which can be
|
|
used for several spilled pseudos. */
|
|
class slot
|
|
{
|
|
public:
|
|
/* First pseudo with given stack slot. */
|
|
int regno;
|
|
/* Hard reg into which the slot pseudos are spilled. The value is
|
|
negative for pseudos spilled into memory. */
|
|
int hard_regno;
|
|
/* Maximum alignment required by all users of the slot. */
|
|
unsigned int align;
|
|
/* Maximum size required by all users of the slot. */
|
|
poly_int64 size;
|
|
/* Memory representing the all stack slot. It can be different from
|
|
memory representing a pseudo belonging to give stack slot because
|
|
pseudo can be placed in a part of the corresponding stack slot.
|
|
The value is NULL for pseudos spilled into a hard reg. */
|
|
rtx mem;
|
|
/* Combined live ranges of all pseudos belonging to given slot. It
|
|
is used to figure out that a new spilled pseudo can use given
|
|
stack slot. */
|
|
lra_live_range_t live_ranges;
|
|
};
|
|
|
|
/* Array containing info about the stack slots. The array element is
|
|
indexed by the stack slot number in the range [0..slots_num). */
|
|
static class slot *slots;
|
|
/* The number of the stack slots currently existing. */
|
|
static int slots_num;
|
|
|
|
/* Set up memory of the spilled pseudo I. The function can allocate
|
|
the corresponding stack slot if it is not done yet. */
|
|
static void
|
|
assign_mem_slot (int i)
|
|
{
|
|
rtx x = NULL_RTX;
|
|
machine_mode mode = GET_MODE (regno_reg_rtx[i]);
|
|
poly_int64 inherent_size = PSEUDO_REGNO_BYTES (i);
|
|
machine_mode wider_mode
|
|
= wider_subreg_mode (mode, lra_reg_info[i].biggest_mode);
|
|
poly_int64 total_size = GET_MODE_SIZE (wider_mode);
|
|
poly_int64 adjust = 0;
|
|
|
|
lra_assert (regno_reg_rtx[i] != NULL_RTX && REG_P (regno_reg_rtx[i])
|
|
&& lra_reg_info[i].nrefs != 0 && reg_renumber[i] < 0);
|
|
|
|
unsigned int slot_num = pseudo_slots[i].slot_num;
|
|
x = slots[slot_num].mem;
|
|
if (!x)
|
|
{
|
|
x = assign_stack_local (BLKmode, slots[slot_num].size,
|
|
slots[slot_num].align);
|
|
slots[slot_num].mem = x;
|
|
}
|
|
|
|
/* On a big endian machine, the "address" of the slot is the address
|
|
of the low part that fits its inherent mode. */
|
|
adjust += subreg_size_lowpart_offset (inherent_size, total_size);
|
|
x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
|
|
|
|
/* Set all of the memory attributes as appropriate for a spill. */
|
|
set_mem_attrs_for_spill (x);
|
|
pseudo_slots[i].mem = x;
|
|
}
|
|
|
|
/* Sort pseudos according their usage frequencies. */
|
|
static int
|
|
regno_freq_compare (const void *v1p, const void *v2p)
|
|
{
|
|
const int regno1 = *(const int *) v1p;
|
|
const int regno2 = *(const int *) v2p;
|
|
int diff;
|
|
|
|
if ((diff = lra_reg_info[regno2].freq - lra_reg_info[regno1].freq) != 0)
|
|
return diff;
|
|
return regno1 - regno2;
|
|
}
|
|
|
|
/* Sort pseudos according to their slots, putting the slots in the order
|
|
that they should be allocated.
|
|
|
|
First prefer to group slots with variable sizes together and slots
|
|
with constant sizes together, since that usually makes them easier
|
|
to address from a common anchor point. E.g. loads of polynomial-sized
|
|
registers tend to take polynomial offsets while loads of constant-sized
|
|
registers tend to take constant (non-polynomial) offsets.
|
|
|
|
Next, slots with lower numbers have the highest priority and should
|
|
get the smallest displacement from the stack or frame pointer
|
|
(whichever is being used).
