b03c30822b
PR debug/48159 * tree-ssa.c (reset_debug_uses): New function. * tree-flow.h (reset_debug_uses): New prototype. * tree-data-ref.c (stmts_from_loop): Ignore debug stmts. * tree-loop-distribution.c (generate_loops_for_partition): Call reset_debug_uses on the stmts that will be removed. Keep around all debug stmts, don't count them as bits in partition bitmap. (generate_builtin): Don't count debug stmts or labels as bits in partition bitmap. * gcc.dg/pr48159-1.c: New test. * gcc.dg/pr48159-2.c: New test. From-SVN: r173656
1319 lines
35 KiB
C
1319 lines
35 KiB
C
/* Loop distribution.
|
|
Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011
|
|
Free Software Foundation, Inc.
|
|
Contributed by Georges-Andre Silber <Georges-Andre.Silber@ensmp.fr>
|
|
and Sebastian Pop <sebastian.pop@amd.com>.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by the
|
|
Free Software Foundation; either version 3, or (at your option) any
|
|
later version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
/* This pass performs loop distribution: for example, the loop
|
|
|
|
|DO I = 2, N
|
|
| A(I) = B(I) + C
|
|
| D(I) = A(I-1)*E
|
|
|ENDDO
|
|
|
|
is transformed to
|
|
|
|
|DOALL I = 2, N
|
|
| A(I) = B(I) + C
|
|
|ENDDO
|
|
|
|
|
|DOALL I = 2, N
|
|
| D(I) = A(I-1)*E
|
|
|ENDDO
|
|
|
|
This pass uses an RDG, Reduced Dependence Graph built on top of the
|
|
data dependence relations. The RDG is then topologically sorted to
|
|
obtain a map of information producers/consumers based on which it
|
|
generates the new loops. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "tree-flow.h"
|
|
#include "cfgloop.h"
|
|
#include "tree-chrec.h"
|
|
#include "tree-data-ref.h"
|
|
#include "tree-scalar-evolution.h"
|
|
#include "tree-pass.h"
|
|
|
|
/* If bit I is not set, it means that this node represents an
|
|
operation that has already been performed, and that should not be
|
|
performed again. This is the subgraph of remaining important
|
|
computations that is passed to the DFS algorithm for avoiding to
|
|
include several times the same stores in different loops. */
|
|
static bitmap remaining_stmts;
|
|
|
|
/* A node of the RDG is marked in this bitmap when it has as a
|
|
predecessor a node that writes to memory. */
|
|
static bitmap upstream_mem_writes;
|
|
|
|
/* Update the PHI nodes of NEW_LOOP. NEW_LOOP is a duplicate of
|
|
ORIG_LOOP. */
|
|
|
|
static void
|
|
update_phis_for_loop_copy (struct loop *orig_loop, struct loop *new_loop)
|
|
{
|
|
tree new_ssa_name;
|
|
gimple_stmt_iterator si_new, si_orig;
|
|
edge orig_loop_latch = loop_latch_edge (orig_loop);
|
|
edge orig_entry_e = loop_preheader_edge (orig_loop);
|
|
edge new_loop_entry_e = loop_preheader_edge (new_loop);
|
|
|
|
/* Scan the phis in the headers of the old and new loops
|
|
(they are organized in exactly the same order). */
|
|
for (si_new = gsi_start_phis (new_loop->header),
|
|
si_orig = gsi_start_phis (orig_loop->header);
|
|
!gsi_end_p (si_new) && !gsi_end_p (si_orig);
|
|
gsi_next (&si_new), gsi_next (&si_orig))
|
|
{
|
|
tree def;
|
|
source_location locus;
|
|
gimple phi_new = gsi_stmt (si_new);
|
|
gimple phi_orig = gsi_stmt (si_orig);
|
|
|
|
/* Add the first phi argument for the phi in NEW_LOOP (the one
|
|
associated with the entry of NEW_LOOP) */
|
|
def = PHI_ARG_DEF_FROM_EDGE (phi_orig, orig_entry_e);
|
|
locus = gimple_phi_arg_location_from_edge (phi_orig, orig_entry_e);
|
|
add_phi_arg (phi_new, def, new_loop_entry_e, locus);
|
|
|
|
/* Add the second phi argument for the phi in NEW_LOOP (the one
|
|
associated with the latch of NEW_LOOP) */
|
|
def = PHI_ARG_DEF_FROM_EDGE (phi_orig, orig_loop_latch);
|
|
locus = gimple_phi_arg_location_from_edge (phi_orig, orig_loop_latch);
|
|
|
|
if (TREE_CODE (def) == SSA_NAME)
|
|
{
|
|
new_ssa_name = get_current_def (def);
|
|
|
|
if (!new_ssa_name)
|
|
/* This only happens if there are no definitions inside the
|
|
loop. Use the the invariant in the new loop as is. */
|
|
new_ssa_name = def;
|
|
}
|
|
else
|
|
/* Could be an integer. */
|
|
new_ssa_name = def;
|
|
|
|
add_phi_arg (phi_new, new_ssa_name, loop_latch_edge (new_loop), locus);
|
|
}
|
|
}
|
|
|
|
/* Return a copy of LOOP placed before LOOP. */
|
|
|
|
static struct loop *
|
|
copy_loop_before (struct loop *loop)
|
|
{
|
|
struct loop *res;
|
|
edge preheader = loop_preheader_edge (loop);
|
|
|
|
if (!single_exit (loop))
|
|
return NULL;
|
|
|
|
initialize_original_copy_tables ();
|
|
res = slpeel_tree_duplicate_loop_to_edge_cfg (loop, preheader);
|
|
free_original_copy_tables ();
|
|
|
|
if (!res)
|
|
return NULL;
|
|
|
|
update_phis_for_loop_copy (loop, res);
|
|
rename_variables_in_loop (res);
|
|
|
|
return res;
|
|
}
|
|
|
|
/* Creates an empty basic block after LOOP. */
|
|
|
|
static void
|
|
