gcc/gcc/tree-loop-distribution.c
Jakub Jelinek b03c30822b re PR debug/48159 (ICE: SIGSEGV in build2_stat (tree.c:3802) with -ftree-loop-distribution -g)
PR debug/48159
	* tree-ssa.c (reset_debug_uses): New function.
	* tree-flow.h (reset_debug_uses): New prototype.
	* tree-data-ref.c (stmts_from_loop): Ignore debug stmts.
	* tree-loop-distribution.c (generate_loops_for_partition): Call
	reset_debug_uses on the stmts that will be removed.  Keep around
	all debug stmts, don't count them as bits in partition bitmap.
	(generate_builtin): Don't count debug stmts or labels as bits in
	partition bitmap.

	* gcc.dg/pr48159-1.c: New test.
	* gcc.dg/pr48159-2.c: New test.

From-SVN: r173656
2011-05-11 14:53:43 +02:00

1319 lines
35 KiB
C

/* Loop distribution.
Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011
Free Software Foundation, Inc.
Contributed by Georges-Andre Silber <Georges-Andre.Silber@ensmp.fr>
and Sebastian Pop <sebastian.pop@amd.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* This pass performs loop distribution: for example, the loop
|DO I = 2, N
| A(I) = B(I) + C
| D(I) = A(I-1)*E
|ENDDO
is transformed to
|DOALL I = 2, N
| A(I) = B(I) + C
|ENDDO
|
|DOALL I = 2, N
| D(I) = A(I-1)*E
|ENDDO
This pass uses an RDG, Reduced Dependence Graph built on top of the
data dependence relations. The RDG is then topologically sorted to
obtain a map of information producers/consumers based on which it
generates the new loops. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tree-flow.h"
#include "cfgloop.h"
#include "tree-chrec.h"
#include "tree-data-ref.h"
#include "tree-scalar-evolution.h"
#include "tree-pass.h"
/* If bit I is not set, it means that this node represents an
operation that has already been performed, and that should not be
performed again. This is the subgraph of remaining important
computations that is passed to the DFS algorithm for avoiding to
include several times the same stores in different loops. */
static bitmap remaining_stmts;
/* A node of the RDG is marked in this bitmap when it has as a
predecessor a node that writes to memory. */
static bitmap upstream_mem_writes;
/* Update the PHI nodes of NEW_LOOP. NEW_LOOP is a duplicate of
ORIG_LOOP. */
static void
update_phis_for_loop_copy (struct loop *orig_loop, struct loop *new_loop)
{
tree new_ssa_name;
gimple_stmt_iterator si_new, si_orig;
edge orig_loop_latch = loop_latch_edge (orig_loop);
edge orig_entry_e = loop_preheader_edge (orig_loop);
edge new_loop_entry_e = loop_preheader_edge (new_loop);
/* Scan the phis in the headers of the old and new loops
(they are organized in exactly the same order). */
for (si_new = gsi_start_phis (new_loop->header),
si_orig = gsi_start_phis (orig_loop->header);
!gsi_end_p (si_new) && !gsi_end_p (si_orig);
gsi_next (&si_new), gsi_next (&si_orig))
{
tree def;
source_location locus;
gimple phi_new = gsi_stmt (si_new);
gimple phi_orig = gsi_stmt (si_orig);
/* Add the first phi argument for the phi in NEW_LOOP (the one
associated with the entry of NEW_LOOP) */
def = PHI_ARG_DEF_FROM_EDGE (phi_orig, orig_entry_e);
locus = gimple_phi_arg_location_from_edge (phi_orig, orig_entry_e);
add_phi_arg (phi_new, def, new_loop_entry_e, locus);
/* Add the second phi argument for the phi in NEW_LOOP (the one
associated with the latch of NEW_LOOP) */
def = PHI_ARG_DEF_FROM_EDGE (phi_orig, orig_loop_latch);
locus = gimple_phi_arg_location_from_edge (phi_orig, orig_loop_latch);
if (TREE_CODE (def) == SSA_NAME)
{
new_ssa_name = get_current_def (def);
if (!new_ssa_name)
/* This only happens if there are no definitions inside the
loop. Use the the invariant in the new loop as is. */
new_ssa_name = def;
}
else
/* Could be an integer. */
new_ssa_name = def;
add_phi_arg (phi_new, new_ssa_name, loop_latch_edge (new_loop), locus);
}
}
/* Return a copy of LOOP placed before LOOP. */
