988ed78513
* genattrtab.c (write_eligible_delay): Verify DELAY_INSN still has a delay slot in the generated code. From-SVN: r246879
5308 lines
142 KiB
C
5308 lines
142 KiB
C
/* Generate code from machine description to compute values of attributes.
|
||
Copyright (C) 1991-2017 Free Software Foundation, Inc.
|
||
Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
/* This program handles insn attributes and the DEFINE_DELAY and
|
||
DEFINE_INSN_RESERVATION definitions.
|
||
|
||
It produces a series of functions named `get_attr_...', one for each insn
|
||
attribute. Each of these is given the rtx for an insn and returns a member
|
||
of the enum for the attribute.
|
||
|
||
These subroutines have the form of a `switch' on the INSN_CODE (via
|
||
`recog_memoized'). Each case either returns a constant attribute value
|
||
or a value that depends on tests on other attributes, the form of
|
||
operands, or some random C expression (encoded with a SYMBOL_REF
|
||
expression).
|
||
|
||
If the attribute `alternative', or a random C expression is present,
|
||
`constrain_operands' is called. If either of these cases of a reference to
|
||
an operand is found, `extract_insn' is called.
|
||
|
||
The special attribute `length' is also recognized. For this operand,
|
||
expressions involving the address of an operand or the current insn,
|
||
(address (pc)), are valid. In this case, an initial pass is made to
|
||
set all lengths that do not depend on address. Those that do are set to
|
||
the maximum length. Then each insn that depends on an address is checked
|
||
and possibly has its length changed. The process repeats until no further
|
||
changed are made. The resulting lengths are saved for use by
|
||
`get_attr_length'.
|
||
|
||
A special form of DEFINE_ATTR, where the expression for default value is a
|
||
CONST expression, indicates an attribute that is constant for a given run
|
||
of the compiler. The subroutine generated for these attributes has no
|
||
parameters as it does not depend on any particular insn. Constant
|
||
attributes are typically used to specify which variety of processor is
|
||
used.
|
||
|
||
Internal attributes are defined to handle DEFINE_DELAY and
|
||
DEFINE_INSN_RESERVATION. Special routines are output for these cases.
|
||
|
||
This program works by keeping a list of possible values for each attribute.
|
||
These include the basic attribute choices, default values for attribute, and
|
||
all derived quantities.
|
||
|
||
As the description file is read, the definition for each insn is saved in a
|
||
`struct insn_def'. When the file reading is complete, a `struct insn_ent'
|
||
is created for each insn and chained to the corresponding attribute value,
|
||
either that specified, or the default.
|
||
|
||
An optimization phase is then run. This simplifies expressions for each
|
||
insn. EQ_ATTR tests are resolved, whenever possible, to a test that
|
||
indicates when the attribute has the specified value for the insn. This
|
||
avoids recursive calls during compilation.
|
||
|
||
The strategy used when processing DEFINE_DELAY definitions is to create
|
||
arbitrarily complex expressions and have the optimization simplify them.
|
||
|
||
Once optimization is complete, any required routines and definitions
|
||
will be written.
|
||
|
||
An optimization that is not yet implemented is to hoist the constant
|
||
expressions entirely out of the routines and definitions that are written.
|
||
A way to do this is to iterate over all possible combinations of values
|
||
for constant attributes and generate a set of functions for that given
|
||
combination. An initialization function would be written that evaluates
|
||
the attributes and installs the corresponding set of routines and
|
||
definitions (each would be accessed through a pointer).
|
||
|
||
We use the flags in an RTX as follows:
|
||
`unchanging' (ATTR_IND_SIMPLIFIED_P): This rtx is fully simplified
|
||
independent of the insn code.
|
||
`in_struct' (ATTR_CURR_SIMPLIFIED_P): This rtx is fully simplified
|
||
for the insn code currently being processed (see optimize_attrs).
|
||
`return_val' (ATTR_PERMANENT_P): This rtx is permanent and unique
|
||
(see attr_rtx). */
|
||
|
||
#define ATTR_IND_SIMPLIFIED_P(RTX) (RTX_FLAG ((RTX), unchanging))
|
||
#define ATTR_CURR_SIMPLIFIED_P(RTX) (RTX_FLAG ((RTX), in_struct))
|
||
#define ATTR_PERMANENT_P(RTX) (RTX_FLAG ((RTX), return_val))
|
||
|
||
#if 0
|
||
#define strcmp_check(S1, S2) ((S1) == (S2) \
|
||
? 0 \
|
||
: (gcc_assert (strcmp ((S1), (S2))), 1))
|
||
#else
|
||
#define strcmp_check(S1, S2) ((S1) != (S2))
|
||
#endif
|
||
|
||
#include "bconfig.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "rtl.h"
|
||
#include "obstack.h"
|
||
#include "errors.h"
|
||
#include "read-md.h"
|
||
#include "gensupport.h"
|
||
#include "fnmatch.h"
|
||
|
||
#define DEBUG 0
|
||
|
||
/* Flags for make_internal_attr's `special' parameter. */
|
||
#define ATTR_NONE 0
|
||
#define ATTR_SPECIAL (1 << 0)
|
||
|
||
static struct obstack obstack1, obstack2;
|
||
static struct obstack *hash_obstack = &obstack1;
|
||
static struct obstack *temp_obstack = &obstack2;
|
||
|
||
/* enough space to reserve for printing out ints */
|
||
#define MAX_DIGITS (HOST_BITS_PER_INT * 3 / 10 + 3)
|
||
|
||
/* Define structures used to record attributes and values. */
|
||
|
||
/* As each DEFINE_INSN, DEFINE_PEEPHOLE, or DEFINE_ASM_ATTRIBUTES is
|
||
encountered, we store all the relevant information into a
|
||
`struct insn_def'. This is done to allow attribute definitions to occur
|
||
anywhere in the file. */
|
||
|
||
struct insn_def
|
||
{
|
||
struct insn_def *next; /* Next insn in chain. */
|
||
rtx def; /* The DEFINE_... */
|
||
int insn_code; /* Instruction number. */
|
||
int insn_index; /* Expression number in file, for errors. */
|
||
file_location loc; /* Where in the .md files it occurs. */
|
||
int num_alternatives; /* Number of alternatives. */
|
||
int vec_idx; /* Index of attribute vector in `def'. */
|
||
};
|
||
|
||
/* Once everything has been read in, we store in each attribute value a list
|
||
of insn codes that have that value. Here is the structure used for the
|
||
list. */
|
||
|
||
struct insn_ent
|
||
{
|
||
struct insn_ent *next; /* Next in chain. */
|
||
struct insn_def *def; /* Instruction definition. */
|
||
};
|
||
|
||
/* Each value of an attribute (either constant or computed) is assigned a
|
||
structure which is used as the listhead of the insns that have that
|
||
value. */
|
||
|
||
struct attr_value
|
||
{
|
||
rtx value; /* Value of attribute. */
|
||
struct attr_value *next; /* Next attribute value in chain. */
|
||
struct insn_ent *first_insn; /* First insn with this value. */
|
||
int num_insns; /* Number of insns with this value. */
|
||
int has_asm_insn; /* True if this value used for `asm' insns */
|
||
};
|
||
|
||
/* Structure for each attribute. */
|
||
|
||
struct attr_desc
|
||
{
|
||
char *name; /* Name of attribute. */
|
||
const char *enum_name; /* Enum name for DEFINE_ENUM_NAME. */
|
||
struct attr_desc *next; /* Next attribute. */
|
||
struct attr_value *first_value; /* First value of this attribute. */
|
||
struct attr_value *default_val; /* Default value for this attribute. */
|
||
file_location loc; /* Where in the .md files it occurs. */
|
||
unsigned is_numeric : 1; /* Values of this attribute are numeric. */
|
||
unsigned is_const : 1; /* Attribute value constant for each run. */
|
||
unsigned is_special : 1; /* Don't call `write_attr_set'. */
|
||
};
|
||
|
||
/* Structure for each DEFINE_DELAY. */
|
||
|
||
struct delay_desc
|
||
{
|
||
rtx def; /* DEFINE_DELAY expression. */
|
||
struct delay_desc *next; /* Next DEFINE_DELAY. */
|
||
file_location loc; /* Where in the .md files it occurs. */
|
||
int num; /* Number of DEFINE_DELAY, starting at 1. */
|
||
};
|
||
|
||
struct attr_value_list
|
||
{
|
||
struct attr_value *av;
|
||
struct insn_ent *ie;
|
||
struct attr_desc *attr;
|
||
struct attr_value_list *next;
|
||
};
|
||
|
||
/* Listheads of above structures. */
|
||
|
||
/* This one is indexed by the first character of the attribute name. */
|
||
#define MAX_ATTRS_INDEX 256
|
||
static struct attr_desc *attrs[MAX_ATTRS_INDEX];
|
||
static struct insn_def *defs;
|
||
static struct delay_desc *delays;
|
||
struct attr_value_list **insn_code_values;
|
||
|
||
/* Other variables. */
|
||
|
||
static int insn_index_number;
|
||
static int got_define_asm_attributes;
|
||
static int must_extract;
|
||
static int must_constrain;
|
||
static int address_used;
|
||
static int length_used;
|
||
static int num_delays;
|
||
static int have_annul_true, have_annul_false;
|
||
static int num_insn_ents;
|
||
|
||
/* Stores, for each insn code, the number of constraint alternatives. */
|
||
|
||
static int *insn_n_alternatives;
|
||
|
||
/* Stores, for each insn code, a bitmap that has bits on for each possible
|
||
alternative. */
|
||
|
||
static uint64_t *insn_alternatives;
|
||
|
||
/* Used to simplify expressions. */
|
||
|
||
static rtx true_rtx, false_rtx;
|
||
|
||
/* Used to reduce calls to `strcmp' */
|
||
|
||
static const char *alternative_name;
|
||
static const char *length_str;
|
||
static const char *delay_type_str;
|
||
static const char *delay_1_0_str;
|
||
static const char *num_delay_slots_str;
|
||
|
||
/* Simplify an expression. Only call the routine if there is something to
|
||
simplify. */
|
||
#define SIMPLIFY_TEST_EXP(EXP,INSN_CODE,INSN_INDEX) \
|
||
(ATTR_IND_SIMPLIFIED_P (EXP) || ATTR_CURR_SIMPLIFIED_P (EXP) ? (EXP) \
|
||
: simplify_test_exp (EXP, INSN_CODE, INSN_INDEX))
|
||
|
||
#define DEF_ATTR_STRING(S) (attr_string ((S), strlen (S)))
|
||
|
||
/* Forward declarations of functions used before their definitions, only. */
|
||
static char *attr_string (const char *, int);
|
||
static char *attr_printf (unsigned int, const char *, ...)
|
||
ATTRIBUTE_PRINTF_2;
|
||
static rtx make_numeric_value (int);
|
||
static struct attr_desc *find_attr (const char **, int);
|
||
static rtx mk_attr_alt (uint64_t);
|
||
static char *next_comma_elt (const char **);
|
||
static rtx insert_right_side (enum rtx_code, rtx, rtx, int, int);
|
||
static rtx copy_boolean (rtx);
|
||
static int compares_alternatives_p (rtx);
|
||
static void make_internal_attr (const char *, rtx, int);
|
||
static void insert_insn_ent (struct attr_value *, struct insn_ent *);
|
||
static void walk_attr_value (rtx);
|
||
static int max_attr_value (rtx, int*);
|
||
static int min_attr_value (rtx, int*);
|
||
static int or_attr_value (rtx, int*);
|
||
static rtx simplify_test_exp (rtx, int, int);
|
||
static rtx simplify_test_exp_in_temp (rtx, int, int);
|
||
static rtx copy_rtx_unchanging (rtx);
|
||
static bool attr_alt_subset_p (rtx, rtx);
|
||
static bool attr_alt_subset_of_compl_p (rtx, rtx);
|
||
static void clear_struct_flag (rtx);
|
||
static void write_attr_valueq (FILE *, struct attr_desc *, const char *);
|
||
static struct attr_value *find_most_used (struct attr_desc *);
|
||
static void write_attr_set (FILE *, struct attr_desc *, int, rtx,
|
||
const char *, const char *, rtx,
|
||
int, int, unsigned int);
|
||
static void write_attr_case (FILE *, struct attr_desc *,
|
||
struct attr_value *,
|
||
int, const char *, const char *, int, rtx);
|
||
static void write_attr_value (FILE *, struct attr_desc *, rtx);
|
||
static void write_upcase (FILE *, const char *);
|
||
static void write_indent (FILE *, int);
|
||
static rtx identity_fn (rtx);
|
||
static rtx zero_fn (rtx);
|
||
static rtx one_fn (rtx);
|
||
static rtx max_fn (rtx);
|
||
static rtx min_fn (rtx);
|
||
|
||
#define oballoc(T) XOBNEW (hash_obstack, T)
|
||
#define oballocvec(T, N) XOBNEWVEC (hash_obstack, T, (N))
|
||
|
||
/* This gen* file is unique, in that it writes out multiple files.
|
||
|
||
Before GCC 4.8, insn-attrtab.c was written out containing many large
|
||
functions and tables. This made insn-attrtab.c _the_ bottle-neck in
|
||
a parallel build, and even made it impossible to build GCC on machines
|
||
with relatively small RAM space (PR other/29442). Therefore, the
|
||
atrribute functions/tables are now written out to three separate
|
||
files: all "*insn_default_latency" functions go to LATENCY_FILE_NAME,
|
||
all "*internal_dfa_insn_code" functions go to DFA_FILE_NAME, and the
|
||
rest goes to ATTR_FILE_NAME. */
|
||
|
||
static const char *attr_file_name = NULL;
|
||
static const char *dfa_file_name = NULL;
|
||
static const char *latency_file_name = NULL;
|
||
|
||
static FILE *attr_file, *dfa_file, *latency_file;
|
||
|
||
/* Hash table for sharing RTL and strings. */
|
||
|
||
/* Each hash table slot is a bucket containing a chain of these structures.
|
||
Strings are given negative hash codes; RTL expressions are given positive
|
||
hash codes. */
|
||
|
||
struct attr_hash
|
||
{
|
||
struct attr_hash *next; /* Next structure in the bucket. */
|
||
unsigned int hashcode; /* Hash code of this rtx or string. */
|
||
union
|
||
{
|
||
char *str; /* The string (negative hash codes) */
|
||
rtx rtl; /* or the RTL recorded here. */
|
||
} u;
|
||
};
|
||
|
||
/* Now here is the hash table. When recording an RTL, it is added to
|
||
the slot whose index is the hash code mod the table size. Note
|
||
that the hash table is used for several kinds of RTL (see attr_rtx)
|
||
and for strings. While all these live in the same table, they are
|
||
completely independent, and the hash code is computed differently
|
||
for each. */
|
||
|
||
#define RTL_HASH_SIZE 4093
|
||
static struct attr_hash *attr_hash_table[RTL_HASH_SIZE];
|
||
|
||
/* Here is how primitive or already-shared RTL's hash
|
||
codes are made. */
|
||
#define RTL_HASH(RTL) ((intptr_t) (RTL) & 0777777)
|
||
|
||
/* Add an entry to the hash table for RTL with hash code HASHCODE. */
|
||
|
||
static void
|
||
attr_hash_add_rtx (unsigned int hashcode, rtx rtl)
|
||
{
|
||
struct attr_hash *h;
|
||
|
||
h = XOBNEW (hash_obstack, struct attr_hash);
|
||
h->hashcode = hashcode;
|
||
h->u.rtl = rtl;
|
||
h->next = attr_hash_table[hashcode % RTL_HASH_SIZE];
|
||
attr_hash_table[hashcode % RTL_HASH_SIZE] = h;
|
||
}
|
||
|
||
/* Add an entry to the hash table for STRING with hash code HASHCODE. */
|
||
|
||
static void
|
||
attr_hash_add_string (unsigned int hashcode, char *str)
|
||
{
|
||
struct attr_hash *h;
|
||
|
||
h = XOBNEW (hash_obstack, struct attr_hash);
|
||
h->hashcode = -hashcode;
|
||
h->u.str = str;
|
||
h->next = attr_hash_table[hashcode % RTL_HASH_SIZE];
|
||
attr_hash_table[hashcode % RTL_HASH_SIZE] = h;
|
||
}
|
||
|
||
/* Generate an RTL expression, but avoid duplicates.
|
||
Set the ATTR_PERMANENT_P flag for these permanent objects.
|
||
|
||
In some cases we cannot uniquify; then we return an ordinary
|
||
impermanent rtx with ATTR_PERMANENT_P clear.
|
||
|
||
Args are as follows:
|
||
|
||
rtx attr_rtx (code, [element1, ..., elementn]) */
|
||
|
||
static rtx
|
||
attr_rtx_1 (enum rtx_code code, va_list p)
|
||
{
|
||
rtx rt_val = NULL_RTX;/* RTX to return to caller... */
|
||
unsigned int hashcode;
|
||
struct attr_hash *h;
|
||
struct obstack *old_obstack = rtl_obstack;
|
||
int permanent_p = 1;
|
||
|
||
/* For each of several cases, search the hash table for an existing entry.
|
||
Use that entry if one is found; otherwise create a new RTL and add it
|
||
to the table. */
|
||
|
||
if (GET_RTX_CLASS (code) == RTX_UNARY)
|
||
{
|
||
rtx arg0 = va_arg (p, rtx);
|
||
|
||
if (! ATTR_PERMANENT_P (arg0))
|
||
permanent_p = 0;
|
||
|
||
hashcode = ((HOST_WIDE_INT) code + RTL_HASH (arg0));
|
||
for (h = attr_hash_table[hashcode % RTL_HASH_SIZE]; h; h = h->next)
|
||
if (h->hashcode == hashcode
|
||
&& GET_CODE (h->u.rtl) == code
|
||
&& XEXP (h->u.rtl, 0) == arg0)
|
||
return h->u.rtl;
|
||
|
||
if (h == 0)
|
||
{
|
||
rtl_obstack = hash_obstack;
|
||
rt_val = rtx_alloc (code);
|
||
XEXP (rt_val, 0) = arg0;
|
||
}
|
||
}
|
||
else if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
|
||
|| GET_RTX_CLASS (code) == RTX_COMM_ARITH
|
||
|| GET_RTX_CLASS (code) == RTX_COMPARE
|
||
|| GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
|
||
{
|
||
rtx arg0 = va_arg (p, rtx);
|
||
rtx arg1 = va_arg (p, rtx);
|
||
|
||
if (! ATTR_PERMANENT_P (arg0) || ! ATTR_PERMANENT_P (arg1))
|
||
permanent_p = 0;
|
||
|
||
hashcode = ((HOST_WIDE_INT) code + RTL_HASH (arg0) + RTL_HASH (arg1));
|
||
for (h = attr_hash_table[hashcode % RTL_HASH_SIZE]; h; h = h->next)
|
||
if (h->hashcode == hashcode
|
||
&& GET_CODE (h->u.rtl) == code
|
||
&& XEXP (h->u.rtl, 0) == arg0
|
||
&& XEXP (h->u.rtl, 1) == arg1)
|
||
{
|
||
ATTR_CURR_SIMPLIFIED_P (h->u.rtl) = 0;
|
||
return h->u.rtl;
|
||
}
|
||
|
||
if (h == 0)
|
||
{
|
||
rtl_obstack = hash_obstack;
|
||
rt_val = rtx_alloc (code);
|
||
XEXP (rt_val, 0) = arg0;
|
||
XEXP (rt_val, 1) = arg1;
|
||
}
|
||
}
|
||
else if (code == SYMBOL_REF
|
||
|| (GET_RTX_LENGTH (code) == 1
|
||
&& GET_RTX_FORMAT (code)[0] == 's'))
|
||
{
|
||
char *arg0 = va_arg (p, char *);
|
||
|
||
arg0 = DEF_ATTR_STRING (arg0);
|
||
|
||
hashcode = ((HOST_WIDE_INT) code + RTL_HASH (arg0));
|
||
for (h = attr_hash_table[hashcode % RTL_HASH_SIZE]; h; h = h->next)
|
||
if (h->hashcode == hashcode
|
||
&& GET_CODE (h->u.rtl) == code
|
||
&& XSTR (h->u.rtl, 0) == arg0)
|
||
return h->u.rtl;
|
||
|
||
if (h == 0)
|
||
{
|
||
rtl_obstack = hash_obstack;
|
||
rt_val = rtx_alloc (code);
|
||
XSTR (rt_val, 0) = arg0;
|
||
if (code == SYMBOL_REF)
|
||
X0EXP (rt_val, 1) = NULL_RTX;
|
||
}
|
||
}
|
||
else if (GET_RTX_LENGTH (code) == 2
|
||
&& GET_RTX_FORMAT (code)[0] == 's'
|
||
&& GET_RTX_FORMAT (code)[1] == 's')
|
||
{
|
||
char *arg0 = va_arg (p, char *);
|
||
char *arg1 = va_arg (p, char *);
|
||
|
||
arg0 = DEF_ATTR_STRING (arg0);
|
||
arg1 = DEF_ATTR_STRING (arg1);
|
||
|
||
hashcode = ((HOST_WIDE_INT) code + RTL_HASH (arg0) + RTL_HASH (arg1));
|
||
for (h = attr_hash_table[hashcode % RTL_HASH_SIZE]; h; h = h->next)
|
||
if (h->hashcode == hashcode
|
||
&& GET_CODE (h->u.rtl) == code
|
||
&& XSTR (h->u.rtl, 0) == arg0
|
||
&& XSTR (h->u.rtl, 1) == arg1)
|
||
return h->u.rtl;
|
||
|
||
if (h == 0)
|
||
{
|
||
rtl_obstack = hash_obstack;
|
||
rt_val = rtx_alloc (code);
|
||
XSTR (rt_val, 0) = arg0;
|
||
XSTR (rt_val, 1) = arg1;
|
||
}
|
||
}
|
||
else if (GET_RTX_LENGTH (code) == 2
|
||
&& GET_RTX_FORMAT (code)[0] == 'i'
|
||
&& GET_RTX_FORMAT (code)[1] == 'i')
|
||
{
|
||
int arg0 = va_arg (p, int);
|
||
int arg1 = va_arg (p, int);
|
||
|
||
hashcode = ((HOST_WIDE_INT) code + RTL_HASH (arg0) + RTL_HASH (arg1));
|
||
for (h = attr_hash_table[hashcode % RTL_HASH_SIZE]; h; h = h->next)
|
||
if (h->hashcode == hashcode
|
||
&& GET_CODE (h->u.rtl) == code
|
||
&& XINT (h->u.rtl, 0) == arg0
|
||
&& XINT (h->u.rtl, 1) == arg1)
|
||
return h->u.rtl;
|
||
|
||
if (h == 0)
|
||
{
|
||
rtl_obstack = hash_obstack;
|
||
rt_val = rtx_alloc (code);
|
||
XINT (rt_val, 0) = arg0;
|
||
XINT (rt_val, 1) = arg1;
|
||
}
|
||
}
|
||
else if (code == CONST_INT)
|
||
{
|
||
HOST_WIDE_INT arg0 = va_arg (p, HOST_WIDE_INT);
|
||
if (arg0 == 0)
|
||
return false_rtx;
|
||
else if (arg0 == 1)
|
||
return true_rtx;
|
||
else
|
||
goto nohash;
|
||
}
|
||
else
|
||
{
|
||
int i; /* Array indices... */
|
||
const char *fmt; /* Current rtx's format... */
|
||
nohash:
|
||
rt_val = rtx_alloc (code); /* Allocate the storage space. */
|
||
|
||
fmt = GET_RTX_FORMAT (code); /* Find the right format... */
|
||
for (i = 0; i < GET_RTX_LENGTH (code); i++)
|
||
{
|
||
switch (*fmt++)
|
||
{
|
||
case '0': /* Unused field. */
|
||
break;
|
||
|
||
case 'i': /* An integer? */
|
||
XINT (rt_val, i) = va_arg (p, int);
|
||
break;
|
||
|
||
case 'w': /* A wide integer? */
|
||
XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
|
||
break;
|
||
|
||
case 's': /* A string? */
|
||
XSTR (rt_val, i) = va_arg (p, char *);
|
||
break;
|
||
|
||
case 'e': /* An expression? */
|
||
case 'u': /* An insn? Same except when printing. */
|
||
XEXP (rt_val, i) = va_arg (p, rtx);
|
||
break;
|
||
|
||
case 'E': /* An RTX vector? */
|
||
XVEC (rt_val, i) = va_arg (p, rtvec);
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
return rt_val;
|
||
}
|
||
|
||
rtl_obstack = old_obstack;
|
||
attr_hash_add_rtx (hashcode, rt_val);
|
||
ATTR_PERMANENT_P (rt_val) = permanent_p;
|
||
return rt_val;
|
||
}
|
||
|
||
static rtx
|
||
attr_rtx (enum rtx_code code, ...)
|
||
{
|
||
rtx result;
|
||
va_list p;
|
||
|
||
va_start (p, code);
|
||
result = attr_rtx_1 (code, p);
|
||
va_end (p);
|
||
return result;
|
||
}
|
||
|
||
/* Create a new string printed with the printf line arguments into a space
|
||
of at most LEN bytes:
|
||
|
||
rtx attr_printf (len, format, [arg1, ..., argn]) */
|
||
|
||
static char *
|
||
attr_printf (unsigned int len, const char *fmt, ...)
