1489 lines
45 KiB
Go
1489 lines
45 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
// Garbage collector: marking and scanning
|
||
|
||
package runtime
|
||
|
||
import (
|
||
"runtime/internal/atomic"
|
||
"runtime/internal/sys"
|
||
"unsafe"
|
||
)
|
||
|
||
const (
|
||
fixedRootFinalizers = iota
|
||
fixedRootFreeGStacks
|
||
fixedRootCount
|
||
|
||
// rootBlockBytes is the number of bytes to scan per data or
|
||
// BSS root.
|
||
rootBlockBytes = 256 << 10
|
||
|
||
// maxObletBytes is the maximum bytes of an object to scan at
|
||
// once. Larger objects will be split up into "oblets" of at
|
||
// most this size. Since we can scan 1–2 MB/ms, 128 KB bounds
|
||
// scan preemption at ~100 µs.
|
||
//
|
||
// This must be > _MaxSmallSize so that the object base is the
|
||
// span base.
|
||
maxObletBytes = 128 << 10
|
||
|
||
// drainCheckThreshold specifies how many units of work to do
|
||
// between self-preemption checks in gcDrain. Assuming a scan
|
||
// rate of 1 MB/ms, this is ~100 µs. Lower values have higher
|
||
// overhead in the scan loop (the scheduler check may perform
|
||
// a syscall, so its overhead is nontrivial). Higher values
|
||
// make the system less responsive to incoming work.
|
||
drainCheckThreshold = 100000
|
||
|
||
// pagesPerSpanRoot indicates how many pages to scan from a span root
|
||
// at a time. Used by special root marking.
|
||
//
|
||
// Higher values improve throughput by increasing locality, but
|
||
// increase the minimum latency of a marking operation.
|
||
//
|
||
// Must be a multiple of the pageInUse bitmap element size and
|
||
// must also evenly divide pagesPerArena.
|
||
pagesPerSpanRoot = 512
|
||
|
||
// go115NewMarkrootSpans is a feature flag that indicates whether
|
||
// to use the new bitmap-based markrootSpans implementation.
|
||
go115NewMarkrootSpans = true
|
||
)
|
||
|
||
// gcMarkRootPrepare queues root scanning jobs (stacks, globals, and
|
||
// some miscellany) and initializes scanning-related state.
|
||
//
|
||
// The world must be stopped.
|
||
func gcMarkRootPrepare() {
|
||
work.nFlushCacheRoots = 0
|
||
|
||
work.nDataRoots = 0
|
||
|
||
// Only scan globals once per cycle; preferably concurrently.
|
||
roots := gcRoots
|
||
for roots != nil {
|
||
work.nDataRoots++
|
||
roots = roots.next
|
||
}
|
||
|
||
// Scan span roots for finalizer specials.
|
||
//
|
||
// We depend on addfinalizer to mark objects that get
|
||
// finalizers after root marking.
|
||
if go115NewMarkrootSpans {
|
||
// We're going to scan the whole heap (that was available at the time the
|
||
// mark phase started, i.e. markArenas) for in-use spans which have specials.
|
||
//
|
||
// Break up the work into arenas, and further into chunks.
|
||
//
|
||
// Snapshot allArenas as markArenas. This snapshot is safe because allArenas
|
||
// is append-only.
|
||
mheap_.markArenas = mheap_.allArenas[:len(mheap_.allArenas):len(mheap_.allArenas)]
|
||
work.nSpanRoots = len(mheap_.markArenas) * (pagesPerArena / pagesPerSpanRoot)
|
||
} else {
|
||
// We're only interested in scanning the in-use spans,
|
||
// which will all be swept at this point. More spans
|
||
// may be added to this list during concurrent GC, but
|
||
// we only care about spans that were allocated before
|
||
// this mark phase.
|
||
work.nSpanRoots = mheap_.sweepSpans[mheap_.sweepgen/2%2].numBlocks()
|
||
}
|
||
|
||
// Scan stacks.
|
||
//
|
||
// Gs may be created after this point, but it's okay that we
|
||
// ignore them because they begin life without any roots, so
|
||
// there's nothing to scan, and any roots they create during
|
||
// the concurrent phase will be scanned during mark
|
||
// termination.
|
||
work.nStackRoots = int(atomic.Loaduintptr(&allglen))
|
||
|
||
work.markrootNext = 0
|
||
work.markrootJobs = uint32(fixedRootCount + work.nFlushCacheRoots + work.nDataRoots + work.nSpanRoots + work.nStackRoots)
|
||
}
|
||
|
||
// gcMarkRootCheck checks that all roots have been scanned. It is
|
||
// purely for debugging.
|
||
func gcMarkRootCheck() {
|
||
if work.markrootNext < work.markrootJobs {
|
||
print(work.markrootNext, " of ", work.markrootJobs, " markroot jobs done\n")
|
||
throw("left over markroot jobs")
|
||
}
|
||
|
||
lock(&allglock)
|
||
// Check that stacks have been scanned.
|
||
var gp *g
|
||
for i := 0; i < work.nStackRoots; i++ {
|
||
gp = allgs[i]
|
||
if !gp.gcscandone {
|
||
goto fail
|
||
}
|
||
}
|
||
unlock(&allglock)
|
||
return
|
||
|
||
fail:
|
||
println("gp", gp, "goid", gp.goid,
|
||
"status", readgstatus(gp),
|
||
"gcscandone", gp.gcscandone)
|
||
unlock(&allglock) // Avoid self-deadlock with traceback.
|
||
throw("scan missed a g")
|
||
}
|
||
|
||
// ptrmask for an allocation containing a single pointer.
|
||
var oneptrmask = [...]uint8{1}
|
||
|
||
// markroot scans the i'th root.
|
||
//
|
||
// Preemption must be disabled (because this uses a gcWork).
|
||
//
|
||
// nowritebarrier is only advisory here.
|
||
//
|
||
//go:nowritebarrier
|
||
func markroot(gcw *gcWork, i uint32) {
|
||
// TODO(austin): This is a bit ridiculous. Compute and store
|
||
// the bases in gcMarkRootPrepare instead of the counts.
|
||
baseFlushCache := uint32(fixedRootCount)
|
||
baseData := baseFlushCache + uint32(work.nFlushCacheRoots)
|
||
baseSpans := baseData + uint32(work.nDataRoots)
|
||
baseStacks := baseSpans + uint32(work.nSpanRoots)
|
||
end := baseStacks + uint32(work.nStackRoots)
|
||
|
||
// Note: if you add a case here, please also update heapdump.go:dumproots.
|
||
switch {
|
||
case baseFlushCache <= i && i < baseData:
|
||
flushmcache(int(i - baseFlushCache))
|
||
|
||
case baseData <= i && i < baseSpans:
|
||
roots := gcRoots
|
||
c := baseData
|
||
for roots != nil {
|
||
if i == c {
|
||
markrootBlock(roots, gcw)
|
||
break
|
||
}
|
||
roots = roots.next
|
||
c++
|
||
}
|
||
|
||
case i == fixedRootFinalizers:
|
||
for fb := allfin; fb != nil; fb = fb.alllink {
|
||
cnt := uintptr(atomic.Load(&fb.cnt))
|
||
scanblock(uintptr(unsafe.Pointer(&fb.fin[0])), cnt*unsafe.Sizeof(fb.fin[0]), &finptrmask[0], gcw)
|
||
}
|
||
|
||
case i == fixedRootFreeGStacks:
|
||
// FIXME: We don't do this for gccgo.