static struct loop *
copy_loop_before (struct loop *loop)
{
struct loop *res;
edge preheader = loop_preheader_edge (loop);
if (!single_exit (loop))
return NULL;
initialize_original_copy_tables ();
res = slpeel_tree_duplicate_loop_to_edge_cfg (loop, preheader);
free_original_copy_tables ();
if (!res)
return NULL;
update_phis_for_loop_copy (loop, res);
rename_variables_in_loop (res);
return res;
}
/* Creates an empty basic block after LOOP. */
static void
create_bb_after_loop (struct loop *loop)
{
edge exit = single_exit (loop);
if (!exit)
return;
split_edge (exit);
}
/* Generate code for PARTITION from the code in LOOP. The loop is
copied when COPY_P is true. All the statements not flagged in the
PARTITION bitmap are removed from the loop or from its copy. The
statements are indexed in sequence inside a basic block, and the
basic blocks of a loop are taken in dom order. Returns true when
the code gen succeeded. */
static bool
generate_loops_for_partition (struct loop *loop, bitmap partition, bool copy_p)
{
unsigned i, x;
gimple_stmt_iterator bsi;
basic_block *bbs;
if (copy_p)
{
loop = copy_loop_before (loop);
create_preheader (loop, CP_SIMPLE_PREHEADERS);
create_bb_after_loop (loop);
}
if (loop == NULL)
return false;
/* Remove stmts not in the PARTITION bitmap. The order in which we
visit the phi nodes and the statements is exactly as in
stmts_from_loop. */
bbs = get_loop_body_in_dom_order (loop);
if (MAY_HAVE_DEBUG_STMTS)
for (x = 0, i = 0; i < loop->num_nodes; i++)
{
basic_block bb = bbs[i];
for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
if (!bitmap_bit_p (partition, x++))
reset_debug_uses (gsi_stmt (bsi));
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
{
gimple stmt = gsi_stmt (bsi);
if (gimple_code (stmt) != GIMPLE_LABEL
&& !is_gimple_debug (stmt)
&& !bitmap_bit_p (partition, x++))
reset_debug_uses (stmt);
}
}
for (x = 0, i = 0; i < loop->num_nodes; i++)
{
basic_block bb = bbs[i];
for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi);)
if (!bitmap_bit_p (partition, x++))
{
gimple phi = gsi_stmt (bsi);
if (!is_gimple_reg (gimple_phi_result (phi)))
mark_virtual_phi_result_for_renaming (phi);
remove_phi_node (&bsi, true);
}
else
gsi_next (&bsi);
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi);)
{
gimple stmt = gsi_stmt (bsi);
if (gimple_code (stmt) != GIMPLE_LABEL
&& !is_gimple_debug (stmt)
&& !bitmap_bit_p (partition, x++))
{
unlink_stmt_vdef (stmt);
gsi_remove (&bsi, true);
release_defs (stmt);
}
else
gsi_next (&bsi);
}
}
free (bbs);
return true;
}
/* Build the size argument for a memset call. */
static inline tree
build_size_arg_loc (location_t loc, tree nb_iter, tree op,
gimple_seq *stmt_list)
{
gimple_seq stmts;
tree x = size_binop_loc (loc, MULT_EXPR,
fold_convert_loc (loc, sizetype, nb_iter),
TYPE_SIZE_UNIT (TREE_TYPE (op)));
x = force_gimple_operand (x, &stmts, true, NULL);
gimple_seq_add_seq (stmt_list, stmts);
return x;
}
/* Generate a call to memset. Return true when the operation succeeded. */
static void
generate_memset_zero (gimple stmt, tree op0, tree nb_iter,
gimple_stmt_iterator bsi)
{
tree addr_base, nb_bytes;
bool res = false;
gimple_seq stmt_list = NULL, stmts;
gimple fn_call;
tree mem, fn;
struct data_reference *dr = XCNEW (struct data_reference);
location_t loc = gimple_location (stmt);
DR_STMT (dr) = stmt;
DR_REF (dr) = op0;
res = dr_analyze_innermost (dr);
gcc_assert (res && stride_of_unit_type_p (DR_STEP (dr), TREE_TYPE (op0)));
nb_bytes = build_size_arg_loc (loc, nb_iter, op0, &stmt_list);
addr_base = size_binop_loc (loc, PLUS_EXPR, DR_OFFSET (dr), DR_INIT (dr));
addr_base = fold_convert_loc (loc, sizetype, addr_base);
/* Test for a negative stride, iterating over every element. */
if (integer_zerop (size_binop (PLUS_EXPR,
TYPE_SIZE_UNIT (TREE_TYPE (op0)),
fold_convert (sizetype, DR_STEP (dr)))))
{
