ed053eb824
2016-11-08 Richard Biener <rguenther@suse.de> PR tree-optimization/78224 * tree-call-cdce.c (shrink_wrap_one_built_in_call_with_conds): Split the fallthru edge in case its successor may have PHIs. Do not free dominance info. * g++.dg/torture/pr78224.C: New testcase. From-SVN: r241955
1128 lines
36 KiB
C
1128 lines
36 KiB
C
/* Conditional Dead Call Elimination pass for the GNU compiler.
|
||
Copyright (C) 2008-2016 Free Software Foundation, Inc.
|
||
Contributed by Xinliang David Li <davidxl@google.com>
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it
|
||
under the terms of the GNU General Public License as published by the
|
||
Free Software Foundation; either version 3, or (at your option) any
|
||
later version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT
|
||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "backend.h"
|
||
#include "tree.h"
|
||
#include "gimple.h"
|
||
#include "cfghooks.h"
|
||
#include "tree-pass.h"
|
||
#include "ssa.h"
|
||
#include "gimple-pretty-print.h"
|
||
#include "fold-const.h"
|
||
#include "stor-layout.h"
|
||
#include "gimple-iterator.h"
|
||
#include "tree-cfg.h"
|
||
#include "tree-into-ssa.h"
|
||
#include "builtins.h"
|
||
#include "internal-fn.h"
|
||
#include "tree-dfa.h"
|
||
|
||
|
||
/* This pass serves two closely-related purposes:
|
||
|
||
1. It conditionally executes calls that set errno if (a) the result of
|
||
the call is unused and (b) a simple range check on the arguments can
|
||
detect most cases where errno does not need to be set.
|
||
|
||
This is the "conditional dead-code elimination" that gave the pass
|
||
its original name, since the call is dead for most argument values.
|
||
The calls for which it helps are usually part of the C++ abstraction
|
||
penalty exposed after inlining.
|
||
|
||
2. It looks for calls to built-in functions that set errno and whose
|
||
result is used. It checks whether there is an associated internal
|
||
function that doesn't set errno and whether the target supports
|
||
that internal function. If so, the pass uses the internal function
|
||
to compute the result of the built-in function but still arranges
|
||
for errno to be set when necessary. There are two ways of setting
|
||
errno:
|
||
|
||
a. by protecting the original call with the same argument checks as (1)
|
||
|
||
b. by protecting the original call with a check that the result
|
||
of the internal function is not equal to itself (i.e. is NaN).
|
||
|
||
(b) requires that NaNs are the only erroneous results. It is not
|
||
appropriate for functions like log, which returns ERANGE for zero
|
||
arguments. (b) is also likely to perform worse than (a) because it
|
||
requires the result to be calculated first. The pass therefore uses
|
||
(a) when it can and uses (b) as a fallback.
|
||
|
||
For (b) the pass can replace the original call with a call to
|
||
IFN_SET_EDOM, if the target supports direct assignments to errno.
|
||
|
||
In both cases, arguments that require errno to be set should occur
|
||
rarely in practice. Checks of the errno result should also be rare,
|
||
but the compiler would need powerful interprocedural analysis to
|
||
prove that errno is not checked. It's much easier to add argument
|
||
checks or result checks instead.
|
||
|
||
An example of (1) is:
|
||
|
||
log (x); // Mostly dead call
|
||
==>
|
||
if (__builtin_islessequal (x, 0))
|
||
log (x);
|
||
|
||
With this change, call to log (x) is effectively eliminated, as
|
||
in the majority of the cases, log won't be called with x out of
|
||
range. The branch is totally predictable, so the branch cost
|
||
is low.
|
||
|
||
An example of (2) is:
|
||
|
||
y = sqrt (x);
|
||
==>
|
||
y = IFN_SQRT (x);
|
||
if (__builtin_isless (x, 0))
|
||
sqrt (x);
|
||
|
||
In the vast majority of cases we should then never need to call sqrt.
|
||
|
||
Note that library functions are not supposed to clear errno to zero without
|
||
error. See IEEE Std 1003.1, section 2.3 Error Numbers, and section 7.5:3 of
|
||
ISO/IEC 9899 (C99).
|
||
|
||
The condition wrapping the builtin call is conservatively set to avoid too
|
||
aggressive (wrong) shrink wrapping. */
|
||
|
||
|
||
/* A structure for representing input domain of
|
||
a function argument in integer. If the lower
|
||
bound is -inf, has_lb is set to false. If the
|
||
upper bound is +inf, has_ub is false.
|
||
is_lb_inclusive and is_ub_inclusive are flags
|
||
to indicate if lb and ub value are inclusive
|
||
respectively. */
|
||
|
||
struct inp_domain
|
||
{
|
||
int lb;
|
||
int ub;
|
||
bool has_lb;
|
||
bool has_ub;
|
||
bool is_lb_inclusive;
|
||
bool is_ub_inclusive;
|
||
};
|
||
|
||
/* A helper function to construct and return an input
|
||
domain object. LB is the lower bound, HAS_LB is
|
||
a boolean flag indicating if the lower bound exists,
|
||
and LB_INCLUSIVE is a boolean flag indicating if the
|
||
lower bound is inclusive or not. UB, HAS_UB, and
|
||
UB_INCLUSIVE have the same meaning, but for upper
|
||
bound of the domain. */
|
||
|
||
static inp_domain
|
||
get_domain (int lb, bool has_lb, bool lb_inclusive,
|
||
int ub, bool has_ub, bool ub_inclusive)
|
||
{
|
||
inp_domain domain;
|
||
domain.lb = lb;
|
||
domain.has_lb = has_lb;
|
||
domain.is_lb_inclusive = lb_inclusive;
|
||
domain.ub = ub;
|
||
domain.has_ub = has_ub;
|
||
domain.is_ub_inclusive = ub_inclusive;
|
||
return domain;
|
||
}
|
||
|
||
/* A helper function to check the target format for the
|
||
argument type. In this implementation, only IEEE formats
|
||
are supported. ARG is the call argument to be checked.