|
||
|
||
case baseSpans <= i && i < baseStacks:
|
||
// mark mspan.specials
|
||
markrootSpans(gcw, int(i-baseSpans))
|
||
|
||
default:
|
||
// the rest is scanning goroutine stacks
|
||
var gp *g
|
||
if baseStacks <= i && i < end {
|
||
gp = allgs[i-baseStacks]
|
||
} else {
|
||
throw("markroot: bad index")
|
||
}
|
||
|
||
// remember when we've first observed the G blocked
|
||
// needed only to output in traceback
|
||
status := readgstatus(gp) // We are not in a scan state
|
||
if (status == _Gwaiting || status == _Gsyscall) && gp.waitsince == 0 {
|
||
gp.waitsince = work.tstart
|
||
}
|
||
|
||
// scanstack must be done on the system stack in case
|
||
// we're trying to scan our own stack.
|
||
systemstack(func() {
|
||
// If this is a self-scan, put the user G in
|
||
// _Gwaiting to prevent self-deadlock. It may
|
||
// already be in _Gwaiting if this is a mark
|
||
// worker or we're in mark termination.
|
||
userG := getg().m.curg
|
||
selfScan := gp == userG && readgstatus(userG) == _Grunning
|
||
if selfScan {
|
||
casgstatus(userG, _Grunning, _Gwaiting)
|
||
userG.waitreason = waitReasonGarbageCollectionScan
|
||
}
|
||
|
||
// TODO: suspendG blocks (and spins) until gp
|
||
// stops, which may take a while for
|
||
// running goroutines. Consider doing this in
|
||
// two phases where the first is non-blocking:
|
||
// we scan the stacks we can and ask running
|
||
// goroutines to scan themselves; and the
|
||
// second blocks.
|
||
stopped := suspendG(gp)
|
||
if stopped.dead {
|
||
gp.gcscandone = true
|
||
return
|
||
}
|
||
if gp.gcscandone {
|
||
throw("g already scanned")
|
||
}
|
||
scanstack(gp, gcw)
|
||
gp.gcscandone = true
|
||
resumeG(stopped)
|
||
|
||
if selfScan {
|
||
casgstatus(userG, _Gwaiting, _Grunning)
|
||
}
|
||
})
|
||
}
|
||
}
|
||
|
||
// markrootBlock scans one element of the list of GC roots.
|
||
//
|
||
//go:nowritebarrier
|
||
func markrootBlock(roots *gcRootList, gcw *gcWork) {
|
||
for i := 0; i < roots.count; i++ {
|
||
r := &roots.roots[i]
|
||
scanblock(uintptr(r.decl), r.ptrdata, r.gcdata, gcw)
|
||
}
|
||
}
|
||
|
||
// markrootSpans marks roots for one shard of markArenas.
|
||
//
|
||
//go:nowritebarrier
|
||
func markrootSpans(gcw *gcWork, shard int) {
|
||
if !go115NewMarkrootSpans {
|
||
oldMarkrootSpans(gcw, shard)
|
||
return
|
||
}
|
||
// Objects with finalizers have two GC-related invariants:
|
||
//
|
||
// 1) Everything reachable from the object must be marked.
|
||
// This ensures that when we pass the object to its finalizer,
|
||
// everything the finalizer can reach will be retained.
|
||
//
|
||
// 2) Finalizer specials (which are not in the garbage
|
||
// collected heap) are roots. In practice, this means the fn
|
||
// field must be scanned.
|
||
sg := mheap_.sweepgen
|
||
|
||
// Find the arena and page index into that arena for this shard.
|
||
ai := mheap_.markArenas[shard/(pagesPerArena/pagesPerSpanRoot)]
|
||
ha := mheap_.arenas[ai.l1()][ai.l2()]
|
||
arenaPage := uint(uintptr(shard) * pagesPerSpanRoot % pagesPerArena)
|
||
|
||
// Construct slice of bitmap which we'll iterate over.
|
||
specialsbits := ha.pageSpecials[arenaPage/8:]
|
||
specialsbits = specialsbits[:pagesPerSpanRoot/8]
|
||
for i := range specialsbits {
|
||
// Find set bits, which correspond to spans with specials.
|
||
specials := atomic.Load8(&specialsbits[i])
|
||
if specials == 0 {
|
||
continue
|
||
}
|
||
for j := uint(0); j < 8; j++ {
|
||
if specials&(1<<j) == 0 {
|
||
continue
|
||
}
|
||
// Find the span for this bit.
|
||
//
|
||
// This value is guaranteed to be non-nil because having
|
||
// specials implies that the span is in-use, and since we're
|
||
// currently marking we can be sure that we don't have to worry
|
||
// about the span being freed and re-used.
|
||
s := ha.spans[arenaPage+uint(i)*8+j]
|
||
|
||
// The state must be mSpanInUse if the specials bit is set, so
|
||
// sanity check that.
|
||
if state := s.state.get(); state != mSpanInUse {
|
||
print("s.state = ", state, "\n")
|
||
throw("non in-use span found with specials bit set")
|
||
}
|
||
// Check that this span was swept (it may be cached or uncached).
|
||
if !useCheckmark && !(s.sweepgen == sg || s.sweepgen == sg+3) {
|
||
// sweepgen was updated (+2) during non-checkmark GC pass
|
||
print("sweep ", s.sweepgen, " ", sg, "\n")
|
||
throw("gc: unswept span")
|
||
}
|
||
|
||
// Lock the specials to prevent a special from being
|
||
// removed from the list while we're traversing it.
|
||
lock(&s.speciallock)
|
||
for sp := s.specials; sp != nil; sp = sp.next {
|
||
if sp.kind != _KindSpecialFinalizer {
|
||
continue
|
||
}
|
||
// don't mark finalized object, but scan it so we
|
||
// retain everything it points to.
|
||
spf := (*specialfinalizer)(unsafe.Pointer(sp))
|
||
// A finalizer can be set for an inner byte of an object, find object beginning.
|
||
p := s.base() + uintptr(spf.special.offset)/s.elemsize*s.elemsize
|
||
|
||
// Mark everything that can be reached from
|
||
// the object (but *not* the object itself or
|
||
// we'll never collect it).
|
||
scanobject(p, gcw)
|
||
|
||
// The special itself is a root.
|
||
scanblock(uintptr(unsafe.Pointer(&spf.fn)), sys.PtrSize, &oneptrmask[0], gcw)
|
||
}
|
||
unlock(&s.speciallock)
|
||
}
|
||
}
|
||
}
|
||
|
||
// oldMarkrootSpans marks roots for one shard of work.spans.
|
||
//
|
||
// For go115NewMarkrootSpans = false.
|
||
//
|
||
//go:nowritebarrier
|
||
func oldMarkrootSpans(gcw *gcWork, shard int) {
|
||
// Objects with finalizers have two GC-related invariants:
|
||
//
|
||
// 1) Everything reachable from the object must be marked.
|
||
// This ensures that when we pass the object to its finalizer,
|
||
// everything the finalizer can reach will be retained.
|
||
//
|
||
// 2) Finalizer specials (which are not in the garbage
|
||
// collected heap) are roots. In practice, this means the fn
|
||
// field must be scanned.
|
||
//
|
||
// TODO(austin): There are several ideas for making this more
|
||
// efficient in issue #11485.
|
||
|
||
sg := mheap_.sweepgen
|
||
spans := mheap_.sweepSpans[mheap_.sweepgen/2%2].block(shard)
|
||
// Note that work.spans may not include spans that were
|
||
// allocated between entering the scan phase and now. We may
|
||
// also race with spans being added into sweepSpans when they're
|
||
// just created, and as a result we may see nil pointers in the
|
||
// spans slice. This is okay because any objects with finalizers
|
||
// in those spans must have been allocated and given finalizers
|
||
// after we entered the scan phase, so addfinalizer will have
|
||
// ensured the above invariants for them.