create_bb_after_loop (struct loop *loop)
|
|
{
|
|
edge exit = single_exit (loop);
|
|
|
|
if (!exit)
|
|
return;
|
|
|
|
split_edge (exit);
|
|
}
|
|
|
|
/* Generate code for PARTITION from the code in LOOP. The loop is
|
|
copied when COPY_P is true. All the statements not flagged in the
|
|
PARTITION bitmap are removed from the loop or from its copy. The
|
|
statements are indexed in sequence inside a basic block, and the
|
|
basic blocks of a loop are taken in dom order. Returns true when
|
|
the code gen succeeded. */
|
|
|
|
static bool
|
|
generate_loops_for_partition (struct loop *loop, bitmap partition, bool copy_p)
|
|
{
|
|
unsigned i, x;
|
|
gimple_stmt_iterator bsi;
|
|
basic_block *bbs;
|
|
|
|
if (copy_p)
|
|
{
|
|
loop = copy_loop_before (loop);
|
|
create_preheader (loop, CP_SIMPLE_PREHEADERS);
|
|
create_bb_after_loop (loop);
|
|
}
|
|
|
|
if (loop == NULL)
|
|
return false;
|
|
|
|
/* Remove stmts not in the PARTITION bitmap. The order in which we
|
|
visit the phi nodes and the statements is exactly as in
|
|
stmts_from_loop. */
|
|
bbs = get_loop_body_in_dom_order (loop);
|
|
|
|
if (MAY_HAVE_DEBUG_STMTS)
|
|
for (x = 0, i = 0; i < loop->num_nodes; i++)
|
|
{
|
|
basic_block bb = bbs[i];
|
|
|
|
for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
|
if (!bitmap_bit_p (partition, x++))
|
|
reset_debug_uses (gsi_stmt (bsi));
|
|
|
|
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
|
{
|
|
gimple stmt = gsi_stmt (bsi);
|
|
if (gimple_code (stmt) != GIMPLE_LABEL
|
|
&& !is_gimple_debug (stmt)
|
|
&& !bitmap_bit_p (partition, x++))
|
|
reset_debug_uses (stmt);
|
|
}
|
|
}
|
|
|
|
for (x = 0, i = 0; i < loop->num_nodes; i++)
|
|
{
|
|
basic_block bb = bbs[i];
|
|
|
|
for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi);)
|
|
if (!bitmap_bit_p (partition, x++))
|
|
{
|
|
gimple phi = gsi_stmt (bsi);
|
|
if (!is_gimple_reg (gimple_phi_result (phi)))
|
|
mark_virtual_phi_result_for_renaming (phi);
|
|
remove_phi_node (&bsi, true);
|
|
}
|
|
else
|
|
gsi_next (&bsi);
|
|
|
|
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi);)
|
|
{
|
|
gimple stmt = gsi_stmt (bsi);
|
|
if (gimple_code (stmt) != GIMPLE_LABEL
|
|
&& !is_gimple_debug (stmt)
|
|
&& !bitmap_bit_p (partition, x++))
|
|
{
|
|
unlink_stmt_vdef (stmt);
|
|
gsi_remove (&bsi, true);
|
|
release_defs (stmt);
|
|
}
|
|
else
|
|
gsi_next (&bsi);
|
|
}
|
|
}
|
|
|
|
free (bbs);
|
|
return true;
|
|
}
|
|
|
|
/* Build the size argument for a memset call. */
|
|
|
|
static inline tree
|
|
build_size_arg_loc (location_t loc, tree nb_iter, tree op,
|
|
gimple_seq *stmt_list)
|
|
{
|
|
gimple_seq stmts;
|
|
tree x = size_binop_loc (loc, MULT_EXPR,
|
|
fold_convert_loc (loc, sizetype, nb_iter),
|
|
TYPE_SIZE_UNIT (TREE_TYPE (op)));
|
|
x = force_gimple_operand (x, &stmts, true, NULL);
|
|
gimple_seq_add_seq (stmt_list, stmts);
|
|
|
|
return x;
|
|
}
|
|
|
|
/* Generate a call to memset. Return true when the operation succeeded. */
|
|
|
|
static void
|
|
generate_memset_zero (gimple stmt, tree op0, tree nb_iter,
|
|
gimple_stmt_iterator bsi)
|
|
{
|
|
tree addr_base, nb_bytes;
|
|
bool res = false;
|
|
gimple_seq stmt_list = NULL, stmts;
|
|
gimple fn_call;
|
|
tree mem, fn;
|
|
struct data_reference *dr = XCNEW (struct data_reference);
|
|
location_t loc = gimple_location (stmt);
|
|
|
|
DR_STMT (dr) = stmt;
|
|
DR_REF (dr) = op0;
|
|
res = dr_analyze_innermost (dr);
|
|
gcc_assert (res && stride_of_unit_type_p (DR_STEP (dr), TREE_TYPE (op0)));
|
|
|
|
nb_bytes = build_size_arg_loc (loc, nb_iter, op0, &stmt_list);
|
|
addr_base = size_binop_loc (loc, PLUS_EXPR, DR_OFFSET (dr), DR_INIT (dr));
|
|
addr_base = fold_convert_loc (loc, sizetype, addr_base);
|
|
|
|
/* Test for a negative stride, iterating over every element. */
|
|
if (integer_zerop (size_binop (PLUS_EXPR,
|
|
TYPE_SIZE_UNIT (TREE_TYPE (op0)),
|
|
fold_convert (sizetype, DR_STEP (dr)))))
|
|
{
|
|
addr_base = size_binop_loc (loc, MINUS_EXPR, addr_base,
|
|
fold_convert_loc (loc, sizetype, nb_bytes));
|
|
addr_base = size_binop_loc (loc, PLUS_EXPR, addr_base,
|
|
TYPE_SIZE_UNIT (TREE_TYPE (op0)));
|
|
}
|
|
|
|
addr_base = fold_build2_loc (loc, POINTER_PLUS_EXPR,
|
|
TREE_TYPE (DR_BASE_ADDRESS (dr)),
|
|
DR_BASE_ADDRESS (dr), addr_base);
|
|
mem = force_gimple_operand (addr_base, &stmts, true, NULL);
|
|
gimple_seq_add_seq (&stmt_list, stmts);
|
|
|
|
fn = build_fold_addr_expr (implicit_built_in_decls [BUILT_IN_MEMSET]);
|
|
fn_call = gimple_build_call (fn, 3, mem, integer_zero_node, nb_bytes);
|
|
gimple_seq_add_stmt (&stmt_list, fn_call);
|
|
gsi_insert_seq_after (&bsi, stmt_list, GSI_CONTINUE_LINKING);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "generated memset zero\n");
|
|
|
|
free_data_ref (dr);
|
|
}
|
|
|
|
/* Tries to generate a builtin function for the instructions of LOOP