|
|
|
|
The first allocated slot is always closest to the frame pointer,
|
|
so prefer lower slot numbers when frame_pointer_needed. If the stack
|
|
and frame grow in the same direction, then the first allocated slot is
|
|
always closest to the initial stack pointer and furthest away from the
|
|
final stack pointer, so allocate higher numbers first when using the
|
|
stack pointer in that case. The reverse is true if the stack and
|
|
frame grow in opposite directions. */
|
|
static int
|
|
pseudo_reg_slot_compare (const void *v1p, const void *v2p)
|
|
{
|
|
const int regno1 = *(const int *) v1p;
|
|
const int regno2 = *(const int *) v2p;
|
|
int diff, slot_num1, slot_num2;
|
|
|
|
slot_num1 = pseudo_slots[regno1].slot_num;
|
|
slot_num2 = pseudo_slots[regno2].slot_num;
|
|
diff = (int (slots[slot_num1].size.is_constant ())
|
|
- int (slots[slot_num2].size.is_constant ()));
|
|
if (diff != 0)
|
|
return diff;
|
|
if ((diff = slot_num1 - slot_num2) != 0)
|
|
return (frame_pointer_needed
|
|
|| (!FRAME_GROWS_DOWNWARD) == STACK_GROWS_DOWNWARD ? diff : -diff);
|
|
poly_int64 total_size1 = GET_MODE_SIZE (lra_reg_info[regno1].biggest_mode);
|
|
poly_int64 total_size2 = GET_MODE_SIZE (lra_reg_info[regno2].biggest_mode);
|
|
if ((diff = compare_sizes_for_sort (total_size2, total_size1)) != 0)
|
|
return diff;
|
|
return regno1 - regno2;
|
|
}
|
|
|
|
/* Assign spill hard registers to N pseudos in PSEUDO_REGNOS which is
|
|
sorted in order of highest frequency first. Put the pseudos which
|
|
did not get a spill hard register at the beginning of array
|
|
PSEUDO_REGNOS. Return the number of such pseudos. */
|
|
static int
|
|
assign_spill_hard_regs (int *pseudo_regnos, int n)
|
|
{
|
|
int i, k, p, regno, res, spill_class_size, hard_regno, nr;
|
|
enum reg_class rclass, spill_class;
|
|
machine_mode mode;
|
|
lra_live_range_t r;
|
|
rtx_insn *insn;
|
|
rtx set;
|
|
basic_block bb;
|
|
HARD_REG_SET conflict_hard_regs;
|
|
bitmap setjump_crosses = regstat_get_setjmp_crosses ();
|
|
/* Hard registers which cannot be used for any purpose at given
|
|
program point because they are unallocatable or already allocated
|
|
for other pseudos. */
|
|
HARD_REG_SET *reserved_hard_regs;
|
|
|
|
if (! lra_reg_spill_p)
|
|
return n;
|
|
/* Set up reserved hard regs for every program point. */
|
|
reserved_hard_regs = XNEWVEC (HARD_REG_SET, lra_live_max_point);
|
|
for (p = 0; p < lra_live_max_point; p++)
|
|
reserved_hard_regs[p] = lra_no_alloc_regs;
|
|
for (i = FIRST_PSEUDO_REGISTER; i < regs_num; i++)
|
|
if (lra_reg_info[i].nrefs != 0
|
|
&& (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
|
|
for (r = lra_reg_info[i].live_ranges; r != NULL; r = r->next)
|
|
for (p = r->start; p <= r->finish; p++)
|
|
add_to_hard_reg_set (&reserved_hard_regs[p],
|
|
lra_reg_info[i].biggest_mode, hard_regno);
|
|
auto_bitmap ok_insn_bitmap (®_obstack);
|
|
FOR_EACH_BB_FN (bb, cfun)
|
|
FOR_BB_INSNS (bb, insn)
|
|
if (DEBUG_INSN_P (insn)
|
|
|| ((set = single_set (insn)) != NULL_RTX
|
|
&& REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))))
|
|
bitmap_set_bit (ok_insn_bitmap, INSN_UID (insn));
|
|
for (res = i = 0; i < n; i++)
|
|
{
|
|
regno = pseudo_regnos[i];
|
|
rclass = lra_get_allocno_class (regno);
|
|
if (bitmap_bit_p (setjump_crosses, regno)
|
|
|| (spill_class
|
|
= ((enum reg_class)
|
|
targetm.spill_class ((reg_class_t) rclass,
|
|