|
||
Returns true if the format is supported. To support other
|
||
target formats, function get_no_error_domain needs to be
|
||
enhanced to have range bounds properly computed. Since
|
||
the check is cheap (very small number of candidates
|
||
to be checked), the result is not cached for each float type. */
|
||
|
||
static bool
|
||
check_target_format (tree arg)
|
||
{
|
||
tree type;
|
||
machine_mode mode;
|
||
const struct real_format *rfmt;
|
||
|
||
type = TREE_TYPE (arg);
|
||
mode = TYPE_MODE (type);
|
||
rfmt = REAL_MODE_FORMAT (mode);
|
||
if ((mode == SFmode
|
||
&& (rfmt == &ieee_single_format || rfmt == &mips_single_format
|
||
|| rfmt == &motorola_single_format))
|
||
|| (mode == DFmode
|
||
&& (rfmt == &ieee_double_format || rfmt == &mips_double_format
|
||
|| rfmt == &motorola_double_format))
|
||
/* For long double, we can not really check XFmode
|
||
which is only defined on intel platforms.
|
||
Candidate pre-selection using builtin function
|
||
code guarantees that we are checking formats
|
||
for long double modes: double, quad, and extended. */
|
||
|| (mode != SFmode && mode != DFmode
|
||
&& (rfmt == &ieee_quad_format
|
||
|| rfmt == &mips_quad_format
|
||
|| rfmt == &ieee_extended_motorola_format
|
||
|| rfmt == &ieee_extended_intel_96_format
|
||
|| rfmt == &ieee_extended_intel_128_format
|
||
|| rfmt == &ieee_extended_intel_96_round_53_format)))
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
|
||
/* A helper function to help select calls to pow that are suitable for
|
||
conditional DCE transformation. It looks for pow calls that can be
|
||
guided with simple conditions. Such calls either have constant base
|
||
values or base values converted from integers. Returns true if
|
||
the pow call POW_CALL is a candidate. */
|
||
|
||
/* The maximum integer bit size for base argument of a pow call
|
||
that is suitable for shrink-wrapping transformation. */
|
||
#define MAX_BASE_INT_BIT_SIZE 32
|
||
|
||
static bool
|
||
check_pow (gcall *pow_call)
|
||
{
|
||
tree base, expn;
|
||
enum tree_code bc, ec;
|
||
|
||
if (gimple_call_num_args (pow_call) != 2)
|
||
return false;
|
||
|
||
base = gimple_call_arg (pow_call, 0);
|
||
expn = gimple_call_arg (pow_call, 1);
|
||
|
||
if (!check_target_format (expn))
|
||
return false;
|
||
|
||
bc = TREE_CODE (base);
|
||
ec = TREE_CODE (expn);
|
||
|
||
/* Folding candidates are not interesting.
|
||
Can actually assert that it is already folded. */
|
||
if (ec == REAL_CST && bc == REAL_CST)
|
||
return false;
|
||
|
||
if (bc == REAL_CST)
|
||
{
|
||
/* Only handle a fixed range of constant. */
|
||
REAL_VALUE_TYPE mv;
|
||
REAL_VALUE_TYPE bcv = TREE_REAL_CST (base);
|
||
if (real_equal (&bcv, &dconst1))
|
||
return false;
|
||
if (real_less (&bcv, &dconst1))
|
||
return false;
|
||
real_from_integer (&mv, TYPE_MODE (TREE_TYPE (base)), 256, UNSIGNED);
|
||
if (real_less (&mv, &bcv))
|
||
return false;
|
||
return true;
|
||
}
|
||
else if (bc == SSA_NAME)
|
||
{
|
||
tree base_val0, type;
|
||
gimple *base_def;
|
||
int bit_sz;
|
||
|
||
/* Only handles cases where base value is converted
|
||
from integer values. */
|
||
base_def = SSA_NAME_DEF_STMT (base);
|
||
if (gimple_code (base_def) != GIMPLE_ASSIGN)
|
||
return false;
|
||
|
||
if (gimple_assign_rhs_code (base_def) != FLOAT_EXPR)
|
||
return false;
|
||
base_val0 = gimple_assign_rhs1 (base_def);
|
||
|
||
type = TREE_TYPE (base_val0);
|
||
if (TREE_CODE (type) != INTEGER_TYPE)
|
||
return false;
|
||
bit_sz = TYPE_PRECISION (type);
|
||
/* If the type of the base is too wide,
|
||
the resulting shrink wrapping condition
|
||
will be too conservative. */
|
||
if (bit_sz > MAX_BASE_INT_BIT_SIZE)
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
else
|
||
return false;
|
||
}
|
||
|
||
/* A helper function to help select candidate function calls that are
|
||
suitable for conditional DCE. Candidate functions must have single
|
||
valid input domain in this implementation except for pow (see check_pow).