|
|
pointed to by the bits set in PARTITION. Returns true when the
|
|
operation succeeded. */
|
|
|
|
static bool
|
|
generate_builtin (struct loop *loop, bitmap partition, bool copy_p)
|
|
{
|
|
bool res = false;
|
|
unsigned i, x = 0;
|
|
basic_block *bbs;
|
|
gimple write = NULL;
|
|
gimple_stmt_iterator bsi;
|
|
tree nb_iter = number_of_exit_cond_executions (loop);
|
|
|
|
if (!nb_iter || nb_iter == chrec_dont_know)
|
|
return false;
|
|
|
|
bbs = get_loop_body_in_dom_order (loop);
|
|
|
|
for (i = 0; i < loop->num_nodes; i++)
|
|
{
|
|
basic_block bb = bbs[i];
|
|
|
|
for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
|
x++;
|
|
|
|
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
|
{
|
|
gimple stmt = gsi_stmt (bsi);
|
|
|
|
if (gimple_code (stmt) != GIMPLE_LABEL
|
|
&& !is_gimple_debug (stmt)
|
|
&& bitmap_bit_p (partition, x++)
|
|
&& is_gimple_assign (stmt)
|
|
&& !is_gimple_reg (gimple_assign_lhs (stmt)))
|
|
{
|
|
/* Don't generate the builtins when there are more than
|
|
one memory write. */
|
|
if (write != NULL)
|
|
goto end;
|
|
|
|
write = stmt;
|
|
if (bb == loop->latch)
|
|
nb_iter = number_of_latch_executions (loop);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!stmt_with_adjacent_zero_store_dr_p (write))
|
|
goto end;
|
|
|
|
/* The new statements will be placed before LOOP. */
|
|
bsi = gsi_last_bb (loop_preheader_edge (loop)->src);
|
|
generate_memset_zero (write, gimple_assign_lhs (write), nb_iter, bsi);
|
|
res = true;
|
|
|
|
/* If this is the last partition for which we generate code, we have
|
|
to destroy the loop. */
|
|
if (!copy_p)
|
|
{
|
|
unsigned nbbs = loop->num_nodes;
|
|
edge exit = single_exit (loop);
|
|
basic_block src = loop_preheader_edge (loop)->src, dest = exit->dest;
|
|
redirect_edge_pred (exit, src);
|
|
exit->flags &= ~(EDGE_TRUE_VALUE|EDGE_FALSE_VALUE);
|
|
exit->flags |= EDGE_FALLTHRU;
|
|
cancel_loop_tree (loop);
|
|
rescan_loop_exit (exit, false, true);
|
|
|
|
for (i = 0; i < nbbs; i++)
|
|
delete_basic_block (bbs[i]);
|
|
|
|
set_immediate_dominator (CDI_DOMINATORS, dest,
|
|
recompute_dominator (CDI_DOMINATORS, dest));
|
|
}
|
|
|
|
end:
|
|
free (bbs);
|
|
return res;
|
|
}
|
|
|
|
/* Generates code for PARTITION. For simple loops, this function can
|
|
generate a built-in. */
|
|
|
|
static bool
|
|
generate_code_for_partition (struct loop *loop, bitmap partition, bool copy_p)
|
|
{
|
|
if (generate_builtin (loop, partition, copy_p))
|
|
return true;
|
|
|
|
return generate_loops_for_partition (loop, partition, copy_p);
|
|
}
|
|
|
|
|
|
/* Returns true if the node V of RDG cannot be recomputed. */
|
|
|
|
static bool
|
|
rdg_cannot_recompute_vertex_p (struct graph *rdg, int v)
|
|
{
|
|
if (RDG_MEM_WRITE_STMT (rdg, v))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Returns true when the vertex V has already been generated in the
|
|
current partition (V is in PROCESSED), or when V belongs to another
|
|
partition and cannot be recomputed (V is not in REMAINING_STMTS). */
|
|
|
|
static inline bool
|
|
already_processed_vertex_p (bitmap processed, int v)
|
|
{
|
|
return (bitmap_bit_p (processed, v)
|
|
|| !bitmap_bit_p (remaining_stmts, v));
|
|
}
|
|
|
|
/* Returns NULL when there is no anti-dependence among the successors
|
|
of vertex V, otherwise returns the edge with the anti-dep. */
|
|
|
|
static struct graph_edge *
|
|
has_anti_dependence (struct vertex *v)
|
|
{
|
|
struct graph_edge *e;
|
|
|
|
if (v->succ)
|
|
for (e = v->succ; e; e = e->succ_next)
|
|
if (RDGE_TYPE (e) == anti_dd)
|
|
return e;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Returns true when V has an anti-dependence edge among its successors. */
|
|
|
|
static bool
|
|
predecessor_has_mem_write (struct graph *rdg, struct vertex *v)
|
|
{
|
|
struct graph_edge *e;
|
|
|
|
if (v->pred)
|
|
for (e = v->pred; e; e = e->pred_next)
|
|
if (bitmap_bit_p (upstream_mem_writes, e->src)
|
|
/* Don't consider flow channels: a write to memory followed
|
|
by a read from memory. These channels allow the split of
|
|
the RDG in different partitions. */
|
|
&& !RDG_MEM_WRITE_STMT (rdg, e->src))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Initializes the upstream_mem_writes bitmap following the
|
|
information from RDG. */
|
|
|
|
static void
|
|
mark_nodes_having_upstream_mem_writes (struct graph *rdg)
|
|
{
|
|
int v, x;
|
|
bitmap seen = BITMAP_ALLOC (NULL);
|
|
|
|
for (v = rdg->n_vertices - 1; v >= 0; v--)
|
|
if (!bitmap_bit_p (seen, v))
|
|
{
|
|
unsigned i;
|
|
VEC (int, heap) *nodes = VEC_alloc (int, heap, 3);
|
|
|
|
graphds_dfs (rdg, &v, 1, &nodes, false, NULL);
|
|
|
|
FOR_EACH_VEC_ELT (int, nodes, i, x)
|
|
{
|
|
if (!bitmap_set_bit (seen, x))
|
|
continue;
|
|
|
|
if (RDG_MEM_WRITE_STMT (rdg, x)
|
|