PSEUDO_REGNO_MODE (regno)))) == NO_REGS
|
|
|| bitmap_intersect_compl_p (&lra_reg_info[regno].insn_bitmap,
|
|
ok_insn_bitmap))
|
|
{
|
|
pseudo_regnos[res++] = regno;
|
|
continue;
|
|
}
|
|
lra_assert (spill_class != NO_REGS);
|
|
conflict_hard_regs = lra_reg_info[regno].conflict_hard_regs;
|
|
for (r = lra_reg_info[regno].live_ranges; r != NULL; r = r->next)
|
|
for (p = r->start; p <= r->finish; p++)
|
|
conflict_hard_regs |= reserved_hard_regs[p];
|
|
spill_class_size = ira_class_hard_regs_num[spill_class];
|
|
mode = lra_reg_info[regno].biggest_mode;
|
|
for (k = 0; k < spill_class_size; k++)
|
|
{
|
|
hard_regno = ira_class_hard_regs[spill_class][k];
|
|
if (TEST_HARD_REG_BIT (eliminable_regset, hard_regno)
|
|
|| !targetm.hard_regno_mode_ok (hard_regno, mode))
|
|
continue;
|
|
if (! overlaps_hard_reg_set_p (conflict_hard_regs, mode, hard_regno))
|
|
break;
|
|
}
|
|
if (k >= spill_class_size)
|
|
{
|
|
/* There is no available regs -- assign memory later. */
|
|
pseudo_regnos[res++] = regno;
|
|
continue;
|
|
}
|
|
if (lra_dump_file != NULL)
|
|
fprintf (lra_dump_file, " Spill r%d into hr%d\n", regno, hard_regno);
|
|
add_to_hard_reg_set (&hard_regs_spilled_into,
|
|
lra_reg_info[regno].biggest_mode, hard_regno);
|
|
/* Update reserved_hard_regs. */
|
|
for (r = lra_reg_info[regno].live_ranges; r != NULL; r = r->next)
|
|
for (p = r->start; p <= r->finish; p++)
|
|
add_to_hard_reg_set (&reserved_hard_regs[p],
|
|
lra_reg_info[regno].biggest_mode, hard_regno);
|
|
spill_hard_reg[regno]
|
|
= gen_raw_REG (PSEUDO_REGNO_MODE (regno), hard_regno);
|
|
for (nr = 0;
|
|
nr < hard_regno_nregs (hard_regno,
|
|
lra_reg_info[regno].biggest_mode);
|
|
nr++)
|
|
/* Just loop. */
|
|
df_set_regs_ever_live (hard_regno + nr, true);
|
|
}
|
|
free (reserved_hard_regs);
|
|
return res;
|
|
}
|
|
|
|
/* Add pseudo REGNO to slot SLOT_NUM. */
|
|
static void
|
|
add_pseudo_to_slot (int regno, int slot_num)
|
|
{
|
|
struct pseudo_slot *first;
|
|
|
|
/* Each pseudo has an inherent size which comes from its own mode,
|
|
and a total size which provides room for paradoxical subregs.
|
|
We need to make sure the size and alignment of the slot are
|
|
sufficient for both. */
|
|
machine_mode mode = wider_subreg_mode (PSEUDO_REGNO_MODE (regno),
|
|
lra_reg_info[regno].biggest_mode);
|
|
unsigned int align = spill_slot_alignment (mode);
|
|
slots[slot_num].align = MAX (slots[slot_num].align, align);
|
|
slots[slot_num].size = upper_bound (slots[slot_num].size,
|
|
GET_MODE_SIZE (mode));
|
|
|
|
if (slots[slot_num].regno < 0)
|
|
{
|
|
/* It is the first pseudo in the slot. */
|
|
slots[slot_num].regno = regno;
|
|
pseudo_slots[regno].first = &pseudo_slots[regno];
|
|
pseudo_slots[regno].next = NULL;
|
|
}
|
|
else
|
|
{
|
|
first = pseudo_slots[regno].first = &pseudo_slots[slots[slot_num].regno];
|
|
pseudo_slots[regno].next = first->next;
|
|
first->next = &pseudo_slots[regno];
|
|
}
|
|
pseudo_slots[regno].mem = NULL_RTX;
|
|
pseudo_slots[regno].slot_num = slot_num;
|
|
slots[slot_num].live_ranges
|
|
= lra_merge_live_ranges (slots[slot_num].live_ranges,
|
|
lra_copy_live_range_list
|
|
(lra_reg_info[regno].live_ranges));
|
|
}
|
|
|
|
/* Assign stack slot numbers to pseudos in array PSEUDO_REGNOS of
|
|
length N. Sort pseudos in PSEUDO_REGNOS for subsequent assigning
|
|
memory stack slots. */
|
|
static void
|
|