|
||
for i := 0; i < len(spans); i++ {
|
||
// sweepBuf.block requires that we read pointers from the block atomically.
|
||
// It also requires that we ignore nil pointers.
|
||
s := (*mspan)(atomic.Loadp(unsafe.Pointer(&spans[i])))
|
||
|
||
// This is racing with spans being initialized, so
|
||
// check the state carefully.
|
||
if s == nil || s.state.get() != mSpanInUse {
|
||
continue
|
||
}
|
||
// Check that this span was swept (it may be cached or uncached).
|
||
if !useCheckmark && !(s.sweepgen == sg || s.sweepgen == sg+3) {
|
||
// sweepgen was updated (+2) during non-checkmark GC pass
|
||
print("sweep ", s.sweepgen, " ", sg, "\n")
|
||
throw("gc: unswept span")
|
||
}
|
||
|
||
// Speculatively check if there are any specials
|
||
// without acquiring the span lock. This may race with
|
||
// adding the first special to a span, but in that
|
||
// case addfinalizer will observe that the GC is
|
||
// active (which is globally synchronized) and ensure
|
||
// the above invariants. We may also ensure the
|
||
// invariants, but it's okay to scan an object twice.
|
||
if s.specials == nil {
|
||
continue
|
||
}
|
||
|
||
// Lock the specials to prevent a special from being
|
||
// removed from the list while we're traversing it.
|
||
lock(&s.speciallock)
|
||
|
||
for sp := s.specials; sp != nil; sp = sp.next {
|
||
if sp.kind != _KindSpecialFinalizer {
|
||
continue
|
||
}
|
||
// don't mark finalized object, but scan it so we
|
||
// retain everything it points to.
|
||
spf := (*specialfinalizer)(unsafe.Pointer(sp))
|
||
// A finalizer can be set for an inner byte of an object, find object beginning.
|
||
p := s.base() + uintptr(spf.special.offset)/s.elemsize*s.elemsize
|
||
|
||
// Mark everything that can be reached from
|
||
// the object (but *not* the object itself or
|
||
// we'll never collect it).
|
||
scanobject(p, gcw)
|
||
|
||
// The special itself is a root.
|
||
scanblock(uintptr(unsafe.Pointer(&spf.fn)), sys.PtrSize, &oneptrmask[0], gcw)
|
||
}
|
||
|
||
unlock(&s.speciallock)
|
||
}
|
||
}
|
||
|
||
// gcAssistAlloc performs GC work to make gp's assist debt positive.
|
||
// gp must be the calling user gorountine.
|
||
//
|
||
// This must be called with preemption enabled.
|
||
func gcAssistAlloc(gp *g) {
|
||
// Don't assist in non-preemptible contexts. These are
|
||
// generally fragile and won't allow the assist to block.
|
||
if getg() == gp.m.g0 {
|
||
return
|
||
}
|
||
if mp := getg().m; mp.locks > 0 || mp.preemptoff != "" {
|
||
return
|
||
}
|
||
|
||
traced := false
|
||
retry:
|
||
// Compute the amount of scan work we need to do to make the
|
||
// balance positive. When the required amount of work is low,
|
||
// we over-assist to build up credit for future allocations
|
||
// and amortize the cost of assisting.
|
||
debtBytes := -gp.gcAssistBytes
|
||
scanWork := int64(gcController.assistWorkPerByte * float64(debtBytes))
|
||
if scanWork < gcOverAssistWork {
|
||
scanWork = gcOverAssistWork
|
||
debtBytes = int64(gcController.assistBytesPerWork * float64(scanWork))
|
||
}
|
||
|
||
// Steal as much credit as we can from the background GC's
|
||
// scan credit. This is racy and may drop the background
|
||
// credit below 0 if two mutators steal at the same time. This
|
||
// will just cause steals to fail until credit is accumulated
|
||
// again, so in the long run it doesn't really matter, but we
|
||
// do have to handle the negative credit case.
|
||
bgScanCredit := atomic.Loadint64(&gcController.bgScanCredit)
|
||
stolen := int64(0)
|
||
if bgScanCredit > 0 {
|
||
if bgScanCredit < scanWork {
|
||
stolen = bgScanCredit
|
||
gp.gcAssistBytes += 1 + int64(gcController.assistBytesPerWork*float64(stolen))
|
||
} else {
|
||
stolen = scanWork
|
||
gp.gcAssistBytes += debtBytes
|
||
}
|
||
atomic.Xaddint64(&gcController.bgScanCredit, -stolen)
|
||
|
||
scanWork -= stolen
|
||
|
||
if scanWork == 0 {
|
||
// We were able to steal all of the credit we
|
||
// needed.
|
||
if traced {
|
||
traceGCMarkAssistDone()
|
||
}
|
||
return
|
||
}
|
||
}
|
||
|
||
if trace.enabled && !traced {
|
||
traced = true
|
||
traceGCMarkAssistStart()
|
||
}
|
||
|
||
// Perform assist work
|
||
systemstack(func() {
|
||
gcAssistAlloc1(gp, scanWork)
|
||
// The user stack may have moved, so this can't touch
|
||
// anything on it until it returns from systemstack.
|
||
})
|
||
|
||
completed := gp.param != nil
|
||
gp.param = nil
|
||
if completed {
|
||
gcMarkDone()
|
||
}
|
||
|
||
if gp.gcAssistBytes < 0 {
|
||
// We were unable steal enough credit or perform
|
||
// enough work to pay off the assist debt. We need to
|
||
// do one of these before letting the mutator allocate
|
||
// more to prevent over-allocation.
|
||
//
|
||
// If this is because we were preempted, reschedule
|
||
// and try some more.
|
||
if gp.preempt {
|
||
Gosched()
|
||
goto retry
|
||
}
|
||
|
||
// Add this G to an assist queue and park. When the GC
|
||
// has more background credit, it will satisfy queued
|
||
// assists before flushing to the global credit pool.
|
||
//
|
||
// Note that this does *not* get woken up when more
|
||
// work is added to the work list. The theory is that
|
||
// there wasn't enough work to do anyway, so we might
|
||
// as well let background marking take care of the
|
||
// work that is available.
|
||
if !gcParkAssist() {
|
||
goto retry
|
||
}
|
||
|
||
// At this point either background GC has satisfied
|
||
// this G's assist debt, or the GC cycle is over.
|
||
}
|
||
if traced {
|
||
traceGCMarkAssistDone()
|
||
}
|
||
}
|
||
|
||
// gcAssistAlloc1 is the part of gcAssistAlloc that runs on the system
|
||
// stack. This is a separate function to make it easier to see that
|
||
// we're not capturing anything from the user stack, since the user
|
||
// stack may move while we're in this function.
|
||
//
|
||
// gcAssistAlloc1 indicates whether this assist completed the mark
|
||
// phase by setting gp.param to non-nil. This can't be communicated on
|
||
// the stack since it may move.
|
||
//
|
||
//go:systemstack
|
||
func gcAssistAlloc1(gp *g, scanWork int64) {
|
||
// Clear the flag indicating that this assist completed the
|
||
// mark phase.
|
||
gp.param = nil
|
||
|
||
if atomic.Load(&gcBlackenEnabled) == 0 {
|
||
// The gcBlackenEnabled check in malloc races with the
|
||
// store that clears it but an atomic check in every malloc
|
||
// would be a performance hit.
|
||
// Instead we recheck it here on the non-preemptable system
|
||
// stack to determine if we should perform an assist.
|
||
|
||
// GC is done, so ignore any remaining debt.
|
||
gp.gcAssistBytes = 0
|
||
return
|
||
}
|
||
// Track time spent in this assist. Since we're on the
|
||
// system stack, this is non-preemptible, so we can
|
||
// just measure start and end time.