addr_base = size_binop_loc (loc, MINUS_EXPR, addr_base,
fold_convert_loc (loc, sizetype, nb_bytes));
addr_base = size_binop_loc (loc, PLUS_EXPR, addr_base,
TYPE_SIZE_UNIT (TREE_TYPE (op0)));
}
addr_base = fold_build2_loc (loc, POINTER_PLUS_EXPR,
TREE_TYPE (DR_BASE_ADDRESS (dr)),
DR_BASE_ADDRESS (dr), addr_base);
mem = force_gimple_operand (addr_base, &stmts, true, NULL);
gimple_seq_add_seq (&stmt_list, stmts);
fn = build_fold_addr_expr (implicit_built_in_decls [BUILT_IN_MEMSET]);
fn_call = gimple_build_call (fn, 3, mem, integer_zero_node, nb_bytes);
gimple_seq_add_stmt (&stmt_list, fn_call);
gsi_insert_seq_after (&bsi, stmt_list, GSI_CONTINUE_LINKING);
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "generated memset zero\n");
free_data_ref (dr);
}
/* Tries to generate a builtin function for the instructions of LOOP
pointed to by the bits set in PARTITION. Returns true when the
operation succeeded. */
static bool
generate_builtin (struct loop *loop, bitmap partition, bool copy_p)
{
bool res = false;
unsigned i, x = 0;
basic_block *bbs;
gimple write = NULL;
gimple_stmt_iterator bsi;
tree nb_iter = number_of_exit_cond_executions (loop);
if (!nb_iter || nb_iter == chrec_dont_know)
return false;
bbs = get_loop_body_in_dom_order (loop);
for (i = 0; i < loop->num_nodes; i++)
{
basic_block bb = bbs[i];
for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
x++;
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
{
gimple stmt = gsi_stmt (bsi);
if (gimple_code (stmt) != GIMPLE_LABEL
&& !is_gimple_debug (stmt)
&& bitmap_bit_p (partition, x++)
&& is_gimple_assign (stmt)
&& !is_gimple_reg (gimple_assign_lhs (stmt)))
{
/* Don't generate the builtins when there are more than
one memory write. */
if (write != NULL)
goto end;
write = stmt;
if (bb == loop->latch)
nb_iter = number_of_latch_executions (loop);
}
}
}
if (!stmt_with_adjacent_zero_store_dr_p (write))
goto end;
/* The new statements will be placed before LOOP. */
bsi = gsi_last_bb (loop_preheader_edge (loop)->src);
generate_memset_zero (write, gimple_assign_lhs (write), nb_iter, bsi);
res = true;
/* If this is the last partition for which we generate code, we have
to destroy the loop. */
if (!copy_p)
{
unsigned nbbs = loop->num_nodes;
edge exit = single_exit (loop);
basic_block src = loop_preheader_edge (loop)->src, dest = exit->dest;
redirect_edge_pred (exit, src);
exit->flags &= ~(EDGE_TRUE_VALUE|EDGE_FALSE_VALUE);
exit->flags |= EDGE_FALLTHRU;
cancel_loop_tree (loop);
rescan_loop_exit (exit, false, true);
for (i = 0; i < nbbs; i++)
delete_basic_block (bbs[i]);
set_immediate_dominator (CDI_DOMINATORS, dest,
recompute_dominator (CDI_DOMINATORS, dest));
}
end:
free (bbs);
return res;
}
/* Generates code for PARTITION. For simple loops, this function can
generate a built-in. */
static bool
generate_code_for_partition (struct loop *loop, bitmap partition, bool copy_p)
{
if (generate_builtin (loop, partition, copy_p))
return true;
return generate_loops_for_partition (loop, partition, copy_p);
}
/* Returns true if the node V of RDG cannot be recomputed. */
static bool
rdg_cannot_recompute_vertex_p (struct graph *rdg, int v)
{
if (RDG_MEM_WRITE_STMT (rdg, v))
return true;
return false;
}
/* Returns true when the vertex V has already been generated in the
current partition (V is in PROCESSED), or when V belongs to another
partition and cannot be recomputed (V is not in REMAINING_STMTS). */
static inline bool
already_processed_vertex_p (bitmap processed, int v)
{
return (bitmap_bit_p (processed, v)
|| !bitmap_bit_p (remaining_stmts, v));
}
/* Returns NULL when there is no anti-dependence among the successors
of vertex V, otherwise returns the edge with the anti-dep. */
static struct graph_edge *
has_anti_dependence (struct vertex *v)
{
struct graph_edge *e;
if (v->succ)
for (e = v->succ; e; e = e->succ_next)
