gcc/libgo/go/crypto/elliptic/p256_ppc64le.go

523 lines
13 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build ignore
// +build ppc64le
package elliptic
import (
"crypto/subtle"
"encoding/binary"
"math/big"
)
// This was ported from the s390x implementation for ppc64le.
// Some hints are included here for changes that should be
// in the big endian ppc64 implementation, however more
// investigation and testing is needed for the ppc64 big
// endian version to work.
type p256CurveFast struct {
*CurveParams
}
type p256Point struct {
x [32]byte
y [32]byte
z [32]byte
}
var (
p256 Curve
p256PreFast *[37][64]p256Point
)
func initP256Arch() {
p256 = p256CurveFast{p256Params}
initTable()
return
}
func (curve p256CurveFast) Params() *CurveParams {
return curve.CurveParams
}
// Functions implemented in p256_asm_ppc64le.s
// Montgomery multiplication modulo P256
//
//go:noescape
func p256MulAsm(res, in1, in2 []byte)
// Montgomery square modulo P256
//
func p256Sqr(res, in []byte) {
p256MulAsm(res, in, in)
}
// Montgomery multiplication by 1
//
//go:noescape
func p256FromMont(res, in []byte)
// iff cond == 1 val <- -val
//
//go:noescape
func p256NegCond(val *p256Point, cond int)
// if cond == 0 res <- b; else res <- a
//
//go:noescape
func p256MovCond(res, a, b *p256Point, cond int)
// Constant time table access
//
//go:noescape
func p256Select(point *p256Point, table []p256Point, idx int)
//
//go:noescape
func p256SelectBase(point *p256Point, table []p256Point, idx int)
// Point add with P2 being affine point
// If sign == 1 -> P2 = -P2
// If sel == 0 -> P3 = P1
// if zero == 0 -> P3 = P2
//
//go:noescape
func p256PointAddAffineAsm(res, in1, in2 *p256Point, sign, sel, zero int)
// Point add
//
//go:noescape
func p256PointAddAsm(res, in1, in2 *p256Point) int
//
//go:noescape
func p256PointDoubleAsm(res, in *p256Point)
// The result should be a slice in LE order, but the slice
// from big.Bytes is in BE order.
// TODO: For big endian implementation, do not reverse bytes.
//
func fromBig(big *big.Int) []byte {
// This could be done a lot more efficiently...
res := big.Bytes()
t := make([]byte, 32)
if len(res) < 32 {
copy(t[32-len(res):], res)
} else if len(res) == 32 {
copy(t, res)
} else {
copy(t, res[len(res)-32:])
}
p256ReverseBytes(t, t)
return t
}
// p256GetMultiplier makes sure byte array will have 32 byte elements, If the scalar
// is equal or greater than the order of the group, it's reduced modulo that order.
func p256GetMultiplier(in []byte) []byte {
n := new(big.Int).SetBytes(in)
if n.Cmp(p256Params.N) >= 0 {
n.Mod(n, p256Params.N)
}
return fromBig(n)
}
// p256MulAsm operates in a Montgomery domain with R = 2^256 mod p, where p is the
// underlying field of the curve. (See initP256 for the value.) Thus rr here is
// R×R mod p. See comment in Inverse about how this is used.
// TODO: For big endian implementation, the bytes in these slices should be in reverse order,
// as found in the s390x implementation.
var rr = []byte{0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0, 0xff, 0xff, 0xff, 0xff, 0xfb, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfd, 0xff, 0xff, 0xff, 0x04, 0x00, 0x00, 0x00}
// (This is one, in the Montgomery domain.)
var one = []byte{0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00}
func maybeReduceModP(in *big.Int) *big.Int {
if in.Cmp(p256Params.P) < 0 {
return in
}
return new(big.Int).Mod(in, p256Params.P)
}
// p256ReverseBytes copies the first 32 bytes from in to res in reverse order.