|
||
startTime := nanotime()
|
||
|
||
decnwait := atomic.Xadd(&work.nwait, -1)
|
||
if decnwait == work.nproc {
|
||
println("runtime: work.nwait =", decnwait, "work.nproc=", work.nproc)
|
||
throw("nwait > work.nprocs")
|
||
}
|
||
|
||
// gcDrainN requires the caller to be preemptible.
|
||
casgstatus(gp, _Grunning, _Gwaiting)
|
||
gp.waitreason = waitReasonGCAssistMarking
|
||
|
||
// drain own cached work first in the hopes that it
|
||
// will be more cache friendly.
|
||
gcw := &getg().m.p.ptr().gcw
|
||
workDone := gcDrainN(gcw, scanWork)
|
||
|
||
casgstatus(gp, _Gwaiting, _Grunning)
|
||
|
||
// Record that we did this much scan work.
|
||
//
|
||
// Back out the number of bytes of assist credit that
|
||
// this scan work counts for. The "1+" is a poor man's
|
||
// round-up, to ensure this adds credit even if
|
||
// assistBytesPerWork is very low.
|
||
gp.gcAssistBytes += 1 + int64(gcController.assistBytesPerWork*float64(workDone))
|
||
|
||
// If this is the last worker and we ran out of work,
|
||
// signal a completion point.
|
||
incnwait := atomic.Xadd(&work.nwait, +1)
|
||
if incnwait > work.nproc {
|
||
println("runtime: work.nwait=", incnwait,
|
||
"work.nproc=", work.nproc)
|
||
throw("work.nwait > work.nproc")
|
||
}
|
||
|
||
if incnwait == work.nproc && !gcMarkWorkAvailable(nil) {
|
||
// This has reached a background completion point. Set
|
||
// gp.param to a non-nil value to indicate this. It
|
||
// doesn't matter what we set it to (it just has to be
|
||
// a valid pointer).
|
||
gp.param = unsafe.Pointer(gp)
|
||
}
|
||
duration := nanotime() - startTime
|
||
_p_ := gp.m.p.ptr()
|
||
_p_.gcAssistTime += duration
|
||
if _p_.gcAssistTime > gcAssistTimeSlack {
|
||
atomic.Xaddint64(&gcController.assistTime, _p_.gcAssistTime)
|
||
_p_.gcAssistTime = 0
|
||
}
|
||
}
|
||
|
||
// gcWakeAllAssists wakes all currently blocked assists. This is used
|
||
// at the end of a GC cycle. gcBlackenEnabled must be false to prevent
|
||
// new assists from going to sleep after this point.
|
||
func gcWakeAllAssists() {
|
||
lock(&work.assistQueue.lock)
|
||
list := work.assistQueue.q.popList()
|
||
injectglist(&list)
|
||
unlock(&work.assistQueue.lock)
|
||
}
|
||
|
||
// gcParkAssist puts the current goroutine on the assist queue and parks.
|
||
//
|
||
// gcParkAssist reports whether the assist is now satisfied. If it
|
||
// returns false, the caller must retry the assist.
|
||
//
|
||
//go:nowritebarrier
|
||
func gcParkAssist() bool {
|
||
lock(&work.assistQueue.lock)
|
||
// If the GC cycle finished while we were getting the lock,
|
||
// exit the assist. The cycle can't finish while we hold the
|
||
// lock.
|
||
if atomic.Load(&gcBlackenEnabled) == 0 {
|
||
unlock(&work.assistQueue.lock)
|
||
return true
|
||
}
|
||
|
||
gp := getg()
|
||
oldList := work.assistQueue.q
|
||
work.assistQueue.q.pushBack(gp)
|
||
|
||
// Recheck for background credit now that this G is in
|
||
// the queue, but can still back out. This avoids a
|
||
// race in case background marking has flushed more
|
||
// credit since we checked above.
|
||
if atomic.Loadint64(&gcController.bgScanCredit) > 0 {
|
||
work.assistQueue.q = oldList
|
||
if oldList.tail != 0 {
|
||
oldList.tail.ptr().schedlink.set(nil)
|
||
}
|
||
unlock(&work.assistQueue.lock)
|
||
return false
|
||
}
|
||
// Park.
|
||
goparkunlock(&work.assistQueue.lock, waitReasonGCAssistWait, traceEvGoBlockGC, 2)
|
||
return true
|
||
}
|
||
|
||
// gcFlushBgCredit flushes scanWork units of background scan work
|
||
// credit. This first satisfies blocked assists on the
|
||
// work.assistQueue and then flushes any remaining credit to
|
||
// gcController.bgScanCredit.
|
||
//
|
||
// Write barriers are disallowed because this is used by gcDrain after
|
||
// it has ensured that all work is drained and this must preserve that
|
||
// condition.
|
||
//
|
||
//go:nowritebarrierrec
|
||
func gcFlushBgCredit(scanWork int64) {
|
||
if work.assistQueue.q.empty() {
|
||
// Fast path; there are no blocked assists. There's a
|
||
// small window here where an assist may add itself to
|
||
// the blocked queue and park. If that happens, we'll
|
||
// just get it on the next flush.
|
||
atomic.Xaddint64(&gcController.bgScanCredit, scanWork)
|
||
return
|
||
}
|
||
|
||
scanBytes := int64(float64(scanWork) * gcController.assistBytesPerWork)
|
||
|
||
lock(&work.assistQueue.lock)
|
||
for !work.assistQueue.q.empty() && scanBytes > 0 {
|
||
gp := work.assistQueue.q.pop()
|
||
// Note that gp.gcAssistBytes is negative because gp
|
||
// is in debt. Think carefully about the signs below.
|
||
if scanBytes+gp.gcAssistBytes >= 0 {
|
||
// Satisfy this entire assist debt.
|
||
scanBytes += gp.gcAssistBytes
|
||
gp.gcAssistBytes = 0
|
||
// It's important that we *not* put gp in
|
||
// runnext. Otherwise, it's possible for user
|
||
// code to exploit the GC worker's high
|
||
// scheduler priority to get itself always run
|
||
// before other goroutines and always in the
|
||
// fresh quantum started by GC.
|
||
ready(gp, 0, false)
|
||
} else {
|
||
// Partially satisfy this assist.
|
||
gp.gcAssistBytes += scanBytes
|
||
scanBytes = 0
|
||
// As a heuristic, we move this assist to the
|
||
// back of the queue so that large assists
|
||
// can't clog up the assist queue and
|
||
// substantially delay small assists.
|
||
work.assistQueue.q.pushBack(gp)
|
||
break
|
||
}
|
||
}
|
||
|
||
if scanBytes > 0 {
|
||
// Convert from scan bytes back to work.
|
||
scanWork = int64(float64(scanBytes) * gcController.assistWorkPerByte)
|
||
atomic.Xaddint64(&gcController.bgScanCredit, scanWork)
|
||
}
|
||
unlock(&work.assistQueue.lock)
|
||
}
|
||
|
||
// We use a C function to find the stack.
|
||
// Returns whether we succesfully scanned the stack.
|
||
func doscanstack(*g, *gcWork) bool
|
||
|
||
func doscanstackswitch(*g, *g)
|
||
|
||
// scanstack scans gp's stack, greying all pointers found on the stack.
|
||
//
|
||
// scanstack will also shrink the stack if it is safe to do so. If it
|
||
// is not, it schedules a stack shrink for the next synchronous safe
|
||
// point.
|
||
//
|
||
// scanstack is marked go:systemstack because it must not be preempted
|
||
// while using a workbuf.