assign_stack_slot_num_and_sort_pseudos (int *pseudo_regnos, int n)
|
|
{
|
|
int i, j, regno;
|
|
|
|
slots_num = 0;
|
|
/* Assign stack slot numbers to spilled pseudos, use smaller numbers
|
|
for most frequently used pseudos. */
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
regno = pseudo_regnos[i];
|
|
if (! flag_ira_share_spill_slots)
|
|
j = slots_num;
|
|
else
|
|
{
|
|
machine_mode mode
|
|
= wider_subreg_mode (PSEUDO_REGNO_MODE (regno),
|
|
lra_reg_info[regno].biggest_mode);
|
|
for (j = 0; j < slots_num; j++)
|
|
if (slots[j].hard_regno < 0
|
|
/* Although it's possible to share slots between modes
|
|
with constant and non-constant widths, we usually
|
|
get better spill code by keeping the constant and
|
|
non-constant areas separate. */
|
|
&& (GET_MODE_SIZE (mode).is_constant ()
|
|
== slots[j].size.is_constant ())
|
|
&& ! (lra_intersected_live_ranges_p
|
|
(slots[j].live_ranges,
|
|
lra_reg_info[regno].live_ranges)))
|
|
break;
|
|
}
|
|
if (j >= slots_num)
|
|
{
|
|
/* New slot. */
|
|
slots[j].live_ranges = NULL;
|
|
slots[j].size = 0;
|
|
slots[j].align = BITS_PER_UNIT;
|
|
slots[j].regno = slots[j].hard_regno = -1;
|
|
slots[j].mem = NULL_RTX;
|
|
slots_num++;
|
|
}
|
|
add_pseudo_to_slot (regno, j);
|
|
}
|
|
/* Sort regnos according to their slot numbers. */
|
|
qsort (pseudo_regnos, n, sizeof (int), pseudo_reg_slot_compare);
|
|
}
|
|
|
|
/* Recursively process LOC in INSN and change spilled pseudos to the
|
|
corresponding memory or spilled hard reg. Ignore spilled pseudos
|
|
created from the scratches. Return true if the pseudo nrefs equal
|
|
to 0 (don't change the pseudo in this case). Otherwise return false. */
|
|
static bool
|
|
remove_pseudos (rtx *loc, rtx_insn *insn)
|
|
{
|
|
int i;
|
|
rtx hard_reg;
|
|
const char *fmt;
|
|
enum rtx_code code;
|
|
bool res = false;
|
|
|
|
if (*loc == NULL_RTX)
|
|
return res;
|
|
code = GET_CODE (*loc);
|
|
if (code == SUBREG && REG_P (SUBREG_REG (*loc)))
|
|
{
|
|
/* Try to remove memory subregs to simplify LRA job
|
|
and avoid LRA cycling in case of subreg memory reload. */
|
|
res = remove_pseudos (&SUBREG_REG (*loc), insn);
|
|
if (GET_CODE (SUBREG_REG (*loc)) == MEM)
|
|
{
|
|
alter_subreg (loc, false);
|
|
if (GET_CODE (*loc) == MEM)
|
|
{
|
|
lra_get_insn_recog_data (insn)->used_insn_alternative = -1;
|
|
if (lra_dump_file != NULL)
|
|
fprintf (lra_dump_file,
|
|
"Memory subreg was simplified in insn #%u\n",
|
|
INSN_UID (insn));
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
else if (code == REG && (i = REGNO (*loc)) >= FIRST_PSEUDO_REGISTER
|
|
&& lra_get_regno_hard_regno (i) < 0
|
|
/* We do not want to assign memory for former scratches because
|
|
it might result in an address reload for some targets. In
|
|
any case we transform such pseudos not getting hard registers
|
|
into scratches back. */
|
|
&& ! lra_former_scratch_p (i))
|
|
{
|
|
if (lra_reg_info[i].nrefs == 0
|
|
&& pseudo_slots[i].mem == NULL && spill_hard_reg[i] == NULL)
|
|
return true;
|
|
if ((hard_reg = spill_hard_reg[i]) != NULL_RTX)
|
|
*loc = copy_rtx (hard_reg);
|
|
else
|
|
{
|
|
rtx x = lra_eliminate_regs_1 (insn, pseudo_slots[i].mem,
|
|
GET_MODE (pseudo_slots[i].mem),
|
|
false, false, 0, true);
|
|
*loc = x != pseudo_slots[i].mem ? x : copy_rtx (x);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
fmt = GET_RTX_FORMAT (code);
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