func p256ReverseBytes(res, in []byte) {
// remove bounds check
in = in[:32]
res = res[:32]
// Load in reverse order
a := binary.BigEndian.Uint64(in[0:])
b := binary.BigEndian.Uint64(in[8:])
c := binary.BigEndian.Uint64(in[16:])
d := binary.BigEndian.Uint64(in[24:])
// Store in normal order
binary.LittleEndian.PutUint64(res[0:], d)
binary.LittleEndian.PutUint64(res[8:], c)
binary.LittleEndian.PutUint64(res[16:], b)
binary.LittleEndian.PutUint64(res[24:], a)
}
func (curve p256CurveFast) CombinedMult(bigX, bigY *big.Int, baseScalar, scalar []byte) (x, y *big.Int) {
var r1, r2 p256Point
scalarReduced := p256GetMultiplier(baseScalar)
r1IsInfinity := scalarIsZero(scalarReduced)
r1.p256BaseMult(scalarReduced)
copy(r2.x[:], fromBig(maybeReduceModP(bigX)))
copy(r2.y[:], fromBig(maybeReduceModP(bigY)))
copy(r2.z[:], one)
p256MulAsm(r2.x[:], r2.x[:], rr[:])
p256MulAsm(r2.y[:], r2.y[:], rr[:])
scalarReduced = p256GetMultiplier(scalar)
r2IsInfinity := scalarIsZero(scalarReduced)
r2.p256ScalarMult(scalarReduced)
var sum, double p256Point
pointsEqual := p256PointAddAsm(&sum, &r1, &r2)
p256PointDoubleAsm(&double, &r1)
p256MovCond(&sum, &double, &sum, pointsEqual)
p256MovCond(&sum, &r1, &sum, r2IsInfinity)
p256MovCond(&sum, &r2, &sum, r1IsInfinity)
return sum.p256PointToAffine()
}
func (curve p256CurveFast) ScalarBaseMult(scalar []byte) (x, y *big.Int) {
var r p256Point
reducedScalar := p256GetMultiplier(scalar)
r.p256BaseMult(reducedScalar)
return r.p256PointToAffine()
}
func (curve p256CurveFast) ScalarMult(bigX, bigY *big.Int, scalar []byte) (x, y *big.Int) {
scalarReduced := p256GetMultiplier(scalar)
var r p256Point
copy(r.x[:], fromBig(maybeReduceModP(bigX)))
copy(r.y[:], fromBig(maybeReduceModP(bigY)))
copy(r.z[:], one)
p256MulAsm(r.x[:], r.x[:], rr[:])
p256MulAsm(r.y[:], r.y[:], rr[:])
r.p256ScalarMult(scalarReduced)
return r.p256PointToAffine()
}
func scalarIsZero(scalar []byte) int {
// If any byte is not zero, return 0.
// Check for -0.... since that appears to compare to 0.
b := byte(0)
for _, s := range scalar {
b |= s
}
return subtle.ConstantTimeByteEq(b, 0)
}
func (p *p256Point) p256PointToAffine() (x, y *big.Int) {
zInv := make([]byte, 32)
zInvSq := make([]byte, 32)
p256Inverse(zInv, p.z[:])
p256Sqr(zInvSq, zInv)
p256MulAsm(zInv, zInv, zInvSq)
p256MulAsm(zInvSq, p.x[:], zInvSq)
p256MulAsm(zInv, p.y[:], zInv)
p256FromMont(zInvSq, zInvSq)
p256FromMont(zInv, zInv)
// SetBytes expects a slice in big endian order,
// since ppc64le is little endian, reverse the bytes.
// TODO: For big endian, bytes don't need to be reversed.
p256ReverseBytes(zInvSq, zInvSq)
p256ReverseBytes(zInv, zInv)
rx := new(big.Int).SetBytes(zInvSq)
ry := new(big.Int).SetBytes(zInv)
return rx, ry
}
// p256Inverse sets out to in^-1 mod p.