|
||
{
|
||
char str[256];
|
||
va_list p;
|
||
|
||
va_start (p, fmt);
|
||
|
||
gcc_assert (len < sizeof str); /* Leave room for \0. */
|
||
|
||
vsprintf (str, fmt, p);
|
||
va_end (p);
|
||
|
||
return DEF_ATTR_STRING (str);
|
||
}
|
||
|
||
static rtx
|
||
attr_eq (const char *name, const char *value)
|
||
{
|
||
return attr_rtx (EQ_ATTR, name, value);
|
||
}
|
||
|
||
static const char *
|
||
attr_numeral (int n)
|
||
{
|
||
return XSTR (make_numeric_value (n), 0);
|
||
}
|
||
|
||
/* Return a permanent (possibly shared) copy of a string STR (not assumed
|
||
to be null terminated) with LEN bytes. */
|
||
|
||
static char *
|
||
attr_string (const char *str, int len)
|
||
{
|
||
struct attr_hash *h;
|
||
unsigned int hashcode;
|
||
int i;
|
||
char *new_str;
|
||
|
||
/* Compute the hash code. */
|
||
hashcode = (len + 1) * 613U + (unsigned) str[0];
|
||
for (i = 1; i < len; i += 2)
|
||
hashcode = ((hashcode * 613) + (unsigned) str[i]);
|
||
if ((int) hashcode < 0)
|
||
hashcode = -hashcode;
|
||
|
||
/* Search the table for the string. */
|
||
for (h = attr_hash_table[hashcode % RTL_HASH_SIZE]; h; h = h->next)
|
||
if (h->hashcode == -hashcode && h->u.str[0] == str[0]
|
||
&& !strncmp (h->u.str, str, len))
|
||
return h->u.str; /* <-- return if found. */
|
||
|
||
/* Not found; create a permanent copy and add it to the hash table. */
|
||
new_str = XOBNEWVAR (hash_obstack, char, len + 1);
|
||
memcpy (new_str, str, len);
|
||
new_str[len] = '\0';
|
||
attr_hash_add_string (hashcode, new_str);
|
||
rtx_reader_ptr->copy_md_ptr_loc (new_str, str);
|
||
|
||
return new_str; /* Return the new string. */
|
||
}
|
||
|
||
/* Check two rtx's for equality of contents,
|
||
taking advantage of the fact that if both are hashed
|
||
then they can't be equal unless they are the same object. */
|
||
|
||
static int
|
||
attr_equal_p (rtx x, rtx y)
|
||
{
|
||
return (x == y || (! (ATTR_PERMANENT_P (x) && ATTR_PERMANENT_P (y))
|
||
&& rtx_equal_p (x, y)));
|
||
}
|
||
|
||
/* Given a test expression EXP for attribute ATTR, ensure it is validly
|
||
formed. LOC is the location of the .md construct that contains EXP.
|
||
|
||
Convert (eq_attr "att" "a1,a2") to (ior (eq_attr ... ) (eq_attrq ..))
|
||
and (eq_attr "att" "!a1") to (not (eq_attr "att" "a1")). Do the latter
|
||
test first so that (eq_attr "att" "!a1,a2,a3") works as expected.
|
||
|
||
Update the string address in EQ_ATTR expression to be the same used
|
||
in the attribute (or `alternative_name') to speed up subsequent
|
||
`find_attr' calls and eliminate most `strcmp' calls.
|
||
|
||
Return the new expression, if any. */
|
||
|
||
static rtx
|
||
check_attr_test (file_location loc, rtx exp, attr_desc *attr)
|
||
{
|
||
struct attr_value *av;
|
||
const char *name_ptr, *p;
|
||
rtx orexp, newexp;
|
||
|
||
switch (GET_CODE (exp))
|
||
{
|
||
case EQ_ATTR:
|
||
/* Handle negation test. */
|
||
if (XSTR (exp, 1)[0] == '!')
|
||
return check_attr_test (loc,
|
||
attr_rtx (NOT,
|
||
attr_eq (XSTR (exp, 0),
|
||
&XSTR (exp, 1)[1])),
|
||
attr);
|
||
|
||
else if (n_comma_elts (XSTR (exp, 1)) == 1)
|
||
{
|
||
attr_desc *attr2 = find_attr (&XSTR (exp, 0), 0);
|
||
if (attr2 == NULL)
|
||
{
|
||
if (! strcmp (XSTR (exp, 0), "alternative"))
|
||
return mk_attr_alt (((uint64_t) 1) << atoi (XSTR (exp, 1)));
|
||
else
|
||
fatal_at (loc, "unknown attribute `%s' in definition of"
|
||
" attribute `%s'", XSTR (exp, 0), attr->name);
|
||
}
|
||
|
||
if (attr->is_const && ! attr2->is_const)
|
||
fatal_at (loc, "constant attribute `%s' cannot test non-constant"
|
||
" attribute `%s'", attr->name, attr2->name);
|
||
|
||
/* Copy this just to make it permanent,
|
||
so expressions using it can be permanent too. */
|
||
exp = attr_eq (XSTR (exp, 0), XSTR (exp, 1));
|
||
|
||
/* It shouldn't be possible to simplify the value given to a
|
||
constant attribute, so don't expand this until it's time to
|
||
write the test expression. */
|
||
if (attr2->is_const)
|
||
ATTR_IND_SIMPLIFIED_P (exp) = 1;
|
||
|
||
if (attr2->is_numeric)
|
||
{
|
||
for (p = XSTR (exp, 1); *p; p++)
|
||
if (! ISDIGIT (*p))
|
||
fatal_at (loc, "attribute `%s' takes only numeric values",
|
||
attr2->name);
|
||
}
|
||
else
|
||
{
|
||
for (av = attr2->first_value; av; av = av->next)
|
||
if (GET_CODE (av->value) == CONST_STRING
|
||
&& ! strcmp (XSTR (exp, 1), XSTR (av->value, 0)))
|
||
break;
|
||
|
||
if (av == NULL)
|
||
fatal_at (loc, "unknown value `%s' for attribute `%s'",
|
||
XSTR (exp, 1), attr2->name);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (! strcmp (XSTR (exp, 0), "alternative"))
|
||
{
|
||
int set = 0;
|
||
|
||
name_ptr = XSTR (exp, 1);
|
||
while ((p = next_comma_elt (&name_ptr)) != NULL)
|
||
set |= ((uint64_t) 1) << atoi (p);
|
||
|
||
return mk_attr_alt (set);
|
||
}
|
||
else
|
||
{
|
||
/* Make an IOR tree of the possible values. */
|
||
orexp = false_rtx;
|
||
name_ptr = XSTR (exp, 1);
|
||
while ((p = next_comma_elt (&name_ptr)) != NULL)
|
||
{
|
||
newexp = attr_eq (XSTR (exp, 0), p);
|
||
orexp = insert_right_side (IOR, orexp, newexp, -2, -2);
|
||
}
|
||
|
||
return check_attr_test (loc, orexp, attr);
|
||
}
|
||
}
|
||
break;
|
||
|
||
case ATTR_FLAG:
|
||
break;
|
||
|
||
case CONST_INT:
|
||
/* Either TRUE or FALSE. */
|
||
if (XWINT (exp, 0))
|
||
return true_rtx;
|
||
else
|
||
return false_rtx;
|
||
|
||
case IOR:
|
||
case AND:
|
||
XEXP (exp, 0) = check_attr_test (loc, XEXP (exp, 0), attr);
|
||
XEXP (exp, 1) = check_attr_test (loc, XEXP (exp, 1), attr);
|
||
break;
|
||
|
||
case NOT:
|
||
XEXP (exp, 0) = check_attr_test (loc, XEXP (exp, 0), attr);
|
||
break;
|
||
|
||
case MATCH_TEST:
|
||
exp = attr_rtx (MATCH_TEST, XSTR (exp, 0));
|
||
ATTR_IND_SIMPLIFIED_P (exp) = 1;
|
||
break;
|
||
|
||
case MATCH_OPERAND:
|
||
if (attr->is_const)
|
||
fatal_at (loc, "invalid operator `%s' in definition of constant"
|
||
" attribute `%s'", GET_RTX_NAME (GET_CODE (exp)),
|
||
attr->name);
|
||
/* These cases can't be simplified. */
|
||
ATTR_IND_SIMPLIFIED_P (exp) = 1;
|
||
break;
|
||
|
||
case LE: case LT: case GT: case GE:
|
||
case LEU: case LTU: case GTU: case GEU:
|
||
case NE: case EQ:
|
||
if (GET_CODE (XEXP (exp, 0)) == SYMBOL_REF
|
||
&& GET_CODE (XEXP (exp, 1)) == SYMBOL_REF)
|
||
exp = attr_rtx (GET_CODE (exp),
|
||
attr_rtx (SYMBOL_REF, XSTR (XEXP (exp, 0), 0)),
|
||
attr_rtx (SYMBOL_REF, XSTR (XEXP (exp, 1), 0)));
|
||
/* These cases can't be simplified. */
|
||
ATTR_IND_SIMPLIFIED_P (exp) = 1;
|
||
break;
|
||
|
||
case SYMBOL_REF:
|
||
if (attr->is_const)
|
||
{
|
||
/* These cases are valid for constant attributes, but can't be
|
||
simplified. */
|
||
exp = attr_rtx (SYMBOL_REF, XSTR (exp, 0));
|
||
ATTR_IND_SIMPLIFIED_P (exp) = 1;
|
||
break;
|
||
}
|
||
/* FALLTHRU */
|
||
default:
|
||
fatal_at (loc, "invalid operator `%s' in definition of attribute"
|
||
" `%s'", GET_RTX_NAME (GET_CODE (exp)), attr->name);
|
||
}
|
||
|
||
return exp;
|
||
}
|
||
|
||
/* Given an expression EXP, ensure that it is validly formed and that
|
||
all named attribute values are valid for ATTR. Issue an error if not.
|
||
LOC is the location of the .md construct that contains EXP.
|
||
|
||
Return a perhaps modified replacement expression for the value. */
|
||
|
||
static rtx
|
||
check_attr_value (file_location loc, rtx exp, struct attr_desc *attr)
|
||
{
|
||
struct attr_value *av;
|
||
const char *p;
|
||
int i;
|
||
|
||
switch (GET_CODE (exp))
|
||
{
|
||
case CONST_INT:
|
||
if (!attr->is_numeric)
|
||
{
|
||
error_at (loc,
|
||
"CONST_INT not valid for non-numeric attribute `%s'",
|
||
attr->name);
|
||
break;
|
||
}
|
||
|
||
if (INTVAL (exp) < 0)
|
||
{
|
||
error_at (loc,
|
||
"negative numeric value specified for attribute `%s'",
|
||
attr->name);
|
||
break;
|
||
}
|
||
break;
|
||
|
||
case CONST_STRING:
|
||
if (! strcmp (XSTR (exp, 0), "*"))
|
||
break;
|
||
|
||
if (attr->is_numeric)
|
||
{
|
||
p = XSTR (exp, 0);
|
||
for (; *p; p++)
|
||
if (! ISDIGIT (*p))
|
||
{
|
||
error_at (loc,
|
||
"non-numeric value specified for numeric"
|
||
" attribute `%s'", attr->name);
|
||
break;
|
||
}
|
||
break;
|
||
}
|
||
|
||
for (av = attr->first_value; av; av = av->next)
|
||
if (GET_CODE (av->value) == CONST_STRING
|
||
&& ! strcmp (XSTR (av->value, 0), XSTR (exp, 0)))
|
||
break;
|
||
|
||
if (av == NULL)
|
||
error_at (loc, "unknown value `%s' for attribute `%s'",
|
||
XSTR (exp, 0), attr->name);
|
||
break;
|
||
|
||
case IF_THEN_ELSE:
|
||
XEXP (exp, 0) = check_attr_test (loc, XEXP (exp, 0), attr);
|
||
XEXP (exp, 1) = check_attr_value (loc, XEXP (exp, 1), attr);
|
||
XEXP (exp, 2) = check_attr_value (loc, XEXP (exp, 2), attr);
|
||
break;
|
||
|
||
case PLUS:
|
||
case MINUS:
|
||
case MULT:
|
||
case DIV:
|
||
case MOD:
|
||
if (!attr->is_numeric)
|
||
{
|
||
error_at (loc, "invalid operation `%s' for non-numeric"
|
||
" attribute `%s'", GET_RTX_NAME (GET_CODE (exp)),
|
||
attr->name);
|
||
break;
|
||
}
|
||
/* Fall through. */
|
||
|
||
case IOR:
|
||
case AND:
|
||
XEXP (exp, 0) = check_attr_value (loc, XEXP (exp, 0), attr);
|
||
XEXP (exp, 1) = check_attr_value (loc, XEXP (exp, 1), attr);
|
||
break;
|
||
|
||
case FFS:
|
||
case CLZ:
|
||
case CTZ:
|
||
case POPCOUNT:
|
||
case PARITY:
|
||
case BSWAP:
|
||
XEXP (exp, 0) = check_attr_value (loc, XEXP (exp, 0), attr);
|
||
break;
|
||
|
||
case COND:
|
||
if (XVECLEN (exp, 0) % 2 != 0)
|
||
{
|
||
error_at (loc, "first operand of COND must have even length");
|
||
break;
|
||
}
|
||
|
||
for (i = 0; i < XVECLEN (exp, 0); i += 2)
|
||
{
|
||
XVECEXP (exp, 0, i) = check_attr_test (attr->loc,
|
||
XVECEXP (exp, 0, i),
|
||
attr);
|
||
XVECEXP (exp, 0, i + 1)
|
||
= check_attr_value (loc, XVECEXP (exp, 0, i + 1), attr);
|
||
}
|
||
|
||
XEXP (exp, 1) = check_attr_value (loc, XEXP (exp, 1), attr);
|
||
break;
|
||
|
||
case ATTR:
|
||
{
|
||
struct attr_desc *attr2 = find_attr (&XSTR (exp, 0), 0);
|
||
if (attr2 == NULL)
|
||
error_at (loc, "unknown attribute `%s' in ATTR",
|
||
XSTR (exp, 0));
|
||
else if (attr->is_const && ! attr2->is_const)
|
||
error_at (attr->loc,
|
||
"constant attribute `%s' cannot refer to non-constant"
|
||
" attribute `%s'", attr->name, attr2->name);
|
||
else if (attr->is_numeric != attr2->is_numeric)
|
||
error_at (loc,
|
||
"numeric attribute mismatch calling `%s' from `%s'",
|
||
attr2->name, attr->name);
|
||
}
|
||
break;
|
||
|
||
case SYMBOL_REF:
|
||
/* A constant SYMBOL_REF is valid as a constant attribute test and
|
||
is expanded later by make_canonical into a COND. In a non-constant
|
||
attribute test, it is left be. */
|
||
return attr_rtx (SYMBOL_REF, XSTR (exp, 0));
|
||
|
||
default:
|
||
error_at (loc, "invalid operator `%s' in definition of attribute `%s'",
|
||
GET_RTX_NAME (GET_CODE (exp)), attr->name);
|
||
break;
|
||
}
|
||
|
||
return exp;
|
||
}
|
||
|
||
/* Given an SET_ATTR_ALTERNATIVE expression, convert to the canonical SET.
|
||
It becomes a COND with each test being (eq_attr "alternative" "n") */
|
||
|
||
static rtx
|
||
convert_set_attr_alternative (rtx exp, struct insn_def *id)
|
||
{
|
||
int num_alt = id->num_alternatives;
|
||
rtx condexp;
|
||
int i;
|
||
|
||
if (XVECLEN (exp, 1) != num_alt)
|
||
{
|
||
error_at (id->loc, "bad number of entries in SET_ATTR_ALTERNATIVE,"
|
||
" was %d expected %d", XVECLEN (exp, 1), num_alt);
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* Make a COND with all tests but the last. Select the last value via the
|
||
default. */
|
||
condexp = rtx_alloc (COND);
|
||
XVEC (condexp, 0) = rtvec_alloc ((num_alt - 1) * 2);
|
||
|
||
for (i = 0; i < num_alt - 1; i++)
|
||
{
|
||
const char *p;
|
||
p = attr_numeral (i);
|
||
|
||
XVECEXP (condexp, 0, 2 * i) = attr_eq (alternative_name, p);
|
||
XVECEXP (condexp, 0, 2 * i + 1) = XVECEXP (exp, 1, i);
|
||
}
|
||
|
||
XEXP (condexp, 1) = XVECEXP (exp, 1, i);
|
||
|
||
return attr_rtx (SET, attr_rtx (ATTR, XSTR (exp, 0)), condexp);
|
||
}
|
||
|
||
/* Given a SET_ATTR, convert to the appropriate SET. If a comma-separated
|
||
list of values is given, convert to SET_ATTR_ALTERNATIVE first. */
|
||
|
||
static rtx
|
||
convert_set_attr (rtx exp, struct insn_def *id)
|
||
{
|
||
rtx newexp;
|
||
const char *name_ptr;
|
||
char *p;
|
||
int n;
|
||
|
||
/* See how many alternative specified. */
|
||
n = n_comma_elts (XSTR (exp, 1));
|
||
if (n == 1)
|
||
return attr_rtx (SET,
|
||
attr_rtx (ATTR, XSTR (exp, 0)),
|
||
attr_rtx (CONST_STRING, XSTR (exp, 1)));
|
||
|
||
newexp = rtx_alloc (SET_ATTR_ALTERNATIVE);
|
||
XSTR (newexp, 0) = XSTR (exp, 0);
|
||
XVEC (newexp, 1) = rtvec_alloc (n);
|
||
|
||
/* Process each comma-separated name. */
|
||
name_ptr = XSTR (exp, 1);
|
||
n = 0;
|
||
while ((p = next_comma_elt (&name_ptr)) != NULL)
|
||
XVECEXP (newexp, 1, n++) = attr_rtx (CONST_STRING, p);
|
||
|
||
return convert_set_attr_alternative (newexp, id);
|
||
}
|
||
|
||
/* Scan all definitions, checking for validity. Also, convert any SET_ATTR
|
||
and SET_ATTR_ALTERNATIVE expressions to the corresponding SET
|
||
expressions. */
|
||
|
||
static void
|
||
check_defs (void)
|
||
{
|
||
struct insn_def *id;
|
||
struct attr_desc *attr;
|
||
int i;
|
||
rtx value;
|
||
|
||
for (id = defs; id; id = id->next)
|
||
{
|
||
if (XVEC (id->def, id->vec_idx) == NULL)
|
||
continue;
|
||
|
||
for (i = 0; i < XVECLEN (id->def, id->vec_idx); i++)
|
||
{
|
||
value = XVECEXP (id->def, id->vec_idx, i);
|
||
switch (GET_CODE (value))
|
||
{
|
||
case SET:
|
||
if (GET_CODE (XEXP (value, 0)) != ATTR)
|
||
{
|
||
error_at (id->loc, "bad attribute set");
|
||
value = NULL_RTX;
|
||
}
|
||
break;
|
||
|
||
case SET_ATTR_ALTERNATIVE:
|
||
value = convert_set_attr_alternative (value, id);
|
||
break;
|
||
|
||
case SET_ATTR:
|
||
value = convert_set_attr (value, id);
|
||
break;
|
||
|
||
default:
|
||
error_at (id->loc, "invalid attribute code %s",
|
||
GET_RTX_NAME (GET_CODE (value)));
|
||
value = NULL_RTX;
|
||
}
|
||
if (value == NULL_RTX)
|
||
continue;
|
||
|
||
if ((attr = find_attr (&XSTR (XEXP (value, 0), 0), 0)) == NULL)
|
||
{
|
||
error_at (id->loc, "unknown attribute %s",
|
||
XSTR (XEXP (value, 0), 0));
|
||
continue;
|
||
}
|
||
|
||
XVECEXP (id->def, id->vec_idx, i) = value;
|
||
XEXP (value, 1) = check_attr_value (id->loc, XEXP (value, 1), attr);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Given a valid expression for an attribute value, remove any IF_THEN_ELSE
|
||
expressions by converting them into a COND. This removes cases from this
|
||
program. Also, replace an attribute value of "*" with the default attribute
|
||
value. LOC is the location to use for error reporting. */
|
||
|
||
static rtx
|
||
make_canonical (file_location loc, struct attr_desc *attr, rtx exp)
|
||
{
|
||
int i;
|
||
rtx newexp;
|
||
|
||
switch (GET_CODE (exp))
|
||
{
|
||
case CONST_INT:
|
||
exp = make_numeric_value (INTVAL (exp));
|
||
break;
|
||
|
||
case CONST_STRING:
|
||
if (! strcmp (XSTR (exp, 0), "*"))
|
||
{
|
||
if (attr->default_val == 0)
|
||
fatal_at (loc, "(attr_value \"*\") used in invalid context");
|
||
exp = attr->default_val->value;
|
||
}
|
||
else
|
||
XSTR (exp, 0) = DEF_ATTR_STRING (XSTR (exp, 0));
|
||
|
||
break;
|
||
|
||
case SYMBOL_REF:
|
||
if (!attr->is_const || ATTR_IND_SIMPLIFIED_P (exp))
|
||
break;
|
||
/* The SYMBOL_REF is constant for a given run, so mark it as unchanging.
|
||
This makes the COND something that won't be considered an arbitrary
|
||
expression by walk_attr_value. */
|
||
ATTR_IND_SIMPLIFIED_P (exp) = 1;
|
||
exp = check_attr_value (loc, exp, attr);
|
||
break;
|
||
|
||
case IF_THEN_ELSE:
|
||
newexp = rtx_alloc (COND);
|
||
XVEC (newexp, 0) = rtvec_alloc (2);
|
||
XVECEXP (newexp, 0, 0) = XEXP (exp, 0);
|
||
XVECEXP (newexp, 0, 1) = XEXP (exp, 1);
|
||
|
||
XEXP (newexp, 1) = XEXP (exp, 2);
|
||
|
||
exp = newexp;
|
||
/* Fall through to COND case since this is now a COND. */
|
||
gcc_fallthrough ();
|
||
|
||
case COND:
|
||
{
|
||
int allsame = 1;
|
||
rtx defval;
|
||
|
||
/* First, check for degenerate COND. */
|
||
if (XVECLEN (exp, 0) == 0)
|
||
return make_canonical (loc, attr, XEXP (exp, 1));
|
||
defval = XEXP (exp, 1) = make_canonical (loc, attr, XEXP (exp, 1));
|
||
|
||
for (i = 0; i < XVECLEN (exp, 0); i += 2)
|
||
{
|
||
XVECEXP (exp, 0, i) = copy_boolean (XVECEXP (exp, 0, i));
|
||
XVECEXP (exp, 0, i + 1)
|
||
= make_canonical (loc, attr, XVECEXP (exp, 0, i + 1));
|
||
if (! attr_equal_p (XVECEXP (exp, 0, i + 1), defval))
|
||
allsame = 0;
|
||
}
|
||
if (allsame)
|
||
return defval;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return exp;
|
||
}
|
||
|
||
static rtx
|
||
copy_boolean (rtx exp)
|
||
{
|
||
if (GET_CODE (exp) == AND || GET_CODE (exp) == IOR)
|
||
return attr_rtx (GET_CODE (exp), copy_boolean (XEXP (exp, 0)),
|
||
copy_boolean (XEXP (exp, 1)));
|
||
else if (GET_CODE (exp) == NOT)
|
||
return attr_rtx (NOT, copy_boolean (XEXP (exp, 0)));
|
||
if (GET_CODE (exp) == MATCH_OPERAND)
|
||
{
|
||
XSTR (exp, 1) = DEF_ATTR_STRING (XSTR (exp, 1));
|
||
XSTR (exp, 2) = DEF_ATTR_STRING (XSTR (exp, 2));
|
||
}
|
||
else if (GET_CODE (exp) == EQ_ATTR)
|
||
{
|
||
XSTR (exp, 0) = DEF_ATTR_STRING (XSTR (exp, 0));
|
||
XSTR (exp, 1) = DEF_ATTR_STRING (XSTR (exp, 1));
|
||
}
|
||
|
||
return exp;
|
||
}
|
||
|
||
/* Given a value and an attribute description, return a `struct attr_value *'
|
||
that represents that value. This is either an existing structure, if the
|
||
value has been previously encountered, or a newly-created structure.
|
||
|
||
`insn_code' is the code of an insn whose attribute has the specified
|
||
value (-2 if not processing an insn). We ensure that all insns for
|
||
a given value have the same number of alternatives if the value checks
|
||
alternatives. LOC is the location to use for error reporting. */
|
||
|
||
static struct attr_value *
|
||
get_attr_value (file_location loc, rtx value, struct attr_desc *attr,
|
||
int insn_code)
|
||
{
|
||
struct attr_value *av;
|
||
uint64_t num_alt = 0;
|
||
|
||
value = make_canonical (loc, attr, value);
|
||
if (compares_alternatives_p (value))
|
||
{
|
||
if (insn_code < 0 || insn_alternatives == NULL)
|
||
fatal_at (loc, "(eq_attr \"alternatives\" ...) used in non-insn"
|
||
" context");
|
||
else
|
||
num_alt = insn_alternatives[insn_code];
|
||
}
|
||
|
||
for (av = attr->first_value; av; av = av->next)
|
||
if (attr_equal_p (value, av->value)
|
||
&& (num_alt == 0 || av->first_insn == NULL
|
||
|| insn_alternatives[av->first_insn->def->insn_code]))
|
||
return av;
|
||
|
||
av = oballoc (struct attr_value);
|
||
av->value = value;
|
||
av->next = attr->first_value;
|
||
attr->first_value = av;
|
||
av->first_insn = NULL;
|
||
av->num_insns = 0;
|
||
av->has_asm_insn = 0;
|
||
|
||
return av;
|
||
}
|
||
|
||
/* After all DEFINE_DELAYs have been read in, create internal attributes
|
||
to generate the required routines.