|
{
|
|
if (fmt[i] == 'e')
|
|
res = remove_pseudos (&XEXP (*loc, i), insn) || res;
|
|
else if (fmt[i] == 'E')
|
|
{
|
|
int j;
|
|
|
|
for (j = XVECLEN (*loc, i) - 1; j >= 0; j--)
|
|
res = remove_pseudos (&XVECEXP (*loc, i, j), insn) || res;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/* Convert spilled pseudos into their stack slots or spill hard regs,
|
|
put insns to process on the constraint stack (that is all insns in
|
|
which pseudos were changed to memory or spill hard regs). */
|
|
static void
|
|
spill_pseudos (void)
|
|
{
|
|
basic_block bb;
|
|
rtx_insn *insn, *curr;
|
|
int i;
|
|
|
|
auto_bitmap spilled_pseudos (®_obstack);
|
|
auto_bitmap changed_insns (®_obstack);
|
|
for (i = FIRST_PSEUDO_REGISTER; i < regs_num; i++)
|
|
{
|
|
if (lra_reg_info[i].nrefs != 0 && lra_get_regno_hard_regno (i) < 0
|
|
&& ! lra_former_scratch_p (i))
|
|
{
|
|
bitmap_set_bit (spilled_pseudos, i);
|
|
bitmap_ior_into (changed_insns, &lra_reg_info[i].insn_bitmap);
|
|
}
|
|
}
|
|
FOR_EACH_BB_FN (bb, cfun)
|
|
{
|
|
FOR_BB_INSNS_SAFE (bb, insn, curr)
|
|
{
|
|
bool removed_pseudo_p = false;
|
|
|
|
if (bitmap_bit_p (changed_insns, INSN_UID (insn)))
|
|
{
|
|
rtx *link_loc, link;
|
|
|
|
removed_pseudo_p = remove_pseudos (&PATTERN (insn), insn);
|
|
if (CALL_P (insn)
|
|
&& remove_pseudos (&CALL_INSN_FUNCTION_USAGE (insn), insn))
|
|
removed_pseudo_p = true;
|
|
for (link_loc = ®_NOTES (insn);
|
|
(link = *link_loc) != NULL_RTX;
|
|
link_loc = &XEXP (link, 1))
|
|
{
|
|
switch (REG_NOTE_KIND (link))
|
|
{
|
|
case REG_FRAME_RELATED_EXPR:
|
|
case REG_CFA_DEF_CFA:
|
|
case REG_CFA_ADJUST_CFA:
|
|
case REG_CFA_OFFSET:
|
|
case REG_CFA_REGISTER:
|
|
case REG_CFA_EXPRESSION:
|
|
case REG_CFA_RESTORE:
|
|
case REG_CFA_SET_VDRAP:
|
|
if (remove_pseudos (&XEXP (link, 0), insn))
|
|
removed_pseudo_p = true;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
if (lra_dump_file != NULL)
|
|
fprintf (lra_dump_file,
|
|
"Changing spilled pseudos to memory in insn #%u\n",
|
|
INSN_UID (insn));
|
|
lra_push_insn (insn);
|
|
if (lra_reg_spill_p || targetm.different_addr_displacement_p ())
|
|
lra_set_used_insn_alternative (insn, LRA_UNKNOWN_ALT);
|
|
}
|
|
else if (CALL_P (insn)
|
|
/* Presence of any pseudo in CALL_INSN_FUNCTION_USAGE
|
|
does not affect value of insn_bitmap of the
|
|
corresponding lra_reg_info. That is because we
|
|
don't need to reload pseudos in
|
|
CALL_INSN_FUNCTION_USAGEs. So if we process only
|
|
insns in the insn_bitmap of given pseudo here, we
|
|
can miss the pseudo in some
|
|
CALL_INSN_FUNCTION_USAGEs. */
|
|
&& remove_pseudos (&CALL_INSN_FUNCTION_USAGE (insn), insn))
|
|
removed_pseudo_p = true;
|
|
if (removed_pseudo_p)
|
|
{
|
|
lra_assert (DEBUG_INSN_P (insn));
|
|
lra_invalidate_insn_data (insn);
|
|
INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
|
|
if (lra_dump_file != NULL)
|
|
fprintf (lra_dump_file,
|
|
"Debug insn #%u is reset because it referenced "
|
|
"removed pseudo\n", INSN_UID (insn));
|
|
}
|
|
bitmap_and_compl_into (df_get_live_in (bb), spilled_pseudos);
|
|
bitmap_and_compl_into (df_get_live_out (bb), spilled_pseudos);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Return true if we need scratch reg assignments. */
|
|
bool
|
|
lra_need_for_scratch_reg_p (void)
|
|
{
|
|
int i; max_regno = max_reg_num ();
|
|
|
|
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