|
||
//
|
||
//go:nowritebarrier
|
||
//go:systemstack
|
||
func scanstack(gp *g, gcw *gcWork) {
|
||
if readgstatus(gp)&_Gscan == 0 {
|
||
print("runtime:scanstack: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", hex(readgstatus(gp)), "\n")
|
||
throw("scanstack - bad status")
|
||
}
|
||
|
||
switch readgstatus(gp) &^ _Gscan {
|
||
default:
|
||
print("runtime: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", readgstatus(gp), "\n")
|
||
throw("mark - bad status")
|
||
case _Gdead:
|
||
return
|
||
case _Grunning:
|
||
print("runtime: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", readgstatus(gp), "\n")
|
||
throw("scanstack: goroutine not stopped")
|
||
case _Grunnable, _Gsyscall, _Gwaiting:
|
||
// ok
|
||
}
|
||
|
||
// Scan the stack.
|
||
if usestackmaps {
|
||
g := getg()
|
||
if g == gp {
|
||
// Scan its own stack.
|
||
doscanstack(gp, gcw)
|
||
} else if gp.entry != nil {
|
||
// This is a newly created g that hasn't run. No stack to scan.
|
||
} else if readgstatus(gp)&^_Gscan == _Gsyscall {
|
||
scanSyscallStack(gp, gcw)
|
||
} else {
|
||
// Scanning another g's stack. We need to switch to that g
|
||
// to unwind its stack. And switch back after scan.
|
||
scanstackswitch(gp, gcw)
|
||
}
|
||
} else {
|
||
doscanstack(gp, gcw)
|
||
|
||
// Conservatively scan the saved register values.
|
||
scanstackblock(uintptr(unsafe.Pointer(&gp.gcregs)), unsafe.Sizeof(gp.gcregs), gcw)
|
||
scanstackblock(uintptr(unsafe.Pointer(&gp.context)), unsafe.Sizeof(gp.context), gcw)
|
||
}
|
||
|
||
// Note: in the gc runtime scanstack also scans defer records.
|
||
// This is necessary as it uses stack objects (a.k.a. stack tracing).
|
||
// We don't (yet) do stack objects, and regular stack/heap scan
|
||
// will take care of defer records just fine.
|
||
}
|
||
|
||
// scanstackswitch scans gp's stack by switching (gogo) to gp and
|
||
// letting it scan its own stack, and switching back upon finish.
|
||
//
|
||
//go:nowritebarrier
|
||
func scanstackswitch(gp *g, gcw *gcWork) {
|
||
g := getg()
|
||
|
||
// We are on the system stack which prevents preemption. But
|
||
// we are going to switch to g stack. Lock m to block preemption.
|
||
mp := acquirem()
|
||
|
||
// The doscanstackswitch function will modify the current g's
|
||
// context. Preserve it.
|
||
// The stack scan code may call systemstack, which will modify
|
||
// gp's context. Preserve it as well so we can resume gp.
|
||
context := g.context
|
||
stackcontext := g.stackcontext
|
||
context2 := gp.context
|
||
stackcontext2 := gp.stackcontext
|
||
|
||
gp.scangcw = uintptr(unsafe.Pointer(gcw))
|
||
gp.scang = uintptr(unsafe.Pointer(g))
|
||
doscanstackswitch(g, gp)
|
||
|
||
// Restore the contexts.
|
||
g.context = context
|
||
g.stackcontext = stackcontext
|
||
gp.context = context2
|
||
gp.stackcontext = stackcontext2
|
||
gp.scangcw = 0
|
||
// gp.scang is already cleared in C code.
|
||
|
||
releasem(mp)
|
||
}
|
||
|
||
// scanSyscallStack scans the stack of a goroutine blocked in a
|
||
// syscall by waking it up and asking it to scan its own stack.
|
||
func scanSyscallStack(gp *g, gcw *gcWork) {
|
||
if gp.scanningself {
|
||
// We've suspended the goroutine by setting the _Gscan bit,
|
||
// so this shouldn't be possible.
|
||
throw("scanSyscallStack: scanningself")
|
||
}
|
||
if gp.gcscandone {
|
||
// We've suspended the goroutine by setting the _Gscan bit,
|
||
// so this shouldn't be possible.
|
||
|
||
throw("scanSyscallStack: gcscandone")
|
||
}
|
||
|
||
gp.gcScannedSyscallStack = false
|
||
for {
|
||
mp := gp.m
|
||
noteclear(&mp.scannote)
|
||
gp.scangcw = uintptr(unsafe.Pointer(gcw))
|
||
tgkill(getpid(), _pid_t(mp.procid), _SIGURG)
|
||
// Wait for gp to scan its own stack.
|
||
notesleep(&mp.scannote)
|
||
if gp.gcScannedSyscallStack {
|
||
return
|
||
}
|
||
|
||
// The signal was delivered at a bad time. Try again.
|
||
osyield()
|
||
}
|
||
}
|
||
|
||
type gcDrainFlags int
|
||
|
||
const (
|
||
gcDrainUntilPreempt gcDrainFlags = 1 << iota
|
||
gcDrainFlushBgCredit
|
||
gcDrainIdle
|
||
gcDrainFractional
|
||
)
|
||
|
||
// gcDrain scans roots and objects in work buffers, blackening grey
|
||
// objects until it is unable to get more work. It may return before
|
||
// GC is done; it's the caller's responsibility to balance work from
|
||
// other Ps.
|
||
//
|
||
// If flags&gcDrainUntilPreempt != 0, gcDrain returns when g.preempt
|
||
// is set.
|
||
//
|
||
// If flags&gcDrainIdle != 0, gcDrain returns when there is other work
|
||
// to do.
|
||
//
|
||
// If flags&gcDrainFractional != 0, gcDrain self-preempts when
|
||
// pollFractionalWorkerExit() returns true. This implies
|
||
// gcDrainNoBlock.
|
||
//
|
||
// If flags&gcDrainFlushBgCredit != 0, gcDrain flushes scan work
|
||
// credit to gcController.bgScanCredit every gcCreditSlack units of
|
||
// scan work.
|
||
//
|
||
// gcDrain will always return if there is a pending STW.
|
||
//
|
||
//go:nowritebarrier
|
||
func gcDrain(gcw *gcWork, flags gcDrainFlags) {
|
||
if !writeBarrier.needed {
|
||
throw("gcDrain phase incorrect")
|
||
}
|
||
|
||
gp := getg().m.curg
|
||
preemptible := flags&gcDrainUntilPreempt != 0
|
||
flushBgCredit := flags&gcDrainFlushBgCredit != 0
|
||
idle := flags&gcDrainIdle != 0
|
||
|
||
initScanWork := gcw.scanWork
|
||
|
||
// checkWork is the scan work before performing the next
|
||
// self-preempt check.
|
||
checkWork := int64(1<<63 - 1)
|
||
var check func() bool
|
||
if flags&(gcDrainIdle|gcDrainFractional) != 0 {
|
||
checkWork = initScanWork + drainCheckThreshold
|
||
if idle {
|
||
check = pollWork
|
||
} else if flags&gcDrainFractional != 0 {
|
||
check = pollFractionalWorkerExit
|
||
}
|
||
}
|
||
|
||
// Drain root marking jobs.
|
||
if work.markrootNext < work.markrootJobs {
|
||
// Stop if we're preemptible or if someone wants to STW.
|
||
for !(gp.preempt && (preemptible || atomic.Load(&sched.gcwaiting) != 0)) {
|
||
job := atomic.Xadd(&work.markrootNext, +1) - 1
|
||
if job >= work.markrootJobs {
|
||
break
|
||
}
|
||
markroot(gcw, job)
|
||
if check != nil && check() {
|
||
goto done
|
||
}
|
||
}
|
||
}
|
||
|
||
// Drain heap marking jobs.
|
||
// Stop if we're preemptible or if someone wants to STW.