func p256Inverse(out, in []byte) {
var stack [6 * 32]byte
p2 := stack[32*0 : 32*0+32]
p4 := stack[32*1 : 32*1+32]
p8 := stack[32*2 : 32*2+32]
p16 := stack[32*3 : 32*3+32]
p32 := stack[32*4 : 32*4+32]
p256Sqr(out, in)
p256MulAsm(p2, out, in) // 3*p
p256Sqr(out, p2)
p256Sqr(out, out)
p256MulAsm(p4, out, p2) // f*p
p256Sqr(out, p4)
p256Sqr(out, out)
p256Sqr(out, out)
p256Sqr(out, out)
p256MulAsm(p8, out, p4) // ff*p
p256Sqr(out, p8)
for i := 0; i < 7; i++ {
p256Sqr(out, out)
}
p256MulAsm(p16, out, p8) // ffff*p
p256Sqr(out, p16)
for i := 0; i < 15; i++ {
p256Sqr(out, out)
}
p256MulAsm(p32, out, p16) // ffffffff*p
p256Sqr(out, p32)
for i := 0; i < 31; i++ {
p256Sqr(out, out)
}
p256MulAsm(out, out, in)
for i := 0; i < 32*4; i++ {
p256Sqr(out, out)
}
p256MulAsm(out, out, p32)
for i := 0; i < 32; i++ {
p256Sqr(out, out)
}
p256MulAsm(out, out, p32)
for i := 0; i < 16; i++ {
p256Sqr(out, out)
}
p256MulAsm(out, out, p16)
for i := 0; i < 8; i++ {
p256Sqr(out, out)
}
p256MulAsm(out, out, p8)
p256Sqr(out, out)
p256Sqr(out, out)
p256Sqr(out, out)
p256Sqr(out, out)
p256MulAsm(out, out, p4)
p256Sqr(out, out)
p256Sqr(out, out)
p256MulAsm(out, out, p2)
p256Sqr(out, out)
p256Sqr(out, out)
p256MulAsm(out, out, in)
}
func boothW5(in uint) (int, int) {
var s uint = ^((in >> 5) - 1)
var d uint = (1 << 6) - in - 1
d = (d & s) | (in & (^s))
d = (d >> 1) + (d & 1)
return int(d), int(s & 1)
}
func boothW6(in uint) (int, int) {
var s uint = ^((in >> 6) - 1)
var d uint = (1 << 7) - in - 1
d = (d & s) | (in & (^s))
d = (d >> 1) + (d & 1)
return int(d), int(s & 1)
}
func boothW7(in uint) (int, int) {
var s uint = ^((in >> 7) - 1)
var d uint = (1 << 8) - in - 1
d = (d & s) | (in & (^s))
d = (d >> 1) + (d & 1)
return int(d), int(s & 1)
}
func initTable() {
p256PreFast = new([37][64]p256Point)
// TODO: For big endian, these slices should be in reverse byte order,
// as found in the s390x implementation.
basePoint := p256Point{
x: [32]byte{0x3c, 0x14, 0xa9, 0x18, 0xd4, 0x30, 0xe7, 0x79, 0x01, 0xb6, 0xed, 0x5f, 0xfc, 0x95, 0xba, 0x75,
0x10, 0x25, 0x62, 0x77, 0x2b, 0x73, 0xfb, 0x79, 0xc6, 0x55, 0x37, 0xa5, 0x76, 0x5f, 0x90, 0x18}, //(p256.x*2^256)%p
y: [32]byte{0x0a, 0x56, 0x95, 0xce, 0x57, 0x53, 0xf2, 0xdd, 0x5c, 0xe4, 0x19, 0xba, 0xe4, 0xb8, 0x4a, 0x8b,
0x25, 0xf3, 0x21, 0xdd, 0x88, 0x86, 0xe8, 0xd2, 0x85, 0x5d, 0x88, 0x25, 0x18, 0xff, 0x71, 0x85}, //(p256.y*2^256)%p
z: [32]byte{0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00}, //(p256.z*2^256)%p
}
t1 := new(p256Point)
t2 := new(p256Point)
*t2 = basePoint
zInv := make([]byte, 32)
zInvSq := make([]byte, 32)
for j := 0; j < 64; j++ {
*t1 = *t2
for i := 0; i < 37; i++ {
// The window size is 7 so we need to double 7 times.
if i != 0 {
for k := 0; k < 7; k++ {
p256PointDoubleAsm(t1, t1)
}
}
// Convert the point to affine form. (Its values are
// still in Montgomery form however.)
p256Inverse(zInv, t1.z[:])
p256Sqr(zInvSq, zInv)
p256MulAsm(zInv, zInv, zInvSq)
p256MulAsm(t1.x[:], t1.x[:], zInvSq)
p256MulAsm(t1.y[:], t1.y[:], zInv)
copy(t1.z[:], basePoint.z[:])
// Update the table entry
copy(p256PreFast[i][j].x[:], t1.x[:])
copy(p256PreFast[i][j].y[:], t1.y[:])
}
if j == 0 {
p256PointDoubleAsm(t2, &basePoint)
} else {
p256PointAddAsm(t2, t2, &basePoint)
}
}
}
func (p *p256Point) p256BaseMult(scalar []byte) {
// TODO: For big endian, the index should be 31 not 0.