|
||
Returns true if the function call is a candidate. */
|
||
|
||
static bool
|
||
check_builtin_call (gcall *bcall)
|
||
{
|
||
tree arg;
|
||
|
||
arg = gimple_call_arg (bcall, 0);
|
||
return check_target_format (arg);
|
||
}
|
||
|
||
/* Return true if built-in function call CALL calls a math function
|
||
and if we know how to test the range of its arguments to detect _most_
|
||
situations in which errno is not set. The test must err on the side
|
||
of treating non-erroneous values as potentially erroneous. */
|
||
|
||
static bool
|
||
can_test_argument_range (gcall *call)
|
||
{
|
||
switch (DECL_FUNCTION_CODE (gimple_call_fndecl (call)))
|
||
{
|
||
/* Trig functions. */
|
||
CASE_FLT_FN (BUILT_IN_ACOS):
|
||
CASE_FLT_FN (BUILT_IN_ASIN):
|
||
/* Hyperbolic functions. */
|
||
CASE_FLT_FN (BUILT_IN_ACOSH):
|
||
CASE_FLT_FN (BUILT_IN_ATANH):
|
||
CASE_FLT_FN (BUILT_IN_COSH):
|
||
CASE_FLT_FN (BUILT_IN_SINH):
|
||
/* Log functions. */
|
||
CASE_FLT_FN (BUILT_IN_LOG):
|
||
CASE_FLT_FN (BUILT_IN_LOG2):
|
||
CASE_FLT_FN (BUILT_IN_LOG10):
|
||
CASE_FLT_FN (BUILT_IN_LOG1P):
|
||
/* Exp functions. */
|
||
CASE_FLT_FN (BUILT_IN_EXP):
|
||
CASE_FLT_FN (BUILT_IN_EXP2):
|
||
CASE_FLT_FN (BUILT_IN_EXP10):
|
||
CASE_FLT_FN (BUILT_IN_EXPM1):
|
||
CASE_FLT_FN (BUILT_IN_POW10):
|
||
/* Sqrt. */
|
||
CASE_FLT_FN (BUILT_IN_SQRT):
|
||
return check_builtin_call (call);
|
||
/* Special one: two argument pow. */
|
||
case BUILT_IN_POW:
|
||
return check_pow (call);
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Return true if CALL can produce a domain error (EDOM) but can never
|
||
produce a pole, range overflow or range underflow error (all ERANGE).
|
||
This means that we can tell whether a function would have set errno
|
||
by testing whether the result is a NaN. */
|
||
|
||
static bool
|
||
edom_only_function (gcall *call)
|
||
{
|
||
switch (DECL_FUNCTION_CODE (gimple_call_fndecl (call)))
|
||
{
|
||
CASE_FLT_FN (BUILT_IN_ACOS):
|
||
CASE_FLT_FN (BUILT_IN_ASIN):
|
||
CASE_FLT_FN (BUILT_IN_ATAN):
|
||
CASE_FLT_FN (BUILT_IN_COS):
|
||
CASE_FLT_FN (BUILT_IN_SIGNIFICAND):
|
||
CASE_FLT_FN (BUILT_IN_SIN):
|
||
CASE_FLT_FN (BUILT_IN_SQRT):
|
||
CASE_FLT_FN (BUILT_IN_FMOD):
|
||
CASE_FLT_FN (BUILT_IN_REMAINDER):
|
||
return true;
|
||
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* Return true if it is structurally possible to guard CALL. */
|
||
|
||
static bool
|
||
can_guard_call_p (gimple *call)
|
||
{
|
||
return (!stmt_ends_bb_p (call)
|
||
|| find_fallthru_edge (gimple_bb (call)->succs));
|
||
}
|
||
|
||
/* A helper function to generate gimple statements for one bound
|
||
comparison, so that the built-in function is called whenever
|
||
TCODE <ARG, LBUB> is *false*. TEMP_NAME1/TEMP_NAME2 are names
|
||
of the temporaries, CONDS is a vector holding the produced GIMPLE
|
||
statements, and NCONDS points to the variable holding the number of
|
||
logical comparisons. CONDS is either empty or a list ended with a
|
||
null tree. */
|
||
|
||
static void
|
||
gen_one_condition (tree arg, int lbub,
|
||
enum tree_code tcode,
|
||
const char *temp_name1,
|
||
const char *temp_name2,
|
||
vec<gimple *> conds,
|
||
unsigned *nconds)
|
||
{
|
||
tree lbub_real_cst, lbub_cst, float_type;
|
||
tree temp, tempn, tempc, tempcn;
|
||
gassign *stmt1;
|
||
gassign *stmt2;
|
||
gcond *stmt3;
|
||
|
||
float_type = TREE_TYPE (arg);
|
||
lbub_cst = build_int_cst (integer_type_node, lbub);
|
||
lbub_real_cst = build_real_from_int_cst (float_type, lbub_cst);
|
||
|
||
temp = create_tmp_var (float_type, temp_name1);
|
||
stmt1 = gimple_build_assign (temp, arg);
|
||
tempn = make_ssa_name (temp, stmt1);
|
||
gimple_assign_set_lhs (stmt1, tempn);
|
||
|
||
tempc = create_tmp_var (boolean_type_node, temp_name2);
|
||
stmt2 = gimple_build_assign (tempc,
|
||
fold_build2 (tcode,
|
||
boolean_type_node,
|
||
tempn, lbub_real_cst));
|
||
tempcn = make_ssa_name (tempc, stmt2);
|
||
gimple_assign_set_lhs (stmt2, tempcn);
|
||
|
||
stmt3 = gimple_build_cond_from_tree (tempcn, NULL_TREE, NULL_TREE);
|
||
conds.quick_push (stmt1);
|
||
conds.quick_push (stmt2);
|
||
conds.quick_push (stmt3);
|
||
(*nconds)++;
|
||
}
|
||
|
||
/* A helper function to generate GIMPLE statements for
|
||
out of input domain check. ARG is the call argument
|
||
to be runtime checked, DOMAIN holds the valid domain
|
||
for the given function, CONDS points to the vector
|
||
holding the result GIMPLE statements. *NCONDS is
|
||
the number of logical comparisons. This function
|
||
produces no more than two logical comparisons, one
|
||
for lower bound check, one for upper bound check. */
|
||
|
||
static void
|
||
gen_conditions_for_domain (tree arg, inp_domain domain,
|
||
vec<gimple *> conds,
|
||
unsigned *nconds)
|
||
{
|
||
if (domain.has_lb)
|
||
gen_one_condition (arg, domain.lb,
|
||
(domain.is_lb_inclusive
|
||
? UNGE_EXPR : UNGT_EXPR),
|
||
"DCE_COND_LB", "DCE_COND_LB_TEST",
|
||
conds, nconds);
|
||
|
||
if (domain.has_ub)
|
||
{
|
||
/* Now push a separator. */
|
||
if (domain.has_lb)
|
||
conds.quick_push (NULL);
|
||
|
||
gen_one_condition (arg, domain.ub,
|
||
(domain.is_ub_inclusive
|
||
? UNLE_EXPR : UNLT_EXPR),
|
||
"DCE_COND_UB", "DCE_COND_UB_TEST",
|
||
conds, nconds);
|
||
}
|
||
}
|
||
|
||
|
||
/* A helper function to generate condition
|
||
code for the y argument in call pow (some_const, y).