|
||
for !(gp.preempt && (preemptible || atomic.Load(&sched.gcwaiting) != 0)) {
|
||
// Try to keep work available on the global queue. We used to
|
||
// check if there were waiting workers, but it's better to
|
||
// just keep work available than to make workers wait. In the
|
||
// worst case, we'll do O(log(_WorkbufSize)) unnecessary
|
||
// balances.
|
||
if work.full == 0 {
|
||
gcw.balance()
|
||
}
|
||
|
||
b := gcw.tryGetFast()
|
||
if b == 0 {
|
||
b = gcw.tryGet()
|
||
if b == 0 {
|
||
// Flush the write barrier
|
||
// buffer; this may create
|
||
// more work.
|
||
wbBufFlush(nil, 0)
|
||
b = gcw.tryGet()
|
||
}
|
||
}
|
||
if b == 0 {
|
||
// Unable to get work.
|
||
break
|
||
}
|
||
scanobject(b, gcw)
|
||
|
||
// Flush background scan work credit to the global
|
||
// account if we've accumulated enough locally so
|
||
// mutator assists can draw on it.
|
||
if gcw.scanWork >= gcCreditSlack {
|
||
atomic.Xaddint64(&gcController.scanWork, gcw.scanWork)
|
||
if flushBgCredit {
|
||
gcFlushBgCredit(gcw.scanWork - initScanWork)
|
||
initScanWork = 0
|
||
}
|
||
checkWork -= gcw.scanWork
|
||
gcw.scanWork = 0
|
||
|
||
if checkWork <= 0 {
|
||
checkWork += drainCheckThreshold
|
||
if check != nil && check() {
|
||
break
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
done:
|
||
// Flush remaining scan work credit.
|
||
if gcw.scanWork > 0 {
|
||
atomic.Xaddint64(&gcController.scanWork, gcw.scanWork)
|
||
if flushBgCredit {
|
||
gcFlushBgCredit(gcw.scanWork - initScanWork)
|
||
}
|
||
gcw.scanWork = 0
|
||
}
|
||
}
|
||
|
||
// gcDrainN blackens grey objects until it has performed roughly
|
||
// scanWork units of scan work or the G is preempted. This is
|
||
// best-effort, so it may perform less work if it fails to get a work
|
||
// buffer. Otherwise, it will perform at least n units of work, but
|
||
// may perform more because scanning is always done in whole object
|
||
// increments. It returns the amount of scan work performed.
|
||
//
|
||
// The caller goroutine must be in a preemptible state (e.g.,
|
||
// _Gwaiting) to prevent deadlocks during stack scanning. As a
|
||
// consequence, this must be called on the system stack.
|
||
//
|
||
//go:nowritebarrier
|
||
//go:systemstack
|
||
func gcDrainN(gcw *gcWork, scanWork int64) int64 {
|
||
if !writeBarrier.needed {
|
||
throw("gcDrainN phase incorrect")
|
||
}
|
||
|
||
// There may already be scan work on the gcw, which we don't
|
||
// want to claim was done by this call.
|
||
workFlushed := -gcw.scanWork
|
||
|
||
gp := getg().m.curg
|
||
for !gp.preempt && workFlushed+gcw.scanWork < scanWork {
|
||
// See gcDrain comment.
|
||
if work.full == 0 {
|
||
gcw.balance()
|
||
}
|
||
|
||
// This might be a good place to add prefetch code...
|
||
// if(wbuf.nobj > 4) {
|
||
// PREFETCH(wbuf->obj[wbuf.nobj - 3];
|
||
// }
|
||
//
|
||
b := gcw.tryGetFast()
|
||
if b == 0 {
|
||
b = gcw.tryGet()
|
||
if b == 0 {
|
||
// Flush the write barrier buffer;
|
||
// this may create more work.
|
||
wbBufFlush(nil, 0)
|
||
b = gcw.tryGet()
|
||
}
|
||
}
|
||
|
||
if b == 0 {
|
||
// Try to do a root job.
|
||
//
|
||
// TODO: Assists should get credit for this
|
||
// work.
|
||
if work.markrootNext < work.markrootJobs {
|
||
job := atomic.Xadd(&work.markrootNext, +1) - 1
|
||
if job < work.markrootJobs {
|
||
markroot(gcw, job)
|
||
continue
|
||
}
|
||
}
|
||
// No heap or root jobs.
|
||
break
|
||
}
|
||
scanobject(b, gcw)
|
||
|
||
// Flush background scan work credit.
|
||
if gcw.scanWork >= gcCreditSlack {
|
||
atomic.Xaddint64(&gcController.scanWork, gcw.scanWork)
|
||
workFlushed += gcw.scanWork
|
||
gcw.scanWork = 0
|
||
}
|
||
}
|
||
|
||
// Unlike gcDrain, there's no need to flush remaining work
|
||
// here because this never flushes to bgScanCredit and
|
||
// gcw.dispose will flush any remaining work to scanWork.
|
||
|
||
return workFlushed + gcw.scanWork
|
||
}
|
||
|
||
// scanblock scans b as scanobject would, but using an explicit
|
||
// pointer bitmap instead of the heap bitmap.
|
||
//
|
||
// This is used to scan non-heap roots, so it does not update
|
||
// gcw.bytesMarked or gcw.scanWork.
|
||
//
|
||
//go:nowritebarrier
|
||
func scanblock(b0, n0 uintptr, ptrmask *uint8, gcw *gcWork) {
|
||
// Use local copies of original parameters, so that a stack trace
|
||
// due to one of the throws below shows the original block
|
||
// base and extent.
|
||
b := b0
|
||
n := n0
|
||
|
||
for i := uintptr(0); i < n; {
|
||
// Find bits for the next word.
|
||
bits := uint32(*addb(ptrmask, i/(sys.PtrSize*8)))
|
||
if bits == 0 {
|
||
i += sys.PtrSize * 8
|
||
continue
|
||
}
|
||
for j := 0; j < 8 && i < n; j++ {
|
||
if bits&1 != 0 {
|
||
// Same work as in scanobject; see comments there.
|
||
p := *(*uintptr)(unsafe.Pointer(b + i))
|
||
if p != 0 {
|
||
if obj, span, objIndex := findObject(p, b, i, false); obj != 0 {
|
||
greyobject(obj, b, i, span, gcw, objIndex, false)
|
||
}
|
||
}
|
||
}
|
||
bits >>= 1
|
||
i += sys.PtrSize
|
||
}
|
||
}
|
||
}
|
||
|
||
// scanobject scans the object starting at b, adding pointers to gcw.
|
||
// b must point to the beginning of a heap object or an oblet.
|
||
// scanobject consults the GC bitmap for the pointer mask and the
|
||
// spans for the size of the object.
|
||
//
|
||
//go:nowritebarrier
|
||
func scanobject(b uintptr, gcw *gcWork) {
|
||
// Find the bits for b and the size of the object at b.
|
||
//
|
||
// b is either the beginning of an object, in which case this
|
||
// is the size of the object to scan, or it points to an
|
||
// oblet, in which case we compute the size to scan below.
|
||
hbits := heapBitsForAddr(b)
|
||
s := spanOfUnchecked(b)
|
||
n := s.elemsize
|
||
if n == 0 {
|
||
throw("scanobject n == 0")
|
||
}
|
||
|
||
if n > maxObletBytes {
|
||
// Large object. Break into oblets for better
|
||
// parallelism and lower latency.
|
||
if b == s.base() {
|
||
// It's possible this is a noscan object (not
|
||
// from greyobject, but from other code
|
||
// paths), in which case we must *not* enqueue
|
||
// oblets since their bitmaps will be
|
||
// uninitialized.
|
||
if s.spanclass.noscan() {
|
||
// Bypass the whole scan.