wvalue := (uint(scalar[0]) << 1) & 0xff
sel, sign := boothW7(uint(wvalue))
p256SelectBase(p, p256PreFast[0][:], sel)
p256NegCond(p, sign)
copy(p.z[:], one[:])
var t0 p256Point
copy(t0.z[:], one[:])
index := uint(6)
zero := sel
for i := 1; i < 37; i++ {
// TODO: For big endian, use the same index values as found
// in the s390x implementation.
if index < 247 {
wvalue = ((uint(scalar[index/8]) >> (index % 8)) + (uint(scalar[index/8+1]) << (8 - (index % 8)))) & 0xff
} else {
wvalue = (uint(scalar[index/8]) >> (index % 8)) & 0xff
}
index += 7
sel, sign = boothW7(uint(wvalue))
p256SelectBase(&t0, p256PreFast[i][:], sel)
p256PointAddAffineAsm(p, p, &t0, sign, sel, zero)
zero |= sel
}
}
func (p *p256Point) p256ScalarMult(scalar []byte) {
// precomp is a table of precomputed points that stores powers of p
// from p^1 to p^16.
var precomp [16]p256Point
var t0, t1, t2, t3 p256Point
*&precomp[0] = *p
p256PointDoubleAsm(&t0, p)
p256PointDoubleAsm(&t1, &t0)
p256PointDoubleAsm(&t2, &t1)
p256PointDoubleAsm(&t3, &t2)
*&precomp[1] = t0
*&precomp[3] = t1
*&precomp[7] = t2
*&precomp[15] = t3
p256PointAddAsm(&t0, &t0, p)
p256PointAddAsm(&t1, &t1, p)
p256PointAddAsm(&t2, &t2, p)
*&precomp[2] = t0
*&precomp[4] = t1
*&precomp[8] = t2
p256PointDoubleAsm(&t0, &t0)
p256PointDoubleAsm(&t1, &t1)
*&precomp[5] = t0
*&precomp[9] = t1
p256PointAddAsm(&t2, &t0, p)
p256PointAddAsm(&t1, &t1, p)
*&precomp[6] = t2
*&precomp[10] = t1
p256PointDoubleAsm(&t0, &t0)
p256PointDoubleAsm(&t2, &t2)
*&precomp[11] = t0
*&precomp[13] = t2
p256PointAddAsm(&t0, &t0, p)
p256PointAddAsm(&t2, &t2, p)
*&precomp[12] = t0
*&precomp[14] = t2
// Start scanning the window from top bit
index := uint(254)
var sel, sign int
// TODO: For big endian, use index found in s390x implementation.
wvalue := (uint(scalar[index/8]) >> (index % 8)) & 0x3f
sel, _ = boothW5(uint(wvalue))
p256Select(p, precomp[:], sel)
zero := sel
for index > 4 {
index -= 5
p256PointDoubleAsm(p, p)
p256PointDoubleAsm(p, p)
p256PointDoubleAsm(p, p)
p256PointDoubleAsm(p, p)
p256PointDoubleAsm(p, p)
// TODO: For big endian, use index values as found in s390x implementation.
if index < 247 {
wvalue = ((uint(scalar[index/8]) >> (index % 8)) + (uint(scalar[index/8+1]) << (8 - (index % 8)))) & 0x3f
} else {
wvalue = (uint(scalar[index/8]) >> (index % 8)) & 0x3f
}
sel, sign = boothW5(uint(wvalue))
p256Select(&t0, precomp[:], sel)
p256NegCond(&t0, sign)
p256PointAddAsm(&t1, p, &t0)
p256MovCond(&t1, &t1, p, sel)
p256MovCond(p, &t1, &t0, zero)
zero |= sel
}
p256PointDoubleAsm(p, p)
p256PointDoubleAsm(p, p)
p256PointDoubleAsm(p, p)
p256PointDoubleAsm(p, p)
p256PointDoubleAsm(p, p)
// TODO: Use index for big endian as found in s390x implementation.
wvalue = (uint(scalar[0]) << 1) & 0x3f
sel, sign = boothW5(uint(wvalue))
p256Select(&t0, precomp[:], sel)
p256NegCond(&t0, sign)
p256PointAddAsm(&t1, p, &t0)
p256MovCond(&t1, &t1, p, sel)
p256MovCond(p, &t1, &t0, zero)
}