|
||
See candidate selection in check_pow. Since the
|
||
candidates' base values have a limited range,
|
||
the guarded code generated for y are simple:
|
||
if (__builtin_isgreater (y, max_y))
|
||
pow (const, y);
|
||
Note max_y can be computed separately for each
|
||
const base, but in this implementation, we
|
||
choose to compute it using the max base
|
||
in the allowed range for the purpose of
|
||
simplicity. BASE is the constant base value,
|
||
EXPN is the expression for the exponent argument,
|
||
*CONDS is the vector to hold resulting statements,
|
||
and *NCONDS is the number of logical conditions. */
|
||
|
||
static void
|
||
gen_conditions_for_pow_cst_base (tree base, tree expn,
|
||
vec<gimple *> conds,
|
||
unsigned *nconds)
|
||
{
|
||
inp_domain exp_domain;
|
||
/* Validate the range of the base constant to make
|
||
sure it is consistent with check_pow. */
|
||
REAL_VALUE_TYPE mv;
|
||
REAL_VALUE_TYPE bcv = TREE_REAL_CST (base);
|
||
gcc_assert (!real_equal (&bcv, &dconst1)
|
||
&& !real_less (&bcv, &dconst1));
|
||
real_from_integer (&mv, TYPE_MODE (TREE_TYPE (base)), 256, UNSIGNED);
|
||
gcc_assert (!real_less (&mv, &bcv));
|
||
|
||
exp_domain = get_domain (0, false, false,
|
||
127, true, false);
|
||
|
||
gen_conditions_for_domain (expn, exp_domain,
|
||
conds, nconds);
|
||
}
|
||
|
||
/* Generate error condition code for pow calls with
|
||
non constant base values. The candidates selected
|
||
have their base argument value converted from
|
||
integer (see check_pow) value (1, 2, 4 bytes), and
|
||
the max exp value is computed based on the size
|
||
of the integer type (i.e. max possible base value).
|
||
The resulting input domain for exp argument is thus
|
||
conservative (smaller than the max value allowed by
|
||
the runtime value of the base). BASE is the integer
|
||
base value, EXPN is the expression for the exponent
|
||
argument, *CONDS is the vector to hold resulting
|
||
statements, and *NCONDS is the number of logical
|
||
conditions. */
|
||
|
||
static void
|
||
gen_conditions_for_pow_int_base (tree base, tree expn,
|
||
vec<gimple *> conds,
|
||
unsigned *nconds)
|
||
{
|
||
gimple *base_def;
|
||
tree base_val0;
|
||
tree int_type;
|
||
tree temp, tempn;
|
||
tree cst0;
|
||
gimple *stmt1, *stmt2;
|
||
int bit_sz, max_exp;
|
||
inp_domain exp_domain;
|
||
|
||
base_def = SSA_NAME_DEF_STMT (base);
|
||
base_val0 = gimple_assign_rhs1 (base_def);
|
||
int_type = TREE_TYPE (base_val0);
|
||
bit_sz = TYPE_PRECISION (int_type);
|
||
gcc_assert (bit_sz > 0
|
||
&& bit_sz <= MAX_BASE_INT_BIT_SIZE);
|
||
|
||
/* Determine the max exp argument value according to
|
||
the size of the base integer. The max exp value
|
||
is conservatively estimated assuming IEEE754 double
|
||
precision format. */
|
||
if (bit_sz == 8)
|
||
max_exp = 128;
|
||
else if (bit_sz == 16)
|
||
max_exp = 64;
|
||
else
|
||
{
|
||
gcc_assert (bit_sz == MAX_BASE_INT_BIT_SIZE);
|
||
max_exp = 32;
|
||
}
|
||
|
||
/* For pow ((double)x, y), generate the following conditions:
|
||
cond 1:
|
||
temp1 = x;
|
||
if (__builtin_islessequal (temp1, 0))
|
||
|
||
cond 2:
|
||
temp2 = y;
|
||
if (__builtin_isgreater (temp2, max_exp_real_cst)) */
|
||
|
||
/* Generate condition in reverse order -- first
|
||
the condition for the exp argument. */
|
||
|
||
exp_domain = get_domain (0, false, false,
|
||
max_exp, true, true);
|
||
|
||
gen_conditions_for_domain (expn, exp_domain,
|
||
conds, nconds);
|
||
|
||
/* Now generate condition for the base argument.
|
||
Note it does not use the helper function
|
||
gen_conditions_for_domain because the base
|
||
type is integer. */
|
||
|
||
/* Push a separator. */
|
||
conds.quick_push (NULL);
|
||
|
||
temp = create_tmp_var (int_type, "DCE_COND1");
|
||
cst0 = build_int_cst (int_type, 0);
|
||
stmt1 = gimple_build_assign (temp, base_val0);
|
||
tempn = make_ssa_name (temp, stmt1);
|
||
gimple_assign_set_lhs (stmt1, tempn);
|
||
stmt2 = gimple_build_cond (GT_EXPR, tempn, cst0, NULL_TREE, NULL_TREE);
|
||
|
||
conds.quick_push (stmt1);
|
||
conds.quick_push (stmt2);
|
||
(*nconds)++;
|
||
}
|
||
|
||
/* Method to generate conditional statements for guarding conditionally
|
||
dead calls to pow. One or more statements can be generated for
|
||
each logical condition. Statement groups of different conditions
|
||
are separated by a NULL tree and they are stored in the vec
|
||
conds. The number of logical conditions are stored in *nconds.