if (RDGE_TYPE (e) == anti_dd)
return e;
return NULL;
}
/* Returns true when V has an anti-dependence edge among its successors. */
static bool
predecessor_has_mem_write (struct graph *rdg, struct vertex *v)
{
struct graph_edge *e;
if (v->pred)
for (e = v->pred; e; e = e->pred_next)
if (bitmap_bit_p (upstream_mem_writes, e->src)
/* Don't consider flow channels: a write to memory followed
by a read from memory. These channels allow the split of
the RDG in different partitions. */
&& !RDG_MEM_WRITE_STMT (rdg, e->src))
return true;
return false;
}
/* Initializes the upstream_mem_writes bitmap following the
information from RDG. */
static void
mark_nodes_having_upstream_mem_writes (struct graph *rdg)
{
int v, x;
bitmap seen = BITMAP_ALLOC (NULL);
for (v = rdg->n_vertices - 1; v >= 0; v--)
if (!bitmap_bit_p (seen, v))
{
unsigned i;
VEC (int, heap) *nodes = VEC_alloc (int, heap, 3);
graphds_dfs (rdg, &v, 1, &nodes, false, NULL);
FOR_EACH_VEC_ELT (int, nodes, i, x)
{
if (!bitmap_set_bit (seen, x))
continue;
if (RDG_MEM_WRITE_STMT (rdg, x)
|| predecessor_has_mem_write (rdg, &(rdg->vertices[x]))
/* In anti dependences the read should occur before
the write, this is why both the read and the write
should be placed in the same partition. */
|| has_anti_dependence (&(rdg->vertices[x])))
{
bitmap_set_bit (upstream_mem_writes, x);
}
}
VEC_free (int, heap, nodes);
}
}
/* Returns true when vertex u has a memory write node as a predecessor
in RDG. */
static bool
has_upstream_mem_writes (int u)
{
return bitmap_bit_p (upstream_mem_writes, u);
}
static void rdg_flag_vertex_and_dependent (struct graph *, int, bitmap, bitmap,
bitmap, bool *);
/* Flag the uses of U stopping following the information from
upstream_mem_writes. */
static void
rdg_flag_uses (struct graph *rdg, int u, bitmap partition, bitmap loops,
bitmap processed, bool *part_has_writes)
{
use_operand_p use_p;
struct vertex *x = &(rdg->vertices[u]);
gimple stmt = RDGV_STMT (x);
struct graph_edge *anti_dep = has_anti_dependence (x);
/* Keep in the same partition the destination of an antidependence,
because this is a store to the exact same location. Putting this
in another partition is bad for cache locality. */
if (anti_dep)
{
int v = anti_dep->dest;
if (!already_processed_vertex_p (processed, v))
rdg_flag_vertex_and_dependent (rdg, v, partition, loops,
processed, part_has_writes);
}
if (gimple_code (stmt) != GIMPLE_PHI)
{
if ((use_p = gimple_vuse_op (stmt)) != NULL_USE_OPERAND_P)
{
tree use = USE_FROM_PTR (use_p);
if (TREE_CODE (use) == SSA_NAME)
{
gimple def_stmt = SSA_NAME_DEF_STMT (use);
int v = rdg_vertex_for_stmt (rdg, def_stmt);
if (v >= 0
&& !already_processed_vertex_p (processed, v))
rdg_flag_vertex_and_dependent (rdg, v, partition, loops,
processed, part_has_writes);
}
}
}
if (is_gimple_assign (stmt) && has_upstream_mem_writes (u))
{
tree op0 = gimple_assign_lhs (stmt);
/* Scalar channels don't have enough space for transmitting data
between tasks, unless we add more storage by privatizing. */
if (is_gimple_reg (op0))
{
use_operand_p use_p;
imm_use_iterator iter;
FOR_EACH_IMM_USE_FAST (use_p, iter, op0)
{
int v = rdg_vertex_for_stmt (rdg, USE_STMT (use_p));
if (!already_processed_vertex_p (processed, v))
rdg_flag_vertex_and_dependent (rdg, v, partition, loops,
processed, part_has_writes);
}
}
}
}
/* Flag V from RDG as part of PARTITION, and also flag its loop number
in LOOPS. */
static void
rdg_flag_vertex (struct graph *rdg, int v, bitmap partition, bitmap loops,
bool *part_has_writes)
{
struct loop *loop;
if (!bitmap_set_bit (partition, v))
return;
loop = loop_containing_stmt (RDG_STMT (rdg, v));
bitmap_set_bit (loops, loop->num);
if (rdg_cannot_recompute_vertex_p (rdg, v))
{
*part_has_writes = true;
bitmap_clear_bit (remaining_stmts, v);
}
}
/* Flag in the bitmap PARTITION the vertex V and all its predecessors.