|
||
|
||
First, we compute the number of delay slots for each insn (as a COND of
|
||
each of the test expressions in DEFINE_DELAYs). Then, if more than one
|
||
delay type is specified, we compute a similar function giving the
|
||
DEFINE_DELAY ordinal for each insn.
|
||
|
||
Finally, for each [DEFINE_DELAY, slot #] pair, we compute an attribute that
|
||
tells whether a given insn can be in that delay slot.
|
||
|
||
Normal attribute filling and optimization expands these to contain the
|
||
information needed to handle delay slots. */
|
||
|
||
static void
|
||
expand_delays (void)
|
||
{
|
||
struct delay_desc *delay;
|
||
rtx condexp;
|
||
rtx newexp;
|
||
int i;
|
||
char *p;
|
||
|
||
/* First, generate data for `num_delay_slots' function. */
|
||
|
||
condexp = rtx_alloc (COND);
|
||
XVEC (condexp, 0) = rtvec_alloc (num_delays * 2);
|
||
XEXP (condexp, 1) = make_numeric_value (0);
|
||
|
||
for (i = 0, delay = delays; delay; i += 2, delay = delay->next)
|
||
{
|
||
XVECEXP (condexp, 0, i) = XEXP (delay->def, 0);
|
||
XVECEXP (condexp, 0, i + 1)
|
||
= make_numeric_value (XVECLEN (delay->def, 1) / 3);
|
||
}
|
||
|
||
make_internal_attr (num_delay_slots_str, condexp, ATTR_NONE);
|
||
|
||
/* If more than one delay type, do the same for computing the delay type. */
|
||
if (num_delays > 1)
|
||
{
|
||
condexp = rtx_alloc (COND);
|
||
XVEC (condexp, 0) = rtvec_alloc (num_delays * 2);
|
||
XEXP (condexp, 1) = make_numeric_value (0);
|
||
|
||
for (i = 0, delay = delays; delay; i += 2, delay = delay->next)
|
||
{
|
||
XVECEXP (condexp, 0, i) = XEXP (delay->def, 0);
|
||
XVECEXP (condexp, 0, i + 1) = make_numeric_value (delay->num);
|
||
}
|
||
|
||
make_internal_attr (delay_type_str, condexp, ATTR_SPECIAL);
|
||
}
|
||
|
||
/* For each delay possibility and delay slot, compute an eligibility
|
||
attribute for non-annulled insns and for each type of annulled (annul
|
||
if true and annul if false). */
|
||
for (delay = delays; delay; delay = delay->next)
|
||
{
|
||
for (i = 0; i < XVECLEN (delay->def, 1); i += 3)
|
||
{
|
||
condexp = XVECEXP (delay->def, 1, i);
|
||
if (condexp == 0)
|
||
condexp = false_rtx;
|
||
newexp = attr_rtx (IF_THEN_ELSE, condexp,
|
||
make_numeric_value (1), make_numeric_value (0));
|
||
|
||
p = attr_printf (sizeof "*delay__" + MAX_DIGITS * 2,
|
||
"*delay_%d_%d", delay->num, i / 3);
|
||
make_internal_attr (p, newexp, ATTR_SPECIAL);
|
||
|
||
if (have_annul_true)
|
||
{
|
||
condexp = XVECEXP (delay->def, 1, i + 1);
|
||
if (condexp == 0) condexp = false_rtx;
|
||
newexp = attr_rtx (IF_THEN_ELSE, condexp,
|
||
make_numeric_value (1),
|
||
make_numeric_value (0));
|
||
p = attr_printf (sizeof "*annul_true__" + MAX_DIGITS * 2,
|
||
"*annul_true_%d_%d", delay->num, i / 3);
|
||
make_internal_attr (p, newexp, ATTR_SPECIAL);
|
||
}
|
||
|
||
if (have_annul_false)
|
||
{
|
||
condexp = XVECEXP (delay->def, 1, i + 2);
|
||
if (condexp == 0) condexp = false_rtx;
|
||
newexp = attr_rtx (IF_THEN_ELSE, condexp,
|
||
make_numeric_value (1),
|
||
make_numeric_value (0));
|
||
p = attr_printf (sizeof "*annul_false__" + MAX_DIGITS * 2,
|
||
"*annul_false_%d_%d", delay->num, i / 3);
|
||
make_internal_attr (p, newexp, ATTR_SPECIAL);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Once all attributes and insns have been read and checked, we construct for
|
||
each attribute value a list of all the insns that have that value for
|
||
the attribute. */
|
||
|
||
static void
|
||
fill_attr (struct attr_desc *attr)
|
||
{
|
||
struct attr_value *av;
|
||
struct insn_ent *ie;
|
||
struct insn_def *id;
|
||
int i;
|
||
rtx value;
|
||
|
||
/* Don't fill constant attributes. The value is independent of
|
||
any particular insn. */
|
||
if (attr->is_const)
|
||
return;
|
||
|
||
for (id = defs; id; id = id->next)
|
||
{
|
||
/* If no value is specified for this insn for this attribute, use the
|
||
default. */
|
||
value = NULL;
|
||
if (XVEC (id->def, id->vec_idx))
|
||
for (i = 0; i < XVECLEN (id->def, id->vec_idx); i++)
|
||
if (! strcmp_check (XSTR (XEXP (XVECEXP (id->def, id->vec_idx, i), 0), 0),
|
||
attr->name))
|
||
value = XEXP (XVECEXP (id->def, id->vec_idx, i), 1);
|
||
|
||
if (value == NULL)
|
||
av = attr->default_val;
|
||
else
|
||
av = get_attr_value (id->loc, value, attr, id->insn_code);
|
||
|
||
ie = oballoc (struct insn_ent);
|
||
ie->def = id;
|
||
insert_insn_ent (av, ie);
|
||
}
|
||
}
|
||
|
||
/* Given an expression EXP, see if it is a COND or IF_THEN_ELSE that has a
|
||
test that checks relative positions of insns (uses MATCH_DUP or PC).
|
||
If so, replace it with what is obtained by passing the expression to
|
||
ADDRESS_FN. If not but it is a COND or IF_THEN_ELSE, call this routine
|
||
recursively on each value (including the default value). Otherwise,
|
||
return the value returned by NO_ADDRESS_FN applied to EXP. */
|
||
|
||
static rtx
|
||
substitute_address (rtx exp, rtx (*no_address_fn) (rtx),
|
||
rtx (*address_fn) (rtx))
|
||
{
|
||
int i;
|
||
rtx newexp;
|
||
|
||
if (GET_CODE (exp) == COND)
|
||
{
|
||
/* See if any tests use addresses. */
|
||
address_used = 0;
|
||
for (i = 0; i < XVECLEN (exp, 0); i += 2)
|
||
walk_attr_value (XVECEXP (exp, 0, i));
|
||
|
||
if (address_used)
|
||
return (*address_fn) (exp);
|
||
|
||
/* Make a new copy of this COND, replacing each element. */
|
||
newexp = rtx_alloc (COND);
|
||
XVEC (newexp, 0) = rtvec_alloc (XVECLEN (exp, 0));
|
||
for (i = 0; i < XVECLEN (exp, 0); i += 2)
|
||
{
|
||
XVECEXP (newexp, 0, i) = XVECEXP (exp, 0, i);
|
||
XVECEXP (newexp, 0, i + 1)
|
||
= substitute_address (XVECEXP (exp, 0, i + 1),
|
||
no_address_fn, address_fn);
|
||
}
|
||
|
||
XEXP (newexp, 1) = substitute_address (XEXP (exp, 1),
|
||
no_address_fn, address_fn);
|
||
|
||
return newexp;
|
||
}
|
||
|
||
else if (GET_CODE (exp) == IF_THEN_ELSE)
|
||
{
|
||
address_used = 0;
|
||
walk_attr_value (XEXP (exp, 0));
|
||
if (address_used)
|
||
return (*address_fn) (exp);
|
||
|
||
return attr_rtx (IF_THEN_ELSE,
|
||
substitute_address (XEXP (exp, 0),
|
||
no_address_fn, address_fn),
|
||
substitute_address (XEXP (exp, 1),
|
||
no_address_fn, address_fn),
|
||
substitute_address (XEXP (exp, 2),
|
||
no_address_fn, address_fn));
|
||
}
|
||
|
||
return (*no_address_fn) (exp);
|
||
}
|
||
|
||
/* Make new attributes from the `length' attribute. The following are made,
|
||
each corresponding to a function called from `shorten_branches' or
|
||
`get_attr_length':
|
||
|
||
*insn_default_length This is the length of the insn to be returned
|
||
by `get_attr_length' before `shorten_branches'
|
||
has been called. In each case where the length
|
||
depends on relative addresses, the largest
|
||
possible is used. This routine is also used
|
||
to compute the initial size of the insn.
|
||
|
||
*insn_variable_length_p This returns 1 if the insn's length depends
|
||
on relative addresses, zero otherwise.
|
||
|
||
*insn_current_length This is only called when it is known that the
|
||
insn has a variable length and returns the
|
||
current length, based on relative addresses.
|
||
*/
|
||
|
||
static void
|
||
make_length_attrs (void)
|
||
{
|
||
static const char *new_names[] =
|
||
{
|
||
"*insn_default_length",
|
||
"*insn_min_length",
|
||
"*insn_variable_length_p",
|
||
"*insn_current_length"
|
||
};
|
||
static rtx (*const no_address_fn[]) (rtx)
|
||
= {identity_fn,identity_fn, zero_fn, zero_fn};
|
||
static rtx (*const address_fn[]) (rtx)
|
||
= {max_fn, min_fn, one_fn, identity_fn};
|
||
size_t i;
|
||
struct attr_desc *length_attr, *new_attr;
|
||
struct attr_value *av, *new_av;
|
||
struct insn_ent *ie, *new_ie;
|
||
|
||
/* See if length attribute is defined. If so, it must be numeric. Make
|
||
it special so we don't output anything for it. */
|
||
length_attr = find_attr (&length_str, 0);
|
||
if (length_attr == 0)
|
||
return;
|
||
|
||
if (! length_attr->is_numeric)
|
||
fatal_at (length_attr->loc, "length attribute must be numeric");
|
||
|
||
length_attr->is_const = 0;
|
||
length_attr->is_special = 1;
|
||
|
||
/* Make each new attribute, in turn. */
|
||
for (i = 0; i < ARRAY_SIZE (new_names); i++)
|
||
{
|
||
make_internal_attr (new_names[i],
|
||
substitute_address (length_attr->default_val->value,
|
||
no_address_fn[i], address_fn[i]),
|
||
ATTR_NONE);
|
||
new_attr = find_attr (&new_names[i], 0);
|
||
for (av = length_attr->first_value; av; av = av->next)
|
||
for (ie = av->first_insn; ie; ie = ie->next)
|
||
{
|
||
new_av = get_attr_value (ie->def->loc,
|
||
substitute_address (av->value,
|
||
no_address_fn[i],
|
||
address_fn[i]),
|
||
new_attr, ie->def->insn_code);
|
||
new_ie = oballoc (struct insn_ent);
|
||
new_ie->def = ie->def;
|
||
insert_insn_ent (new_av, new_ie);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Utility functions called from above routine. */
|
||
|
||
static rtx
|
||
identity_fn (rtx exp)
|
||
{
|
||
return exp;
|
||
}
|
||
|
||
static rtx
|
||
zero_fn (rtx exp ATTRIBUTE_UNUSED)
|
||
{
|
||
return make_numeric_value (0);
|
||
}
|
||
|
||
static rtx
|
||
one_fn (rtx exp ATTRIBUTE_UNUSED)
|
||
{
|
||
return make_numeric_value (1);
|
||
}
|
||
|
||
static rtx
|
||
max_fn (rtx exp)
|
||
{
|
||
int unknown;
|
||
return make_numeric_value (max_attr_value (exp, &unknown));
|
||
}
|
||
|
||
static rtx
|
||
min_fn (rtx exp)
|
||
{
|
||
int unknown;
|
||
return make_numeric_value (min_attr_value (exp, &unknown));
|
||
}
|
||
|
||
static void
|
||
write_length_unit_log (FILE *outf)
|
||
{
|
||
struct attr_desc *length_attr = find_attr (&length_str, 0);
|
||
struct attr_value *av;
|
||
struct insn_ent *ie;
|
||
unsigned int length_unit_log, length_or;
|
||
int unknown = 0;
|
||
|
||
if (length_attr)
|
||
{
|
||
length_or = or_attr_value (length_attr->default_val->value, &unknown);
|
||
for (av = length_attr->first_value; av; av = av->next)
|
||
for (ie = av->first_insn; ie; ie = ie->next)
|
||
length_or |= or_attr_value (av->value, &unknown);
|
||
}
|
||
|
||
if (length_attr == NULL || unknown)
|
||
length_unit_log = 0;
|
||
else
|
||
{
|
||
length_or = ~length_or;
|
||
for (length_unit_log = 0; length_or & 1; length_or >>= 1)
|
||
length_unit_log++;
|
||
}
|
||
fprintf (outf, "EXPORTED_CONST int length_unit_log = %u;\n", length_unit_log);
|
||
}
|
||
|
||
/* Compute approximate cost of the expression. Used to decide whether
|
||
expression is cheap enough for inline. */
|
||
static int
|
||
attr_rtx_cost (rtx x)
|
||
{
|
||
int cost = 1;
|
||
enum rtx_code code;
|
||
if (!x)
|
||
return 0;
|
||
code = GET_CODE (x);
|
||
switch (code)
|
||
{
|
||
case MATCH_OPERAND:
|
||
if (XSTR (x, 1)[0])
|
||
return 10;
|
||
else
|
||
return 1;
|
||
|
||
case EQ_ATTR_ALT:
|
||
return 1;
|
||
|
||
case EQ_ATTR:
|
||
/* Alternatives don't result into function call. */
|
||
if (!strcmp_check (XSTR (x, 0), alternative_name))
|
||
return 1;
|
||
else
|
||
return 5;
|
||
default:
|
||
{
|
||
int i, j;
|
||
const char *fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
switch (fmt[i])
|
||
{
|
||
case 'V':
|
||
case 'E':
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
cost += attr_rtx_cost (XVECEXP (x, i, j));
|
||
break;
|
||
case 'e':
|
||
cost += attr_rtx_cost (XEXP (x, i));
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
return cost;
|
||
}
|
||
|
||
/* Take a COND expression and see if any of the conditions in it can be
|
||
simplified. If any are known true or known false for the particular insn
|
||
code, the COND can be further simplified.
|
||
|
||
Also call ourselves on any COND operations that are values of this COND.
|
||
|
||
We do not modify EXP; rather, we make and return a new rtx. */
|
||
|
||
static rtx
|
||
simplify_cond (rtx exp, int insn_code, int insn_index)
|
||
{
|
||
int i, j;
|
||
/* We store the desired contents here,
|
||
then build a new expression if they don't match EXP. */
|
||
rtx defval = XEXP (exp, 1);
|
||
rtx new_defval = XEXP (exp, 1);
|
||
int len = XVECLEN (exp, 0);
|
||
rtx *tests = XNEWVEC (rtx, len);
|
||
int allsame = 1;
|
||
rtx ret;
|
||
|
||
/* This lets us free all storage allocated below, if appropriate. */
|
||
obstack_finish (rtl_obstack);
|
||
|
||
memcpy (tests, XVEC (exp, 0)->elem, len * sizeof (rtx));
|
||
|
||
/* See if default value needs simplification. */
|
||
if (GET_CODE (defval) == COND)
|
||
new_defval = simplify_cond (defval, insn_code, insn_index);
|
||
|
||
/* Simplify the subexpressions, and see what tests we can get rid of. */
|
||
|
||
for (i = 0; i < len; i += 2)
|
||
{
|
||
rtx newtest, newval;
|
||
|
||
/* Simplify this test. */
|
||
newtest = simplify_test_exp_in_temp (tests[i], insn_code, insn_index);
|
||
tests[i] = newtest;
|
||
|
||
newval = tests[i + 1];
|
||
/* See if this value may need simplification. */
|
||
if (GET_CODE (newval) == COND)
|
||
newval = simplify_cond (newval, insn_code, insn_index);
|
||
|
||
/* Look for ways to delete or combine this test. */
|
||
if (newtest == true_rtx)
|
||
{
|
||
/* If test is true, make this value the default
|
||
and discard this + any following tests. */
|
||
len = i;
|
||
defval = tests[i + 1];
|
||
new_defval = newval;
|
||
}
|
||
|
||
else if (newtest == false_rtx)
|
||
{
|
||
/* If test is false, discard it and its value. */
|
||
for (j = i; j < len - 2; j++)
|
||
tests[j] = tests[j + 2];
|
||
i -= 2;
|
||
len -= 2;
|
||
}
|
||
|
||
else if (i > 0 && attr_equal_p (newval, tests[i - 1]))
|
||
{
|
||
/* If this value and the value for the prev test are the same,
|
||
merge the tests. */
|
||
|
||
tests[i - 2]
|
||
= insert_right_side (IOR, tests[i - 2], newtest,
|
||
insn_code, insn_index);
|
||
|
||
/* Delete this test/value. */
|
||
for (j = i; j < len - 2; j++)
|
||
tests[j] = tests[j + 2];
|
||
len -= 2;
|
||
i -= 2;
|
||
}
|
||
|
||
else
|
||
tests[i + 1] = newval;
|
||
}
|
||
|
||
/* If the last test in a COND has the same value
|
||
as the default value, that test isn't needed. */
|
||
|
||
while (len > 0 && attr_equal_p (tests[len - 1], new_defval))
|
||
len -= 2;
|
||
|
||
/* See if we changed anything. */
|
||
if (len != XVECLEN (exp, 0) || new_defval != XEXP (exp, 1))
|
||
allsame = 0;
|
||
else
|
||
for (i = 0; i < len; i++)
|
||
if (! attr_equal_p (tests[i], XVECEXP (exp, 0, i)))
|
||
{
|
||
allsame = 0;
|
||
break;
|
||
}
|
||
|
||
if (len == 0)
|
||
{
|
||
if (GET_CODE (defval) == COND)
|
||
ret = simplify_cond (defval, insn_code, insn_index);
|
||
else
|
||
ret = defval;
|
||
}
|
||
else if (allsame)
|
||
ret = exp;
|
||
else
|
||
{
|
||
rtx newexp = rtx_alloc (COND);
|
||
|
||
XVEC (newexp, 0) = rtvec_alloc (len);
|
||
memcpy (XVEC (newexp, 0)->elem, tests, len * sizeof (rtx));
|
||
XEXP (newexp, 1) = new_defval;
|
||
ret = newexp;
|
||
}
|
||
free (tests);
|
||
return ret;
|
||
}
|
||
|
||
/* Remove an insn entry from an attribute value. */
|
||
|
||
static void
|
||
remove_insn_ent (struct attr_value *av, struct insn_ent *ie)
|
||
{
|
||
struct insn_ent *previe;
|
||
|
||
if (av->first_insn == ie)
|
||
av->first_insn = ie->next;
|
||
else
|
||
{
|
||
for (previe = av->first_insn; previe->next != ie; previe = previe->next)
|
||
;
|
||
previe->next = ie->next;
|
||
}
|
||
|
||
av->num_insns--;
|
||
if (ie->def->insn_code == -1)
|
||
av->has_asm_insn = 0;
|
||
|
||
num_insn_ents--;
|
||
}
|
||
|
||
/* Insert an insn entry in an attribute value list. */
|
||
|
||
static void
|
||
insert_insn_ent (struct attr_value *av, struct insn_ent *ie)
|
||
{
|
||
ie->next = av->first_insn;
|
||
av->first_insn = ie;
|
||
av->num_insns++;
|
||
if (ie->def->insn_code == -1)
|
||
av->has_asm_insn = 1;
|
||
|
||
num_insn_ents++;
|
||
}
|
||
|
||
/* This is a utility routine to take an expression that is a tree of either
|
||
AND or IOR expressions and insert a new term. The new term will be
|
||
inserted at the right side of the first node whose code does not match
|
||
the root. A new node will be created with the root's code. Its left
|
||
side will be the old right side and its right side will be the new
|
||
term.
|
||
|
||
If the `term' is itself a tree, all its leaves will be inserted. */
|
||
|
||
static rtx
|
||
insert_right_side (enum rtx_code code, rtx exp, rtx term, int insn_code, int insn_index)
|
||
{
|
||
rtx newexp;
|
||
|
||
/* Avoid consing in some special cases. */
|
||
if (code == AND && term == true_rtx)
|
||
return exp;
|
||
if (code == AND && term == false_rtx)
|
||
return false_rtx;
|
||
if (code == AND && exp == true_rtx)
|
||
return term;
|
||
if (code == AND && exp == false_rtx)
|
||
return false_rtx;
|
||
if (code == IOR && term == true_rtx)
|
||
return true_rtx;
|
||
if (code == IOR && term == false_rtx)
|
||
return exp;
|
||
if (code == IOR && exp == true_rtx)
|
||
return true_rtx;
|
||
if (code == IOR && exp == false_rtx)
|
||
return term;
|
||
if (attr_equal_p (exp, term))
|
||
return exp;
|
||
|
||
if (GET_CODE (term) == code)
|
||
{
|
||
exp = insert_right_side (code, exp, XEXP (term, 0),
|
||
insn_code, insn_index);
|
||
exp = insert_right_side (code, exp, XEXP (term, 1),
|
||
insn_code, insn_index);
|
||
|
||
return exp;
|
||
}
|
||
|
||
if (GET_CODE (exp) == code)
|
||
{
|
||
rtx new_rtx = insert_right_side (code, XEXP (exp, 1),
|
||
term, insn_code, insn_index);
|
||
if (new_rtx != XEXP (exp, 1))
|
||
/* Make a copy of this expression and call recursively. */
|
||
newexp = attr_rtx (code, XEXP (exp, 0), new_rtx);
|
||
else
|
||
newexp = exp;
|
||
}
|
||
else
|
||
{
|
||
/* Insert the new term. */
|
||
newexp = attr_rtx (code, exp, term);
|
||
}
|
||
|
||
return simplify_test_exp_in_temp (newexp, insn_code, insn_index);
|
||
}
|
||
|
||
/* If we have an expression which AND's a bunch of
|
||
(not (eq_attrq "alternative" "n"))
|
||
terms, we may have covered all or all but one of the possible alternatives.
|
||
If so, we can optimize. Similarly for IOR's of EQ_ATTR.
|
||
|
||
This routine is passed an expression and either AND or IOR. It returns a
|
||
bitmask indicating which alternatives are mentioned within EXP. */
|
||
|
||
static uint64_t
|
||
compute_alternative_mask (rtx exp, enum rtx_code code)
|
||
{
|
||
const char *string;
|
||
if (GET_CODE (exp) == code)
|
||
return compute_alternative_mask (XEXP (exp, 0), code)
|
||
| compute_alternative_mask (XEXP (exp, 1), code);
|
||
|
||
else if (code == AND && GET_CODE (exp) == NOT
|
||
&& GET_CODE (XEXP (exp, 0)) == EQ_ATTR
|
||
&& XSTR (XEXP (exp, 0), 0) == alternative_name)
|
||
string = XSTR (XEXP (exp, 0), 1);
|
||
|
||
else if (code == IOR && GET_CODE (exp) == EQ_ATTR
|
||
&& XSTR (exp, 0) == alternative_name)
|
||
string = XSTR (exp, 1);
|
||
|
||
else if (GET_CODE (exp) == EQ_ATTR_ALT)
|
||
{
|
||
if (code == AND && XINT (exp, 1))
|
||
return XINT (exp, 0);
|
||
|
||
if (code == IOR && !XINT (exp, 1))
|
||
return XINT (exp, 0);
|
||
|
||
return 0;
|
||
}
|
||
else
|
||
return 0;
|
||
|
||
if (string[1] == 0)
|
||
return ((uint64_t) 1) << (string[0] - '0');
|
||
return ((uint64_t) 1) << atoi (string);
|
||
}
|
||
|
||
/* Given I, a single-bit mask, return RTX to compare the `alternative'
|
||
attribute with the value represented by that bit. */
|
||
|
||
static rtx
|
||
make_alternative_compare (uint64_t mask)
|
||
{
|
||
return mk_attr_alt (mask);
|
||
}
|
||
|
||
/* If we are processing an (eq_attr "attr" "value") test, we find the value
|
||
of "attr" for this insn code. From that value, we can compute a test
|
||
showing when the EQ_ATTR will be true. This routine performs that
|
||
computation. If a test condition involves an address, we leave the EQ_ATTR
|
||
intact because addresses are only valid for the `length' attribute.