|| predecessor_has_mem_write (rdg, &(rdg->vertices[x]))
|
|
/* In anti dependences the read should occur before
|
|
the write, this is why both the read and the write
|
|
should be placed in the same partition. */
|
|
|| has_anti_dependence (&(rdg->vertices[x])))
|
|
{
|
|
bitmap_set_bit (upstream_mem_writes, x);
|
|
}
|
|
}
|
|
|
|
VEC_free (int, heap, nodes);
|
|
}
|
|
}
|
|
|
|
/* Returns true when vertex u has a memory write node as a predecessor
|
|
in RDG. */
|
|
|
|
static bool
|
|
has_upstream_mem_writes (int u)
|
|
{
|
|
return bitmap_bit_p (upstream_mem_writes, u);
|
|
}
|
|
|
|
static void rdg_flag_vertex_and_dependent (struct graph *, int, bitmap, bitmap,
|
|
bitmap, bool *);
|
|
|
|
/* Flag the uses of U stopping following the information from
|
|
upstream_mem_writes. */
|
|
|
|
static void
|
|
rdg_flag_uses (struct graph *rdg, int u, bitmap partition, bitmap loops,
|
|
bitmap processed, bool *part_has_writes)
|
|
{
|
|
use_operand_p use_p;
|
|
struct vertex *x = &(rdg->vertices[u]);
|
|
gimple stmt = RDGV_STMT (x);
|
|
struct graph_edge *anti_dep = has_anti_dependence (x);
|
|
|
|
/* Keep in the same partition the destination of an antidependence,
|
|
because this is a store to the exact same location. Putting this
|
|
in another partition is bad for cache locality. */
|
|
if (anti_dep)
|
|
{
|
|
int v = anti_dep->dest;
|
|
|
|
if (!already_processed_vertex_p (processed, v))
|
|
rdg_flag_vertex_and_dependent (rdg, v, partition, loops,
|
|
processed, part_has_writes);
|
|
}
|
|
|
|
if (gimple_code (stmt) != GIMPLE_PHI)
|
|
{
|
|
if ((use_p = gimple_vuse_op (stmt)) != NULL_USE_OPERAND_P)
|
|
{
|
|
tree use = USE_FROM_PTR (use_p);
|
|
|
|
if (TREE_CODE (use) == SSA_NAME)
|
|
{
|
|
gimple def_stmt = SSA_NAME_DEF_STMT (use);
|
|
int v = rdg_vertex_for_stmt (rdg, def_stmt);
|
|
|
|
if (v >= 0
|
|
&& !already_processed_vertex_p (processed, v))
|
|
rdg_flag_vertex_and_dependent (rdg, v, partition, loops,
|
|
processed, part_has_writes);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (is_gimple_assign (stmt) && has_upstream_mem_writes (u))
|
|
{
|
|
tree op0 = gimple_assign_lhs (stmt);
|
|
|
|
/* Scalar channels don't have enough space for transmitting data
|
|
between tasks, unless we add more storage by privatizing. */
|
|
if (is_gimple_reg (op0))
|
|
{
|
|
use_operand_p use_p;
|
|
imm_use_iterator iter;
|
|
|
|
FOR_EACH_IMM_USE_FAST (use_p, iter, op0)
|
|
{
|
|
int v = rdg_vertex_for_stmt (rdg, USE_STMT (use_p));
|
|
|
|
if (!already_processed_vertex_p (processed, v))
|
|
rdg_flag_vertex_and_dependent (rdg, v, partition, loops,
|
|
processed, part_has_writes);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Flag V from RDG as part of PARTITION, and also flag its loop number
|
|
in LOOPS. */
|
|
|
|
static void
|
|
rdg_flag_vertex (struct graph *rdg, int v, bitmap partition, bitmap loops,
|
|
bool *part_has_writes)
|
|
{
|
|
struct loop *loop;
|
|
|
|
if (!bitmap_set_bit (partition, v))
|
|
return;
|
|
|
|
loop = loop_containing_stmt (RDG_STMT (rdg, v));
|
|
bitmap_set_bit (loops, loop->num);
|
|
|
|
if (rdg_cannot_recompute_vertex_p (rdg, v))
|
|
{
|
|
*part_has_writes = true;
|
|
bitmap_clear_bit (remaining_stmts, v);
|
|
}
|
|
}
|
|
|
|
/* Flag in the bitmap PARTITION the vertex V and all its predecessors.
|
|
Also flag their loop number in LOOPS. */
|
|
|
|
static void
|
|
rdg_flag_vertex_and_dependent (struct graph *rdg, int v, bitmap partition,
|
|
bitmap loops, bitmap processed,
|
|
bool *part_has_writes)
|
|
{
|
|
unsigned i;
|
|
VEC (int, heap) *nodes = VEC_alloc (int, heap, 3);
|
|
int x;
|
|
|
|
bitmap_set_bit (processed, v);
|
|
rdg_flag_uses (rdg, v, partition, loops, processed, part_has_writes);
|
|
graphds_dfs (rdg, &v, 1, &nodes, false, remaining_stmts);
|
|
rdg_flag_vertex (rdg, v, partition, loops, part_has_writes);
|
|
|
|
FOR_EACH_VEC_ELT (int, nodes, i, x)
|
|
if (!already_processed_vertex_p (processed, x))
|
|
rdg_flag_vertex_and_dependent (rdg, x, partition, loops, processed,
|
|
part_has_writes);
|
|
|
|
VEC_free (int, heap, nodes);
|
|
}
|
|
|
|
/* Initialize CONDS with all the condition statements from the basic
|
|
blocks of LOOP. */
|
|
|
|
static void
|
|
collect_condition_stmts (struct loop *loop, VEC (gimple, heap) **conds)
|
|
{
|
|
unsigned i;
|
|
edge e;
|
|
VEC (edge, heap) *exits = get_loop_exit_edges (loop);
|
|
|
|
FOR_EACH_VEC_ELT (edge, exits, i, e)
|
|
{
|
|
gimple cond = last_stmt (e->src);
|
|
|
|
if (cond)
|
|
VEC_safe_push (gimple, heap, *conds, cond);
|
|
}
|
|
|
|
VEC_free (edge, heap, exits);
|
|
}
|
|
|
|
/* Add to PARTITION all the exit condition statements for LOOPS
|
|
together with all their dependent statements determined from
|
|
RDG. */
|
|
|
|
static void
|
|
rdg_flag_loop_exits (struct graph *rdg, bitmap loops, bitmap partition,