|
||
gcw.bytesMarked += uint64(n)
|
||
return
|
||
}
|
||
|
||
// Enqueue the other oblets to scan later.
|
||
// Some oblets may be in b's scalar tail, but
|
||
// these will be marked as "no more pointers",
|
||
// so we'll drop out immediately when we go to
|
||
// scan those.
|
||
for oblet := b + maxObletBytes; oblet < s.base()+s.elemsize; oblet += maxObletBytes {
|
||
if !gcw.putFast(oblet) {
|
||
gcw.put(oblet)
|
||
}
|
||
}
|
||
}
|
||
|
||
// Compute the size of the oblet. Since this object
|
||
// must be a large object, s.base() is the beginning
|
||
// of the object.
|
||
n = s.base() + s.elemsize - b
|
||
if n > maxObletBytes {
|
||
n = maxObletBytes
|
||
}
|
||
}
|
||
|
||
var i uintptr
|
||
for i = 0; i < n; i += sys.PtrSize {
|
||
// Find bits for this word.
|
||
if i != 0 {
|
||
// Avoid needless hbits.next() on last iteration.
|
||
hbits = hbits.next()
|
||
}
|
||
// Load bits once. See CL 22712 and issue 16973 for discussion.
|
||
bits := hbits.bits()
|
||
// During checkmarking, 1-word objects store the checkmark
|
||
// in the type bit for the one word. The only one-word objects
|
||
// are pointers, or else they'd be merged with other non-pointer
|
||
// data into larger allocations.
|
||
if i != 1*sys.PtrSize && bits&bitScan == 0 {
|
||
break // no more pointers in this object
|
||
}
|
||
if bits&bitPointer == 0 {
|
||
continue // not a pointer
|
||
}
|
||
|
||
// Work here is duplicated in scanblock and above.
|
||
// If you make changes here, make changes there too.
|
||
obj := *(*uintptr)(unsafe.Pointer(b + i))
|
||
|
||
// At this point we have extracted the next potential pointer.
|
||
// Quickly filter out nil and pointers back to the current object.
|
||
if obj != 0 && obj-b >= n {
|
||
// Test if obj points into the Go heap and, if so,
|
||
// mark the object.
|
||
//
|
||
// Note that it's possible for findObject to
|
||
// fail if obj points to a just-allocated heap
|
||
// object because of a race with growing the
|
||
// heap. In this case, we know the object was
|
||
// just allocated and hence will be marked by
|
||
// allocation itself.
|
||
if obj, span, objIndex := findObject(obj, b, i, false); obj != 0 {
|
||
greyobject(obj, b, i, span, gcw, objIndex, false)
|
||
}
|
||
}
|
||
}
|
||
gcw.bytesMarked += uint64(n)
|
||
gcw.scanWork += int64(i)
|
||
}
|
||
|
||
//go:linkname scanstackblock
|
||
|
||
// scanstackblock is called by the stack scanning code in C to
|
||
// actually find and mark pointers in the stack block. This is like
|
||
// scanblock, but we scan the stack conservatively, so there is no
|
||
// bitmask of pointers.
|
||
func scanstackblock(b, n uintptr, gcw *gcWork) {
|
||
if usestackmaps {
|
||
throw("scanstackblock: conservative scan but stack map is used")
|
||
}
|
||
|
||
for i := uintptr(0); i < n; i += sys.PtrSize {
|
||
// Same work as in scanobject; see comments there.
|
||
obj := *(*uintptr)(unsafe.Pointer(b + i))
|
||
if obj, span, objIndex := findObject(obj, b, i, true); obj != 0 {
|
||
greyobject(obj, b, i, span, gcw, objIndex, true)
|
||
}
|
||
}
|
||
}
|
||
|
||
// scanstackblockwithmap is like scanstackblock, but with an explicit
|
||
// pointer bitmap. This is used only when precise stack scan is enabled.
|
||
//go:linkname scanstackblockwithmap
|
||
//go:nowritebarrier
|
||
func scanstackblockwithmap(pc, b0, n0 uintptr, ptrmask *uint8, gcw *gcWork) {
|
||
// Use local copies of original parameters, so that a stack trace
|
||
// due to one of the throws below shows the original block
|
||
// base and extent.
|
||
b := b0
|
||
n := n0
|
||
|
||
for i := uintptr(0); i < n; {
|
||
// Find bits for the next word.
|
||
bits := uint32(*addb(ptrmask, i/(sys.PtrSize*8)))
|
||
if bits == 0 {
|
||
i += sys.PtrSize * 8
|
||
continue
|
||
}
|
||
for j := 0; j < 8 && i < n; j++ {
|
||
if bits&1 != 0 {
|
||
// Same work as in scanobject; see comments there.
|
||
obj := *(*uintptr)(unsafe.Pointer(b + i))
|
||
if obj != 0 {
|
||
o, span, objIndex := findObject(obj, b, i, false)
|
||
if obj < minPhysPageSize ||
|
||
span != nil && span.state.get() != mSpanManual &&
|
||
(obj < span.base() || obj >= span.limit || span.state.get() != mSpanInUse) {
|
||
print("runtime: found in object at *(", hex(b), "+", hex(i), ") = ", hex(obj), ", pc=", hex(pc), "\n")
|
||
name, file, line, _ := funcfileline(pc, -1, false)
|
||
print(name, "\n", file, ":", line, "\n")
|
||
//gcDumpObject("object", b, i)
|
||
throw("found bad pointer in Go stack (incorrect use of unsafe or cgo?)")
|
||
}
|
||
if o != 0 {
|
||
greyobject(o, b, i, span, gcw, objIndex, false)
|
||
}
|
||
}
|
||
}
|
||
bits >>= 1
|
||
i += sys.PtrSize
|
||
}
|
||
}
|
||
}
|
||
|
||
// Shade the object if it isn't already.
|
||
// The object is not nil and known to be in the heap.
|
||
// Preemption must be disabled.
|
||
//go:nowritebarrier
|
||
func shade(b uintptr) {
|
||
if obj, span, objIndex := findObject(b, 0, 0, !usestackmaps); obj != 0 {
|
||
gcw := &getg().m.p.ptr().gcw
|
||
greyobject(obj, 0, 0, span, gcw, objIndex, !usestackmaps)
|
||
}
|
||
}
|
||
|
||
// obj is the start of an object with mark mbits.
|
||
// If it isn't already marked, mark it and enqueue into gcw.
|
||
// base and off are for debugging only and could be removed.
|
||
//
|
||
// See also wbBufFlush1, which partially duplicates this logic.
|
||
//
|
||
//go:nowritebarrierrec
|
||
func greyobject(obj, base, off uintptr, span *mspan, gcw *gcWork, objIndex uintptr, forStack bool) {
|
||
// obj should be start of allocation, and so must be at least pointer-aligned.
|
||
if obj&(sys.PtrSize-1) != 0 {
|
||
throw("greyobject: obj not pointer-aligned")
|
||
}
|
||
mbits := span.markBitsForIndex(objIndex)
|
||
|
||
if useCheckmark {
|
||
if !mbits.isMarked() {
|
||
// Stack scanning is conservative, so we can
|
||
// see a reference to an object not previously
|
||
// found. Assume the object was correctly not
|
||
// marked and ignore the pointer.