Also flag their loop number in LOOPS. */
static void
rdg_flag_vertex_and_dependent (struct graph *rdg, int v, bitmap partition,
bitmap loops, bitmap processed,
bool *part_has_writes)
{
unsigned i;
VEC (int, heap) *nodes = VEC_alloc (int, heap, 3);
int x;
bitmap_set_bit (processed, v);
rdg_flag_uses (rdg, v, partition, loops, processed, part_has_writes);
graphds_dfs (rdg, &v, 1, &nodes, false, remaining_stmts);
rdg_flag_vertex (rdg, v, partition, loops, part_has_writes);
FOR_EACH_VEC_ELT (int, nodes, i, x)
if (!already_processed_vertex_p (processed, x))
rdg_flag_vertex_and_dependent (rdg, x, partition, loops, processed,
part_has_writes);
VEC_free (int, heap, nodes);
}
/* Initialize CONDS with all the condition statements from the basic
blocks of LOOP. */
static void
collect_condition_stmts (struct loop *loop, VEC (gimple, heap) **conds)
{
unsigned i;
edge e;
VEC (edge, heap) *exits = get_loop_exit_edges (loop);
FOR_EACH_VEC_ELT (edge, exits, i, e)
{
gimple cond = last_stmt (e->src);
if (cond)
VEC_safe_push (gimple, heap, *conds, cond);
}
VEC_free (edge, heap, exits);
}
/* Add to PARTITION all the exit condition statements for LOOPS
together with all their dependent statements determined from
RDG. */
static void
rdg_flag_loop_exits (struct graph *rdg, bitmap loops, bitmap partition,
bitmap processed, bool *part_has_writes)
{
unsigned i;
bitmap_iterator bi;
VEC (gimple, heap) *conds = VEC_alloc (gimple, heap, 3);
EXECUTE_IF_SET_IN_BITMAP (loops, 0, i, bi)
collect_condition_stmts (get_loop (i), &conds);
while (!VEC_empty (gimple, conds))
{
gimple cond = VEC_pop (gimple, conds);
int v = rdg_vertex_for_stmt (rdg, cond);
bitmap new_loops = BITMAP_ALLOC (NULL);
if (!already_processed_vertex_p (processed, v))
rdg_flag_vertex_and_dependent (rdg, v, partition, new_loops, processed,
part_has_writes);
EXECUTE_IF_SET_IN_BITMAP (new_loops, 0, i, bi)
if (bitmap_set_bit (loops, i))
collect_condition_stmts (get_loop (i), &conds);
BITMAP_FREE (new_loops);
}
VEC_free (gimple, heap, conds);
}
/* Returns a bitmap in which all the statements needed for computing
the strongly connected component C of the RDG are flagged, also
including the loop exit conditions. */
static bitmap
build_rdg_partition_for_component (struct graph *rdg, rdgc c,
bool *part_has_writes)
{
int i, v;
bitmap partition = BITMAP_ALLOC (NULL);
bitmap loops = BITMAP_ALLOC (NULL);
bitmap processed = BITMAP_ALLOC (NULL);
FOR_EACH_VEC_ELT (int, c->vertices, i, v)
if (!already_processed_vertex_p (processed, v))
rdg_flag_vertex_and_dependent (rdg, v, partition, loops, processed,
part_has_writes);
rdg_flag_loop_exits (rdg, loops, partition, processed, part_has_writes);
BITMAP_FREE (processed);
BITMAP_FREE (loops);
return partition;
}
/* Free memory for COMPONENTS. */
static void
free_rdg_components (VEC (rdgc, heap) *components)
{
int i;
rdgc x;
FOR_EACH_VEC_ELT (rdgc, components, i, x)
{
VEC_free (int, heap, x->vertices);
free (x);
}
VEC_free (rdgc, heap, components);
}
/* Build the COMPONENTS vector with the strongly connected components
of RDG in which the STARTING_VERTICES occur. */
static void
rdg_build_components (struct graph *rdg, VEC (int, heap) *starting_vertices,
VEC (rdgc, heap) **components)
{
int i, v;
bitmap saved_components = BITMAP_ALLOC (NULL);
int n_components = graphds_scc (rdg, NULL);
VEC (int, heap) **all_components = XNEWVEC (VEC (int, heap) *, n_components);
for (i = 0; i < n_components; i++)
all_components[i] = VEC_alloc (int, heap, 3);
for (i = 0; i < rdg->n_vertices; i++)
VEC_safe_push (int, heap, all_components[rdg->vertices[i].component], i);
FOR_EACH_VEC_ELT (int, starting_vertices, i, v)
{
int c = rdg->vertices[v].component;
if (bitmap_set_bit (saved_components, c))
{
rdgc x = XCNEW (struct rdg_component);
x->num = c;
x->vertices = all_components[c];
VEC_safe_push (rdgc, heap, *components, x);
}
}
for (i = 0; i < n_components; i++)
if (!bitmap_bit_p (saved_components, i))
VEC_free (int, heap, all_components[i]);
free (all_components);
BITMAP_FREE (saved_components);
}
/* Returns true when it is possible to generate a builtin pattern for
the PARTITION of RDG. For the moment we detect only the memset
zero pattern. */
static bool
can_generate_builtin (struct graph *rdg, bitmap partition)
{
unsigned i;
bitmap_iterator bi;
int nb_reads = 0;
int nb_writes = 0;
int stores_zero = 0;
EXECUTE_IF_SET_IN_BITMAP (partition, 0, i, bi)
if (RDG_MEM_READS_STMT (rdg, i))
nb_reads++;
else if (RDG_MEM_WRITE_STMT (rdg, i))
{
nb_writes++;
if (stmt_with_adjacent_zero_store_dr_p (RDG_STMT (rdg, i)))