|
||
|
||
See C99 standard, 7.12.7.4:2, for description of pow (x, y).
|
||
The precise condition for domain errors are complex. In this
|
||
implementation, a simplified (but conservative) valid domain
|
||
for x and y are used: x is positive to avoid dom errors, while
|
||
y is smaller than a upper bound (depending on x) to avoid range
|
||
errors. Runtime code is generated to check x (if not constant)
|
||
and y against the valid domain. If it is out, jump to the call,
|
||
otherwise the call is bypassed. POW_CALL is the call statement,
|
||
*CONDS is a vector holding the resulting condition statements,
|
||
and *NCONDS is the number of logical conditions. */
|
||
|
||
static void
|
||
gen_conditions_for_pow (gcall *pow_call, vec<gimple *> conds,
|
||
unsigned *nconds)
|
||
{
|
||
tree base, expn;
|
||
enum tree_code bc;
|
||
|
||
gcc_checking_assert (check_pow (pow_call));
|
||
|
||
*nconds = 0;
|
||
|
||
base = gimple_call_arg (pow_call, 0);
|
||
expn = gimple_call_arg (pow_call, 1);
|
||
|
||
bc = TREE_CODE (base);
|
||
|
||
if (bc == REAL_CST)
|
||
gen_conditions_for_pow_cst_base (base, expn, conds, nconds);
|
||
else if (bc == SSA_NAME)
|
||
gen_conditions_for_pow_int_base (base, expn, conds, nconds);
|
||
else
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
/* A helper routine to help computing the valid input domain
|
||
for a builtin function. See C99 7.12.7 for details. In this
|
||
implementation, we only handle single region domain. The
|
||
resulting region can be conservative (smaller) than the actual
|
||
one and rounded to integers. Some of the bounds are documented
|
||
in the standard, while other limit constants are computed
|
||
assuming IEEE floating point format (for SF and DF modes).
|
||
Since IEEE only sets minimum requirements for long double format,
|
||
different long double formats exist under different implementations
|
||
(e.g, 64 bit double precision (DF), 80 bit double-extended
|
||
precision (XF), and 128 bit quad precision (QF) ). For simplicity,
|
||
in this implementation, the computed bounds for long double assume
|
||
64 bit format (DF), and are therefore conservative. Another
|
||
assumption is that single precision float type is always SF mode,
|
||
and double type is DF mode. This function is quite
|
||
implementation specific, so it may not be suitable to be part of
|
||
builtins.c. This needs to be revisited later to see if it can
|
||
be leveraged in x87 assembly expansion. */
|
||
|
||
static inp_domain
|
||
get_no_error_domain (enum built_in_function fnc)
|
||
{
|
||
switch (fnc)
|
||
{
|
||
/* Trig functions: return [-1, +1] */
|
||
CASE_FLT_FN (BUILT_IN_ACOS):
|
||
CASE_FLT_FN (BUILT_IN_ASIN):
|
||
return get_domain (-1, true, true,
|
||
1, true, true);
|
||
/* Hyperbolic functions. */
|
||
CASE_FLT_FN (BUILT_IN_ACOSH):
|
||
/* acosh: [1, +inf) */
|
||
return get_domain (1, true, true,
|
||
1, false, false);
|
||
CASE_FLT_FN (BUILT_IN_ATANH):
|
||
/* atanh: (-1, +1) */
|
||
return get_domain (-1, true, false,
|
||
1, true, false);
|
||
case BUILT_IN_COSHF:
|
||
case BUILT_IN_SINHF:
|
||
/* coshf: (-89, +89) */
|
||
return get_domain (-89, true, false,
|
||
89, true, false);
|
||
case BUILT_IN_COSH:
|
||
case BUILT_IN_SINH:
|
||
case BUILT_IN_COSHL:
|
||
case BUILT_IN_SINHL:
|
||
/* cosh: (-710, +710) */
|
||
return get_domain (-710, true, false,
|
||
710, true, false);
|
||
/* Log functions: (0, +inf) */
|
||
CASE_FLT_FN (BUILT_IN_LOG):
|
||
CASE_FLT_FN (BUILT_IN_LOG2):
|
||
CASE_FLT_FN (BUILT_IN_LOG10):
|
||
return get_domain (0, true, false,
|
||
0, false, false);
|
||
CASE_FLT_FN (BUILT_IN_LOG1P):
|
||
return get_domain (-1, true, false,
|
||
0, false, false);
|
||
/* Exp functions. */
|
||
case BUILT_IN_EXPF:
|
||
case BUILT_IN_EXPM1F:
|
||
/* expf: (-inf, 88) */
|
||
return get_domain (-1, false, false,
|
||
88, true, false);
|
||
case BUILT_IN_EXP:
|
||
case BUILT_IN_EXPM1:
|
||
case BUILT_IN_EXPL:
|
||
case BUILT_IN_EXPM1L:
|
||
/* exp: (-inf, 709) */
|
||
return get_domain (-1, false, false,
|
||
709, true, false);
|
||
case BUILT_IN_EXP2F:
|
||
/* exp2f: (-inf, 128) */
|
||
return get_domain (-1, false, false,
|
||
128, true, false);
|
||
case BUILT_IN_EXP2:
|
||
case BUILT_IN_EXP2L:
|
||
/* exp2: (-inf, 1024) */
|
||
return get_domain (-1, false, false,
|
||
1024, true, false);
|
||
case BUILT_IN_EXP10F:
|
||
case BUILT_IN_POW10F:
|
||
/* exp10f: (-inf, 38) */
|
||
return get_domain (-1, false, false,
|
||
38, true, false);
|
||
case BUILT_IN_EXP10:
|
||
case BUILT_IN_POW10:
|
||
case BUILT_IN_EXP10L:
|
||
case BUILT_IN_POW10L:
|
||
/* exp10: (-inf, 308) */
|
||
return get_domain (-1, false, false,
|
||
308, true, false);
|
||
/* sqrt: [0, +inf) */
|
||
CASE_FLT_FN (BUILT_IN_SQRT):
|
||
return get_domain (0, true, true,
|
||
0, false, false);
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
/* The function to generate shrink wrap conditions for a partially
|
||
dead builtin call whose return value is not used anywhere,
|
||
but has to be kept live due to potential error condition.