|
||
|
||
EXP is the EQ_ATTR expression and ATTR is the attribute to which
|
||
it refers. VALUE is the value of that attribute for the insn
|
||
corresponding to INSN_CODE and INSN_INDEX. */
|
||
|
||
static rtx
|
||
evaluate_eq_attr (rtx exp, struct attr_desc *attr, rtx value,
|
||
int insn_code, int insn_index)
|
||
{
|
||
rtx orexp, andexp;
|
||
rtx right;
|
||
rtx newexp;
|
||
int i;
|
||
|
||
while (GET_CODE (value) == ATTR)
|
||
{
|
||
struct attr_value *av = NULL;
|
||
|
||
attr = find_attr (&XSTR (value, 0), 0);
|
||
|
||
if (insn_code_values)
|
||
{
|
||
struct attr_value_list *iv;
|
||
for (iv = insn_code_values[insn_code]; iv; iv = iv->next)
|
||
if (iv->attr == attr)
|
||
{
|
||
av = iv->av;
|
||
break;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
struct insn_ent *ie;
|
||
for (av = attr->first_value; av; av = av->next)
|
||
for (ie = av->first_insn; ie; ie = ie->next)
|
||
if (ie->def->insn_code == insn_code)
|
||
goto got_av;
|
||
}
|
||
if (av)
|
||
{
|
||
got_av:
|
||
value = av->value;
|
||
}
|
||
}
|
||
|
||
switch (GET_CODE (value))
|
||
{
|
||
case CONST_STRING:
|
||
if (! strcmp_check (XSTR (value, 0), XSTR (exp, 1)))
|
||
newexp = true_rtx;
|
||
else
|
||
newexp = false_rtx;
|
||
break;
|
||
|
||
case SYMBOL_REF:
|
||
{
|
||
const char *prefix;
|
||
char *string, *p;
|
||
|
||
gcc_assert (GET_CODE (exp) == EQ_ATTR);
|
||
prefix = attr->enum_name ? attr->enum_name : attr->name;
|
||
string = ACONCAT ((prefix, "_", XSTR (exp, 1), NULL));
|
||
for (p = string; *p; p++)
|
||
*p = TOUPPER (*p);
|
||
|
||
newexp = attr_rtx (EQ, value,
|
||
attr_rtx (SYMBOL_REF,
|
||
DEF_ATTR_STRING (string)));
|
||
break;
|
||
}
|
||
|
||
case COND:
|
||
/* We construct an IOR of all the cases for which the
|
||
requested attribute value is present. Since we start with
|
||
FALSE, if it is not present, FALSE will be returned.
|
||
|
||
Each case is the AND of the NOT's of the previous conditions with the
|
||
current condition; in the default case the current condition is TRUE.
|
||
|
||
For each possible COND value, call ourselves recursively.
|
||
|
||
The extra TRUE and FALSE expressions will be eliminated by another
|
||
call to the simplification routine. */
|
||
|
||
orexp = false_rtx;
|
||
andexp = true_rtx;
|
||
|
||
for (i = 0; i < XVECLEN (value, 0); i += 2)
|
||
{
|
||
rtx this_cond = simplify_test_exp_in_temp (XVECEXP (value, 0, i),
|
||
insn_code, insn_index);
|
||
|
||
right = insert_right_side (AND, andexp, this_cond,
|
||
insn_code, insn_index);
|
||
right = insert_right_side (AND, right,
|
||
evaluate_eq_attr (exp, attr,
|
||
XVECEXP (value, 0,
|
||
i + 1),
|
||
insn_code, insn_index),
|
||
insn_code, insn_index);
|
||
orexp = insert_right_side (IOR, orexp, right,
|
||
insn_code, insn_index);
|
||
|
||
/* Add this condition into the AND expression. */
|
||
newexp = attr_rtx (NOT, this_cond);
|
||
andexp = insert_right_side (AND, andexp, newexp,
|
||
insn_code, insn_index);
|
||
}
|
||
|
||
/* Handle the default case. */
|
||
right = insert_right_side (AND, andexp,
|
||
evaluate_eq_attr (exp, attr, XEXP (value, 1),
|
||
insn_code, insn_index),
|
||
insn_code, insn_index);
|
||
newexp = insert_right_side (IOR, orexp, right, insn_code, insn_index);
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
/* If uses an address, must return original expression. But set the
|
||
ATTR_IND_SIMPLIFIED_P bit so we don't try to simplify it again. */
|
||
|
||
address_used = 0;
|
||
walk_attr_value (newexp);
|
||
|
||
if (address_used)
|
||
{
|
||
if (! ATTR_IND_SIMPLIFIED_P (exp))
|
||
return copy_rtx_unchanging (exp);
|
||
return exp;
|
||
}
|
||
else
|
||
return newexp;
|
||
}
|
||
|
||
/* This routine is called when an AND of a term with a tree of AND's is
|
||
encountered. If the term or its complement is present in the tree, it
|
||
can be replaced with TRUE or FALSE, respectively.
|
||
|
||
Note that (eq_attr "att" "v1") and (eq_attr "att" "v2") cannot both
|
||
be true and hence are complementary.
|
||
|
||
There is one special case: If we see
|
||
(and (not (eq_attr "att" "v1"))
|
||
(eq_attr "att" "v2"))
|
||
this can be replaced by (eq_attr "att" "v2"). To do this we need to
|
||
replace the term, not anything in the AND tree. So we pass a pointer to
|
||
the term. */
|
||
|
||
static rtx
|
||
simplify_and_tree (rtx exp, rtx *pterm, int insn_code, int insn_index)
|
||
{
|
||
rtx left, right;
|
||
rtx newexp;
|
||
rtx temp;
|
||
int left_eliminates_term, right_eliminates_term;
|
||
|
||
if (GET_CODE (exp) == AND)
|
||
{
|
||
left = simplify_and_tree (XEXP (exp, 0), pterm, insn_code, insn_index);
|
||
right = simplify_and_tree (XEXP (exp, 1), pterm, insn_code, insn_index);
|
||
if (left != XEXP (exp, 0) || right != XEXP (exp, 1))
|
||
{
|
||
newexp = attr_rtx (AND, left, right);
|
||
|
||
exp = simplify_test_exp_in_temp (newexp, insn_code, insn_index);
|
||
}
|
||
}
|
||
|
||
else if (GET_CODE (exp) == IOR)
|
||
{
|
||
/* For the IOR case, we do the same as above, except that we can
|
||
only eliminate `term' if both sides of the IOR would do so. */
|
||
temp = *pterm;
|
||
left = simplify_and_tree (XEXP (exp, 0), &temp, insn_code, insn_index);
|
||
left_eliminates_term = (temp == true_rtx);
|
||
|
||
temp = *pterm;
|
||
right = simplify_and_tree (XEXP (exp, 1), &temp, insn_code, insn_index);
|
||
right_eliminates_term = (temp == true_rtx);
|
||
|
||
if (left_eliminates_term && right_eliminates_term)
|
||
*pterm = true_rtx;
|
||
|
||
if (left != XEXP (exp, 0) || right != XEXP (exp, 1))
|
||
{
|
||
newexp = attr_rtx (IOR, left, right);
|
||
|
||
exp = simplify_test_exp_in_temp (newexp, insn_code, insn_index);
|
||
}
|
||
}
|
||
|
||
/* Check for simplifications. Do some extra checking here since this
|
||
routine is called so many times. */
|
||
|
||
if (exp == *pterm)
|
||
return true_rtx;
|
||
|
||
else if (GET_CODE (exp) == NOT && XEXP (exp, 0) == *pterm)
|
||
return false_rtx;
|
||
|
||
else if (GET_CODE (*pterm) == NOT && exp == XEXP (*pterm, 0))
|
||
return false_rtx;
|
||
|
||
else if (GET_CODE (exp) == EQ_ATTR_ALT && GET_CODE (*pterm) == EQ_ATTR_ALT)
|
||
{
|
||
if (attr_alt_subset_p (*pterm, exp))
|
||
return true_rtx;
|
||
|
||
if (attr_alt_subset_of_compl_p (*pterm, exp))
|
||
return false_rtx;
|
||
|
||
if (attr_alt_subset_p (exp, *pterm))
|
||
*pterm = true_rtx;
|
||
|
||
return exp;
|
||
}
|
||
|
||
else if (GET_CODE (exp) == EQ_ATTR && GET_CODE (*pterm) == EQ_ATTR)
|
||
{
|
||
if (XSTR (exp, 0) != XSTR (*pterm, 0))
|
||
return exp;
|
||
|
||
if (! strcmp_check (XSTR (exp, 1), XSTR (*pterm, 1)))
|
||
return true_rtx;
|
||
else
|
||
return false_rtx;
|
||
}
|
||
|
||
else if (GET_CODE (*pterm) == EQ_ATTR && GET_CODE (exp) == NOT
|
||
&& GET_CODE (XEXP (exp, 0)) == EQ_ATTR)
|
||
{
|
||
if (XSTR (*pterm, 0) != XSTR (XEXP (exp, 0), 0))
|
||
return exp;
|
||
|
||
if (! strcmp_check (XSTR (*pterm, 1), XSTR (XEXP (exp, 0), 1)))
|
||
return false_rtx;
|
||
else
|
||
return true_rtx;
|
||
}
|
||
|
||
else if (GET_CODE (exp) == EQ_ATTR && GET_CODE (*pterm) == NOT
|
||
&& GET_CODE (XEXP (*pterm, 0)) == EQ_ATTR)
|
||
{
|
||
if (XSTR (exp, 0) != XSTR (XEXP (*pterm, 0), 0))
|
||
return exp;
|
||
|
||
if (! strcmp_check (XSTR (exp, 1), XSTR (XEXP (*pterm, 0), 1)))
|
||
return false_rtx;
|
||
else
|
||
*pterm = true_rtx;
|
||
}
|
||
|
||
else if (GET_CODE (exp) == NOT && GET_CODE (*pterm) == NOT)
|
||
{
|
||
if (attr_equal_p (XEXP (exp, 0), XEXP (*pterm, 0)))
|
||
return true_rtx;
|
||
}
|
||
|
||
else if (GET_CODE (exp) == NOT)
|
||
{
|
||
if (attr_equal_p (XEXP (exp, 0), *pterm))
|
||
return false_rtx;
|
||
}
|
||
|
||
else if (GET_CODE (*pterm) == NOT)
|
||
{
|
||
if (attr_equal_p (XEXP (*pterm, 0), exp))
|
||
return false_rtx;
|
||
}
|
||
|
||
else if (attr_equal_p (exp, *pterm))
|
||
return true_rtx;
|
||
|
||
return exp;
|
||
}
|
||
|
||
/* Similar to `simplify_and_tree', but for IOR trees. */
|
||
|
||
static rtx
|
||
simplify_or_tree (rtx exp, rtx *pterm, int insn_code, int insn_index)
|
||
{
|
||
rtx left, right;
|
||
rtx newexp;
|
||
rtx temp;
|
||
int left_eliminates_term, right_eliminates_term;
|
||
|
||
if (GET_CODE (exp) == IOR)
|
||
{
|
||
left = simplify_or_tree (XEXP (exp, 0), pterm, insn_code, insn_index);
|
||
right = simplify_or_tree (XEXP (exp, 1), pterm, insn_code, insn_index);
|
||
if (left != XEXP (exp, 0) || right != XEXP (exp, 1))
|
||
{
|
||
newexp = attr_rtx (GET_CODE (exp), left, right);
|
||
|
||
exp = simplify_test_exp_in_temp (newexp, insn_code, insn_index);
|
||
}
|
||
}
|
||
|
||
else if (GET_CODE (exp) == AND)
|
||
{
|
||
/* For the AND case, we do the same as above, except that we can
|
||
only eliminate `term' if both sides of the AND would do so. */
|
||
temp = *pterm;
|
||
left = simplify_or_tree (XEXP (exp, 0), &temp, insn_code, insn_index);
|
||
left_eliminates_term = (temp == false_rtx);
|
||
|
||
temp = *pterm;
|
||
right = simplify_or_tree (XEXP (exp, 1), &temp, insn_code, insn_index);
|
||
right_eliminates_term = (temp == false_rtx);
|
||
|
||
if (left_eliminates_term && right_eliminates_term)
|
||
*pterm = false_rtx;
|
||
|
||
if (left != XEXP (exp, 0) || right != XEXP (exp, 1))
|
||
{
|
||
newexp = attr_rtx (GET_CODE (exp), left, right);
|
||
|
||
exp = simplify_test_exp_in_temp (newexp, insn_code, insn_index);
|
||
}
|
||
}
|
||
|
||
if (attr_equal_p (exp, *pterm))
|
||
return false_rtx;
|
||
|
||
else if (GET_CODE (exp) == NOT && attr_equal_p (XEXP (exp, 0), *pterm))
|
||
return true_rtx;
|
||
|
||
else if (GET_CODE (*pterm) == NOT && attr_equal_p (XEXP (*pterm, 0), exp))
|
||
return true_rtx;
|
||
|
||
else if (GET_CODE (*pterm) == EQ_ATTR && GET_CODE (exp) == NOT
|
||
&& GET_CODE (XEXP (exp, 0)) == EQ_ATTR
|
||
&& XSTR (*pterm, 0) == XSTR (XEXP (exp, 0), 0))
|
||
*pterm = false_rtx;
|
||
|
||
else if (GET_CODE (exp) == EQ_ATTR && GET_CODE (*pterm) == NOT
|
||
&& GET_CODE (XEXP (*pterm, 0)) == EQ_ATTR
|
||
&& XSTR (exp, 0) == XSTR (XEXP (*pterm, 0), 0))
|
||
return false_rtx;
|
||
|
||
return exp;
|
||
}
|
||
|
||
/* Simplify test expression and use temporary obstack in order to avoid
|
||
memory bloat. Use ATTR_IND_SIMPLIFIED to avoid unnecessary simplifications
|
||
and avoid unnecessary copying if possible. */
|
||
|
||
static rtx
|
||
simplify_test_exp_in_temp (rtx exp, int insn_code, int insn_index)
|
||
{
|
||
rtx x;
|
||
struct obstack *old;
|
||
if (ATTR_IND_SIMPLIFIED_P (exp))
|
||
return exp;
|
||
old = rtl_obstack;
|
||
rtl_obstack = temp_obstack;
|
||
x = simplify_test_exp (exp, insn_code, insn_index);
|
||
rtl_obstack = old;
|
||
return x;
|
||
}
|
||
|
||
/* Returns true if S1 is a subset of S2. */
|
||
|
||
static bool
|
||
attr_alt_subset_p (rtx s1, rtx s2)
|
||
{
|
||
switch ((XINT (s1, 1) << 1) | XINT (s2, 1))
|
||
{
|
||
case (0 << 1) | 0:
|
||
return !(XINT (s1, 0) &~ XINT (s2, 0));
|
||
|
||
case (0 << 1) | 1:
|
||
return !(XINT (s1, 0) & XINT (s2, 0));
|
||
|
||
case (1 << 1) | 0:
|
||
return false;
|
||
|
||
case (1 << 1) | 1:
|
||
return !(XINT (s2, 0) &~ XINT (s1, 0));
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* Returns true if S1 is a subset of complement of S2. */
|
||
|
||
static bool
|
||
attr_alt_subset_of_compl_p (rtx s1, rtx s2)
|
||
{
|
||
switch ((XINT (s1, 1) << 1) | XINT (s2, 1))
|
||
{
|
||
case (0 << 1) | 0:
|
||
return !(XINT (s1, 0) & XINT (s2, 0));
|
||
|
||
case (0 << 1) | 1:
|
||
return !(XINT (s1, 0) & ~XINT (s2, 0));
|
||
|
||
case (1 << 1) | 0:
|
||
return !(XINT (s2, 0) &~ XINT (s1, 0));
|
||
|
||
case (1 << 1) | 1:
|
||
return false;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* Return EQ_ATTR_ALT expression representing intersection of S1 and S2. */
|
||
|
||
static rtx
|
||
attr_alt_intersection (rtx s1, rtx s2)
|
||
{
|
||
int result;
|
||
|
||
switch ((XINT (s1, 1) << 1) | XINT (s2, 1))
|
||
{
|
||
case (0 << 1) | 0:
|
||
result = XINT (s1, 0) & XINT (s2, 0);
|
||
break;
|
||
case (0 << 1) | 1:
|
||
result = XINT (s1, 0) & ~XINT (s2, 0);
|
||
break;
|
||
case (1 << 1) | 0:
|
||
result = XINT (s2, 0) & ~XINT (s1, 0);
|
||
break;
|
||
case (1 << 1) | 1:
|
||
result = XINT (s1, 0) | XINT (s2, 0);
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
return attr_rtx (EQ_ATTR_ALT, result, XINT (s1, 1) & XINT (s2, 1));
|
||
}
|
||
|
||
/* Return EQ_ATTR_ALT expression representing union of S1 and S2. */
|
||
|
||
static rtx
|
||
attr_alt_union (rtx s1, rtx s2)
|
||
{
|
||
int result;
|
||
|
||
switch ((XINT (s1, 1) << 1) | XINT (s2, 1))
|
||
{
|
||
case (0 << 1) | 0:
|
||
result = XINT (s1, 0) | XINT (s2, 0);
|
||
break;
|
||
case (0 << 1) | 1:
|
||
result = XINT (s2, 0) & ~XINT (s1, 0);
|
||
break;
|
||
case (1 << 1) | 0:
|
||
result = XINT (s1, 0) & ~XINT (s2, 0);
|
||
break;
|
||
case (1 << 1) | 1:
|
||
result = XINT (s1, 0) & XINT (s2, 0);
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
return attr_rtx (EQ_ATTR_ALT, result, XINT (s1, 1) | XINT (s2, 1));
|
||
}
|
||
|
||
/* Return EQ_ATTR_ALT expression representing complement of S. */
|
||
|
||
static rtx
|
||
attr_alt_complement (rtx s)
|
||
{
|
||
return attr_rtx (EQ_ATTR_ALT, XINT (s, 0), 1 - XINT (s, 1));
|
||
}
|
||
|
||
/* Return EQ_ATTR_ALT expression representing set containing elements set
|
||
in E. */
|
||
|
||
static rtx
|
||
mk_attr_alt (uint64_t e)
|
||
{
|
||
return attr_rtx (EQ_ATTR_ALT, (int)e, 0);
|
||
}
|
||
|
||
/* Given an expression, see if it can be simplified for a particular insn
|
||
code based on the values of other attributes being tested. This can
|
||
eliminate nested get_attr_... calls.
|
||
|
||
Note that if an endless recursion is specified in the patterns, the
|
||
optimization will loop. However, it will do so in precisely the cases where
|
||
an infinite recursion loop could occur during compilation. It's better that
|
||
it occurs here! */
|
||
|
||
static rtx
|
||
simplify_test_exp (rtx exp, int insn_code, int insn_index)
|
||
{
|
||
rtx left, right;
|
||
struct attr_desc *attr;
|
||
struct attr_value *av;
|
||
struct insn_ent *ie;
|
||
struct attr_value_list *iv;
|
||
uint64_t i;
|
||
rtx newexp = exp;
|
||
bool left_alt, right_alt;
|
||
|
||
/* Don't re-simplify something we already simplified. */
|
||
if (ATTR_IND_SIMPLIFIED_P (exp) || ATTR_CURR_SIMPLIFIED_P (exp))
|
||
return exp;
|
||
|
||
switch (GET_CODE (exp))
|
||
{
|
||
case AND:
|
||
left = SIMPLIFY_TEST_EXP (XEXP (exp, 0), insn_code, insn_index);
|
||
if (left == false_rtx)
|
||
return false_rtx;
|
||
right = SIMPLIFY_TEST_EXP (XEXP (exp, 1), insn_code, insn_index);
|
||
if (right == false_rtx)
|
||
return false_rtx;
|
||
|
||
if (GET_CODE (left) == EQ_ATTR_ALT
|
||
&& GET_CODE (right) == EQ_ATTR_ALT)
|
||
{
|
||
exp = attr_alt_intersection (left, right);
|
||
return simplify_test_exp (exp, insn_code, insn_index);
|
||
}
|
||
|
||
/* If either side is an IOR and we have (eq_attr "alternative" ..")
|
||
present on both sides, apply the distributive law since this will
|
||
yield simplifications. */
|
||
if ((GET_CODE (left) == IOR || GET_CODE (right) == IOR)
|
||
&& compute_alternative_mask (left, IOR)
|
||
&& compute_alternative_mask (right, IOR))
|
||
{
|
||
if (GET_CODE (left) == IOR)
|
||
std::swap (left, right);
|
||
|
||
newexp = attr_rtx (IOR,
|
||
attr_rtx (AND, left, XEXP (right, 0)),
|
||
attr_rtx (AND, left, XEXP (right, 1)));
|
||
|
||
return SIMPLIFY_TEST_EXP (newexp, insn_code, insn_index);
|
||
}
|
||
|
||
/* Try with the term on both sides. */
|
||
right = simplify_and_tree (right, &left, insn_code, insn_index);
|
||
if (left == XEXP (exp, 0) && right == XEXP (exp, 1))
|
||
left = simplify_and_tree (left, &right, insn_code, insn_index);
|
||
|
||
if (left == false_rtx || right == false_rtx)
|
||
return false_rtx;
|
||
else if (left == true_rtx)
|
||
{
|
||
return right;
|
||
}
|
||
else if (right == true_rtx)
|
||
{
|
||
return left;
|
||
}
|
||
/* See if all or all but one of the insn's alternatives are specified
|
||
in this tree. Optimize if so. */
|
||
|
||
if (GET_CODE (left) == NOT)
|
||
left_alt = (GET_CODE (XEXP (left, 0)) == EQ_ATTR
|
||
&& XSTR (XEXP (left, 0), 0) == alternative_name);
|
||
else
|
||
left_alt = (GET_CODE (left) == EQ_ATTR_ALT
|
||
&& XINT (left, 1));
|
||
|
||
if (GET_CODE (right) == NOT)
|
||
right_alt = (GET_CODE (XEXP (right, 0)) == EQ_ATTR
|
||
&& XSTR (XEXP (right, 0), 0) == alternative_name);
|
||
else
|
||
right_alt = (GET_CODE (right) == EQ_ATTR_ALT
|
||
&& XINT (right, 1));
|
||
|
||
if (insn_code >= 0
|
||
&& (GET_CODE (left) == AND
|
||
|| left_alt
|
||
|| GET_CODE (right) == AND
|
||
|| right_alt))
|
||
{
|
||
i = compute_alternative_mask (exp, AND);
|
||
if (i & ~insn_alternatives[insn_code])
|
||
fatal ("invalid alternative specified for pattern number %d",
|
||
insn_index);
|
||
|
||
/* If all alternatives are excluded, this is false. */
|
||
i ^= insn_alternatives[insn_code];
|
||
if (i == 0)
|
||
return false_rtx;
|
||
else if ((i & (i - 1)) == 0 && insn_alternatives[insn_code] > 1)
|
||
{
|
||
/* If just one excluded, AND a comparison with that one to the
|
||
front of the tree. The others will be eliminated by
|
||
optimization. We do not want to do this if the insn has one
|
||
alternative and we have tested none of them! */
|
||
left = make_alternative_compare (i);
|
||
right = simplify_and_tree (exp, &left, insn_code, insn_index);
|
||
newexp = attr_rtx (AND, left, right);
|
||
|
||
return SIMPLIFY_TEST_EXP (newexp, insn_code, insn_index);
|
||
}
|
||
}
|
||
|
||
if (left != XEXP (exp, 0) || right != XEXP (exp, 1))
|
||
{
|
||
newexp = attr_rtx (AND, left, right);
|
||
return SIMPLIFY_TEST_EXP (newexp, insn_code, insn_index);
|
||
}
|
||
break;
|
||
|
||
case IOR:
|
||
left = SIMPLIFY_TEST_EXP (XEXP (exp, 0), insn_code, insn_index);
|
||
if (left == true_rtx)
|
||
return true_rtx;
|
||
right = SIMPLIFY_TEST_EXP (XEXP (exp, 1), insn_code, insn_index);
|
||
if (right == true_rtx)
|
||
return true_rtx;
|
||
|
||
if (GET_CODE (left) == EQ_ATTR_ALT
|
||
&& GET_CODE (right) == EQ_ATTR_ALT)
|
||
{
|
||
exp = attr_alt_union (left, right);
|
||
return simplify_test_exp (exp, insn_code, insn_index);
|
||
}
|
||
|
||
right = simplify_or_tree (right, &left, insn_code, insn_index);
|
||
if (left == XEXP (exp, 0) && right == XEXP (exp, 1))
|
||
left = simplify_or_tree (left, &right, insn_code, insn_index);
|
||
|
||
if (right == true_rtx || left == true_rtx)
|
||
return true_rtx;
|
||
else if (left == false_rtx)
|
||
{
|
||
return right;
|
||
}
|
||
else if (right == false_rtx)
|
||
{
|
||
return left;
|
||
}
|
||
|
||
/* Test for simple cases where the distributive law is useful. I.e.,
|
||
convert (ior (and (x) (y))
|
||
(and (x) (z)))
|
||
to (and (x)
|
||
(ior (y) (z)))
|
||
*/
|
||
|
||
else if (GET_CODE (left) == AND && GET_CODE (right) == AND
|
||
&& attr_equal_p (XEXP (left, 0), XEXP (right, 0)))
|
||
{
|
||
newexp = attr_rtx (IOR, XEXP (left, 1), XEXP (right, 1));
|
||
|
||
left = XEXP (left, 0);
|
||
right = newexp;
|
||
newexp = attr_rtx (AND, left, right);
|
||
return SIMPLIFY_TEST_EXP (newexp, insn_code, insn_index);
|
||
}
|
||
|
||
/* Similarly,
|
||
convert (ior (and (y) (x))
|
||
(and (z) (x)))
|
||
to (and (ior (y) (z))
|
||
(x))
|
||
Note that we want the common term to stay at the end.