stores_zero++;
}
return stores_zero == 1 && nb_writes == 1 && nb_reads == 0;
}
/* Returns true when PARTITION1 and PARTITION2 have similar memory
accesses in RDG. */
static bool
similar_memory_accesses (struct graph *rdg, bitmap partition1,
bitmap partition2)
{
unsigned i, j;
bitmap_iterator bi, bj;
EXECUTE_IF_SET_IN_BITMAP (partition1, 0, i, bi)
if (RDG_MEM_WRITE_STMT (rdg, i)
|| RDG_MEM_READS_STMT (rdg, i))
EXECUTE_IF_SET_IN_BITMAP (partition2, 0, j, bj)
if (RDG_MEM_WRITE_STMT (rdg, j)
|| RDG_MEM_READS_STMT (rdg, j))
if (rdg_has_similar_memory_accesses (rdg, i, j))
return true;
return false;
}
/* Fuse all the partitions from PARTITIONS that contain similar memory
references, i.e., we're taking care of cache locality. This
function does not fuse those partitions that contain patterns that
can be code generated with builtins. */
static void
fuse_partitions_with_similar_memory_accesses (struct graph *rdg,
VEC (bitmap, heap) **partitions)
{
int p1, p2;
bitmap partition1, partition2;
FOR_EACH_VEC_ELT (bitmap, *partitions, p1, partition1)
if (!can_generate_builtin (rdg, partition1))
FOR_EACH_VEC_ELT (bitmap, *partitions, p2, partition2)
if (p1 != p2
&& !can_generate_builtin (rdg, partition2)
&& similar_memory_accesses (rdg, partition1, partition2))
{
bitmap_ior_into (partition1, partition2);
VEC_ordered_remove (bitmap, *partitions, p2);
p2--;
}
}
/* Returns true when DEF is an SSA_NAME defined in LOOP and used after
the LOOP. */
static bool
ssa_name_has_uses_outside_loop_p (tree def, loop_p loop)
{
imm_use_iterator imm_iter;
use_operand_p use_p;
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, def)
if (loop != loop_containing_stmt (USE_STMT (use_p)))
return true;
return false;
}
/* Returns true when STMT defines a scalar variable used after the
loop. */
static bool
stmt_has_scalar_dependences_outside_loop (gimple stmt)
{
tree name;
switch (gimple_code (stmt))
{
case GIMPLE_ASSIGN:
name = gimple_assign_lhs (stmt);
break;
case GIMPLE_PHI:
name = gimple_phi_result (stmt);
break;
default:
return false;
}
return TREE_CODE (name) == SSA_NAME
&& ssa_name_has_uses_outside_loop_p (name, loop_containing_stmt (stmt));
}
/* Returns true when STMT will be code generated in a partition of RDG
different than PART and that will not be code generated as a
builtin. */
static bool
stmt_generated_in_another_partition (struct graph *rdg, gimple stmt, int part,
VEC (bitmap, heap) *partitions)
{
int p;
bitmap pp;
unsigned i;
bitmap_iterator bi;
FOR_EACH_VEC_ELT (bitmap, partitions, p, pp)
if (p != part
&& !can_generate_builtin (rdg, pp))
EXECUTE_IF_SET_IN_BITMAP (pp, 0, i, bi)
if (stmt == RDG_STMT (rdg, i))
return true;
return false;
}
/* For each partition in PARTITIONS that will be code generated using
a builtin, add its scalar computations used after the loop to
PARTITION. */
static void
add_scalar_computations_to_partition (struct graph *rdg,
VEC (bitmap, heap) *partitions,
bitmap partition)
{
int p;
bitmap pp;
unsigned i;
bitmap_iterator bi;
bitmap l = BITMAP_ALLOC (NULL);
bitmap pr = BITMAP_ALLOC (NULL);
bool f = false;
FOR_EACH_VEC_ELT (bitmap, partitions, p, pp)
if (can_generate_builtin (rdg, pp))
EXECUTE_IF_SET_IN_BITMAP (pp, 0, i, bi)
if (stmt_has_scalar_dependences_outside_loop (RDG_STMT (rdg, i))
&& !stmt_generated_in_another_partition (rdg, RDG_STMT (rdg, i), p,
partitions))
rdg_flag_vertex_and_dependent (rdg, i, partition, l, pr, &f);
rdg_flag_loop_exits (rdg, l, partition, pr, &f);
BITMAP_FREE (pr);
BITMAP_FREE (l);
}
/* Aggregate several components into a useful partition that is
registered in the PARTITIONS vector. Partitions will be
distributed in different loops. */
static void
rdg_build_partitions (struct graph *rdg, VEC (rdgc, heap) *components,
VEC (int, heap) **other_stores,
VEC (bitmap, heap) **partitions, bitmap processed)
{
int i;
rdgc x;
bitmap partition = BITMAP_ALLOC (NULL);
FOR_EACH_VEC_ELT (rdgc, components, i, x)
{
bitmap np;
bool part_has_writes = false;
int v = VEC_index (int, x->vertices, 0);
if (bitmap_bit_p (processed, v))
continue;
np = build_rdg_partition_for_component (rdg, x, &part_has_writes);
bitmap_ior_into (partition, np);
bitmap_ior_into (processed, np);
BITMAP_FREE (np);
if (part_has_writes)
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "ldist useful partition:\n");
dump_bitmap (dump_file, partition);
}
VEC_safe_push (bitmap, heap, *partitions, partition);
partition = BITMAP_ALLOC (NULL);
}
}
/* Add the nodes from the RDG that were not marked as processed, and
that are used outside the current loop. These are scalar