|
|
if (lra_reg_info[i].nrefs != 0 && lra_get_regno_hard_regno (i) < 0
|
|
&& lra_former_scratch_p (i))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/* Return true if we need to change some pseudos into memory. */
|
|
bool
|
|
lra_need_for_spills_p (void)
|
|
{
|
|
int i; max_regno = max_reg_num ();
|
|
|
|
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
|
|
if (lra_reg_info[i].nrefs != 0 && lra_get_regno_hard_regno (i) < 0
|
|
&& ! lra_former_scratch_p (i))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/* Change spilled pseudos into memory or spill hard regs. Put changed
|
|
insns on the constraint stack (these insns will be considered on
|
|
the next constraint pass). The changed insns are all insns in
|
|
which pseudos were changed. */
|
|
void
|
|
lra_spill (void)
|
|
{
|
|
int i, n, curr_regno;
|
|
int *pseudo_regnos;
|
|
|
|
regs_num = max_reg_num ();
|
|
spill_hard_reg = XNEWVEC (rtx, regs_num);
|
|
pseudo_regnos = XNEWVEC (int, regs_num);
|
|
for (n = 0, i = FIRST_PSEUDO_REGISTER; i < regs_num; i++)
|
|
if (lra_reg_info[i].nrefs != 0 && lra_get_regno_hard_regno (i) < 0
|
|
/* We do not want to assign memory for former scratches. */
|
|
&& ! lra_former_scratch_p (i))
|
|
pseudo_regnos[n++] = i;
|
|
lra_assert (n > 0);
|
|
pseudo_slots = XNEWVEC (struct pseudo_slot, regs_num);
|
|
for (i = FIRST_PSEUDO_REGISTER; i < regs_num; i++)
|
|
{
|
|
spill_hard_reg[i] = NULL_RTX;
|
|
pseudo_slots[i].mem = NULL_RTX;
|
|
}
|
|
slots = XNEWVEC (class slot, regs_num);
|
|
/* Sort regnos according their usage frequencies. */
|
|
qsort (pseudo_regnos, n, sizeof (int), regno_freq_compare);
|
|
n = assign_spill_hard_regs (pseudo_regnos, n);
|
|
assign_stack_slot_num_and_sort_pseudos (pseudo_regnos, n);
|
|
for (i = 0; i < n; i++)
|
|
if (pseudo_slots[pseudo_regnos[i]].mem == NULL_RTX)
|
|
assign_mem_slot (pseudo_regnos[i]);
|
|
if (n > 0 && crtl->stack_alignment_needed)
|
|
/* If we have a stack frame, we must align it now. The stack size
|
|
may be a part of the offset computation for register
|
|
elimination. */
|
|
assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
|
|
if (lra_dump_file != NULL)
|
|
{
|
|
for (i = 0; i < slots_num; i++)
|
|
{
|
|
fprintf (lra_dump_file, " Slot %d regnos (width = ", i);
|
|
print_dec (GET_MODE_SIZE (GET_MODE (slots[i].mem)),
|
|
lra_dump_file, SIGNED);
|
|
fprintf (lra_dump_file, "):");
|
|
for (curr_regno = slots[i].regno;;
|
|
curr_regno = pseudo_slots[curr_regno].next - pseudo_slots)
|
|
{
|
|
fprintf (lra_dump_file, " %d", curr_regno);
|
|
if (pseudo_slots[curr_regno].next == NULL)
|
|
break;
|
|
}
|
|
fprintf (lra_dump_file, "\n");
|
|
}
|
|
}
|
|
spill_pseudos ();
|
|
free (slots);
|
|
free (pseudo_slots);
|
|
free (pseudo_regnos);
|
|
free (spill_hard_reg);
|
|
}
|
|
|
|
/* Apply alter_subreg for subregs of regs in *LOC. Use FINAL_P for
|
|
alter_subreg calls. Return true if any subreg of reg is
|
|
processed. */
|
|
static bool
|
|
alter_subregs (rtx *loc, bool final_p)
|
|
{
|
|
int i;
|
|
rtx x = *loc;
|
|
bool res;
|
|
const char *fmt;
|
|
enum rtx_code code;
|
|
|
|
if (x == NULL_RTX)
|
|
return false;
|
|
code = GET_CODE (x);
|
|
if (code == SUBREG && REG_P (SUBREG_REG (x)))
|
|
{
|
|
lra_assert (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER);
|
|
alter_subreg (loc, final_p);
|
|
return true;
|
|
}
|
|
fmt = GET_RTX_FORMAT (code);
|
|
res = false;