|
||
*/
|
||
|
||
else if (GET_CODE (left) == AND && GET_CODE (right) == AND
|
||
&& attr_equal_p (XEXP (left, 1), XEXP (right, 1)))
|
||
{
|
||
newexp = attr_rtx (IOR, XEXP (left, 0), XEXP (right, 0));
|
||
|
||
left = newexp;
|
||
right = XEXP (right, 1);
|
||
newexp = attr_rtx (AND, left, right);
|
||
return SIMPLIFY_TEST_EXP (newexp, insn_code, insn_index);
|
||
}
|
||
|
||
/* See if all or all but one of the insn's alternatives are specified
|
||
in this tree. Optimize if so. */
|
||
|
||
else if (insn_code >= 0
|
||
&& (GET_CODE (left) == IOR
|
||
|| (GET_CODE (left) == EQ_ATTR_ALT
|
||
&& !XINT (left, 1))
|
||
|| (GET_CODE (left) == EQ_ATTR
|
||
&& XSTR (left, 0) == alternative_name)
|
||
|| GET_CODE (right) == IOR
|
||
|| (GET_CODE (right) == EQ_ATTR_ALT
|
||
&& !XINT (right, 1))
|
||
|| (GET_CODE (right) == EQ_ATTR
|
||
&& XSTR (right, 0) == alternative_name)))
|
||
{
|
||
i = compute_alternative_mask (exp, IOR);
|
||
if (i & ~insn_alternatives[insn_code])
|
||
fatal ("invalid alternative specified for pattern number %d",
|
||
insn_index);
|
||
|
||
/* If all alternatives are included, this is true. */
|
||
i ^= insn_alternatives[insn_code];
|
||
if (i == 0)
|
||
return true_rtx;
|
||
else if ((i & (i - 1)) == 0 && insn_alternatives[insn_code] > 1)
|
||
{
|
||
/* If just one excluded, IOR a comparison with that one to the
|
||
front of the tree. The others will be eliminated by
|
||
optimization. We do not want to do this if the insn has one
|
||
alternative and we have tested none of them! */
|
||
left = make_alternative_compare (i);
|
||
right = simplify_and_tree (exp, &left, insn_code, insn_index);
|
||
newexp = attr_rtx (IOR, attr_rtx (NOT, left), right);
|
||
|
||
return SIMPLIFY_TEST_EXP (newexp, insn_code, insn_index);
|
||
}
|
||
}
|
||
|
||
if (left != XEXP (exp, 0) || right != XEXP (exp, 1))
|
||
{
|
||
newexp = attr_rtx (IOR, left, right);
|
||
return SIMPLIFY_TEST_EXP (newexp, insn_code, insn_index);
|
||
}
|
||
break;
|
||
|
||
case NOT:
|
||
if (GET_CODE (XEXP (exp, 0)) == NOT)
|
||
{
|
||
left = SIMPLIFY_TEST_EXP (XEXP (XEXP (exp, 0), 0),
|
||
insn_code, insn_index);
|
||
return left;
|
||
}
|
||
|
||
left = SIMPLIFY_TEST_EXP (XEXP (exp, 0), insn_code, insn_index);
|
||
if (GET_CODE (left) == NOT)
|
||
return XEXP (left, 0);
|
||
|
||
if (left == false_rtx)
|
||
return true_rtx;
|
||
if (left == true_rtx)
|
||
return false_rtx;
|
||
|
||
if (GET_CODE (left) == EQ_ATTR_ALT)
|
||
{
|
||
exp = attr_alt_complement (left);
|
||
return simplify_test_exp (exp, insn_code, insn_index);
|
||
}
|
||
|
||
/* Try to apply De`Morgan's laws. */
|
||
if (GET_CODE (left) == IOR)
|
||
{
|
||
newexp = attr_rtx (AND,
|
||
attr_rtx (NOT, XEXP (left, 0)),
|
||
attr_rtx (NOT, XEXP (left, 1)));
|
||
|
||
newexp = SIMPLIFY_TEST_EXP (newexp, insn_code, insn_index);
|
||
}
|
||
else if (GET_CODE (left) == AND)
|
||
{
|
||
newexp = attr_rtx (IOR,
|
||
attr_rtx (NOT, XEXP (left, 0)),
|
||
attr_rtx (NOT, XEXP (left, 1)));
|
||
|
||
newexp = SIMPLIFY_TEST_EXP (newexp, insn_code, insn_index);
|
||
}
|
||
else if (left != XEXP (exp, 0))
|
||
{
|
||
newexp = attr_rtx (NOT, left);
|
||
}
|
||
break;
|
||
|
||
case EQ_ATTR_ALT:
|
||
if (!XINT (exp, 0))
|
||
return XINT (exp, 1) ? true_rtx : false_rtx;
|
||
break;
|
||
|
||
case EQ_ATTR:
|
||
if (XSTR (exp, 0) == alternative_name)
|
||
{
|
||
newexp = mk_attr_alt (((uint64_t) 1) << atoi (XSTR (exp, 1)));
|
||
break;
|
||
}
|
||
|
||
/* Look at the value for this insn code in the specified attribute.
|
||
We normally can replace this comparison with the condition that
|
||
would give this insn the values being tested for. */
|
||
if (insn_code >= 0
|
||
&& (attr = find_attr (&XSTR (exp, 0), 0)) != NULL)
|
||
{
|
||
rtx x;
|
||
|
||
av = NULL;
|
||
if (insn_code_values)
|
||
{
|
||
for (iv = insn_code_values[insn_code]; iv; iv = iv->next)
|
||
if (iv->attr == attr)
|
||
{
|
||
av = iv->av;
|
||
break;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
for (av = attr->first_value; av; av = av->next)
|
||
for (ie = av->first_insn; ie; ie = ie->next)
|
||
if (ie->def->insn_code == insn_code)
|
||
goto got_av;
|
||
}
|
||
|
||
if (av)
|
||
{
|
||
got_av:
|
||
x = evaluate_eq_attr (exp, attr, av->value,
|
||
insn_code, insn_index);
|
||
x = SIMPLIFY_TEST_EXP (x, insn_code, insn_index);
|
||
if (attr_rtx_cost (x) < 7)
|
||
return x;
|
||
}
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* We have already simplified this expression. Simplifying it again
|
||
won't buy anything unless we weren't given a valid insn code
|
||
to process (i.e., we are canonicalizing something.). */
|
||
if (insn_code != -2
|
||
&& ! ATTR_IND_SIMPLIFIED_P (newexp))
|
||
return copy_rtx_unchanging (newexp);
|
||
|
||
return newexp;
|
||
}
|
||
|
||
/* Return 1 if any EQ_ATTR subexpression of P refers to ATTR,
|
||
otherwise return 0. */
|
||
|
||
static int
|
||
tests_attr_p (rtx p, struct attr_desc *attr)
|
||
{
|
||
const char *fmt;
|
||
int i, ie, j, je;
|
||
|
||
if (GET_CODE (p) == EQ_ATTR)
|
||
{
|
||
if (XSTR (p, 0) != attr->name)
|
||
return 0;
|
||
return 1;
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (GET_CODE (p));
|
||
ie = GET_RTX_LENGTH (GET_CODE (p));
|
||
for (i = 0; i < ie; i++)
|
||
{
|
||
switch (*fmt++)
|
||
{
|
||
case 'e':
|
||
if (tests_attr_p (XEXP (p, i), attr))
|
||
return 1;
|
||
break;
|
||
|
||
case 'E':
|
||
je = XVECLEN (p, i);
|
||
for (j = 0; j < je; ++j)
|
||
if (tests_attr_p (XVECEXP (p, i, j), attr))
|
||
return 1;
|
||
break;
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Calculate a topological sorting of all attributes so that
|
||
all attributes only depend on attributes in front of it.
|
||
Place the result in *RET (which is a pointer to an array of
|
||
attr_desc pointers), and return the size of that array. */
|
||
|
||
static int
|
||
get_attr_order (struct attr_desc ***ret)
|
||
{
|
||
int i, j;
|
||
int num = 0;
|
||
struct attr_desc *attr;
|
||
struct attr_desc **all, **sorted;
|
||
char *handled;
|
||
for (i = 0; i < MAX_ATTRS_INDEX; i++)
|
||
for (attr = attrs[i]; attr; attr = attr->next)
|
||
num++;
|
||
all = XNEWVEC (struct attr_desc *, num);
|
||
sorted = XNEWVEC (struct attr_desc *, num);
|
||
handled = XCNEWVEC (char, num);
|
||
num = 0;
|
||
for (i = 0; i < MAX_ATTRS_INDEX; i++)
|
||
for (attr = attrs[i]; attr; attr = attr->next)
|
||
all[num++] = attr;
|
||
|
||
j = 0;
|
||
for (i = 0; i < num; i++)
|
||
if (all[i]->is_const)
|
||
handled[i] = 1, sorted[j++] = all[i];
|
||
|
||
/* We have only few attributes hence we can live with the inner
|
||
loop being O(n^2), unlike the normal fast variants of topological
|
||
sorting. */
|
||
while (j < num)
|
||
{
|
||
for (i = 0; i < num; i++)
|
||
if (!handled[i])
|
||
{
|
||
/* Let's see if I depends on anything interesting. */
|
||
int k;
|
||
for (k = 0; k < num; k++)
|
||
if (!handled[k])
|
||
{
|
||
struct attr_value *av;
|
||
for (av = all[i]->first_value; av; av = av->next)
|
||
if (av->num_insns != 0)
|
||
if (tests_attr_p (av->value, all[k]))
|
||
break;
|
||
|
||
if (av)
|
||
/* Something in I depends on K. */
|
||
break;
|
||
}
|
||
if (k == num)
|
||
{
|
||
/* Nothing in I depended on anything intersting, so
|
||
it's done. */
|
||
handled[i] = 1;
|
||
sorted[j++] = all[i];
|
||
}
|
||
}
|
||
}
|
||
|
||
if (DEBUG)
|
||
for (j = 0; j < num; j++)
|
||
{
|
||
struct attr_desc *attr2;
|
||
struct attr_value *av;
|
||
|
||
attr = sorted[j];
|
||
fprintf (stderr, "%s depends on: ", attr->name);
|
||
for (i = 0; i < MAX_ATTRS_INDEX; ++i)
|
||
for (attr2 = attrs[i]; attr2; attr2 = attr2->next)
|
||
if (!attr2->is_const)
|
||
for (av = attr->first_value; av; av = av->next)
|
||
if (av->num_insns != 0)
|
||
if (tests_attr_p (av->value, attr2))
|
||
{
|
||
fprintf (stderr, "%s, ", attr2->name);
|
||
break;
|
||
}
|
||
fprintf (stderr, "\n");
|
||
}
|
||
|
||
free (all);
|
||
*ret = sorted;
|
||
return num;
|
||
}
|
||
|
||
/* Optimize the attribute lists by seeing if we can determine conditional
|
||
values from the known values of other attributes. This will save subroutine
|
||
calls during the compilation. NUM_INSN_CODES is the number of unique
|
||
instruction codes. */
|
||
|
||
static void
|
||
optimize_attrs (int num_insn_codes)
|
||
{
|
||
struct attr_desc *attr;
|
||
struct attr_value *av;
|
||
struct insn_ent *ie;
|
||
rtx newexp;
|
||
int i;
|
||
struct attr_value_list *ivbuf;
|
||
struct attr_value_list *iv;
|
||
struct attr_desc **topsort;
|
||
int topnum;
|
||
|
||
/* For each insn code, make a list of all the insn_ent's for it,
|
||
for all values for all attributes. */
|
||
|
||
if (num_insn_ents == 0)
|
||
return;
|
||
|
||
/* Make 2 extra elements, for "code" values -2 and -1. */
|
||
insn_code_values = XCNEWVEC (struct attr_value_list *, num_insn_codes + 2);
|
||
|
||
/* Offset the table address so we can index by -2 or -1. */
|
||
insn_code_values += 2;
|
||
|
||
iv = ivbuf = XNEWVEC (struct attr_value_list, num_insn_ents);
|
||
|
||
/* Create the chain of insn*attr values such that we see dependend
|
||
attributes after their dependencies. As we use a stack via the
|
||
next pointers start from the end of the topological order. */
|
||
topnum = get_attr_order (&topsort);
|
||
for (i = topnum - 1; i >= 0; i--)
|
||
for (av = topsort[i]->first_value; av; av = av->next)
|
||
for (ie = av->first_insn; ie; ie = ie->next)
|
||
{
|
||
iv->attr = topsort[i];
|
||
iv->av = av;
|
||
iv->ie = ie;
|
||
iv->next = insn_code_values[ie->def->insn_code];
|
||
insn_code_values[ie->def->insn_code] = iv;
|
||
iv++;
|
||
}
|
||
free (topsort);
|
||
|
||
/* Sanity check on num_insn_ents. */
|
||
gcc_assert (iv == ivbuf + num_insn_ents);
|
||
|
||
/* Process one insn code at a time. */
|
||
for (i = -2; i < num_insn_codes; i++)
|
||
{
|
||
/* Clear the ATTR_CURR_SIMPLIFIED_P flag everywhere relevant.
|
||
We use it to mean "already simplified for this insn". */
|
||
for (iv = insn_code_values[i]; iv; iv = iv->next)
|
||
clear_struct_flag (iv->av->value);
|
||
|
||
for (iv = insn_code_values[i]; iv; iv = iv->next)
|
||
{
|
||
struct obstack *old = rtl_obstack;
|
||
|
||
attr = iv->attr;
|
||
av = iv->av;
|
||
ie = iv->ie;
|
||
if (GET_CODE (av->value) != COND)
|
||
continue;
|
||
|
||
rtl_obstack = temp_obstack;
|
||
newexp = av->value;
|
||
while (GET_CODE (newexp) == COND)
|
||
{
|
||
rtx newexp2 = simplify_cond (newexp, ie->def->insn_code,
|
||
ie->def->insn_index);
|
||
if (newexp2 == newexp)
|
||
break;
|
||
newexp = newexp2;
|
||
}
|
||
|
||
rtl_obstack = old;
|
||
/* If we created a new value for this instruction, and it's
|
||
cheaper than the old value, and overall cheap, use that
|
||
one as specific value for the current instruction.
|
||
The last test is to avoid exploding the get_attr_ function
|
||
sizes for no much gain. */
|
||
if (newexp != av->value
|
||
&& attr_rtx_cost (newexp) < attr_rtx_cost (av->value)
|
||
&& attr_rtx_cost (newexp) < 26
|
||
)
|
||
{
|
||
remove_insn_ent (av, ie);
|
||
av = get_attr_value (ie->def->loc, newexp, attr,
|
||
ie->def->insn_code);
|
||
iv->av = av;
|
||
insert_insn_ent (av, ie);
|
||
}
|
||
}
|
||
}
|
||
|
||
free (ivbuf);
|
||
free (insn_code_values - 2);
|
||
insn_code_values = NULL;
|
||
}
|
||
|
||
/* Clear the ATTR_CURR_SIMPLIFIED_P flag in EXP and its subexpressions. */
|
||
|
||
static void
|
||
clear_struct_flag (rtx x)
|
||
{
|
||
int i;
|
||
int j;
|
||
enum rtx_code code;
|
||
const char *fmt;
|
||
|
||
ATTR_CURR_SIMPLIFIED_P (x) = 0;
|
||
if (ATTR_IND_SIMPLIFIED_P (x))
|
||
return;
|
||
|
||
code = GET_CODE (x);
|
||
|
||
switch (code)
|
||
{
|
||
case REG:
|
||
CASE_CONST_ANY:
|
||
case MATCH_TEST:
|
||
case SYMBOL_REF:
|
||
case CODE_LABEL:
|
||
case PC:
|
||
case CC0:
|
||
case EQ_ATTR:
|
||
case ATTR_FLAG:
|
||
return;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* Compare the elements. If any pair of corresponding elements
|
||
fail to match, return 0 for the whole things. */
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
switch (fmt[i])
|
||
{
|
||
case 'V':
|
||
case 'E':
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
clear_struct_flag (XVECEXP (x, i, j));
|
||
break;
|
||
|
||
case 'e':
|
||
clear_struct_flag (XEXP (x, i));
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Add attribute value NAME to the beginning of ATTR's list. */
|
||
|
||
static void
|
||
add_attr_value (struct attr_desc *attr, const char *name)
|
||
{
|
||
struct attr_value *av;
|
||
|
||
av = oballoc (struct attr_value);
|
||
av->value = attr_rtx (CONST_STRING, name);
|
||
av->next = attr->first_value;
|
||
attr->first_value = av;
|
||
av->first_insn = NULL;
|
||
av->num_insns = 0;
|
||
av->has_asm_insn = 0;
|
||
}
|
||
|
||
/* Create table entries for DEFINE_ATTR or DEFINE_ENUM_ATTR. */
|
||
|
||
static void
|
||
gen_attr (md_rtx_info *info)
|
||
{
|
||
struct enum_type *et;
|
||
struct enum_value *ev;
|
||
struct attr_desc *attr;
|
||
const char *name_ptr;
|
||
char *p;
|
||
rtx def = info->def;
|
||
|
||
/* Make a new attribute structure. Check for duplicate by looking at
|
||
attr->default_val, since it is initialized by this routine. */
|
||
attr = find_attr (&XSTR (def, 0), 1);
|
||
if (attr->default_val)
|
||
{
|
||
error_at (info->loc, "duplicate definition for attribute %s",
|
||
attr->name);
|
||
message_at (attr->loc, "previous definition");
|
||
return;
|
||
}
|
||
attr->loc = info->loc;
|
||
|
||
if (GET_CODE (def) == DEFINE_ENUM_ATTR)
|
||
{
|
||
attr->enum_name = XSTR (def, 1);
|
||
et = rtx_reader_ptr->lookup_enum_type (XSTR (def, 1));
|
||
if (!et || !et->md_p)
|
||
error_at (info->loc, "No define_enum called `%s' defined",
|
||
attr->name);
|
||
if (et)
|
||
for (ev = et->values; ev; ev = ev->next)
|
||
add_attr_value (attr, ev->name);
|
||
}
|
||
else if (*XSTR (def, 1) == '\0')
|
||
attr->is_numeric = 1;
|
||
else
|
||
{
|
||
name_ptr = XSTR (def, 1);
|
||
while ((p = next_comma_elt (&name_ptr)) != NULL)
|
||
add_attr_value (attr, p);
|
||
}
|
||
|
||
if (GET_CODE (XEXP (def, 2)) == CONST)
|
||
{
|
||
attr->is_const = 1;
|
||
if (attr->is_numeric)
|
||
error_at (info->loc,
|
||
"constant attributes may not take numeric values");
|
||
|
||
/* Get rid of the CONST node. It is allowed only at top-level. */
|
||
XEXP (def, 2) = XEXP (XEXP (def, 2), 0);
|
||
}
|
||
|
||
if (! strcmp_check (attr->name, length_str) && ! attr->is_numeric)
|
||
error_at (info->loc, "`length' attribute must take numeric values");
|
||
|
||
/* Set up the default value. */
|
||
XEXP (def, 2) = check_attr_value (info->loc, XEXP (def, 2), attr);
|
||
attr->default_val = get_attr_value (info->loc, XEXP (def, 2), attr, -2);
|
||
}
|
||
|
||
/* Given a pattern for DEFINE_PEEPHOLE or DEFINE_INSN, return the number of
|
||
alternatives in the constraints. Assume all MATCH_OPERANDs have the same
|
||
number of alternatives as this should be checked elsewhere. */
|
||
|
||
static int
|
||
count_alternatives (rtx exp)
|
||
{
|
||
int i, j, n;
|
||
const char *fmt;
|
||
|
||
if (GET_CODE (exp) == MATCH_OPERAND)
|
||
return n_comma_elts (XSTR (exp, 2));
|
||
|
||
for (i = 0, fmt = GET_RTX_FORMAT (GET_CODE (exp));
|
||
i < GET_RTX_LENGTH (GET_CODE (exp)); i++)
|
||
switch (*fmt++)
|
||
{
|
||
case 'e':
|
||
case 'u':
|
||
n = count_alternatives (XEXP (exp, i));
|
||
if (n)
|
||
return n;
|
||
break;
|
||
|
||
case 'E':
|
||
case 'V':
|
||
if (XVEC (exp, i) != NULL)
|
||
for (j = 0; j < XVECLEN (exp, i); j++)
|
||
{
|
||
n = count_alternatives (XVECEXP (exp, i, j));
|
||
if (n)
|
||
return n;
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Returns nonzero if the given expression contains an EQ_ATTR with the
|
||
`alternative' attribute. */
|
||
|
||
static int
|
||
compares_alternatives_p (rtx exp)
|
||
{
|
||
int i, j;
|
||
const char *fmt;
|
||
|
||
if (GET_CODE (exp) == EQ_ATTR && XSTR (exp, 0) == alternative_name)
|
||
return 1;
|
||
|
||
for (i = 0, fmt = GET_RTX_FORMAT (GET_CODE (exp));
|
||
i < GET_RTX_LENGTH (GET_CODE (exp)); i++)
|
||
switch (*fmt++)
|
||
{
|
||
case 'e':
|
||
case 'u':
|
||
if (compares_alternatives_p (XEXP (exp, i)))
|
||
return 1;
|
||
break;
|
||
|
||
case 'E':
|
||
for (j = 0; j < XVECLEN (exp, i); j++)
|
||
if (compares_alternatives_p (XVECEXP (exp, i, j)))
|
||
return 1;
|
||
break;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Process DEFINE_PEEPHOLE, DEFINE_INSN, and DEFINE_ASM_ATTRIBUTES. */
|
||
|
||
static void
|
||
gen_insn (md_rtx_info *info)
|
||
{
|
||
struct insn_def *id;
|
||
rtx def = info->def;
|
||
|
||
id = oballoc (struct insn_def);
|
||
id->next = defs;
|
||
defs = id;
|
||
id->def = def;
|
||
id->loc = info->loc;
|
||
|
||
switch (GET_CODE (def))
|
||
{
|
||
case DEFINE_INSN:
|
||
id->insn_code = info->index;
|
||
id->insn_index = insn_index_number;
|
||
id->num_alternatives = count_alternatives (def);
|
||
if (id->num_alternatives == 0)
|
||
id->num_alternatives = 1;
|
||
id->vec_idx = 4;
|
||
break;
|
||
|
||
case DEFINE_PEEPHOLE:
|
||
id->insn_code = info->index;
|
||
id->insn_index = insn_index_number;
|
||
id->num_alternatives = count_alternatives (def);
|
||
if (id->num_alternatives == 0)
|
||
id->num_alternatives = 1;
|
||
id->vec_idx = 3;
|
||
break;
|
||
|
||
case DEFINE_ASM_ATTRIBUTES:
|
||
id->insn_code = -1;
|
||
id->insn_index = -1;
|
||
id->num_alternatives = 1;
|
||
id->vec_idx = 0;
|
||
got_define_asm_attributes = 1;
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* Process a DEFINE_DELAY. Validate the vector length, check if annul
|
||
true or annul false is specified, and make a `struct delay_desc'. */
|
||
|
||
static void
|
||
gen_delay (md_rtx_info *info)
|
||
{
|
||
struct delay_desc *delay;
|
||
int i;
|
||
|
||
rtx def = info->def;
|
||
if (XVECLEN (def, 1) % 3 != 0)
|
||
{
|
||
error_at (info->loc, "number of elements in DEFINE_DELAY must"
|
||
" be multiple of three");
|
||
return;
|
||
}
|
||
|
||
for (i = 0; i < XVECLEN (def, 1); i += 3)
|
||
{
|
||
if (XVECEXP (def, 1, i + 1))
|
||
have_annul_true = 1;
|
||
if (XVECEXP (def, 1, i + 2))
|
||
have_annul_false = 1;
|
||
}
|
||
|
||
delay = oballoc (struct delay_desc);
|
||
delay->def = def;
|
||
delay->num = ++num_delays;
|
||
delay->next = delays;
|
||
delay->loc = info->loc;
|
||
delays = delay;
|
||
}
|
||
|
||
/* Names of attributes that could be possibly cached. */
|
||
static const char *cached_attrs[32];
|
||
/* Number of such attributes. */
|
||
static int cached_attr_count;
|
||
/* Bitmasks of possibly cached attributes. */
|
||
static unsigned int attrs_seen_once, attrs_seen_more_than_once;
|
||
static unsigned int attrs_to_cache;
|
||
static unsigned int attrs_cached_inside, attrs_cached_after;
|
||
|
||
/* Finds non-const attributes that could be possibly cached.
|
||
When create is TRUE, fills in cached_attrs array.