|
|
bitmap processed, bool *part_has_writes)
|
|
{
|
|
unsigned i;
|
|
bitmap_iterator bi;
|
|
VEC (gimple, heap) *conds = VEC_alloc (gimple, heap, 3);
|
|
|
|
EXECUTE_IF_SET_IN_BITMAP (loops, 0, i, bi)
|
|
collect_condition_stmts (get_loop (i), &conds);
|
|
|
|
while (!VEC_empty (gimple, conds))
|
|
{
|
|
gimple cond = VEC_pop (gimple, conds);
|
|
int v = rdg_vertex_for_stmt (rdg, cond);
|
|
bitmap new_loops = BITMAP_ALLOC (NULL);
|
|
|
|
if (!already_processed_vertex_p (processed, v))
|
|
rdg_flag_vertex_and_dependent (rdg, v, partition, new_loops, processed,
|
|
part_has_writes);
|
|
|
|
EXECUTE_IF_SET_IN_BITMAP (new_loops, 0, i, bi)
|
|
if (bitmap_set_bit (loops, i))
|
|
collect_condition_stmts (get_loop (i), &conds);
|
|
|
|
BITMAP_FREE (new_loops);
|
|
}
|
|
|
|
VEC_free (gimple, heap, conds);
|
|
}
|
|
|
|
/* Returns a bitmap in which all the statements needed for computing
|
|
the strongly connected component C of the RDG are flagged, also
|
|
including the loop exit conditions. */
|
|
|
|
static bitmap
|
|
build_rdg_partition_for_component (struct graph *rdg, rdgc c,
|
|
bool *part_has_writes)
|
|
{
|
|
int i, v;
|
|
bitmap partition = BITMAP_ALLOC (NULL);
|
|
bitmap loops = BITMAP_ALLOC (NULL);
|
|
bitmap processed = BITMAP_ALLOC (NULL);
|
|
|
|
FOR_EACH_VEC_ELT (int, c->vertices, i, v)
|
|
if (!already_processed_vertex_p (processed, v))
|
|
rdg_flag_vertex_and_dependent (rdg, v, partition, loops, processed,
|
|
part_has_writes);
|
|
|
|
rdg_flag_loop_exits (rdg, loops, partition, processed, part_has_writes);
|
|
|
|
BITMAP_FREE (processed);
|
|
BITMAP_FREE (loops);
|
|
return partition;
|
|
}
|
|
|
|
/* Free memory for COMPONENTS. */
|
|
|
|
static void
|
|
free_rdg_components (VEC (rdgc, heap) *components)
|
|
{
|
|
int i;
|
|
rdgc x;
|
|
|
|
FOR_EACH_VEC_ELT (rdgc, components, i, x)
|
|
{
|
|
VEC_free (int, heap, x->vertices);
|
|
free (x);
|
|
}
|
|
|
|
VEC_free (rdgc, heap, components);
|
|
}
|
|
|
|
/* Build the COMPONENTS vector with the strongly connected components
|
|
of RDG in which the STARTING_VERTICES occur. */
|
|
|
|
static void
|
|
rdg_build_components (struct graph *rdg, VEC (int, heap) *starting_vertices,
|
|
VEC (rdgc, heap) **components)
|
|
{
|
|
int i, v;
|
|
bitmap saved_components = BITMAP_ALLOC (NULL);
|
|
int n_components = graphds_scc (rdg, NULL);
|
|
VEC (int, heap) **all_components = XNEWVEC (VEC (int, heap) *, n_components);
|
|
|
|
for (i = 0; i < n_components; i++)
|
|
all_components[i] = VEC_alloc (int, heap, 3);
|
|
|
|
for (i = 0; i < rdg->n_vertices; i++)
|
|
VEC_safe_push (int, heap, all_components[rdg->vertices[i].component], i);
|
|
|
|
FOR_EACH_VEC_ELT (int, starting_vertices, i, v)
|
|
{
|
|
int c = rdg->vertices[v].component;
|
|
|
|
if (bitmap_set_bit (saved_components, c))
|
|
{
|
|
rdgc x = XCNEW (struct rdg_component);
|
|
x->num = c;
|
|
x->vertices = all_components[c];
|
|
|
|
VEC_safe_push (rdgc, heap, *components, x);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < n_components; i++)
|
|
if (!bitmap_bit_p (saved_components, i))
|
|
VEC_free (int, heap, all_components[i]);
|
|
|
|
free (all_components);
|
|
BITMAP_FREE (saved_components);
|
|
}
|
|
|
|
/* Returns true when it is possible to generate a builtin pattern for
|
|
the PARTITION of RDG. For the moment we detect only the memset
|
|
zero pattern. */
|
|
|
|
static bool
|
|
can_generate_builtin (struct graph *rdg, bitmap partition)
|
|
{
|
|
unsigned i;
|
|
bitmap_iterator bi;
|
|
int nb_reads = 0;
|
|
int nb_writes = 0;
|
|
int stores_zero = 0;
|
|
|
|
EXECUTE_IF_SET_IN_BITMAP (partition, 0, i, bi)
|
|
if (RDG_MEM_READS_STMT (rdg, i))
|
|
nb_reads++;
|
|
else if (RDG_MEM_WRITE_STMT (rdg, i))
|
|
{
|
|
nb_writes++;
|
|
if (stmt_with_adjacent_zero_store_dr_p (RDG_STMT (rdg, i)))
|
|
stores_zero++;
|
|
}
|
|
|
|
return stores_zero == 1 && nb_writes == 1 && nb_reads == 0;
|
|
}
|
|
|
|
/* Returns true when PARTITION1 and PARTITION2 have similar memory
|
|
accesses in RDG. */
|
|
|
|
static bool
|
|
similar_memory_accesses (struct graph *rdg, bitmap partition1,
|
|
bitmap partition2)
|
|
{
|
|
unsigned i, j;
|
|
bitmap_iterator bi, bj;
|
|
|
|
EXECUTE_IF_SET_IN_BITMAP (partition1, 0, i, bi)
|
|
if (RDG_MEM_WRITE_STMT (rdg, i)
|
|
|| RDG_MEM_READS_STMT (rdg, i))
|
|
EXECUTE_IF_SET_IN_BITMAP (partition2, 0, j, bj)
|
|
if (RDG_MEM_WRITE_STMT (rdg, j)
|
|
|| RDG_MEM_READS_STMT (rdg, j))
|
|
if (rdg_has_similar_memory_accesses (rdg, i, j))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Fuse all the partitions from PARTITIONS that contain similar memory
|
|
references, i.e., we're taking care of cache locality. This
|
|
function does not fuse those partitions that contain patterns that
|
|
can be code generated with builtins. */
|
|
|
|
static void
|
|