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
|
{
|
|
if (fmt[i] == 'e')
|
|
{
|
|
if (alter_subregs (&XEXP (x, i), final_p))
|
|
res = true;
|
|
}
|
|
else if (fmt[i] == 'E')
|
|
{
|
|
int j;
|
|
|
|
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
|
if (alter_subregs (&XVECEXP (x, i, j), final_p))
|
|
res = true;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/* Return true if REGNO is used for return in the current
|
|
function. */
|
|
static bool
|
|
return_regno_p (unsigned int regno)
|
|
{
|
|
rtx outgoing = crtl->return_rtx;
|
|
|
|
if (! outgoing)
|
|
return false;
|
|
|
|
if (REG_P (outgoing))
|
|
return REGNO (outgoing) == regno;
|
|
else if (GET_CODE (outgoing) == PARALLEL)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < XVECLEN (outgoing, 0); i++)
|
|
{
|
|
rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
|
|
|
|
if (REG_P (x) && REGNO (x) == regno)
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Return true if REGNO is in one of subsequent USE after INSN in the
|
|
same BB. */
|
|
static bool
|
|
regno_in_use_p (rtx_insn *insn, unsigned int regno)
|
|
{
|
|
static lra_insn_recog_data_t id;
|
|
static struct lra_static_insn_data *static_id;
|
|
struct lra_insn_reg *reg;
|
|
int i, arg_regno;
|
|
basic_block bb = BLOCK_FOR_INSN (insn);
|
|
|
|
while ((insn = next_nondebug_insn (insn)) != NULL_RTX)
|
|
{
|
|
if (BARRIER_P (insn) || bb != BLOCK_FOR_INSN (insn))
|
|
return false;
|
|
if (! INSN_P (insn))
|
|
continue;
|
|
if (GET_CODE (PATTERN (insn)) == USE
|
|
&& REG_P (XEXP (PATTERN (insn), 0))
|
|
&& regno == REGNO (XEXP (PATTERN (insn), 0)))
|
|
return true;
|
|
/* Check that the regno is not modified. */
|
|
id = lra_get_insn_recog_data (insn);
|
|
for (reg = id->regs; reg != NULL; reg = reg->next)
|
|
if (reg->type != OP_IN && reg->regno == (int) regno)
|
|
return false;
|
|
static_id = id->insn_static_data;
|
|
for (reg = static_id->hard_regs; reg != NULL; reg = reg->next)
|
|
if (reg->type != OP_IN && reg->regno == (int) regno)
|
|
return false;
|
|
if (id->arg_hard_regs != NULL)
|
|
for (i = 0; (arg_regno = id->arg_hard_regs[i]) >= 0; i++)
|
|
if ((int) regno == (arg_regno >= FIRST_PSEUDO_REGISTER
|
|
? arg_regno : arg_regno - FIRST_PSEUDO_REGISTER))
|
|
return false;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Final change of pseudos got hard registers into the corresponding
|
|
hard registers and removing temporary clobbers. */
|
|
void
|
|
lra_final_code_change (void)
|
|
{
|
|
int i, hard_regno;
|
|
basic_block bb;
|
|
rtx_insn *insn, *curr;
|
|
rtx set;
|
|
int max_regno = max_reg_num ();
|
|
|
|
for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
|
|
if (lra_reg_info[i].nrefs != 0
|
|
&& (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
|
|
SET_REGNO (regno_reg_rtx[i], hard_regno);
|
|
FOR_EACH_BB_FN (bb, cfun)
|
|
FOR_BB_INSNS_SAFE (bb, insn, curr)
|
|
if (INSN_P (insn))
|
|
{
|
|
rtx pat = PATTERN (insn);
|
|
|
|
if (GET_CODE (pat) == CLOBBER && LRA_TEMP_CLOBBER_P (pat))
|
|
{
|
|
/* Remove clobbers temporarily created in LRA. We don't
|
|
need them anymore and don't want to waste compiler
|
|
time processing them in a few subsequent passes. */
|
|
lra_invalidate_insn_data (insn);
|
|
delete_insn (insn);
|
|
continue;
|
|
}
|
|
|
|
/* IRA can generate move insns involving pseudos. It is
|
|
better remove them earlier to speed up compiler a bit.