|
||
Computes ATTRS_SEEN_ONCE and ATTRS_SEEN_MORE_THAN_ONCE
|
||
bitmasks. */
|
||
|
||
static void
|
||
find_attrs_to_cache (rtx exp, bool create)
|
||
{
|
||
int i;
|
||
const char *name;
|
||
struct attr_desc *attr;
|
||
|
||
if (exp == NULL)
|
||
return;
|
||
|
||
switch (GET_CODE (exp))
|
||
{
|
||
case NOT:
|
||
if (GET_CODE (XEXP (exp, 0)) == EQ_ATTR)
|
||
find_attrs_to_cache (XEXP (exp, 0), create);
|
||
return;
|
||
|
||
case EQ_ATTR:
|
||
name = XSTR (exp, 0);
|
||
if (name == alternative_name)
|
||
return;
|
||
for (i = 0; i < cached_attr_count; i++)
|
||
if (name == cached_attrs[i])
|
||
{
|
||
if ((attrs_seen_once & (1U << i)) != 0)
|
||
attrs_seen_more_than_once |= (1U << i);
|
||
else
|
||
attrs_seen_once |= (1U << i);
|
||
return;
|
||
}
|
||
if (!create)
|
||
return;
|
||
attr = find_attr (&name, 0);
|
||
gcc_assert (attr);
|
||
if (attr->is_const)
|
||
return;
|
||
if (cached_attr_count == 32)
|
||
return;
|
||
cached_attrs[cached_attr_count] = XSTR (exp, 0);
|
||
attrs_seen_once |= (1U << cached_attr_count);
|
||
cached_attr_count++;
|
||
return;
|
||
|
||
case AND:
|
||
case IOR:
|
||
find_attrs_to_cache (XEXP (exp, 0), create);
|
||
find_attrs_to_cache (XEXP (exp, 1), create);
|
||
return;
|
||
|
||
case COND:
|
||
for (i = 0; i < XVECLEN (exp, 0); i += 2)
|
||
find_attrs_to_cache (XVECEXP (exp, 0, i), create);
|
||
return;
|
||
|
||
default:
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* Given a piece of RTX, print a C expression to test its truth value to OUTF.
|
||
We use AND and IOR both for logical and bit-wise operations, so
|
||
interpret them as logical unless they are inside a comparison expression.
|
||
|
||
An outermost pair of parentheses is emitted around this C expression unless
|
||
EMIT_PARENS is false. */
|
||
|
||
/* Interpret AND/IOR as bit-wise operations instead of logical. */
|
||
#define FLG_BITWISE 1
|
||
/* Set if cached attribute will be known initialized in else block after
|
||
this condition. This is true for LHS of toplevel && and || and
|
||
even for RHS of ||, but not for RHS of &&. */
|
||
#define FLG_AFTER 2
|
||
/* Set if cached attribute will be known initialized in then block after
|
||
this condition. This is true for LHS of toplevel && and || and
|
||
even for RHS of &&, but not for RHS of ||. */
|
||
#define FLG_INSIDE 4
|
||
/* Cleared when an operand of &&. */
|
||
#define FLG_OUTSIDE_AND 8
|
||
|
||
static unsigned int
|
||
write_test_expr (FILE *outf, rtx exp, unsigned int attrs_cached, int flags,
|
||
bool emit_parens = true)
|
||
{
|
||
int comparison_operator = 0;
|
||
RTX_CODE code;
|
||
struct attr_desc *attr;
|
||
|
||
if (emit_parens)
|
||
fprintf (outf, "(");
|
||
|
||
code = GET_CODE (exp);
|
||
switch (code)
|
||
{
|
||
/* Binary operators. */
|
||
case GEU: case GTU:
|
||
case LEU: case LTU:
|
||
fprintf (outf, "(unsigned) ");
|
||
/* Fall through. */
|
||
|
||
case EQ: case NE:
|
||
case GE: case GT:
|
||
case LE: case LT:
|
||
comparison_operator = FLG_BITWISE;
|
||
/* FALLTHRU */
|
||
|
||
case PLUS: case MINUS: case MULT: case DIV: case MOD:
|
||
case AND: case IOR: case XOR:
|
||
case ASHIFT: case LSHIFTRT: case ASHIFTRT:
|
||
if ((code != AND && code != IOR) || (flags & FLG_BITWISE))
|
||
{
|
||
flags &= ~(FLG_AFTER | FLG_INSIDE | FLG_OUTSIDE_AND);
|
||
write_test_expr (outf, XEXP (exp, 0), attrs_cached,
|
||
flags | comparison_operator);
|
||
}
|
||
else
|
||
{
|
||
if (code == AND)
|
||
flags &= ~FLG_OUTSIDE_AND;
|
||
if (GET_CODE (XEXP (exp, 0)) == code
|
||
|| GET_CODE (XEXP (exp, 0)) == EQ_ATTR
|
||
|| (GET_CODE (XEXP (exp, 0)) == NOT
|
||
&& GET_CODE (XEXP (XEXP (exp, 0), 0)) == EQ_ATTR))
|
||
attrs_cached
|
||
= write_test_expr (outf, XEXP (exp, 0), attrs_cached, flags);
|
||
else
|
||
write_test_expr (outf, XEXP (exp, 0), attrs_cached, flags);
|
||
}
|
||
switch (code)
|
||
{
|
||
case EQ:
|
||
fprintf (outf, " == ");
|
||
break;
|
||
case NE:
|
||
fprintf (outf, " != ");
|
||
break;
|
||
case GE:
|
||
fprintf (outf, " >= ");
|
||
break;
|
||
case GT:
|
||
fprintf (outf, " > ");
|
||
break;
|
||
case GEU:
|
||
fprintf (outf, " >= (unsigned) ");
|
||
break;
|
||
case GTU:
|
||
fprintf (outf, " > (unsigned) ");
|
||
break;
|
||
case LE:
|
||
fprintf (outf, " <= ");
|
||
break;
|
||
case LT:
|
||
fprintf (outf, " < ");
|
||
break;
|
||
case LEU:
|
||
fprintf (outf, " <= (unsigned) ");
|
||
break;
|
||
case LTU:
|
||
fprintf (outf, " < (unsigned) ");
|
||
break;
|
||
case PLUS:
|
||
fprintf (outf, " + ");
|
||
break;
|
||
case MINUS:
|
||
fprintf (outf, " - ");
|
||
break;
|
||
case MULT:
|
||
fprintf (outf, " * ");
|
||
break;
|
||
case DIV:
|
||
fprintf (outf, " / ");
|
||
break;
|
||
case MOD:
|
||
fprintf (outf, " %% ");
|
||
break;
|
||
case AND:
|
||
if (flags & FLG_BITWISE)
|
||
fprintf (outf, " & ");
|
||
else
|
||
fprintf (outf, " && ");
|
||
break;
|
||
case IOR:
|
||
if (flags & FLG_BITWISE)
|
||
fprintf (outf, " | ");
|
||
else
|
||
fprintf (outf, " || ");
|
||
break;
|
||
case XOR:
|
||
fprintf (outf, " ^ ");
|
||
break;
|
||
case ASHIFT:
|
||
fprintf (outf, " << ");
|
||
break;
|
||
case LSHIFTRT:
|
||
case ASHIFTRT:
|
||
fprintf (outf, " >> ");
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
if (code == AND)
|
||
{
|
||
/* For if (something && (cached_x = get_attr_x (insn)) == X)
|
||
cached_x is only known to be initialized in then block. */
|
||
flags &= ~FLG_AFTER;
|
||
}
|
||
else if (code == IOR)
|
||
{
|
||
if (flags & FLG_OUTSIDE_AND)
|
||
/* For if (something || (cached_x = get_attr_x (insn)) == X)
|
||
cached_x is only known to be initialized in else block
|
||
and else if conditions. */
|
||
flags &= ~FLG_INSIDE;
|
||
else
|
||
/* For if ((something || (cached_x = get_attr_x (insn)) == X)
|
||
&& something_else)
|
||
cached_x is not know to be initialized anywhere. */
|
||
flags &= ~(FLG_AFTER | FLG_INSIDE);
|
||
}
|
||
if ((code == AND || code == IOR)
|
||
&& (GET_CODE (XEXP (exp, 1)) == code
|
||
|| GET_CODE (XEXP (exp, 1)) == EQ_ATTR
|
||
|| (GET_CODE (XEXP (exp, 1)) == NOT
|
||
&& GET_CODE (XEXP (XEXP (exp, 1), 0)) == EQ_ATTR)))
|
||
{
|
||
bool need_parens = true;
|
||
|
||
/* No need to emit parentheses around the right-hand operand if we are
|
||
continuing a chain of && or || (or & or |). */
|
||
if (GET_CODE (XEXP (exp, 1)) == code)
|
||
need_parens = false;
|
||
|
||
attrs_cached
|
||
= write_test_expr (outf, XEXP (exp, 1), attrs_cached, flags,
|
||
need_parens);
|
||
}
|
||
else
|
||
write_test_expr (outf, XEXP (exp, 1), attrs_cached,
|
||
flags | comparison_operator);
|
||
break;
|
||
|
||
case NOT:
|
||
/* Special-case (not (eq_attrq "alternative" "x")) */
|
||
if (! (flags & FLG_BITWISE) && GET_CODE (XEXP (exp, 0)) == EQ_ATTR)
|
||
{
|
||
if (XSTR (XEXP (exp, 0), 0) == alternative_name)
|
||
{
|
||
fprintf (outf, "which_alternative != %s",
|
||
XSTR (XEXP (exp, 0), 1));
|
||
break;
|
||
}
|
||
|
||
fprintf (outf, "! ");
|
||
attrs_cached =
|
||
write_test_expr (outf, XEXP (exp, 0), attrs_cached, flags);
|
||
break;
|
||
}
|
||
|
||
/* Otherwise, fall through to normal unary operator. */
|
||
gcc_fallthrough ();
|
||
|
||
/* Unary operators. */
|
||
case ABS: case NEG:
|
||
switch (code)
|
||
{
|
||
case NOT:
|
||
if (flags & FLG_BITWISE)
|
||
fprintf (outf, "~ ");
|
||
else
|
||
fprintf (outf, "! ");
|
||
break;
|
||
case ABS:
|
||
fprintf (outf, "abs ");
|
||
break;
|
||
case NEG:
|
||
fprintf (outf, "-");
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
flags &= ~(FLG_AFTER | FLG_INSIDE | FLG_OUTSIDE_AND);
|
||
write_test_expr (outf, XEXP (exp, 0), attrs_cached, flags);
|
||
break;
|
||
|
||
case EQ_ATTR_ALT:
|
||
{
|
||
int set = XINT (exp, 0), bit = 0;
|
||
|
||
if (flags & FLG_BITWISE)
|
||
fatal ("EQ_ATTR_ALT not valid inside comparison");
|
||
|
||
if (!set)
|
||
fatal ("Empty EQ_ATTR_ALT should be optimized out");
|
||
|
||
if (!(set & (set - 1)))
|
||
{
|
||
if (!(set & 0xffff))
|
||
{
|
||
bit += 16;
|
||
set >>= 16;
|
||
}
|
||
if (!(set & 0xff))
|
||
{
|
||
bit += 8;
|
||
set >>= 8;
|
||
}
|
||
if (!(set & 0xf))
|
||
{
|
||
bit += 4;
|
||
set >>= 4;
|
||
}
|
||
if (!(set & 0x3))
|
||
{
|
||
bit += 2;
|
||
set >>= 2;
|
||
}
|
||
if (!(set & 1))
|
||
bit++;
|
||
|
||
fprintf (outf, "which_alternative %s= %d",
|
||
XINT (exp, 1) ? "!" : "=", bit);
|
||
}
|
||
else
|
||
{
|
||
fprintf (outf, "%s((1 << which_alternative) & %#x)",
|
||
XINT (exp, 1) ? "!" : "", set);
|
||
}
|
||
}
|
||
break;
|
||
|
||
/* Comparison test of an attribute with a value. Most of these will
|
||
have been removed by optimization. Handle "alternative"
|
||
specially and give error if EQ_ATTR present inside a comparison. */
|
||
case EQ_ATTR:
|
||
if (flags & FLG_BITWISE)
|
||
fatal ("EQ_ATTR not valid inside comparison");
|
||
|
||
if (XSTR (exp, 0) == alternative_name)
|
||
{
|
||
fprintf (outf, "which_alternative == %s", XSTR (exp, 1));
|
||
break;
|
||
}
|
||
|
||
attr = find_attr (&XSTR (exp, 0), 0);
|
||
gcc_assert (attr);
|
||
|
||
/* Now is the time to expand the value of a constant attribute. */
|
||
if (attr->is_const)
|
||
{
|
||
write_test_expr (outf,
|
||
evaluate_eq_attr (exp, attr,
|
||
attr->default_val->value,
|
||
-2, -2),
|
||
attrs_cached, 0);
|
||
}
|
||
else
|
||
{
|
||
int i;
|
||
for (i = 0; i < cached_attr_count; i++)
|
||
if (attr->name == cached_attrs[i])
|
||
break;
|
||
if (i < cached_attr_count && (attrs_cached & (1U << i)) != 0)
|
||
fprintf (outf, "cached_%s", attr->name);
|
||
else if (i < cached_attr_count && (attrs_to_cache & (1U << i)) != 0)
|
||
{
|
||
fprintf (outf, "(cached_%s = get_attr_%s (insn))",
|
||
attr->name, attr->name);
|
||
if (flags & FLG_AFTER)
|
||
attrs_cached_after |= (1U << i);
|
||
if (flags & FLG_INSIDE)
|
||
attrs_cached_inside |= (1U << i);
|
||
attrs_cached |= (1U << i);
|
||
}
|
||
else
|
||
fprintf (outf, "get_attr_%s (insn)", attr->name);
|
||
fprintf (outf, " == ");
|
||
write_attr_valueq (outf, attr, XSTR (exp, 1));
|
||
}
|
||
break;
|
||
|
||
/* Comparison test of flags for define_delays. */
|
||
case ATTR_FLAG:
|
||
if (flags & FLG_BITWISE)
|
||
fatal ("ATTR_FLAG not valid inside comparison");
|
||
fprintf (outf, "(flags & ATTR_FLAG_%s) != 0", XSTR (exp, 0));
|
||
break;
|
||
|
||
/* See if an operand matches a predicate. */
|
||
case MATCH_OPERAND:
|
||
/* If only a mode is given, just ensure the mode matches the operand.
|
||
If neither a mode nor predicate is given, error. */
|
||
if (XSTR (exp, 1) == NULL || *XSTR (exp, 1) == '\0')
|
||
{
|
||
if (GET_MODE (exp) == VOIDmode)
|
||
fatal ("null MATCH_OPERAND specified as test");
|
||
else
|
||
fprintf (outf, "GET_MODE (operands[%d]) == %smode",
|
||
XINT (exp, 0), GET_MODE_NAME (GET_MODE (exp)));
|
||
}
|
||
else
|
||
fprintf (outf, "%s (operands[%d], %smode)",
|
||
XSTR (exp, 1), XINT (exp, 0), GET_MODE_NAME (GET_MODE (exp)));
|
||
break;
|
||
|
||
/* Constant integer. */
|
||
case CONST_INT:
|
||
fprintf (outf, HOST_WIDE_INT_PRINT_DEC, XWINT (exp, 0));
|
||
break;
|
||
|
||
case MATCH_TEST:
|
||
rtx_reader_ptr->fprint_c_condition (outf, XSTR (exp, 0));
|
||
if (flags & FLG_BITWISE)
|
||
fprintf (outf, " != 0");
|
||
break;
|
||
|
||
/* A random C expression. */
|
||
case SYMBOL_REF:
|
||
rtx_reader_ptr->fprint_c_condition (outf, XSTR (exp, 0));
|
||
break;
|
||
|
||
/* The address of the branch target. */
|
||
case MATCH_DUP:
|
||
fprintf (outf,
|
||
"INSN_ADDRESSES_SET_P () ? INSN_ADDRESSES (INSN_UID (GET_CODE (operands[%d]) == LABEL_REF ? XEXP (operands[%d], 0) : operands[%d])) : 0",
|
||
XINT (exp, 0), XINT (exp, 0), XINT (exp, 0));
|
||
break;
|
||
|
||
case PC:
|
||
/* The address of the current insn. We implement this actually as the
|
||
address of the current insn for backward branches, but the last
|
||
address of the next insn for forward branches, and both with
|
||
adjustments that account for the worst-case possible stretching of
|
||
intervening alignments between this insn and its destination. */
|
||
fprintf (outf, "insn_current_reference_address (insn)");
|
||
break;
|
||
|
||
case CONST_STRING:
|
||
fprintf (outf, "%s", XSTR (exp, 0));
|
||
break;
|
||
|
||
case IF_THEN_ELSE:
|
||
write_test_expr (outf, XEXP (exp, 0), attrs_cached, 0);
|
||
fprintf (outf, " ? ");
|
||
write_test_expr (outf, XEXP (exp, 1), attrs_cached, FLG_BITWISE);
|
||
fprintf (outf, " : ");
|
||
write_test_expr (outf, XEXP (exp, 2), attrs_cached, FLG_BITWISE);
|
||
break;
|
||
|
||
default:
|
||
fatal ("bad RTX code `%s' in attribute calculation\n",
|
||
GET_RTX_NAME (code));
|
||
}
|
||
|
||
if (emit_parens)
|
||
fprintf (outf, ")");
|
||
|
||
return attrs_cached;
|
||
}
|
||
|
||
/* Given an attribute value, return the maximum CONST_STRING argument
|
||
encountered. Set *UNKNOWNP and return INT_MAX if the value is unknown. */
|
||
|
||
static int
|
||
max_attr_value (rtx exp, int *unknownp)
|
||
{
|
||
int current_max;
|
||
int i, n;
|
||
|
||
switch (GET_CODE (exp))
|
||
{
|
||
case CONST_STRING:
|
||
current_max = atoi (XSTR (exp, 0));
|
||
break;
|
||
|
||
case COND:
|
||
current_max = max_attr_value (XEXP (exp, 1), unknownp);
|
||
for (i = 0; i < XVECLEN (exp, 0); i += 2)
|
||
{
|
||
n = max_attr_value (XVECEXP (exp, 0, i + 1), unknownp);
|
||
if (n > current_max)
|
||
current_max = n;
|
||
}
|
||
break;
|
||
|
||
case IF_THEN_ELSE:
|
||
current_max = max_attr_value (XEXP (exp, 1), unknownp);
|
||
n = max_attr_value (XEXP (exp, 2), unknownp);
|
||
if (n > current_max)
|
||
current_max = n;
|
||
break;
|
||
|
||
default:
|
||
*unknownp = 1;
|
||
current_max = INT_MAX;
|
||
break;
|
||
}
|
||
|
||
return current_max;
|
||
}
|
||
|
||
/* Given an attribute value, return the minimum CONST_STRING argument
|
||
encountered. Set *UNKNOWNP and return 0 if the value is unknown. */
|
||
|
||
static int
|
||
min_attr_value (rtx exp, int *unknownp)
|
||
{
|
||
int current_min;
|
||
int i, n;
|
||
|
||
switch (GET_CODE (exp))
|
||
{
|
||
case CONST_STRING:
|
||
current_min = atoi (XSTR (exp, 0));
|
||
break;
|
||
|
||
case COND:
|
||
current_min = min_attr_value (XEXP (exp, 1), unknownp);
|
||
for (i = 0; i < XVECLEN (exp, 0); i += 2)
|
||
{
|
||
n = min_attr_value (XVECEXP (exp, 0, i + 1), unknownp);
|
||
if (n < current_min)
|
||
current_min = n;
|
||
}
|
||
break;
|
||
|
||
case IF_THEN_ELSE:
|
||
current_min = min_attr_value (XEXP (exp, 1), unknownp);
|
||
n = min_attr_value (XEXP (exp, 2), unknownp);
|
||
if (n < current_min)
|
||
current_min = n;
|
||
break;
|
||
|
||
default:
|
||
*unknownp = 1;
|
||
current_min = INT_MAX;
|
||
break;
|
||
}
|
||
|
||
return current_min;
|
||
}
|
||
|
||
/* Given an attribute value, return the result of ORing together all
|
||
CONST_STRING arguments encountered. Set *UNKNOWNP and return -1
|
||
if the numeric value is not known. */
|
||
|
||
static int
|
||
or_attr_value (rtx exp, int *unknownp)
|
||
{
|
||
int current_or;
|
||
int i;
|
||
|
||
switch (GET_CODE (exp))
|
||
{
|
||
case CONST_STRING:
|
||
current_or = atoi (XSTR (exp, 0));
|
||
break;
|
||
|
||
case COND:
|
||
current_or = or_attr_value (XEXP (exp, 1), unknownp);
|
||
for (i = 0; i < XVECLEN (exp, 0); i += 2)
|
||
current_or |= or_attr_value (XVECEXP (exp, 0, i + 1), unknownp);
|
||
break;
|
||
|
||
case IF_THEN_ELSE:
|
||
current_or = or_attr_value (XEXP (exp, 1), unknownp);
|
||
current_or |= or_attr_value (XEXP (exp, 2), unknownp);
|
||
break;
|
||
|
||
default:
|
||
*unknownp = 1;
|
||
current_or = -1;
|
||
break;
|
||
}
|
||
|
||
return current_or;
|
||
}
|
||
|
||
/* Scan an attribute value, possibly a conditional, and record what actions
|
||
will be required to do any conditional tests in it.
|
||
|
||
Specifically, set
|
||
`must_extract' if we need to extract the insn operands
|
||
`must_constrain' if we must compute `which_alternative'
|
||
`address_used' if an address expression was used
|
||
`length_used' if an (eq_attr "length" ...) was used
|
||
*/
|
||
|
||
static void
|
||
walk_attr_value (rtx exp)
|
||
{
|
||
int i, j;
|
||
const char *fmt;
|
||
RTX_CODE code;
|
||
|
||
if (exp == NULL)
|
||
return;
|
||
|
||
code = GET_CODE (exp);
|
||
switch (code)
|
||
{
|
||
case SYMBOL_REF:
|
||
if (! ATTR_IND_SIMPLIFIED_P (exp))
|
||
/* Since this is an arbitrary expression, it can look at anything.