|
||
BI_CALL is the builtin call, CONDS is the vector of statements
|
||
for condition code, NCODES is the pointer to the number of
|
||
logical conditions. Statements belonging to different logical
|
||
condition are separated by NULL tree in the vector. */
|
||
|
||
static void
|
||
gen_shrink_wrap_conditions (gcall *bi_call, vec<gimple *> conds,
|
||
unsigned int *nconds)
|
||
{
|
||
gcall *call;
|
||
tree fn;
|
||
enum built_in_function fnc;
|
||
|
||
gcc_assert (nconds && conds.exists ());
|
||
gcc_assert (conds.length () == 0);
|
||
gcc_assert (is_gimple_call (bi_call));
|
||
|
||
call = bi_call;
|
||
fn = gimple_call_fndecl (call);
|
||
gcc_assert (fn && DECL_BUILT_IN (fn));
|
||
fnc = DECL_FUNCTION_CODE (fn);
|
||
*nconds = 0;
|
||
|
||
if (fnc == BUILT_IN_POW)
|
||
gen_conditions_for_pow (call, conds, nconds);
|
||
else
|
||
{
|
||
tree arg;
|
||
inp_domain domain = get_no_error_domain (fnc);
|
||
*nconds = 0;
|
||
arg = gimple_call_arg (bi_call, 0);
|
||
gen_conditions_for_domain (arg, domain, conds, nconds);
|
||
}
|
||
|
||
return;
|
||
}
|
||
|
||
|
||
/* Probability of the branch (to the call) is taken. */
|
||
#define ERR_PROB 0.01
|
||
|
||
/* Shrink-wrap BI_CALL so that it is only called when one of the NCONDS
|
||
conditions in CONDS is false. */
|
||
|
||
static void
|
||
shrink_wrap_one_built_in_call_with_conds (gcall *bi_call, vec <gimple *> conds,
|
||
unsigned int nconds)
|
||
{
|
||
gimple_stmt_iterator bi_call_bsi;
|
||
basic_block bi_call_bb, join_tgt_bb, guard_bb;
|
||
edge join_tgt_in_edge_from_call, join_tgt_in_edge_fall_thru;
|
||
edge bi_call_in_edge0, guard_bb_in_edge;
|
||
unsigned tn_cond_stmts;
|
||
unsigned ci;
|
||
gimple *cond_expr = NULL;
|
||
gimple *cond_expr_start;
|
||
|
||
/* The cfg we want to create looks like this:
|
||
|
||
[guard n-1] <- guard_bb (old block)
|
||
| \
|
||
| [guard n-2] }
|
||
| / \ }
|
||
| / ... } new blocks
|
||
| / [guard 0] }
|
||
| / / | }
|
||
[ call ] | <- bi_call_bb }
|
||
| \ |
|
||
| \ |
|
||
| [ join ] <- join_tgt_bb (old iff call must end bb)
|
||
|
|
||
possible EH edges (only if [join] is old)
|
||
|
||
When [join] is new, the immediate dominators for these blocks are:
|
||
|
||
1. [guard n-1]: unchanged
|
||
2. [call]: [guard n-1]
|
||
3. [guard m]: [guard m+1] for 0 <= m <= n-2
|
||
4. [join]: [guard n-1]
|
||
|
||
We punt for the more complex case case of [join] being old and
|
||
simply free the dominance info. We also punt on postdominators,
|
||
which aren't expected to be available at this point anyway. */
|
||
bi_call_bb = gimple_bb (bi_call);
|
||
|
||
/* Now find the join target bb -- split bi_call_bb if needed. */
|
||
if (stmt_ends_bb_p (bi_call))
|
||
{
|
||
/* We checked that there was a fallthrough edge in
|
||
can_guard_call_p. */
|
||
join_tgt_in_edge_from_call = find_fallthru_edge (bi_call_bb->succs);
|
||
gcc_assert (join_tgt_in_edge_from_call);
|
||
/* We don't want to handle PHIs. */
|
||
if (EDGE_COUNT (join_tgt_in_edge_from_call->dest->preds) > 1)
|
||
join_tgt_bb = split_edge (join_tgt_in_edge_from_call);
|
||
else
|
||
join_tgt_bb = join_tgt_in_edge_from_call->dest;
|
||
}
|
||
else
|
||
{
|
||
join_tgt_in_edge_from_call = split_block (bi_call_bb, bi_call);
|
||
join_tgt_bb = join_tgt_in_edge_from_call->dest;
|
||
}
|
||
|
||
bi_call_bsi = gsi_for_stmt (bi_call);
|
||
|
||
/* Now it is time to insert the first conditional expression
|
||
into bi_call_bb and split this bb so that bi_call is
|
||
shrink-wrapped. */
|
||
tn_cond_stmts = conds.length ();
|
||
cond_expr = NULL;
|
||
cond_expr_start = conds[0];
|
||
for (ci = 0; ci < tn_cond_stmts; ci++)
|
||
{
|
||
gimple *c = conds[ci];
|
||
gcc_assert (c || ci != 0);
|
||
if (!c)
|
||
break;
|
||
gsi_insert_before (&bi_call_bsi, c, GSI_SAME_STMT);
|
||
cond_expr = c;
|
||
}
|
||
nconds--;
|
||
ci++;
|
||
gcc_assert (cond_expr && gimple_code (cond_expr) == GIMPLE_COND);
|
||
|
||
bi_call_in_edge0 = split_block (bi_call_bb, cond_expr);
|
||
bi_call_in_edge0->flags &= ~EDGE_FALLTHRU;
|
||
bi_call_in_edge0->flags |= EDGE_FALSE_VALUE;
|
||
guard_bb = bi_call_bb;
|
||
bi_call_bb = bi_call_in_edge0->dest;
|
||
join_tgt_in_edge_fall_thru = make_edge (guard_bb, join_tgt_bb,
|
||
EDGE_TRUE_VALUE);
|
||
|
||
bi_call_in_edge0->probability = REG_BR_PROB_BASE * ERR_PROB;
|
||
bi_call_in_edge0->count =
|
||
apply_probability (guard_bb->count,