fuse_partitions_with_similar_memory_accesses (struct graph *rdg,
|
|
VEC (bitmap, heap) **partitions)
|
|
{
|
|
int p1, p2;
|
|
bitmap partition1, partition2;
|
|
|
|
FOR_EACH_VEC_ELT (bitmap, *partitions, p1, partition1)
|
|
if (!can_generate_builtin (rdg, partition1))
|
|
FOR_EACH_VEC_ELT (bitmap, *partitions, p2, partition2)
|
|
if (p1 != p2
|
|
&& !can_generate_builtin (rdg, partition2)
|
|
&& similar_memory_accesses (rdg, partition1, partition2))
|
|
{
|
|
bitmap_ior_into (partition1, partition2);
|
|
VEC_ordered_remove (bitmap, *partitions, p2);
|
|
p2--;
|
|
}
|
|
}
|
|
|
|
/* Returns true when DEF is an SSA_NAME defined in LOOP and used after
|
|
the LOOP. */
|
|
|
|
static bool
|
|
ssa_name_has_uses_outside_loop_p (tree def, loop_p loop)
|
|
{
|
|
imm_use_iterator imm_iter;
|
|
use_operand_p use_p;
|
|
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, def)
|
|
if (loop != loop_containing_stmt (USE_STMT (use_p)))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Returns true when STMT defines a scalar variable used after the
|
|
loop. */
|
|
|
|
static bool
|
|
stmt_has_scalar_dependences_outside_loop (gimple stmt)
|
|
{
|
|
tree name;
|
|
|
|
switch (gimple_code (stmt))
|
|
{
|
|
case GIMPLE_ASSIGN:
|
|
name = gimple_assign_lhs (stmt);
|
|
break;
|
|
|
|
case GIMPLE_PHI:
|
|
name = gimple_phi_result (stmt);
|
|
break;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
return TREE_CODE (name) == SSA_NAME
|
|
&& ssa_name_has_uses_outside_loop_p (name, loop_containing_stmt (stmt));
|
|
}
|
|
|
|
/* Returns true when STMT will be code generated in a partition of RDG
|
|
different than PART and that will not be code generated as a
|
|
builtin. */
|
|
|
|
static bool
|
|
stmt_generated_in_another_partition (struct graph *rdg, gimple stmt, int part,
|
|
VEC (bitmap, heap) *partitions)
|
|
{
|
|
int p;
|
|
bitmap pp;
|
|
unsigned i;
|
|
bitmap_iterator bi;
|
|
|
|
FOR_EACH_VEC_ELT (bitmap, partitions, p, pp)
|
|
if (p != part
|
|
&& !can_generate_builtin (rdg, pp))
|
|
EXECUTE_IF_SET_IN_BITMAP (pp, 0, i, bi)
|
|
if (stmt == RDG_STMT (rdg, i))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* For each partition in PARTITIONS that will be code generated using
|
|
a builtin, add its scalar computations used after the loop to
|
|
PARTITION. */
|
|
|
|
static void
|
|
add_scalar_computations_to_partition (struct graph *rdg,
|
|
VEC (bitmap, heap) *partitions,
|
|
bitmap partition)
|
|
{
|
|
int p;
|
|
bitmap pp;
|
|
unsigned i;
|
|
bitmap_iterator bi;
|
|
bitmap l = BITMAP_ALLOC (NULL);
|
|
bitmap pr = BITMAP_ALLOC (NULL);
|
|
bool f = false;
|
|
|
|
FOR_EACH_VEC_ELT (bitmap, partitions, p, pp)
|
|
if (can_generate_builtin (rdg, pp))
|
|
EXECUTE_IF_SET_IN_BITMAP (pp, 0, i, bi)
|
|
if (stmt_has_scalar_dependences_outside_loop (RDG_STMT (rdg, i))
|
|
&& !stmt_generated_in_another_partition (rdg, RDG_STMT (rdg, i), p,
|
|
partitions))
|
|
rdg_flag_vertex_and_dependent (rdg, i, partition, l, pr, &f);
|
|
|
|
rdg_flag_loop_exits (rdg, l, partition, pr, &f);
|
|
|
|
BITMAP_FREE (pr);
|
|
BITMAP_FREE (l);
|
|
}
|
|
|
|
/* Aggregate several components into a useful partition that is
|
|
registered in the PARTITIONS vector. Partitions will be
|
|
distributed in different loops. */
|
|
|
|
static void
|
|
rdg_build_partitions (struct graph *rdg, VEC (rdgc, heap) *components,
|
|
VEC (int, heap) **other_stores,
|
|
VEC (bitmap, heap) **partitions, bitmap processed)
|
|
{
|
|
int i;
|
|
rdgc x;
|
|
bitmap partition = BITMAP_ALLOC (NULL);
|
|
|
|
FOR_EACH_VEC_ELT (rdgc, components, i, x)
|
|
{
|
|
bitmap np;
|
|
bool part_has_writes = false;
|
|
int v = VEC_index (int, x->vertices, 0);
|
|
|
|
if (bitmap_bit_p (processed, v))
|
|
continue;
|
|
|
|
np = build_rdg_partition_for_component (rdg, x, &part_has_writes);
|
|
bitmap_ior_into (partition, np);
|
|
bitmap_ior_into (processed, np);
|
|
BITMAP_FREE (np);
|
|
|
|
if (part_has_writes)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "ldist useful partition:\n");
|
|
dump_bitmap (dump_file, partition);
|
|
}
|
|
|
|
VEC_safe_push (bitmap, heap, *partitions, partition);
|
|
partition = BITMAP_ALLOC (NULL);
|
|
}
|
|
}
|
|
|
|
/* Add the nodes from the RDG that were not marked as processed, and
|
|
that are used outside the current loop. These are scalar
|
|
computations that are not yet part of previous partitions. */
|
|
for (i = 0; i < rdg->n_vertices; i++)
|
|
if (!bitmap_bit_p (processed, i)
|
|
&& rdg_defs_used_in_other_loops_p (rdg, i))
|
|
VEC_safe_push (int, heap, *other_stores, i);
|
|
|
|
/* If there are still statements left in the OTHER_STORES array,
|
|
create other components and partitions with these stores and
|
|
their dependences. */
|
|
if (VEC_length (int, *other_stores) > 0)
|
|
{
|
|
VEC (rdgc, heap) *comps = VEC_alloc (rdgc, heap, 3);
|
|