|
||
if forStack {
|
||
return
|
||
}
|
||
printlock()
|
||
print("runtime:greyobject: checkmarks finds unexpected unmarked object obj=", hex(obj), "\n")
|
||
print("runtime: found obj at *(", hex(base), "+", hex(off), ")\n")
|
||
|
||
// Dump the source (base) object
|
||
gcDumpObject("base", base, off)
|
||
|
||
// Dump the object
|
||
gcDumpObject("obj", obj, ^uintptr(0))
|
||
|
||
getg().m.traceback = 2
|
||
throw("checkmark found unmarked object")
|
||
}
|
||
hbits := heapBitsForAddr(obj)
|
||
if hbits.isCheckmarked(span.elemsize) {
|
||
return
|
||
}
|
||
hbits.setCheckmarked(span.elemsize)
|
||
if !hbits.isCheckmarked(span.elemsize) {
|
||
throw("setCheckmarked and isCheckmarked disagree")
|
||
}
|
||
} else {
|
||
// Stack scanning is conservative, so we can see a
|
||
// pointer to a free object. Assume the object was
|
||
// correctly freed and we must ignore the pointer.
|
||
if forStack && span.isFree(objIndex) {
|
||
return
|
||
}
|
||
|
||
if debug.gccheckmark > 0 && span.isFree(objIndex) {
|
||
print("runtime: marking free object ", hex(obj), " found at *(", hex(base), "+", hex(off), ")\n")
|
||
gcDumpObject("base", base, off)
|
||
gcDumpObject("obj", obj, ^uintptr(0))
|
||
getg().m.traceback = 2
|
||
throw("marking free object")
|
||
}
|
||
|
||
// If marked we have nothing to do.
|
||
if mbits.isMarked() {
|
||
return
|
||
}
|
||
mbits.setMarked()
|
||
|
||
// Mark span.
|
||
arena, pageIdx, pageMask := pageIndexOf(span.base())
|
||
if arena.pageMarks[pageIdx]&pageMask == 0 {
|
||
atomic.Or8(&arena.pageMarks[pageIdx], pageMask)
|
||
}
|
||
|
||
// If this is a noscan object, fast-track it to black
|
||
// instead of greying it.
|
||
if span.spanclass.noscan() {
|
||
gcw.bytesMarked += uint64(span.elemsize)
|
||
return
|
||
}
|
||
}
|
||
|
||
// Queue the obj for scanning. The PREFETCH(obj) logic has been removed but
|
||
// seems like a nice optimization that can be added back in.
|
||
// There needs to be time between the PREFETCH and the use.
|
||
// Previously we put the obj in an 8 element buffer that is drained at a rate
|
||
// to give the PREFETCH time to do its work.
|
||
// Use of PREFETCHNTA might be more appropriate than PREFETCH
|
||
if !gcw.putFast(obj) {
|
||
gcw.put(obj)
|
||
}
|
||
}
|
||
|
||
// gcDumpObject dumps the contents of obj for debugging and marks the
|
||
// field at byte offset off in obj.
|
||
func gcDumpObject(label string, obj, off uintptr) {
|
||
s := spanOf(obj)
|
||
print(label, "=", hex(obj))
|
||
if s == nil {
|
||
print(" s=nil\n")
|
||
return
|
||
}
|
||
print(" s.base()=", hex(s.base()), " s.limit=", hex(s.limit), " s.spanclass=", s.spanclass, " s.elemsize=", s.elemsize, " s.state=")
|
||
if state := s.state.get(); 0 <= state && int(state) < len(mSpanStateNames) {
|
||
print(mSpanStateNames[state], "\n")
|
||
} else {
|
||
print("unknown(", state, ")\n")
|
||
}
|
||
|
||
skipped := false
|
||
size := s.elemsize
|
||
if s.state.get() == mSpanManual && size == 0 {
|
||
// We're printing something from a stack frame. We
|
||
// don't know how big it is, so just show up to an
|
||
// including off.
|
||
size = off + sys.PtrSize
|
||
}
|
||
for i := uintptr(0); i < size; i += sys.PtrSize {
|
||
// For big objects, just print the beginning (because
|
||
// that usually hints at the object's type) and the
|
||
// fields around off.
|
||
if !(i < 128*sys.PtrSize || off-16*sys.PtrSize < i && i < off+16*sys.PtrSize) {
|
||
skipped = true
|
||
continue
|
||
}
|
||
if skipped {
|
||
print(" ...\n")
|
||
skipped = false
|
||
}
|
||
print(" *(", label, "+", i, ") = ", hex(*(*uintptr)(unsafe.Pointer(obj + i))))
|
||
if i == off {
|
||
print(" <==")
|
||
}
|
||
print("\n")
|
||
}
|
||
if skipped {
|
||
print(" ...\n")
|
||
}
|
||
}
|
||
|
||
// gcmarknewobject marks a newly allocated object black. obj must
|
||
// not contain any non-nil pointers.
|
||
//
|
||
// This is nosplit so it can manipulate a gcWork without preemption.
|
||
//
|
||
//go:nowritebarrier
|
||
//go:nosplit
|
||
func gcmarknewobject(span *mspan, obj, size, scanSize uintptr) {
|
||
if useCheckmark { // The world should be stopped so this should not happen.
|
||
throw("gcmarknewobject called while doing checkmark")
|
||
}
|
||
|
||
// Mark object.
|
||
objIndex := span.objIndex(obj)
|
||
span.markBitsForIndex(objIndex).setMarked()
|
||
|
||
// Mark span.
|
||
arena, pageIdx, pageMask := pageIndexOf(span.base())
|
||
if arena.pageMarks[pageIdx]&pageMask == 0 {
|
||
atomic.Or8(&arena.pageMarks[pageIdx], pageMask)
|
||
}
|
||
|
||
gcw := &getg().m.p.ptr().gcw
|
||
gcw.bytesMarked += uint64(size)
|
||
gcw.scanWork += int64(scanSize)
|
||
}
|
||
|
||
// gcMarkTinyAllocs greys all active tiny alloc blocks.
|
||
//
|
||
// The world must be stopped.
|
||
func gcMarkTinyAllocs() {
|
||
for _, p := range allp {
|
||
c := p.mcache
|
||
if c == nil || c.tiny == 0 {
|
||
continue
|
||
}
|
||
_, span, objIndex := findObject(c.tiny, 0, 0, false)
|
||
gcw := &p.gcw
|
||
greyobject(c.tiny, 0, 0, span, gcw, objIndex, false)
|
||
}
|
||
}
|
||
|
||
// Checkmarking
|
||
|
||
// To help debug the concurrent GC we remark with the world
|
||
// stopped ensuring that any object encountered has their normal
|
||
// mark bit set. To do this we use an orthogonal bit
|
||
// pattern to indicate the object is marked. The following pattern
|
||
// uses the upper two bits in the object's boundary nibble.
|
||
// 01: scalar not marked
|
||
// 10: pointer not marked
|
||
// 11: pointer marked
|
||
// 00: scalar marked
|
||
// Xoring with 01 will flip the pattern from marked to unmarked and vica versa.
|
||
// The higher bit is 1 for pointers and 0 for scalars, whether the object
|
||
// is marked or not.
|
||
// The first nibble no longer holds the typeDead pattern indicating that the
|
||
// there are no more pointers in the object. This information is held
|
||
// in the second nibble.
|
||
|
||
// If useCheckmark is true, marking of an object uses the
|
||
// checkmark bits (encoding above) instead of the standard
|
||
// mark bits.
|
||
var useCheckmark = false
|
||
|
||
//go:nowritebarrier
|
||
func initCheckmarks() {
|
||
useCheckmark = true
|
||
for _, s := range mheap_.allspans {
|
||
if s.state.get() == mSpanInUse {
|
||
heapBitsForAddr(s.base()).initCheckmarkSpan(s.layout())
|
||
}
|
||
}
|
||
}
|
||
|
||
func clearCheckmarks() {
|
||
useCheckmark = false
|
||
for _, s := range mheap_.allspans {
|
||
if s.state.get() == mSpanInUse {
|
||
heapBitsForAddr(s.base()).clearCheckmarkSpan(s.layout())
|
||
}
|
||
}
|
||
}
|