|
||
bi_call_in_edge0->probability);
|
||
join_tgt_in_edge_fall_thru->probability =
|
||
inverse_probability (bi_call_in_edge0->probability);
|
||
join_tgt_in_edge_fall_thru->count =
|
||
guard_bb->count - bi_call_in_edge0->count;
|
||
|
||
/* Code generation for the rest of the conditions */
|
||
while (nconds > 0)
|
||
{
|
||
unsigned ci0;
|
||
edge bi_call_in_edge;
|
||
gimple_stmt_iterator guard_bsi = gsi_for_stmt (cond_expr_start);
|
||
ci0 = ci;
|
||
cond_expr_start = conds[ci0];
|
||
for (; ci < tn_cond_stmts; ci++)
|
||
{
|
||
gimple *c = conds[ci];
|
||
gcc_assert (c || ci != ci0);
|
||
if (!c)
|
||
break;
|
||
gsi_insert_before (&guard_bsi, c, GSI_SAME_STMT);
|
||
cond_expr = c;
|
||
}
|
||
nconds--;
|
||
ci++;
|
||
gcc_assert (cond_expr && gimple_code (cond_expr) == GIMPLE_COND);
|
||
guard_bb_in_edge = split_block (guard_bb, cond_expr);
|
||
guard_bb_in_edge->flags &= ~EDGE_FALLTHRU;
|
||
guard_bb_in_edge->flags |= EDGE_TRUE_VALUE;
|
||
|
||
bi_call_in_edge = make_edge (guard_bb, bi_call_bb, EDGE_FALSE_VALUE);
|
||
|
||
bi_call_in_edge->probability = REG_BR_PROB_BASE * ERR_PROB;
|
||
bi_call_in_edge->count =
|
||
apply_probability (guard_bb->count,
|
||
bi_call_in_edge->probability);
|
||
guard_bb_in_edge->probability =
|
||
inverse_probability (bi_call_in_edge->probability);
|
||
guard_bb_in_edge->count = guard_bb->count - bi_call_in_edge->count;
|
||
}
|
||
|
||
if (dom_info_available_p (CDI_DOMINATORS))
|
||
{
|
||
/* The split_blocks leave [guard 0] as the immediate dominator
|
||
of [call] and [call] as the immediate dominator of [join].
|
||
Fix them up. */
|
||
set_immediate_dominator (CDI_DOMINATORS, bi_call_bb, guard_bb);
|
||
set_immediate_dominator (CDI_DOMINATORS, join_tgt_bb, guard_bb);
|
||
}
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
location_t loc;
|
||
loc = gimple_location (bi_call);
|
||
fprintf (dump_file,
|
||
"%s:%d: note: function call is shrink-wrapped"
|
||
" into error conditions.\n",
|
||
LOCATION_FILE (loc), LOCATION_LINE (loc));
|
||
}
|
||
}
|
||
|
||
/* Shrink-wrap BI_CALL so that it is only called when it might set errno
|
||
(but is always called if it would set errno). */
|
||
|
||
static void
|
||
shrink_wrap_one_built_in_call (gcall *bi_call)
|
||
{
|
||
unsigned nconds = 0;
|
||
auto_vec<gimple *, 12> conds;
|
||
gen_shrink_wrap_conditions (bi_call, conds, &nconds);
|
||
gcc_assert (nconds != 0);
|
||
shrink_wrap_one_built_in_call_with_conds (bi_call, conds, nconds);
|
||
}
|
||
|
||
/* Return true if built-in function call CALL could be implemented using
|
||
a combination of an internal function to compute the result and a
|
||
separate call to set errno. */
|
||
|
||
static bool
|
||
can_use_internal_fn (gcall *call)
|
||
{
|
||
/* Only replace calls that set errno. */
|
||
if (!gimple_vdef (call))
|
||
return false;
|
||
|
||
/* See whether there is an internal function for this built-in. */
|
||
if (replacement_internal_fn (call) == IFN_LAST)
|
||
return false;
|
||
|
||
/* See whether we can catch all cases where errno would be set,
|
||
while still avoiding the call in most cases. */
|
||
if (!can_test_argument_range (call)
|
||
&& !edom_only_function (call))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Implement built-in function call CALL using an internal function. */
|
||
|
||
static void
|
||
use_internal_fn (gcall *call)
|
||
{
|
||
/* We'll be inserting another call with the same arguments after the
|
||
lhs has been set, so prevent any possible coalescing failure from
|
||
having both values live at once. See PR 71020. */
|
||
replace_abnormal_ssa_names (call);
|
||
|
||
unsigned nconds = 0;
|
||
auto_vec<gimple *, 12> conds;
|
||
if (can_test_argument_range (call))
|
||
{
|
||
gen_shrink_wrap_conditions (call, conds, &nconds);
|
||
gcc_assert (nconds != 0);
|
||
}
|
||
else
|
||
gcc_assert (edom_only_function (call));
|
||
|
||
internal_fn ifn = replacement_internal_fn (call);
|
||
gcc_assert (ifn != IFN_LAST);
|
||
|
||
/* Construct the new call, with the same arguments as the original one. */
|
||
auto_vec <tree, 16> args;
|
||
unsigned int nargs = gimple_call_num_args (call);
|
||
for (unsigned int i = 0; i < nargs; ++i)
|
||
args.safe_push (gimple_call_arg (call, i));
|
||
gcall *new_call = gimple_build_call_internal_vec (ifn, args);
|
||
gimple_set_location (new_call, gimple_location (call));