|
||
However, constant expressions do not depend on any particular
|
||
insn. */
|
||
must_extract = must_constrain = 1;
|
||
return;
|
||
|
||
case MATCH_OPERAND:
|
||
must_extract = 1;
|
||
return;
|
||
|
||
case MATCH_TEST:
|
||
case EQ_ATTR_ALT:
|
||
must_extract = must_constrain = 1;
|
||
break;
|
||
|
||
case EQ_ATTR:
|
||
if (XSTR (exp, 0) == alternative_name)
|
||
must_extract = must_constrain = 1;
|
||
else if (strcmp_check (XSTR (exp, 0), length_str) == 0)
|
||
length_used = 1;
|
||
return;
|
||
|
||
case MATCH_DUP:
|
||
must_extract = 1;
|
||
address_used = 1;
|
||
return;
|
||
|
||
case PC:
|
||
address_used = 1;
|
||
return;
|
||
|
||
case ATTR_FLAG:
|
||
return;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
for (i = 0, fmt = GET_RTX_FORMAT (code); i < GET_RTX_LENGTH (code); i++)
|
||
switch (*fmt++)
|
||
{
|
||
case 'e':
|
||
case 'u':
|
||
walk_attr_value (XEXP (exp, i));
|
||
break;
|
||
|
||
case 'E':
|
||
if (XVEC (exp, i) != NULL)
|
||
for (j = 0; j < XVECLEN (exp, i); j++)
|
||
walk_attr_value (XVECEXP (exp, i, j));
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Write out a function to obtain the attribute for a given INSN. */
|
||
|
||
static void
|
||
write_attr_get (FILE *outf, struct attr_desc *attr)
|
||
{
|
||
struct attr_value *av, *common_av;
|
||
int i, j;
|
||
|
||
/* Find the most used attribute value. Handle that as the `default' of the
|
||
switch we will generate. */
|
||
common_av = find_most_used (attr);
|
||
|
||
/* Write out start of function, then all values with explicit `case' lines,
|
||
then a `default', then the value with the most uses. */
|
||
if (attr->enum_name)
|
||
fprintf (outf, "enum %s\n", attr->enum_name);
|
||
else if (!attr->is_numeric)
|
||
fprintf (outf, "enum attr_%s\n", attr->name);
|
||
else
|
||
fprintf (outf, "int\n");
|
||
|
||
/* If the attribute name starts with a star, the remainder is the name of
|
||
the subroutine to use, instead of `get_attr_...'. */
|
||
if (attr->name[0] == '*')
|
||
fprintf (outf, "%s (rtx_insn *insn ATTRIBUTE_UNUSED)\n", &attr->name[1]);
|
||
else if (attr->is_const == 0)
|
||
fprintf (outf, "get_attr_%s (rtx_insn *insn ATTRIBUTE_UNUSED)\n", attr->name);
|
||
else
|
||
{
|
||
fprintf (outf, "get_attr_%s (void)\n", attr->name);
|
||
fprintf (outf, "{\n");
|
||
|
||
for (av = attr->first_value; av; av = av->next)
|
||
if (av->num_insns == 1)
|
||
write_attr_set (outf, attr, 2, av->value, "return", ";",
|
||
true_rtx, av->first_insn->def->insn_code,
|
||
av->first_insn->def->insn_index, 0);
|
||
else if (av->num_insns != 0)
|
||
write_attr_set (outf, attr, 2, av->value, "return", ";",
|
||
true_rtx, -2, 0, 0);
|
||
|
||
fprintf (outf, "}\n\n");
|
||
return;
|
||
}
|
||
|
||
fprintf (outf, "{\n");
|
||
|
||
/* Find attributes that are worth caching in the conditions. */
|
||
cached_attr_count = 0;
|
||
attrs_seen_more_than_once = 0;
|
||
for (av = attr->first_value; av; av = av->next)
|
||
{
|
||
attrs_seen_once = 0;
|
||
find_attrs_to_cache (av->value, true);
|
||
}
|
||
/* Remove those that aren't worth caching from the array. */
|
||
for (i = 0, j = 0; i < cached_attr_count; i++)
|
||
if ((attrs_seen_more_than_once & (1U << i)) != 0)
|
||
{
|
||
const char *name = cached_attrs[i];
|
||
struct attr_desc *cached_attr;
|
||
if (i != j)
|
||
cached_attrs[j] = name;
|
||
cached_attr = find_attr (&name, 0);
|
||
gcc_assert (cached_attr && cached_attr->is_const == 0);
|
||
if (cached_attr->enum_name)
|
||
fprintf (outf, " enum %s", cached_attr->enum_name);
|
||
else if (!cached_attr->is_numeric)
|
||
fprintf (outf, " enum attr_%s", cached_attr->name);
|
||
else
|
||
fprintf (outf, " int");
|
||
fprintf (outf, " cached_%s ATTRIBUTE_UNUSED;\n", name);
|
||
j++;
|
||
}
|
||
cached_attr_count = j;
|
||
if (cached_attr_count)
|
||
fprintf (outf, "\n");
|
||
|
||
fprintf (outf, " switch (recog_memoized (insn))\n");
|
||
fprintf (outf, " {\n");
|
||
|
||
for (av = attr->first_value; av; av = av->next)
|
||
if (av != common_av)
|
||
write_attr_case (outf, attr, av, 1, "return", ";", 4, true_rtx);
|
||
|
||
write_attr_case (outf, attr, common_av, 0, "return", ";", 4, true_rtx);
|
||
fprintf (outf, " }\n}\n\n");
|
||
cached_attr_count = 0;
|
||
}
|
||
|
||
/* Given an AND tree of known true terms (because we are inside an `if' with
|
||
that as the condition or are in an `else' clause) and an expression,
|
||
replace any known true terms with TRUE. Use `simplify_and_tree' to do
|
||
the bulk of the work. */
|
||
|
||
static rtx
|
||
eliminate_known_true (rtx known_true, rtx exp, int insn_code, int insn_index)
|
||
{
|
||
rtx term;
|
||
|
||
known_true = SIMPLIFY_TEST_EXP (known_true, insn_code, insn_index);
|
||
|
||
if (GET_CODE (known_true) == AND)
|
||
{
|
||
exp = eliminate_known_true (XEXP (known_true, 0), exp,
|
||
insn_code, insn_index);
|
||
exp = eliminate_known_true (XEXP (known_true, 1), exp,
|
||
insn_code, insn_index);
|
||
}
|
||
else
|
||
{
|
||
term = known_true;
|
||
exp = simplify_and_tree (exp, &term, insn_code, insn_index);
|
||
}
|
||
|
||
return exp;
|
||
}
|
||
|
||
/* Write out a series of tests and assignment statements to perform tests and
|
||
sets of an attribute value. We are passed an indentation amount and prefix
|
||
and suffix strings to write around each attribute value (e.g., "return"
|
||
and ";"). */
|
||
|
||
static void
|
||
write_attr_set (FILE *outf, struct attr_desc *attr, int indent, rtx value,
|
||
const char *prefix, const char *suffix, rtx known_true,
|
||
int insn_code, int insn_index, unsigned int attrs_cached)
|
||
{
|
||
if (GET_CODE (value) == COND)
|
||
{
|
||
/* Assume the default value will be the default of the COND unless we
|
||
find an always true expression. */
|
||
rtx default_val = XEXP (value, 1);
|
||
rtx our_known_true = known_true;
|
||
rtx newexp;
|
||
int first_if = 1;
|
||
int i;
|
||
|
||
if (cached_attr_count)
|
||
{
|
||
attrs_seen_once = 0;
|
||
attrs_seen_more_than_once = 0;
|
||
for (i = 0; i < XVECLEN (value, 0); i += 2)
|
||
find_attrs_to_cache (XVECEXP (value, 0, i), false);
|
||
attrs_to_cache |= attrs_seen_more_than_once;
|
||
}
|
||
|
||
for (i = 0; i < XVECLEN (value, 0); i += 2)
|
||
{
|
||
rtx testexp;
|
||
rtx inner_true;
|
||
|
||
/* Reset our_known_true after some time to not accumulate
|
||
too much cruft (slowing down genattrtab). */
|
||
if ((i & 31) == 0)
|
||
our_known_true = known_true;
|
||
testexp = eliminate_known_true (our_known_true,
|
||
XVECEXP (value, 0, i),
|
||
insn_code, insn_index);
|
||
newexp = attr_rtx (NOT, testexp);
|
||
newexp = insert_right_side (AND, our_known_true, newexp,
|
||
insn_code, insn_index);
|
||
|
||
/* If the test expression is always true or if the next `known_true'
|
||
expression is always false, this is the last case, so break
|
||
out and let this value be the `else' case. */
|
||
if (testexp == true_rtx || newexp == false_rtx)
|
||
{
|
||
default_val = XVECEXP (value, 0, i + 1);
|
||
break;
|
||
}
|
||
|
||
/* Compute the expression to pass to our recursive call as being
|
||
known true. */
|
||
inner_true = insert_right_side (AND, our_known_true,
|
||
testexp, insn_code, insn_index);
|
||
|
||
/* If this is always false, skip it. */
|
||
if (inner_true == false_rtx)
|
||
continue;
|
||
|
||
attrs_cached_inside = attrs_cached;
|
||
attrs_cached_after = attrs_cached;
|
||
write_indent (outf, indent);
|
||
fprintf (outf, "%sif ", first_if ? "" : "else ");
|
||
first_if = 0;
|
||
write_test_expr (outf, testexp, attrs_cached,
|
||
(FLG_AFTER | FLG_INSIDE | FLG_OUTSIDE_AND));
|
||
attrs_cached = attrs_cached_after;
|
||
fprintf (outf, "\n");
|
||
write_indent (outf, indent + 2);
|
||
fprintf (outf, "{\n");
|
||
|
||
write_attr_set (outf, attr, indent + 4,
|
||
XVECEXP (value, 0, i + 1), prefix, suffix,
|
||
inner_true, insn_code, insn_index,
|
||
attrs_cached_inside);
|
||
write_indent (outf, indent + 2);
|
||
fprintf (outf, "}\n");
|
||
our_known_true = newexp;
|
||
}
|
||
|
||
if (! first_if)
|
||
{
|
||
write_indent (outf, indent);
|
||
fprintf (outf, "else\n");
|
||
write_indent (outf, indent + 2);
|
||
fprintf (outf, "{\n");
|
||
}
|
||
|
||
write_attr_set (outf, attr, first_if ? indent : indent + 4, default_val,
|
||
prefix, suffix, our_known_true, insn_code, insn_index,
|
||
attrs_cached);
|
||
|
||
if (! first_if)
|
||
{
|
||
write_indent (outf, indent + 2);
|
||
fprintf (outf, "}\n");
|
||
}
|
||
}
|
||
else
|
||
{
|
||
write_indent (outf, indent);
|
||
fprintf (outf, "%s ", prefix);
|
||
write_attr_value (outf, attr, value);
|
||
fprintf (outf, "%s\n", suffix);
|
||
}
|
||
}
|
||
|
||
/* Write a series of case statements for every instruction in list IE.
|
||
INDENT is the amount of indentation to write before each case. */
|
||
|
||
static void
|
||
write_insn_cases (FILE *outf, struct insn_ent *ie, int indent)
|
||
{
|
||
for (; ie != 0; ie = ie->next)
|
||
if (ie->def->insn_code != -1)
|
||
{
|
||
write_indent (outf, indent);
|
||
if (GET_CODE (ie->def->def) == DEFINE_PEEPHOLE)
|
||
fprintf (outf, "case %d: /* define_peephole, %s:%d */\n",
|
||
ie->def->insn_code, ie->def->loc.filename,
|
||
ie->def->loc.lineno);
|
||
else
|
||
fprintf (outf, "case %d: /* %s */\n",
|
||
ie->def->insn_code, XSTR (ie->def->def, 0));
|
||
}
|
||
}
|
||
|
||
/* Write out the computation for one attribute value. */
|
||
|
||
static void
|
||
write_attr_case (FILE *outf, struct attr_desc *attr, struct attr_value *av,
|
||
int write_case_lines, const char *prefix, const char *suffix,
|
||
int indent, rtx known_true)
|
||
{
|
||
if (av->num_insns == 0)
|
||
return;
|
||
|
||
if (av->has_asm_insn)
|
||
{
|
||
write_indent (outf, indent);
|
||
fprintf (outf, "case -1:\n");
|
||
write_indent (outf, indent + 2);
|
||
fprintf (outf, "if (GET_CODE (PATTERN (insn)) != ASM_INPUT\n");
|
||
write_indent (outf, indent + 2);
|
||
fprintf (outf, " && asm_noperands (PATTERN (insn)) < 0)\n");
|
||
write_indent (outf, indent + 2);
|
||
fprintf (outf, " fatal_insn_not_found (insn);\n");
|
||
write_indent (outf, indent + 2);
|
||
fprintf (outf, "/* FALLTHRU */\n");
|
||
}
|
||
|
||
if (write_case_lines)
|
||
write_insn_cases (outf, av->first_insn, indent);
|
||
else
|
||
{
|
||
write_indent (outf, indent);
|
||
fprintf (outf, "default:\n");
|
||
}
|
||
|
||
/* See what we have to do to output this value. */
|
||
must_extract = must_constrain = address_used = 0;
|
||
walk_attr_value (av->value);
|
||
|
||
if (must_constrain)
|
||
{
|
||
write_indent (outf, indent + 2);
|
||
fprintf (outf, "extract_constrain_insn_cached (insn);\n");
|
||
}
|
||
else if (must_extract)
|
||
{
|
||
write_indent (outf, indent + 2);
|
||
fprintf (outf, "extract_insn_cached (insn);\n");
|
||
}
|
||
|
||
attrs_to_cache = 0;
|
||
if (av->num_insns == 1)
|
||
write_attr_set (outf, attr, indent + 2, av->value, prefix, suffix,
|
||
known_true, av->first_insn->def->insn_code,
|
||
av->first_insn->def->insn_index, 0);
|
||
else
|
||
write_attr_set (outf, attr, indent + 2, av->value, prefix, suffix,
|
||
known_true, -2, 0, 0);
|
||
|
||
if (strncmp (prefix, "return", 6))
|
||
{
|
||
write_indent (outf, indent + 2);
|
||
fprintf (outf, "break;\n");
|
||
}
|
||
fprintf (outf, "\n");
|
||
}
|
||
|
||
/* Utilities to write in various forms. */
|
||
|
||
static void
|
||
write_attr_valueq (FILE *outf, struct attr_desc *attr, const char *s)
|
||
{
|
||
if (attr->is_numeric)
|
||
{
|
||
int num = atoi (s);
|
||
|
||
fprintf (outf, "%d", num);
|
||
|
||
if (num > 9 || num < 0)
|
||
fprintf (outf, " /* %#x */", num);
|
||
}
|
||
else
|
||
{
|
||
write_upcase (outf, attr->enum_name ? attr->enum_name : attr->name);
|
||
fprintf (outf, "_");
|
||
write_upcase (outf, s);
|
||
}
|
||
}
|
||
|
||
static void
|
||
write_attr_value (FILE *outf, struct attr_desc *attr, rtx value)
|
||
{
|
||
int op;
|
||
|
||
switch (GET_CODE (value))
|
||
{
|
||
case CONST_STRING:
|
||
write_attr_valueq (outf, attr, XSTR (value, 0));
|
||
break;
|
||
|
||
case CONST_INT:
|
||
fprintf (outf, HOST_WIDE_INT_PRINT_DEC, INTVAL (value));
|
||
break;
|
||
|
||
case SYMBOL_REF:
|
||
rtx_reader_ptr->fprint_c_condition (outf, XSTR (value, 0));
|
||
break;
|
||
|
||
case ATTR:
|
||
{
|
||
struct attr_desc *attr2 = find_attr (&XSTR (value, 0), 0);
|
||
if (attr->enum_name)
|
||
fprintf (outf, "(enum %s)", attr->enum_name);
|
||
else if (!attr->is_numeric)
|
||
fprintf (outf, "(enum attr_%s)", attr->name);
|
||
else if (!attr2->is_numeric)
|
||
fprintf (outf, "(int)");
|
||
|
||
fprintf (outf, "get_attr_%s (%s)", attr2->name,
|
||
(attr2->is_const ? "" : "insn"));
|
||
}
|
||
break;
|
||
|
||
case PLUS:
|
||
op = '+';
|
||
goto do_operator;
|
||
case MINUS:
|
||
op = '-';
|
||
goto do_operator;
|
||
case MULT:
|
||
op = '*';
|
||
goto do_operator;
|
||
case DIV:
|
||
op = '/';
|
||
goto do_operator;
|
||
case MOD:
|
||
op = '%';
|
||
goto do_operator;
|
||
|
||
do_operator:
|
||
write_attr_value (outf, attr, XEXP (value, 0));
|
||
fputc (' ', outf);
|
||
fputc (op, outf);
|
||
fputc (' ', outf);
|
||
write_attr_value (outf, attr, XEXP (value, 1));
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
static void
|
||
write_upcase (FILE *outf, const char *str)
|
||
{
|
||
while (*str)
|
||
{
|
||
/* The argument of TOUPPER should not have side effects. */
|
||
fputc (TOUPPER (*str), outf);
|
||
str++;
|
||
}
|
||
}
|
||
|
||
static void
|
||
write_indent (FILE *outf, int indent)
|
||
{
|
||
for (; indent > 8; indent -= 8)
|
||
fprintf (outf, "\t");
|
||
|
||
for (; indent; indent--)
|
||
fprintf (outf, " ");
|
||
}
|
||
|
||
/* If the target does not have annul-true or annul-false delay slots, this
|
||
function will create a dummy eligible_for function on OUTF which always
|
||
returns false. KIND will be annul_true or annul_false. */
|
||
|
||
static void
|
||
write_dummy_eligible_delay (FILE *outf, const char *kind)
|
||
{
|
||
/* Write function prelude. */
|
||
|
||
fprintf (outf, "int\n");
|
||
fprintf (outf, "eligible_for_%s (rtx_insn *delay_insn ATTRIBUTE_UNUSED,\n"
|
||
" int slot ATTRIBUTE_UNUSED,\n"
|
||
" rtx_insn *candidate_insn ATTRIBUTE_UNUSED,\n"
|
||
" int flags ATTRIBUTE_UNUSED)\n",
|
||
kind);
|
||
fprintf (outf, "{\n");
|
||
fprintf (outf, " return 0;\n");
|
||
fprintf (outf, "}\n\n");
|
||
}
|
||
|
||
/* Write a subroutine that is given an insn that requires a delay slot, a
|
||
delay slot ordinal, and a candidate insn. It returns nonzero if the
|
||
candidate can be placed in the specified delay slot of the insn.
|
||
|
||
We can write as many as three subroutines. `eligible_for_delay'
|
||
handles normal delay slots, `eligible_for_annul_true' indicates that
|
||
the specified insn can be annulled if the branch is true, and likewise
|
||
for `eligible_for_annul_false'.
|
||
|
||
KIND is a string distinguishing these three cases ("delay", "annul_true",
|
||
or "annul_false"). */
|
||
|
||
static void
|
||
write_eligible_delay (FILE *outf, const char *kind)
|
||
{
|
||
struct delay_desc *delay;
|
||
int max_slots;
|
||
char str[50];
|
||
const char *pstr;
|
||
struct attr_desc *attr;
|
||
struct attr_value *av, *common_av;
|
||
int i;
|
||
|
||
/* Compute the maximum number of delay slots required. We use the delay
|
||
ordinal times this number plus one, plus the slot number as an index into
|
||
the appropriate predicate to test. */
|
||
|
||
for (delay = delays, max_slots = 0; delay; delay = delay->next)
|
||
if (XVECLEN (delay->def, 1) / 3 > max_slots)
|
||
max_slots = XVECLEN (delay->def, 1) / 3;
|
||
|
||
/* Write function prelude. */
|
||
|
||
fprintf (outf, "int\n");
|
||
fprintf (outf, "eligible_for_%s (rtx_insn *delay_insn ATTRIBUTE_UNUSED, int slot, \n"
|
||
" rtx_insn *candidate_insn, int flags ATTRIBUTE_UNUSED)\n",
|
||
kind);
|
||
fprintf (outf, "{\n");
|
||
fprintf (outf, " rtx_insn *insn ATTRIBUTE_UNUSED;\n");
|
||
fprintf (outf, "\n");
|
||
fprintf (outf, " if (num_delay_slots (delay_insn) == 0)\n");
|
||
fprintf (outf, " return 0;");
|
||
fprintf (outf, "\n");
|
||
fprintf (outf, " gcc_assert (slot < %d);\n", max_slots);
|
||
fprintf (outf, "\n");
|
||
/* Allow dbr_schedule to pass labels, etc. This can happen if try_split
|
||
converts a compound instruction into a loop. */
|
||
fprintf (outf, " if (!INSN_P (candidate_insn))\n");
|
||
fprintf (outf, " return 0;\n");
|
||
fprintf (outf, "\n");
|
||
|
||
/* If more than one delay type, find out which type the delay insn is. */
|
||
|
||
if (num_delays > 1)
|
||
{
|
||
attr = find_attr (&delay_type_str, 0);
|
||
gcc_assert (attr);
|
||
common_av = find_most_used (attr);
|
||
|
||
fprintf (outf, " insn = delay_insn;\n");
|
||
fprintf (outf, " switch (recog_memoized (insn))\n");
|
||
fprintf (outf, " {\n");
|
||
|
||
sprintf (str, " * %d;\n break;", max_slots);
|
||
for (av = attr->first_value; av; av = av->next)
|
||
if (av != common_av)
|
||
write_attr_case (outf, attr, av, 1, "slot +=", str, 4, true_rtx);
|
||
|
||
write_attr_case (outf, attr, common_av, 0, "slot +=", str, 4, true_rtx);
|
||
fprintf (outf, " }\n\n");
|
||
|
||
/* Ensure matched. Otherwise, shouldn't have been called. */
|
||
fprintf (outf, " gcc_assert (slot >= %d);\n\n", max_slots);
|
||
}
|
||
|
||
/* If just one type of delay slot, write simple switch. */
|
||
if (num_delays == 1 && max_slots == 1)
|
||
{
|
||
fprintf (outf, " insn = candidate_insn;\n");
|
||
fprintf (outf, " switch (recog_memoized (insn))\n");
|
||
fprintf (outf, " {\n");
|
||
|
||
attr = find_attr (&delay_1_0_str, 0);
|
||
gcc_assert (attr);
|
||
common_av = find_most_used (attr);
|
||
|
||
for (av = attr->first_value; av; av = av->next)
|
||
if (av != common_av)
|
||
write_attr_case (outf, attr, av, 1, "return", ";", 4, true_rtx);
|
||
|
||
write_attr_case (outf, attr, common_av, 0, "return", ";", 4, true_rtx);
|
||
fprintf (outf, " }\n");
|
||
}
|
||
|
||
else
|
||
{
|
||
/* Write a nested CASE. The first indicates which condition we need to
|
||
test, and the inner CASE tests the condition. */
|
||
fprintf (outf, " insn = candidate_insn;\n");
|
||
fprintf (outf, " switch (slot)\n");
|
||
fprintf (outf, " {\n");
|
||
|
||
for (delay = delays; delay; delay = delay->next)
|
||
for (i = 0; i < XVECLEN (delay->def, 1); i += 3)
|
||
{
|
||
fprintf (outf, " case %d:\n",
|
||
(i / 3) + (num_delays == 1 ? 0 : delay->num * max_slots));
|
||
fprintf (outf, " switch (recog_memoized (insn))\n");
|
||
fprintf (outf, "\t{\n");
|
||
|
||
sprintf (str, "*%s_%d_%d", kind, delay->num, i / 3);
|
||
pstr = str;
|
||
attr = find_attr (&pstr, 0);
|
||
gcc_assert (attr);
|
||
common_av = find_most_used (attr);
|
||
|
||
for (av = attr->first_value; av; av = av->next)
|
||
if (av != common_av)
|
||
write_attr_case (outf, attr, av, 1, "return", ";", 8, true_rtx);
|
||
|
||
write_attr_case (outf, attr, common_av, 0, "return", ";", 8, true_rtx);
|
||
fprintf (outf, " }\n");
|
||
}
|
||
|
||
fprintf (outf, " default:\n");
|
||
fprintf (outf, " gcc_unreachable ();\n");
|
||
fprintf (outf, " }\n");
|
||
}
|
||
|
||
fprintf (outf, "}\n\n");
|
||
}
|
||
|
||
/* This page contains miscellaneous utility routines. */
|
||
|
||
/* Given a pointer to a (char *), return a malloc'ed string containing the
|
||
next comma-separated element. Advance the pointer to after the string
|
||
scanned, or the end-of-string. Return NULL if at end of string. */
|
||
|
||
static char *
|
||
next_comma_elt (const char **pstr)
|
||
{
|
||
const char *start;
|
||
|
||
start = scan_comma_elt (pstr);
|
||
|
||
if (start == NULL)
|
||
return NULL;
|
||
|
||
return attr_string (start, *pstr - start);
|
||
}
|
||
|
||
/* Return a `struct attr_desc' pointer for a given named attribute. If CREATE
|
||
is nonzero, build a new attribute, if one does not exist. *NAME_P is
|
||
replaced by a pointer to a canonical copy of the string. */
|
||
|
||
static struct attr_desc *
|
||
find_attr (const char **name_p, int create)
|
||
{
|
||
struct attr_desc *attr;
|
||
int index;
|
||
const char *name = *name_p;
|
||
|
||
/* Before we resort to using `strcmp', see if the string address matches
|
||
anywhere. In most cases, it should have been canonicalized to do so. */
|
||
if (name == alternative_name)
|
||
return NULL;
|
||
|
||
index = name[0] & (MAX_ATTRS_INDEX - 1);
|
||
for (attr = attrs[index]; attr; attr = attr->next)
|
||
if (name == attr->name)
|
||
return attr;
|
||
|
||
/* Otherwise, do it the slow way. */
|
||
for (attr = attrs[index]; attr; attr = attr->next)
|
||
if (name[0] == attr->name[0] && ! strcmp (name, attr->name))
|
||
{
|
||
*name_p = attr->name;
|
||
return attr;
|
||
}
|
||
|
||
if (! create)
|
||
return NULL;
|
||
|
||
attr = oballoc (struct attr_desc);
|
||
attr->name = DEF_ATTR_STRING (name);
|
||
attr->enum_name = 0;
|
||
attr->first_value = attr->default_val = NULL;
|
||
attr->is_numeric = attr->is_const = attr->is_special = 0;
|
||
attr->next = attrs[index];
|
||
attrs[index] = attr;
|
||
|
||
*name_p = attr->name;
|
||
|
||
return attr;
|
||
}
|
||
|
||
/* Create internal attribute with the given default value. */
|
||
|
||
static void
|
||
make_internal_attr (const char *name, rtx value, int special)
|
||
{
|
||
struct attr_desc *attr;
|
||
|
||
attr = find_attr (&name, 1);
|
||
gcc_assert (!attr->default_val);
|
||
|
||
attr->is_numeric = 1;
|
||
attr->is_const = 0;
|
||
attr->is_special = (special & ATTR_SPECIAL) != 0;
|
||
attr->default_val = get_attr_value (file_location ("<internal>", 0, 0),
|
||
value, attr, -2);
|
||
}
|
||
|
||
/* Find the most used value of an attribute. */
|
||
|
||
static struct attr_value *
|
||
find_most_used (struct attr_desc *attr)
|
||
{
|
||
struct attr_value *av;
|
||
struct attr_value *most_used;
|
||
int nuses;
|
||
|
||
most_used = NULL;
|
||
nuses = -1;
|
||
|
||
for (av = attr->first_value; av; av = av->next)
|
||
if (av->num_insns > nuses)
|
||
nuses = av->num_insns, most_used = av;
|
||
|
||
return most_used;
|
||
}
|
||
|
||
/* Return (attr_value "n") */
|
||
|
||
static rtx
|
||
make_numeric_value (int n)
|
||
{
|
||
static rtx int_values[20];
|
||
rtx exp;
|
||
char *p;
|
||
|
||
gcc_assert (n >= 0);
|
||
|
||
if (n < 20 && int_values[n])
|
||
return int_values[n];
|
||
|
||
p = attr_printf (MAX_DIGITS, "%d", n);
|
||
exp = attr_rtx (CONST_STRING, p);
|
||
|
||
if (n < 20)
|
||
int_values[n] = exp;
|
||
|
||
return exp;
|
||
}
|
||
|
||
static rtx
|
||
copy_rtx_unchanging (rtx orig)
|
||
{
|
||
if (ATTR_IND_SIMPLIFIED_P (orig) || ATTR_CURR_SIMPLIFIED_P (orig))
|
||
return orig;
|
||
|
||
ATTR_CURR_SIMPLIFIED_P (orig) = 1;
|
||
return orig;
|
||
}
|
||
|
||
/* Determine if an insn has a constant number of delay slots, i.e., the
|
||
number of delay slots is not a function of the length of the insn. */
|
||
|
||
static void
|
||
write_const_num_delay_slots (FILE *outf)
|
||
{
|
||
struct attr_desc *attr = find_attr (&num_delay_slots_str, 0);
|
||
struct attr_value *av;
|
||
|
||
if (attr)
|
||
{
|
||
fprintf (outf, "int\nconst_num_delay_slots (rtx_insn *insn)\n");
|
||
fprintf (outf, "{\n");
|
||
fprintf (outf, " switch (recog_memoized (insn))\n");
|
||
fprintf (outf, " {\n");
|
||
|
||
for (av = attr->first_value; av; av = av->next)
|
||
{
|
||
length_used = 0;
|
||
walk_attr_value (av->value);
|
||
if (length_used)
|
||
write_insn_cases (outf, av->first_insn, 4);
|
||
}
|
||
|
||
fprintf (outf, " default:\n");
|
||
fprintf (outf, " return 1;\n");
|
||
fprintf (outf, " }\n}\n\n");
|
||
}
|
||
}
|
||
|
||
/* Synthetic attributes used by insn-automata.c and the scheduler.