|
|
It is also better to do it here as they might not pass
|
|
final RTL check in LRA, (e.g. insn moving a control
|
|
register into itself). So remove an useless move insn
|
|
unless next insn is USE marking the return reg (we should
|
|
save this as some subsequent optimizations assume that
|
|
such original insns are saved). */
|
|
if (NONJUMP_INSN_P (insn) && GET_CODE (pat) == SET
|
|
&& REG_P (SET_SRC (pat)) && REG_P (SET_DEST (pat))
|
|
&& REGNO (SET_SRC (pat)) == REGNO (SET_DEST (pat))
|
|
&& (! return_regno_p (REGNO (SET_SRC (pat)))
|
|
|| ! regno_in_use_p (insn, REGNO (SET_SRC (pat)))))
|
|
{
|
|
lra_invalidate_insn_data (insn);
|
|
delete_insn (insn);
|
|
continue;
|
|
}
|
|
|
|
lra_insn_recog_data_t id = lra_get_insn_recog_data (insn);
|
|
struct lra_insn_reg *reg;
|
|
|
|
for (reg = id->regs; reg != NULL; reg = reg->next)
|
|
if (reg->regno >= FIRST_PSEUDO_REGISTER
|
|
&& lra_reg_info [reg->regno].nrefs == 0)
|
|
break;
|
|
|
|
if (reg != NULL)
|
|
{
|
|
/* Pseudos still can be in debug insns in some very rare
|
|
and complicated cases, e.g. the pseudo was removed by
|
|
inheritance and the debug insn is not EBBs where the
|
|
inheritance happened. It is difficult and time
|
|
consuming to find what hard register corresponds the
|
|
pseudo -- so just remove the debug insn. Another
|
|
solution could be assigning hard reg/memory but it
|
|
would be a misleading info. It is better not to have
|
|
info than have it wrong. */
|
|
lra_assert (DEBUG_INSN_P (insn));
|
|
lra_invalidate_insn_data (insn);
|
|
delete_insn (insn);
|
|
continue;
|
|
}
|
|
|
|
struct lra_static_insn_data *static_id = id->insn_static_data;
|
|
bool insn_change_p = false;
|
|
|
|
for (i = id->insn_static_data->n_operands - 1; i >= 0; i--)
|
|
if ((DEBUG_INSN_P (insn) || ! static_id->operand[i].is_operator)
|
|
&& alter_subregs (id->operand_loc[i], ! DEBUG_INSN_P (insn)))
|
|
{
|
|
lra_update_dup (id, i);
|
|
insn_change_p = true;
|
|
}
|
|
if (insn_change_p)
|
|
lra_update_operator_dups (id);
|
|
|
|
if ((set = single_set (insn)) != NULL
|
|
&& REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
|
|
&& REGNO (SET_SRC (set)) == REGNO (SET_DEST (set)))
|
|
{
|
|
/* Remove an useless move insn. IRA can generate move
|
|
insns involving pseudos. It is better remove them
|
|
earlier to speed up compiler a bit. It is also
|
|
better to do it here as they might not pass final RTL
|
|
check in LRA, (e.g. insn moving a control register
|
|
into itself). */
|
|
lra_invalidate_insn_data (insn);
|
|
delete_insn (insn);
|
|
}
|
|
}
|
|
}
|