gcc/libgomp/testsuite/libgomp.fortran/jacobi.f
Tobias Burnus 93d9021987 libgomp – spelling fixes, incl. omp_lib.h.in
* omp_lib.h.in: Fix spelling of function declaration
        omp_get_cancell(l)ation.
        * libgomp.texi (acc_is_present, acc_async_test, acc_async_test_all):
        Fix typos.
        * env.c: Fix comment typos.
        * oacc-host.c: Likewise.
        * ordered.c: Likewise.
        * task.c: Likewise.
        * team.c: Likewise.
        * config/gcn/task.c: Likewise.
        * config/gcn/team.c: Likewise.
        * config/nvptx/task.c: Likewise.
        * config/nvptx/team.c: Likewise.
        * plugin/plugin-gcn.c: Likewise.
        * testsuite/libgomp.fortran/jacobi.f: Likewise.
        * testsuite/libgomp.hsa.c/tiling-2.c: Likewise.
        * testsuite/libgomp.oacc-c-c++-common/enter_exit-lib.c: Likewise.

From-SVN: r279218
2019-12-11 12:45:49 +01:00

262 lines
6.8 KiB
Fortran

* { dg-do run }
program main
************************************************************
* program to solve a finite difference
* discretization of Helmholtz equation :
* (d2/dx2)u + (d2/dy2)u - alpha u = f
* using Jacobi iterative method.
*
* Modified: Sanjiv Shah, Kuck and Associates, Inc. (KAI), 1998
* Author: Joseph Robicheaux, Kuck and Associates, Inc. (KAI), 1998
*
* Directives are used in this code to achieve paralleism.
* All do loops are parallelized with default 'static' scheduling.
*
* Input : n - grid dimension in x direction
* m - grid dimension in y direction
* alpha - Helmholtz constant (always greater than 0.0)
* tol - error tolerance for iterative solver
* relax - Successice over relaxation parameter
* mits - Maximum iterations for iterative solver
*
* On output
* : u(n,m) - Dependent variable (solutions)
* : f(n,m) - Right hand side function
*************************************************************
implicit none
integer n,m,mits,mtemp
include "omp_lib.h"
double precision tol,relax,alpha
common /idat/ n,m,mits,mtemp
common /fdat/tol,alpha,relax
*
* Read info
*
write(*,*) "Input n,m - grid dimension in x,y direction "
n = 64
m = 64
* read(5,*) n,m
write(*,*) n, m
write(*,*) "Input alpha - Helmholts constant "
alpha = 0.5
* read(5,*) alpha
write(*,*) alpha
write(*,*) "Input relax - Successive over-relaxation parameter"
relax = 0.9
* read(5,*) relax
write(*,*) relax
write(*,*) "Input tol - error tolerance for iterative solver"
tol = 1.0E-12
* read(5,*) tol
write(*,*) tol
write(*,*) "Input mits - Maximum iterations for solver"
mits = 100
* read(5,*) mits
write(*,*) mits
call omp_set_num_threads (2)
*
* Calls a driver routine
*
call driver ()
stop
end
subroutine driver ( )
*************************************************************
* Subroutine driver ()
* This is where the arrays are allocated and initialized.
*
* Working varaibles/arrays
* dx - grid spacing in x direction
* dy - grid spacing in y direction
*************************************************************
implicit none
integer n,m,mits,mtemp
double precision tol,relax,alpha
common /idat/ n,m,mits,mtemp
common /fdat/tol,alpha,relax
double precision u(n,m),f(n,m),dx,dy
* Initialize data
call initialize (n,m,alpha,dx,dy,u,f)
* Solve Helmholtz equation
call jacobi (n,m,dx,dy,alpha,relax,u,f,tol,mits)
* Check error between exact solution
call error_check (n,m,alpha,dx,dy,u,f)
return