|
||
|
||
/* Transfer the LHS to the new call. */
|
||
tree lhs = gimple_call_lhs (call);
|
||
gimple_call_set_lhs (new_call, lhs);
|
||
gimple_call_set_lhs (call, NULL_TREE);
|
||
SSA_NAME_DEF_STMT (lhs) = new_call;
|
||
|
||
/* Insert the new call. */
|
||
gimple_stmt_iterator gsi = gsi_for_stmt (call);
|
||
gsi_insert_before (&gsi, new_call, GSI_SAME_STMT);
|
||
|
||
if (nconds == 0)
|
||
{
|
||
/* Skip the call if LHS == LHS. If we reach here, EDOM is the only
|
||
valid errno value and it is used iff the result is NaN. */
|
||
conds.quick_push (gimple_build_cond (EQ_EXPR, lhs, lhs,
|
||
NULL_TREE, NULL_TREE));
|
||
nconds++;
|
||
|
||
/* Try replacing the original call with a direct assignment to
|
||
errno, via an internal function. */
|
||
if (set_edom_supported_p () && !stmt_ends_bb_p (call))
|
||
{
|
||
gimple_stmt_iterator gsi = gsi_for_stmt (call);
|
||
gcall *new_call = gimple_build_call_internal (IFN_SET_EDOM, 0);
|
||
gimple_set_vuse (new_call, gimple_vuse (call));
|
||
gimple_set_vdef (new_call, gimple_vdef (call));
|
||
SSA_NAME_DEF_STMT (gimple_vdef (new_call)) = new_call;
|
||
gimple_set_location (new_call, gimple_location (call));
|
||
gsi_replace (&gsi, new_call, false);
|
||
call = new_call;
|
||
}
|
||
}
|
||
|
||
shrink_wrap_one_built_in_call_with_conds (call, conds, nconds);
|
||
}
|
||
|
||
/* The top level function for conditional dead code shrink
|
||
wrapping transformation. */
|
||
|
||
static void
|
||
shrink_wrap_conditional_dead_built_in_calls (vec<gcall *> calls)
|
||
{
|
||
unsigned i = 0;
|
||
|
||
unsigned n = calls.length ();
|
||
for (; i < n ; i++)
|
||
{
|
||
gcall *bi_call = calls[i];
|
||
if (gimple_call_lhs (bi_call))
|
||
use_internal_fn (bi_call);
|
||
else
|
||
shrink_wrap_one_built_in_call (bi_call);
|
||
}
|
||
}
|
||
|
||
namespace {
|
||
|
||
const pass_data pass_data_call_cdce =
|
||
{
|
||
GIMPLE_PASS, /* type */
|
||
"cdce", /* name */
|
||
OPTGROUP_NONE, /* optinfo_flags */
|
||
TV_TREE_CALL_CDCE, /* tv_id */
|
||
( PROP_cfg | PROP_ssa ), /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
0, /* todo_flags_finish */
|
||
};
|
||
|
||
class pass_call_cdce : public gimple_opt_pass
|
||
{
|
||
public:
|
||
pass_call_cdce (gcc::context *ctxt)
|
||
: gimple_opt_pass (pass_data_call_cdce, ctxt)
|
||
{}
|
||
|
||
/* opt_pass methods: */
|
||
virtual bool gate (function *)
|
||
{
|
||
/* The limit constants used in the implementation
|
||
assume IEEE floating point format. Other formats
|
||
can be supported in the future if needed. */
|
||
return flag_tree_builtin_call_dce != 0;
|
||
}
|
||
|
||
virtual unsigned int execute (function *);
|
||
|
||
}; // class pass_call_cdce
|
||
|
||
unsigned int
|
||
pass_call_cdce::execute (function *fun)
|
||
{
|
||
basic_block bb;
|
||
gimple_stmt_iterator i;
|
||
auto_vec<gcall *> cond_dead_built_in_calls;
|
||
FOR_EACH_BB_FN (bb, fun)
|
||
{
|
||
/* Skip blocks that are being optimized for size, since our
|
||
transformation always increases code size. */
|
||
if (optimize_bb_for_size_p (bb))
|
||
continue;
|
||
|
||
/* Collect dead call candidates. */
|
||
for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
|
||
{
|
||
gcall *stmt = dyn_cast <gcall *> (gsi_stmt (i));
|
||
if (stmt
|
||
&& gimple_call_builtin_p (stmt, BUILT_IN_NORMAL)
|
||
&& (gimple_call_lhs (stmt)
|
||
? can_use_internal_fn (stmt)
|
||
: can_test_argument_range (stmt))
|
||
&& can_guard_call_p (stmt))
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, "Found conditional dead call: ");
|
||
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
|
||
fprintf (dump_file, "\n");
|
||
}
|
||
if (!cond_dead_built_in_calls.exists ())
|
||
cond_dead_built_in_calls.create (64);
|
||
cond_dead_built_in_calls.safe_push (stmt);
|
||
}
|
||
}
|
||
}
|
||
|
||
if (!cond_dead_built_in_calls.exists ())
|
||
return 0;
|
||
|
||
shrink_wrap_conditional_dead_built_in_calls (cond_dead_built_in_calls);
|
||
free_dominance_info (CDI_POST_DOMINATORS);
|
||
/* As we introduced new control-flow we need to insert PHI-nodes
|
||
for the call-clobbers of the remaining call. */
|
||
mark_virtual_operands_for_renaming (fun);
|
||
return TODO_update_ssa;
|
||
}
|
||
|
||
} // anon namespace
|
||
|
||
gimple_opt_pass *
|
||
make_pass_call_cdce (gcc::context *ctxt)
|
||
{
|
||
return new pass_call_cdce (ctxt);
|
||
}
|