|
||
These are primarily concerned with (define_insn_reservation)
|
||
patterns. */
|
||
|
||
struct insn_reserv
|
||
{
|
||
struct insn_reserv *next;
|
||
|
||
const char *name;
|
||
int default_latency;
|
||
rtx condexp;
|
||
|
||
/* Sequence number of this insn. */
|
||
int insn_num;
|
||
|
||
/* Whether a (define_bypass) construct names this insn in its
|
||
output list. */
|
||
bool bypassed;
|
||
};
|
||
|
||
static struct insn_reserv *all_insn_reservs = 0;
|
||
static struct insn_reserv **last_insn_reserv_p = &all_insn_reservs;
|
||
static size_t n_insn_reservs;
|
||
|
||
/* Store information from a DEFINE_INSN_RESERVATION for future
|
||
attribute generation. */
|
||
static void
|
||
gen_insn_reserv (md_rtx_info *info)
|
||
{
|
||
struct insn_reserv *decl = oballoc (struct insn_reserv);
|
||
rtx def = info->def;
|
||
|
||
struct attr_desc attr;
|
||
memset (&attr, 0, sizeof (attr));
|
||
attr.name = DEF_ATTR_STRING (XSTR (def, 0));
|
||
attr.loc = info->loc;
|
||
|
||
decl->name = DEF_ATTR_STRING (XSTR (def, 0));
|
||
decl->default_latency = XINT (def, 1);
|
||
decl->condexp = check_attr_test (info->loc, XEXP (def, 2), &attr);
|
||
decl->insn_num = n_insn_reservs;
|
||
decl->bypassed = false;
|
||
decl->next = 0;
|
||
|
||
*last_insn_reserv_p = decl;
|
||
last_insn_reserv_p = &decl->next;
|
||
n_insn_reservs++;
|
||
}
|
||
|
||
/* Store information from a DEFINE_BYPASS for future attribute
|
||
generation. The only thing we care about is the list of output
|
||
insns, which will later be used to tag reservation structures with
|
||
a 'bypassed' bit. */
|
||
|
||
struct bypass_list
|
||
{
|
||
struct bypass_list *next;
|
||
const char *pattern;
|
||
};
|
||
|
||
static struct bypass_list *all_bypasses;
|
||
static size_t n_bypasses;
|
||
static size_t n_bypassed;
|
||
|
||
static void
|
||
gen_bypass_1 (const char *s, size_t len)
|
||
{
|
||
struct bypass_list *b;
|
||
|
||
if (len == 0)
|
||
return;
|
||
|
||
s = attr_string (s, len);
|
||
for (b = all_bypasses; b; b = b->next)
|
||
if (s == b->pattern)
|
||
return; /* already got that one */
|
||
|
||
b = oballoc (struct bypass_list);
|
||
b->pattern = s;
|
||
b->next = all_bypasses;
|
||
all_bypasses = b;
|
||
n_bypasses++;
|
||
}
|
||
|
||
static void
|
||
gen_bypass (md_rtx_info *info)
|
||
{
|
||
const char *p, *base;
|
||
|
||
rtx def = info->def;
|
||
for (p = base = XSTR (def, 1); *p; p++)
|
||
if (*p == ',')
|
||
{
|
||
gen_bypass_1 (base, p - base);
|
||
do
|
||
p++;
|
||
while (ISSPACE (*p));
|
||
base = p;
|
||
}
|
||
gen_bypass_1 (base, p - base);
|
||
}
|
||
|
||
/* Find and mark all of the bypassed insns. */
|
||
static void
|
||
process_bypasses (void)
|
||
{
|
||
struct bypass_list *b;
|
||
struct insn_reserv *r;
|
||
|
||
n_bypassed = 0;
|
||
|
||
/* The reservation list is likely to be much longer than the bypass
|
||
list. */
|
||
for (r = all_insn_reservs; r; r = r->next)
|
||
for (b = all_bypasses; b; b = b->next)
|
||
if (fnmatch (b->pattern, r->name, 0) == 0)
|
||
{
|
||
n_bypassed++;
|
||
r->bypassed = true;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Check that attribute NAME is used in define_insn_reservation condition
|
||
EXP. Return true if it is. */
|
||
static bool
|
||
check_tune_attr (const char *name, rtx exp)
|
||
{
|
||
switch (GET_CODE (exp))
|
||
{
|
||
case AND:
|
||
if (check_tune_attr (name, XEXP (exp, 0)))
|
||
return true;
|
||
return check_tune_attr (name, XEXP (exp, 1));
|
||
|
||
case IOR:
|
||
return (check_tune_attr (name, XEXP (exp, 0))
|
||
&& check_tune_attr (name, XEXP (exp, 1)));
|
||
|
||
case EQ_ATTR:
|
||
return XSTR (exp, 0) == name;
|
||
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* Try to find a const attribute (usually cpu or tune) that is used
|
||
in all define_insn_reservation conditions. */
|
||
static struct attr_desc *
|
||
find_tune_attr (rtx exp)
|
||
{
|
||
struct attr_desc *attr;
|
||
|
||
switch (GET_CODE (exp))
|
||
{
|
||
case AND:
|
||
case IOR:
|
||
attr = find_tune_attr (XEXP (exp, 0));
|
||
if (attr)
|
||
return attr;
|
||
return find_tune_attr (XEXP (exp, 1));
|
||
|
||
case EQ_ATTR:
|
||
if (XSTR (exp, 0) == alternative_name)
|
||
return NULL;
|
||
|
||
attr = find_attr (&XSTR (exp, 0), 0);
|
||
gcc_assert (attr);
|
||
|
||
if (attr->is_const && !attr->is_special)
|
||
{
|
||
struct insn_reserv *decl;
|
||
|
||
for (decl = all_insn_reservs; decl; decl = decl->next)
|
||
if (! check_tune_attr (attr->name, decl->condexp))
|
||
return NULL;
|
||
return attr;
|
||
}
|
||
return NULL;
|
||
|
||
default:
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
/* Create all of the attributes that describe automaton properties.
|
||
Write the DFA and latency function prototypes to the files that
|
||
need to have them, and write the init_sched_attrs(). */
|
||
|
||
static void
|
||
make_automaton_attrs (void)
|
||
{
|
||
int i;
|
||
struct insn_reserv *decl;
|
||
rtx code_exp, lats_exp, byps_exp;
|
||
struct attr_desc *tune_attr;
|
||
|
||
if (n_insn_reservs == 0)
|
||
return;
|
||
|
||
tune_attr = find_tune_attr (all_insn_reservs->condexp);
|
||
if (tune_attr != NULL)
|
||
{
|
||
rtx *condexps = XNEWVEC (rtx, n_insn_reservs * 3);
|
||
struct attr_value *val;
|
||
bool first = true;
|
||
|
||
gcc_assert (tune_attr->is_const
|
||
&& !tune_attr->is_special
|
||
&& !tune_attr->is_numeric);
|
||
|
||
/* Write the prototypes for all DFA functions. */
|
||
for (val = tune_attr->first_value; val; val = val->next)
|
||
{
|
||
if (val == tune_attr->default_val)
|
||
continue;
|
||
gcc_assert (GET_CODE (val->value) == CONST_STRING);
|
||
fprintf (dfa_file,
|
||
"extern int internal_dfa_insn_code_%s (rtx_insn *);\n",
|
||
XSTR (val->value, 0));
|
||
}
|
||
fprintf (dfa_file, "\n");
|
||
|
||
/* Write the prototypes for all latency functions. */
|
||
for (val = tune_attr->first_value; val; val = val->next)
|
||
{
|
||
if (val == tune_attr->default_val)
|
||
continue;
|
||
gcc_assert (GET_CODE (val->value) == CONST_STRING);
|
||
fprintf (latency_file,
|
||
"extern int insn_default_latency_%s (rtx_insn *);\n",
|
||
XSTR (val->value, 0));
|
||
}
|
||
fprintf (latency_file, "\n");
|
||
|
||
/* Write the prototypes for all automaton functions. */
|
||
for (val = tune_attr->first_value; val; val = val->next)
|
||
{
|
||
if (val == tune_attr->default_val)
|
||
continue;
|
||
gcc_assert (GET_CODE (val->value) == CONST_STRING);
|
||
fprintf (attr_file,
|
||
"extern int internal_dfa_insn_code_%s (rtx_insn *);\n"
|
||
"extern int insn_default_latency_%s (rtx_insn *);\n",
|
||
XSTR (val->value, 0), XSTR (val->value, 0));
|
||
}
|
||
fprintf (attr_file, "\n");
|
||
fprintf (attr_file, "int (*internal_dfa_insn_code) (rtx_insn *);\n");
|
||
fprintf (attr_file, "int (*insn_default_latency) (rtx_insn *);\n");
|
||
fprintf (attr_file, "\n");
|
||
fprintf (attr_file, "void\n");
|
||
fprintf (attr_file, "init_sched_attrs (void)\n");
|
||
fprintf (attr_file, "{\n");
|
||
|
||
for (val = tune_attr->first_value; val; val = val->next)
|
||
{
|
||
int j;
|
||
char *name;
|
||
rtx test = attr_eq (tune_attr->name, XSTR (val->value, 0));
|
||
|
||
if (val == tune_attr->default_val)
|
||
continue;
|
||
for (decl = all_insn_reservs, i = 0;
|
||
decl;
|
||
decl = decl->next)
|
||
{
|
||
rtx ctest = test;
|
||
rtx condexp
|
||
= simplify_and_tree (decl->condexp, &ctest, -2, 0);
|
||
if (condexp == false_rtx)
|
||
continue;
|
||
if (condexp == true_rtx)
|
||
break;
|
||
condexps[i] = condexp;
|
||
condexps[i + 1] = make_numeric_value (decl->insn_num);
|
||
condexps[i + 2] = make_numeric_value (decl->default_latency);
|
||
i += 3;
|
||
}
|
||
|
||
code_exp = rtx_alloc (COND);
|
||
lats_exp = rtx_alloc (COND);
|
||
|
||
j = i / 3 * 2;
|
||
XVEC (code_exp, 0) = rtvec_alloc (j);
|
||
XVEC (lats_exp, 0) = rtvec_alloc (j);
|
||
|
||
if (decl)
|
||
{
|
||
XEXP (code_exp, 1) = make_numeric_value (decl->insn_num);
|
||
XEXP (lats_exp, 1) = make_numeric_value (decl->default_latency);
|
||
}
|
||
else
|
||
{
|
||
XEXP (code_exp, 1) = make_numeric_value (n_insn_reservs + 1);
|
||
XEXP (lats_exp, 1) = make_numeric_value (0);
|
||
}
|
||
|
||
while (i > 0)
|
||
{
|
||
i -= 3;
|
||
j -= 2;
|
||
XVECEXP (code_exp, 0, j) = condexps[i];
|
||
XVECEXP (lats_exp, 0, j) = condexps[i];
|
||
|
||
XVECEXP (code_exp, 0, j + 1) = condexps[i + 1];
|
||
XVECEXP (lats_exp, 0, j + 1) = condexps[i + 2];
|
||
}
|
||
|
||
name = XNEWVEC (char,
|
||
sizeof ("*internal_dfa_insn_code_")
|
||
+ strlen (XSTR (val->value, 0)));
|
||
strcpy (name, "*internal_dfa_insn_code_");
|
||
strcat (name, XSTR (val->value, 0));
|
||
make_internal_attr (name, code_exp, ATTR_NONE);
|
||
strcpy (name, "*insn_default_latency_");
|
||
strcat (name, XSTR (val->value, 0));
|
||
make_internal_attr (name, lats_exp, ATTR_NONE);
|
||
XDELETEVEC (name);
|
||
|
||
if (first)
|
||
{
|
||
fprintf (attr_file, " if (");
|
||
first = false;
|
||
}
|
||
else
|
||
fprintf (attr_file, " else if (");
|
||
write_test_expr (attr_file, test, 0, 0);
|
||
fprintf (attr_file, ")\n");
|
||
fprintf (attr_file, " {\n");
|
||
fprintf (attr_file, " internal_dfa_insn_code\n");
|
||
fprintf (attr_file, " = internal_dfa_insn_code_%s;\n",
|
||
XSTR (val->value, 0));
|
||
fprintf (attr_file, " insn_default_latency\n");
|
||
fprintf (attr_file, " = insn_default_latency_%s;\n",
|
||
XSTR (val->value, 0));
|
||
fprintf (attr_file, " }\n");
|
||
}
|
||
|
||
fprintf (attr_file, " else\n");
|
||
fprintf (attr_file, " gcc_unreachable ();\n");
|
||
fprintf (attr_file, "}\n");
|
||
fprintf (attr_file, "\n");
|
||
|
||
XDELETEVEC (condexps);
|
||
}
|
||
else
|
||
{
|
||
code_exp = rtx_alloc (COND);
|
||
lats_exp = rtx_alloc (COND);
|
||
|
||
XVEC (code_exp, 0) = rtvec_alloc (n_insn_reservs * 2);
|
||
XVEC (lats_exp, 0) = rtvec_alloc (n_insn_reservs * 2);
|
||
|
||
XEXP (code_exp, 1) = make_numeric_value (n_insn_reservs + 1);
|
||
XEXP (lats_exp, 1) = make_numeric_value (0);
|
||
|
||
for (decl = all_insn_reservs, i = 0;
|
||
decl;
|
||
decl = decl->next, i += 2)
|
||
{
|
||
XVECEXP (code_exp, 0, i) = decl->condexp;
|
||
XVECEXP (lats_exp, 0, i) = decl->condexp;
|
||
|
||
XVECEXP (code_exp, 0, i+1) = make_numeric_value (decl->insn_num);
|
||
XVECEXP (lats_exp, 0, i+1)
|
||
= make_numeric_value (decl->default_latency);
|
||
}
|
||
make_internal_attr ("*internal_dfa_insn_code", code_exp, ATTR_NONE);
|
||
make_internal_attr ("*insn_default_latency", lats_exp, ATTR_NONE);
|
||
}
|
||
|
||
if (n_bypasses == 0)
|
||
byps_exp = make_numeric_value (0);
|
||
else
|
||
{
|
||
process_bypasses ();
|
||
|
||
byps_exp = rtx_alloc (COND);
|
||
XVEC (byps_exp, 0) = rtvec_alloc (n_bypassed * 2);
|
||
XEXP (byps_exp, 1) = make_numeric_value (0);
|
||
for (decl = all_insn_reservs, i = 0;
|
||
decl;
|
||
decl = decl->next)
|
||
if (decl->bypassed)
|
||
{
|
||
XVECEXP (byps_exp, 0, i) = decl->condexp;
|
||
XVECEXP (byps_exp, 0, i+1) = make_numeric_value (1);
|
||
i += 2;
|
||
}
|
||
}
|
||
|
||
make_internal_attr ("*bypass_p", byps_exp, ATTR_NONE);
|
||
}
|
||
|
||
static void
|
||
write_header (FILE *outf)
|
||
{
|
||
fprintf (outf, "/* Generated automatically by the program `genattrtab'\n"
|
||
" from the machine description file `md'. */\n\n");
|
||
|
||
fprintf (outf, "#include \"config.h\"\n");
|
||
fprintf (outf, "#include \"system.h\"\n");
|
||
fprintf (outf, "#include \"coretypes.h\"\n");
|
||
fprintf (outf, "#include \"backend.h\"\n");
|
||
fprintf (outf, "#include \"predict.h\"\n");
|
||
fprintf (outf, "#include \"tree.h\"\n");
|
||
fprintf (outf, "#include \"rtl.h\"\n");
|
||
fprintf (outf, "#include \"alias.h\"\n");
|
||
fprintf (outf, "#include \"options.h\"\n");
|
||
fprintf (outf, "#include \"varasm.h\"\n");
|
||
fprintf (outf, "#include \"stor-layout.h\"\n");
|
||
fprintf (outf, "#include \"calls.h\"\n");
|
||
fprintf (outf, "#include \"insn-attr.h\"\n");
|
||
fprintf (outf, "#include \"memmodel.h\"\n");
|
||
fprintf (outf, "#include \"tm_p.h\"\n");
|
||
fprintf (outf, "#include \"insn-config.h\"\n");
|
||
fprintf (outf, "#include \"recog.h\"\n");
|
||
fprintf (outf, "#include \"regs.h\"\n");
|
||
fprintf (outf, "#include \"real.h\"\n");
|
||
fprintf (outf, "#include \"output.h\"\n");
|
||
fprintf (outf, "#include \"toplev.h\"\n");
|
||
fprintf (outf, "#include \"flags.h\"\n");
|
||
fprintf (outf, "#include \"emit-rtl.h\"\n");
|
||
fprintf (outf, "\n");
|
||
fprintf (outf, "#define operands recog_data.operand\n\n");
|
||
}
|
||
|
||
static FILE *
|
||
open_outfile (const char *file_name)
|
||
{
|
||
FILE *outf;
|
||
outf = fopen (file_name, "w");
|
||
if (! outf)
|
||
fatal ("cannot open file %s: %s", file_name, xstrerror (errno));
|
||
write_header (outf);
|
||
return outf;
|
||
}
|
||
|
||
static bool
|
||
handle_arg (const char *arg)
|
||
{
|
||
switch (arg[1])
|
||
{
|
||
case 'A':
|
||
attr_file_name = &arg[2];
|
||
return true;
|
||
case 'D':
|
||
dfa_file_name = &arg[2];
|
||
return true;
|
||
case 'L':
|
||
latency_file_name = &arg[2];
|
||
return true;
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
int
|
||
main (int argc, const char **argv)
|
||
{
|
||
struct attr_desc *attr;
|
||
struct insn_def *id;
|
||
int i;
|
||
|
||
progname = "genattrtab";
|
||
|
||
if (!init_rtx_reader_args_cb (argc, argv, handle_arg))
|
||
return FATAL_EXIT_CODE;
|
||
|
||
attr_file = open_outfile (attr_file_name);
|
||
dfa_file = open_outfile (dfa_file_name);
|
||
latency_file = open_outfile (latency_file_name);
|
||
|
||
obstack_init (hash_obstack);
|
||
obstack_init (temp_obstack);
|
||
|
||
/* Set up true and false rtx's */
|
||
true_rtx = rtx_alloc (CONST_INT);
|
||
XWINT (true_rtx, 0) = 1;
|
||
false_rtx = rtx_alloc (CONST_INT);
|
||
XWINT (false_rtx, 0) = 0;
|
||
ATTR_IND_SIMPLIFIED_P (true_rtx) = ATTR_IND_SIMPLIFIED_P (false_rtx) = 1;
|
||
ATTR_PERMANENT_P (true_rtx) = ATTR_PERMANENT_P (false_rtx) = 1;
|
||
|
||
alternative_name = DEF_ATTR_STRING ("alternative");
|
||
length_str = DEF_ATTR_STRING ("length");
|
||
delay_type_str = DEF_ATTR_STRING ("*delay_type");
|
||
delay_1_0_str = DEF_ATTR_STRING ("*delay_1_0");
|
||
num_delay_slots_str = DEF_ATTR_STRING ("*num_delay_slots");
|
||
|
||
/* Read the machine description. */
|
||
|
||
md_rtx_info info;
|
||
while (read_md_rtx (&info))
|
||
{
|
||
switch (GET_CODE (info.def))
|
||
{
|
||
case DEFINE_INSN:
|
||
case DEFINE_PEEPHOLE:
|
||
case DEFINE_ASM_ATTRIBUTES:
|
||
gen_insn (&info);
|
||
break;
|
||
|
||
case DEFINE_ATTR:
|
||
case DEFINE_ENUM_ATTR:
|
||
gen_attr (&info);
|
||
break;
|
||
|
||
case DEFINE_DELAY:
|
||
gen_delay (&info);
|
||
break;
|
||
|
||
case DEFINE_INSN_RESERVATION:
|
||
gen_insn_reserv (&info);
|
||
break;
|
||
|
||
case DEFINE_BYPASS:
|
||
gen_bypass (&info);
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
if (GET_CODE (info.def) != DEFINE_ASM_ATTRIBUTES)
|
||
insn_index_number++;
|
||
}
|
||
|
||
if (have_error)
|
||
return FATAL_EXIT_CODE;
|
||
|
||
/* If we didn't have a DEFINE_ASM_ATTRIBUTES, make a null one. */
|
||
if (! got_define_asm_attributes)
|
||
{
|
||
md_rtx_info info;
|
||
info.def = rtx_alloc (DEFINE_ASM_ATTRIBUTES);
|
||
XVEC (info.def, 0) = rtvec_alloc (0);
|
||
info.loc = file_location ("<internal>", 0, 0);
|
||
info.index = -1;
|
||
gen_insn (&info);
|
||
}
|
||
|
||
/* Expand DEFINE_DELAY information into new attribute. */
|
||
expand_delays ();
|
||
|
||
/* Make `insn_alternatives'. */
|
||
int num_insn_codes = get_num_insn_codes ();
|
||
insn_alternatives = oballocvec (uint64_t, num_insn_codes);
|
||
for (id = defs; id; id = id->next)
|
||
if (id->insn_code >= 0)
|
||
insn_alternatives[id->insn_code]
|
||
= (((uint64_t) 1) << id->num_alternatives) - 1;
|
||
|
||
/* Make `insn_n_alternatives'. */
|
||
insn_n_alternatives = oballocvec (int, num_insn_codes);
|
||
for (id = defs; id; id = id->next)
|
||
if (id->insn_code >= 0)
|
||
insn_n_alternatives[id->insn_code] = id->num_alternatives;
|
||
|
||
/* Construct extra attributes for automata. */
|
||
make_automaton_attrs ();
|
||
|
||
/* Prepare to write out attribute subroutines by checking everything stored
|
||
away and building the attribute cases. */
|
||
|
||
check_defs ();
|
||
|
||
for (i = 0; i < MAX_ATTRS_INDEX; i++)
|
||
for (attr = attrs[i]; attr; attr = attr->next)
|
||
attr->default_val->value
|
||
= check_attr_value (attr->loc, attr->default_val->value, attr);
|
||
|
||
if (have_error)
|
||
return FATAL_EXIT_CODE;
|
||
|
||
for (i = 0; i < MAX_ATTRS_INDEX; i++)
|
||
for (attr = attrs[i]; attr; attr = attr->next)
|
||
fill_attr (attr);
|
||
|
||
/* Construct extra attributes for `length'. */
|
||
make_length_attrs ();
|
||
|
||
/* Perform any possible optimizations to speed up compilation. */
|
||
optimize_attrs (num_insn_codes);
|
||
|
||
/* Now write out all the `gen_attr_...' routines. Do these before the
|
||
special routines so that they get defined before they are used. */
|
||
|
||
for (i = 0; i < MAX_ATTRS_INDEX; i++)
|
||
for (attr = attrs[i]; attr; attr = attr->next)
|
||
{
|
||
FILE *outf;
|
||
|
||
#define IS_ATTR_GROUP(X) (!strncmp (attr->name, X, strlen (X)))
|
||
if (IS_ATTR_GROUP ("*internal_dfa_insn_code"))
|
||
outf = dfa_file;
|
||
else if (IS_ATTR_GROUP ("*insn_default_latency"))
|
||
outf = latency_file;
|
||
else
|
||
outf = attr_file;
|
||
#undef IS_ATTR_GROUP
|
||
|
||
if (! attr->is_special && ! attr->is_const)
|
||
write_attr_get (outf, attr);
|
||
}
|
||
|
||
/* Write out delay eligibility information, if DEFINE_DELAY present.
|
||
(The function to compute the number of delay slots will be written
|
||
below.) */
|
||
write_eligible_delay (attr_file, "delay");
|
||
if (have_annul_true)
|
||
write_eligible_delay (attr_file, "annul_true");
|
||
else
|
||
write_dummy_eligible_delay (attr_file, "annul_true");
|
||
if (have_annul_false)
|
||
write_eligible_delay (attr_file, "annul_false");
|
||
else
|
||
write_dummy_eligible_delay (attr_file, "annul_false");
|
||
|
||
/* Write out constant delay slot info. */
|
||
write_const_num_delay_slots (attr_file);
|
||
|
||
write_length_unit_log (attr_file);
|
||
|
||
if (fclose (attr_file) != 0)
|
||
fatal ("cannot close file %s: %s", attr_file_name, xstrerror (errno));
|
||
if (fclose (dfa_file) != 0)
|
||
fatal ("cannot close file %s: %s", dfa_file_name, xstrerror (errno));
|
||
if (fclose (latency_file) != 0)
|
||
fatal ("cannot close file %s: %s", latency_file_name, xstrerror (errno));
|
||
|
||
return SUCCESS_EXIT_CODE;
|
||
}
|
||
|