computations that are not yet part of previous partitions. */
for (i = 0; i < rdg->n_vertices; i++)
if (!bitmap_bit_p (processed, i)
&& rdg_defs_used_in_other_loops_p (rdg, i))
VEC_safe_push (int, heap, *other_stores, i);
/* If there are still statements left in the OTHER_STORES array,
create other components and partitions with these stores and
their dependences. */
if (VEC_length (int, *other_stores) > 0)
{
VEC (rdgc, heap) *comps = VEC_alloc (rdgc, heap, 3);
VEC (int, heap) *foo = VEC_alloc (int, heap, 3);
rdg_build_components (rdg, *other_stores, &comps);
rdg_build_partitions (rdg, comps, &foo, partitions, processed);
VEC_free (int, heap, foo);
free_rdg_components (comps);
}
add_scalar_computations_to_partition (rdg, *partitions, partition);
/* If there is something left in the last partition, save it. */
if (bitmap_count_bits (partition) > 0)
VEC_safe_push (bitmap, heap, *partitions, partition);
else
BITMAP_FREE (partition);
fuse_partitions_with_similar_memory_accesses (rdg, partitions);
}
/* Dump to FILE the PARTITIONS. */
static void
dump_rdg_partitions (FILE *file, VEC (bitmap, heap) *partitions)
{
int i;
bitmap partition;
FOR_EACH_VEC_ELT (bitmap, partitions, i, partition)
debug_bitmap_file (file, partition);
}
/* Debug PARTITIONS. */
extern void debug_rdg_partitions (VEC (bitmap, heap) *);
DEBUG_FUNCTION void
debug_rdg_partitions (VEC (bitmap, heap) *partitions)
{
dump_rdg_partitions (stderr, partitions);
}
/* Returns the number of read and write operations in the RDG. */
static int
number_of_rw_in_rdg (struct graph *rdg)
{
int i, res = 0;
for (i = 0; i < rdg->n_vertices; i++)
{
if (RDG_MEM_WRITE_STMT (rdg, i))
++res;
if (RDG_MEM_READS_STMT (rdg, i))
++res;
}
return res;
}
/* Returns the number of read and write operations in a PARTITION of
the RDG. */
static int
number_of_rw_in_partition (struct graph *rdg, bitmap partition)
{
int res = 0;
unsigned i;
bitmap_iterator ii;
EXECUTE_IF_SET_IN_BITMAP (partition, 0, i, ii)
{
if (RDG_MEM_WRITE_STMT (rdg, i))
++res;
if (RDG_MEM_READS_STMT (rdg, i))
++res;
}
return res;
}
/* Returns true when one of the PARTITIONS contains all the read or
write operations of RDG. */
static bool
partition_contains_all_rw (struct graph *rdg, VEC (bitmap, heap) *partitions)
{
int i;
bitmap partition;
int nrw = number_of_rw_in_rdg (rdg);
FOR_EACH_VEC_ELT (bitmap, partitions, i, partition)
if (nrw == number_of_rw_in_partition (rdg, partition))
return true;
return false;
}
/* Generate code from STARTING_VERTICES in RDG. Returns the number of
distributed loops. */
static int
ldist_gen (struct loop *loop, struct graph *rdg,
VEC (int, heap) *starting_vertices)
{
int i, nbp;
VEC (rdgc, heap) *components = VEC_alloc (rdgc, heap, 3);
VEC (bitmap, heap) *partitions = VEC_alloc (bitmap, heap, 3);
VEC (int, heap) *other_stores = VEC_alloc (int, heap, 3);
bitmap partition, processed = BITMAP_ALLOC (NULL);
remaining_stmts = BITMAP_ALLOC (NULL);
upstream_mem_writes = BITMAP_ALLOC (NULL);
for (i = 0; i < rdg->n_vertices; i++)
{
bitmap_set_bit (remaining_stmts, i);
/* Save in OTHER_STORES all the memory writes that are not in
STARTING_VERTICES. */
if (RDG_MEM_WRITE_STMT (rdg, i))
{
int v;
unsigned j;
bool found = false;
FOR_EACH_VEC_ELT (int, starting_vertices, j, v)
if (i == v)
{
found = true;
break;
}
if (!found)
VEC_safe_push (int, heap, other_stores, i);
}
}
mark_nodes_having_upstream_mem_writes (rdg);
rdg_build_components (rdg, starting_vertices, &components);
rdg_build_partitions (rdg, components, &other_stores, &partitions,
processed);
BITMAP_FREE (processed);
nbp = VEC_length (bitmap, partitions);
if (nbp <= 1
|| partition_contains_all_rw (rdg, partitions))
goto ldist_done;
if (dump_file && (dump_flags & TDF_DETAILS))
dump_rdg_partitions (dump_file, partitions);
FOR_EACH_VEC_ELT (bitmap, partitions, i, partition)
if (!generate_code_for_partition (loop, partition, i < nbp - 1))
goto ldist_done;
rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
update_ssa (TODO_update_ssa_only_virtuals | TODO_update_ssa);
ldist_done:
BITMAP_FREE (remaining_stmts);
BITMAP_FREE (upstream_mem_writes);
FOR_EACH_VEC_ELT (bitmap, partitions, i, partition)
BITMAP_FREE (partition);
VEC_free (int, heap, other_stores);
VEC_free (bitmap, heap, partitions);
free_rdg_components (components);
return nbp;
}
/* Distributes the code from LOOP in such a way that producer
statements are placed before consumer statements. When STMTS is
NULL, performs the maximal distribution, if STMTS is not NULL,
tries to separate only these statements from the LOOP's body.