end
subroutine initialize (n,m,alpha,dx,dy,u,f)
******************************************************
* Initializes data
* Assumes exact solution is u(x,y) = (1-x^2)*(1-y^2)
*
******************************************************
implicit none
integer n,m
double precision u(n,m),f(n,m),dx,dy,alpha
integer i,j, xx,yy
double precision PI
parameter (PI=3.1415926)
dx = 2.0 / (n-1)
dy = 2.0 / (m-1)
* Initialize initial condition and RHS
!$omp parallel do private(xx,yy)
do j = 1,m
do i = 1,n
xx = -1.0 + dx * dble(i-1) ! -1 < x < 1
yy = -1.0 + dy * dble(j-1) ! -1 < y < 1
u(i,j) = 0.0
f(i,j) = -alpha *(1.0-xx*xx)*(1.0-yy*yy)
& - 2.0*(1.0-xx*xx)-2.0*(1.0-yy*yy)
enddo
enddo
!$omp end parallel do
return
end
subroutine jacobi (n,m,dx,dy,alpha,omega,u,f,tol,maxit)
******************************************************************
* Subroutine HelmholtzJ
* Solves poisson equation on rectangular grid assuming :
* (1) Uniform discretization in each direction, and
* (2) Dirichlect boundary conditions
*
* Jacobi method is used in this routine
*
* Input : n,m Number of grid points in the X/Y directions
* dx,dy Grid spacing in the X/Y directions
* alpha Helmholtz eqn. coefficient
* omega Relaxation factor
* f(n,m) Right hand side function
* u(n,m) Dependent variable/Solution
* tol Tolerance for iterative solver
* maxit Maximum number of iterations
*
* Output : u(n,m) - Solution
*****************************************************************
implicit none
integer n,m,maxit
double precision dx,dy,f(n,m),u(n,m),alpha, tol,omega
*
* Local variables
*
integer i,j,k,k_local
double precision error,resid,rsum,ax,ay,b
double precision error_local, uold(n,m)
real ta,tb,tc,td,te,ta1,ta2,tb1,tb2,tc1,tc2,td1,td2
real te1,te2
real second
external second
*
* Initialize coefficients
ax = 1.0/(dx*dx) ! X-direction coef
ay = 1.0/(dy*dy) ! Y-direction coef
b = -2.0/(dx*dx)-2.0/(dy*dy) - alpha ! Central coeff
error = 10.0 * tol
k = 1
do while (k.le.maxit .and. error.gt. tol)
error = 0.0
* Copy new solution into old
!$omp parallel
!$omp do
do j=1,m
do i=1,n
uold(i,j) = u(i,j)
enddo
enddo
* Compute stencil, residual, & update
!$omp do private(resid) reduction(+:error)
do j = 2,m-1
do i = 2,n-1
* Evaluate residual
resid = (ax*(uold(i-1,j) + uold(i+1,j))
& + ay*(uold(i,j-1) + uold(i,j+1))
& + b * uold(i,j) - f(i,j))/b
* Update solution
u(i,j) = uold(i,j) - omega * resid
* Accumulate residual error
error = error + resid*resid
end do
enddo
!$omp enddo nowait
!$omp end parallel
* Error check
k = k + 1
error = sqrt(error)/dble(n*m)
*
enddo ! End iteration loop
*
print *, 'Total Number of Iterations ', k
print *, 'Residual ', error
return
end
subroutine error_check (n,m,alpha,dx,dy,u,f)
implicit none
************************************************************
* Checks error between numerical and exact solution
*
************************************************************
integer n,m
double precision u(n,m),f(n,m),dx,dy,alpha
integer i,j
double precision xx,yy,temp,error
dx = 2.0 / (n-1)
dy = 2.0 / (m-1)
error = 0.0
!$omp parallel do private(xx,yy,temp) reduction(+:error)
do j = 1,m
do i = 1,n
xx = -1.0d0 + dx * dble(i-1)
yy = -1.0d0 + dy * dble(j-1)
temp = u(i,j) - (1.0-xx*xx)*(1.0-yy*yy)
error = error + temp*temp
enddo
enddo
error = sqrt(error)/dble(n*m)
print *, 'Solution Error : ',error
return
end