VEC (int, heap) *foo = VEC_alloc (int, heap, 3);
|
|
|
|
rdg_build_components (rdg, *other_stores, &comps);
|
|
rdg_build_partitions (rdg, comps, &foo, partitions, processed);
|
|
|
|
VEC_free (int, heap, foo);
|
|
free_rdg_components (comps);
|
|
}
|
|
|
|
add_scalar_computations_to_partition (rdg, *partitions, partition);
|
|
|
|
/* If there is something left in the last partition, save it. */
|
|
if (bitmap_count_bits (partition) > 0)
|
|
VEC_safe_push (bitmap, heap, *partitions, partition);
|
|
else
|
|
BITMAP_FREE (partition);
|
|
|
|
fuse_partitions_with_similar_memory_accesses (rdg, partitions);
|
|
}
|
|
|
|
/* Dump to FILE the PARTITIONS. */
|
|
|
|
static void
|
|
dump_rdg_partitions (FILE *file, VEC (bitmap, heap) *partitions)
|
|
{
|
|
int i;
|
|
bitmap partition;
|
|
|
|
FOR_EACH_VEC_ELT (bitmap, partitions, i, partition)
|
|
debug_bitmap_file (file, partition);
|
|
}
|
|
|
|
/* Debug PARTITIONS. */
|
|
extern void debug_rdg_partitions (VEC (bitmap, heap) *);
|
|
|
|
DEBUG_FUNCTION void
|
|
debug_rdg_partitions (VEC (bitmap, heap) *partitions)
|
|
{
|
|
dump_rdg_partitions (stderr, partitions);
|
|
}
|
|
|
|
/* Returns the number of read and write operations in the RDG. */
|
|
|
|
static int
|
|
number_of_rw_in_rdg (struct graph *rdg)
|
|
{
|
|
int i, res = 0;
|
|
|
|
for (i = 0; i < rdg->n_vertices; i++)
|
|
{
|
|
if (RDG_MEM_WRITE_STMT (rdg, i))
|
|
++res;
|
|
|
|
if (RDG_MEM_READS_STMT (rdg, i))
|
|
++res;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
/* Returns the number of read and write operations in a PARTITION of
|
|
the RDG. */
|
|
|
|
static int
|
|
number_of_rw_in_partition (struct graph *rdg, bitmap partition)
|
|
{
|
|
int res = 0;
|
|
unsigned i;
|
|
bitmap_iterator ii;
|
|
|
|
EXECUTE_IF_SET_IN_BITMAP (partition, 0, i, ii)
|
|
{
|
|
if (RDG_MEM_WRITE_STMT (rdg, i))
|
|
++res;
|
|
|
|
if (RDG_MEM_READS_STMT (rdg, i))
|
|
++res;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
/* Returns true when one of the PARTITIONS contains all the read or
|
|
write operations of RDG. */
|
|
|
|
static bool
|
|
partition_contains_all_rw (struct graph *rdg, VEC (bitmap, heap) *partitions)
|
|
{
|
|
int i;
|
|
bitmap partition;
|
|
int nrw = number_of_rw_in_rdg (rdg);
|
|
|
|
FOR_EACH_VEC_ELT (bitmap, partitions, i, partition)
|
|
if (nrw == number_of_rw_in_partition (rdg, partition))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Generate code from STARTING_VERTICES in RDG. Returns the number of
|
|
distributed loops. */
|
|
|
|
static int
|
|
ldist_gen (struct loop *loop, struct graph *rdg,
|
|
VEC (int, heap) *starting_vertices)
|
|
{
|
|
int i, nbp;
|
|
VEC (rdgc, heap) *components = VEC_alloc (rdgc, heap, 3);
|
|
VEC (bitmap, heap) *partitions = VEC_alloc (bitmap, heap, 3);
|
|
VEC (int, heap) *other_stores = VEC_alloc (int, heap, 3);
|
|
bitmap partition, processed = BITMAP_ALLOC (NULL);
|
|
|
|
remaining_stmts = BITMAP_ALLOC (NULL);
|
|
upstream_mem_writes = BITMAP_ALLOC (NULL);
|
|
|
|
for (i = 0; i < rdg->n_vertices; i++)
|
|
{
|
|
bitmap_set_bit (remaining_stmts, i);
|
|
|
|
/* Save in OTHER_STORES all the memory writes that are not in
|
|
STARTING_VERTICES. */
|
|
if (RDG_MEM_WRITE_STMT (rdg, i))
|
|
{
|
|
int v;
|
|
unsigned j;
|
|
bool found = false;
|
|
|
|
FOR_EACH_VEC_ELT (int, starting_vertices, j, v)
|
|
if (i == v)
|
|
{
|
|
found = true;
|
|
break;
|
|
}
|
|
|
|
if (!found)
|
|
VEC_safe_push (int, heap, other_stores, i);
|
|
}
|
|
}
|
|
|
|
mark_nodes_having_upstream_mem_writes (rdg);
|
|
rdg_build_components (rdg, starting_vertices, &components);
|
|
rdg_build_partitions (rdg, components, &other_stores, &partitions,
|
|
processed);
|
|
BITMAP_FREE (processed);
|
|
nbp = VEC_length (bitmap, partitions);
|
|
|
|
if (nbp <= 1
|
|
|| partition_contains_all_rw (rdg, partitions))
|
|
goto ldist_done;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
dump_rdg_partitions (dump_file, partitions);
|
|
|
|
FOR_EACH_VEC_ELT (bitmap, partitions, i, partition)
|
|
if (!generate_code_for_partition (loop, partition, i < nbp - 1))
|
|
goto ldist_done;
|
|
|
|
rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
|
|
update_ssa (TODO_update_ssa_only_virtuals | TODO_update_ssa);
|
|
|
|
ldist_done:
|
|
|
|
BITMAP_FREE (remaining_stmts);
|
|
BITMAP_FREE (upstream_mem_writes);
|
|
|
|
FOR_EACH_VEC_ELT (bitmap, partitions, i, partition)
|
|
BITMAP_FREE (partition);
|
|
|
|
VEC_free (int, heap, other_stores);
|
|
VEC_free (bitmap, heap, partitions);
|
|
free_rdg_components (components);
|
|
return nbp;
|
|
}
|
|
|
|
/* Distributes the code from LOOP in such a way that producer
|
|
statements are placed before consumer statements. When STMTS is
|
|
NULL, performs the maximal distribution, if STMTS is not NULL,
|
|
tries to separate only these statements from the LOOP's body.