Returns the number of distributed loops. */
static int
distribute_loop (struct loop *loop, VEC (gimple, heap) *stmts)
{
int res = 0;
struct graph *rdg;
gimple s;
unsigned i;
VEC (int, heap) *vertices;
VEC (ddr_p, heap) *dependence_relations;
VEC (data_reference_p, heap) *datarefs;
VEC (loop_p, heap) *loop_nest;
if (loop->num_nodes > 2)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"FIXME: Loop %d not distributed: it has more than two basic blocks.\n",
loop->num);
return res;
}
datarefs = VEC_alloc (data_reference_p, heap, 10);
dependence_relations = VEC_alloc (ddr_p, heap, 100);
loop_nest = VEC_alloc (loop_p, heap, 3);
rdg = build_rdg (loop, &loop_nest, &dependence_relations, &datarefs);
if (!rdg)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"FIXME: Loop %d not distributed: failed to build the RDG.\n",
loop->num);
free_dependence_relations (dependence_relations);
free_data_refs (datarefs);
VEC_free (loop_p, heap, loop_nest);
return res;
}
vertices = VEC_alloc (int, heap, 3);
if (dump_file && (dump_flags & TDF_DETAILS))
dump_rdg (dump_file, rdg);
FOR_EACH_VEC_ELT (gimple, stmts, i, s)
{
int v = rdg_vertex_for_stmt (rdg, s);
if (v >= 0)
{
VEC_safe_push (int, heap, vertices, v);
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"ldist asked to generate code for vertex %d\n", v);
}
}
res = ldist_gen (loop, rdg, vertices);
VEC_free (int, heap, vertices);
free_rdg (rdg);
free_dependence_relations (dependence_relations);
free_data_refs (datarefs);
VEC_free (loop_p, heap, loop_nest);
return res;
}
/* Distribute all loops in the current function. */
static unsigned int
tree_loop_distribution (void)
{
struct loop *loop;
loop_iterator li;
int nb_generated_loops = 0;
FOR_EACH_LOOP (li, loop, 0)
{
VEC (gimple, heap) *work_list = NULL;
int num = loop->num;
/* If the loop doesn't have a single exit we will fail anyway,
so do that early. */
if (!single_exit (loop))
continue;
/* If both flag_tree_loop_distribute_patterns and
flag_tree_loop_distribution are set, then only
distribute_patterns is executed. */
if (flag_tree_loop_distribute_patterns)
{
/* With the following working list, we're asking
distribute_loop to separate from the rest of the loop the
stores of the form "A[i] = 0". */
stores_zero_from_loop (loop, &work_list);
/* Do nothing if there are no patterns to be distributed. */
if (VEC_length (gimple, work_list) > 0)
nb_generated_loops = distribute_loop (loop, work_list);
}
else if (flag_tree_loop_distribution)
{
/* With the following working list, we're asking
distribute_loop to separate the stores of the loop: when
dependences allow, it will end on having one store per
loop. */
stores_from_loop (loop, &work_list);
/* A simple heuristic for cache locality is to not split
stores to the same array. Without this call, an unrolled
loop would be split into as many loops as unroll factor,
each loop storing in the same array. */
remove_similar_memory_refs (&work_list);
nb_generated_loops = distribute_loop (loop, work_list);
}
if (dump_file && (dump_flags & TDF_DETAILS))
{
if (nb_generated_loops > 1)
fprintf (dump_file, "Loop %d distributed: split to %d loops.\n",
num, nb_generated_loops);
else
fprintf (dump_file, "Loop %d is the same.\n", num);
}
verify_loop_structure ();
VEC_free (gimple, heap, work_list);
}
return 0;
}
static bool
gate_tree_loop_distribution (void)
{
return flag_tree_loop_distribution
|| flag_tree_loop_distribute_patterns;
}
struct gimple_opt_pass pass_loop_distribution =
{
{
GIMPLE_PASS,
"ldist", /* name */
gate_tree_loop_distribution, /* gate */
tree_loop_distribution, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_TREE_LOOP_DISTRIBUTION, /* tv_id */
PROP_cfg | PROP_ssa, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_dump_func /* todo_flags_finish */
}
};