|
|
Returns the number of distributed loops. */
|
|
|
|
static int
|
|
distribute_loop (struct loop *loop, VEC (gimple, heap) *stmts)
|
|
{
|
|
int res = 0;
|
|
struct graph *rdg;
|
|
gimple s;
|
|
unsigned i;
|
|
VEC (int, heap) *vertices;
|
|
VEC (ddr_p, heap) *dependence_relations;
|
|
VEC (data_reference_p, heap) *datarefs;
|
|
VEC (loop_p, heap) *loop_nest;
|
|
|
|
if (loop->num_nodes > 2)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file,
|
|
"FIXME: Loop %d not distributed: it has more than two basic blocks.\n",
|
|
loop->num);
|
|
|
|
return res;
|
|
}
|
|
|
|
datarefs = VEC_alloc (data_reference_p, heap, 10);
|
|
dependence_relations = VEC_alloc (ddr_p, heap, 100);
|
|
loop_nest = VEC_alloc (loop_p, heap, 3);
|
|
rdg = build_rdg (loop, &loop_nest, &dependence_relations, &datarefs);
|
|
|
|
if (!rdg)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file,
|
|
"FIXME: Loop %d not distributed: failed to build the RDG.\n",
|
|
loop->num);
|
|
|
|
free_dependence_relations (dependence_relations);
|
|
free_data_refs (datarefs);
|
|
VEC_free (loop_p, heap, loop_nest);
|
|
return res;
|
|
}
|
|
|
|
vertices = VEC_alloc (int, heap, 3);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
dump_rdg (dump_file, rdg);
|
|
|
|
FOR_EACH_VEC_ELT (gimple, stmts, i, s)
|
|
{
|
|
int v = rdg_vertex_for_stmt (rdg, s);
|
|
|
|
if (v >= 0)
|
|
{
|
|
VEC_safe_push (int, heap, vertices, v);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file,
|
|
"ldist asked to generate code for vertex %d\n", v);
|
|
}
|
|
}
|
|
|
|
res = ldist_gen (loop, rdg, vertices);
|
|
VEC_free (int, heap, vertices);
|
|
free_rdg (rdg);
|
|
free_dependence_relations (dependence_relations);
|
|
free_data_refs (datarefs);
|
|
VEC_free (loop_p, heap, loop_nest);
|
|
return res;
|
|
}
|
|
|
|
/* Distribute all loops in the current function. */
|
|
|
|
static unsigned int
|
|
tree_loop_distribution (void)
|
|
{
|
|
struct loop *loop;
|
|
loop_iterator li;
|
|
int nb_generated_loops = 0;
|
|
|
|
FOR_EACH_LOOP (li, loop, 0)
|
|
{
|
|
VEC (gimple, heap) *work_list = NULL;
|
|
int num = loop->num;
|
|
|
|
/* If the loop doesn't have a single exit we will fail anyway,
|
|
so do that early. */
|
|
if (!single_exit (loop))
|
|
continue;
|
|
|
|
/* If both flag_tree_loop_distribute_patterns and
|
|
flag_tree_loop_distribution are set, then only
|
|
distribute_patterns is executed. */
|
|
if (flag_tree_loop_distribute_patterns)
|
|
{
|
|
/* With the following working list, we're asking
|
|
distribute_loop to separate from the rest of the loop the
|
|
stores of the form "A[i] = 0". */
|
|
stores_zero_from_loop (loop, &work_list);
|
|
|
|
/* Do nothing if there are no patterns to be distributed. */
|
|
if (VEC_length (gimple, work_list) > 0)
|
|
nb_generated_loops = distribute_loop (loop, work_list);
|
|
}
|
|
else if (flag_tree_loop_distribution)
|
|
{
|
|
/* With the following working list, we're asking
|
|
distribute_loop to separate the stores of the loop: when
|
|
dependences allow, it will end on having one store per
|
|
loop. */
|
|
stores_from_loop (loop, &work_list);
|
|
|
|
/* A simple heuristic for cache locality is to not split
|
|
stores to the same array. Without this call, an unrolled
|
|
loop would be split into as many loops as unroll factor,
|
|
each loop storing in the same array. */
|
|
remove_similar_memory_refs (&work_list);
|
|
|
|
nb_generated_loops = distribute_loop (loop, work_list);
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
if (nb_generated_loops > 1)
|
|
fprintf (dump_file, "Loop %d distributed: split to %d loops.\n",
|
|
num, nb_generated_loops);
|
|
else
|
|
fprintf (dump_file, "Loop %d is the same.\n", num);
|
|
}
|
|
|
|
verify_loop_structure ();
|
|
|
|
VEC_free (gimple, heap, work_list);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool
|
|
gate_tree_loop_distribution (void)
|
|
{
|
|
return flag_tree_loop_distribution
|
|
|| flag_tree_loop_distribute_patterns;
|
|
}
|
|
|
|
struct gimple_opt_pass pass_loop_distribution =
|
|
{
|
|
{
|
|
GIMPLE_PASS,
|
|
"ldist", /* name */
|
|
gate_tree_loop_distribution, /* gate */
|
|
tree_loop_distribution, /* execute */
|
|
NULL, /* sub */
|
|
NULL, /* next */
|
|
0, /* static_pass_number */
|
|
TV_TREE_LOOP_DISTRIBUTION, /* tv_id */
|
|
PROP_cfg | PROP_ssa, /* properties_required */
|
|
0, /* properties_provided */
|
|
0, /* properties_destroyed */
|
|
0, /* todo_flags_start */
|
|
TODO_dump_func /* todo_flags_finish */
|
|
}
|
|
};
|