gcc/libgfortran/io/unix.c

1809 lines
39 KiB
C

/* Copyright (C) 2002, 2003, 2004, 2005
Free Software Foundation, Inc.
Contributed by Andy Vaught
This file is part of the GNU Fortran 95 runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file. (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Libgfortran; see the file COPYING. If not, write to
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
/* Unix stream I/O module */
#include "config.h"
#include <stdlib.h>
#include <limits.h>
#include <unistd.h>
#include <stdio.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <assert.h>
#include <string.h>
#include <errno.h>
#include "libgfortran.h"
#include "io.h"
#include "unix.h"
#ifndef SSIZE_MAX
#define SSIZE_MAX SHRT_MAX
#endif
#ifndef PATH_MAX
#define PATH_MAX 1024
#endif
#ifndef PROT_READ
#define PROT_READ 1
#endif
#ifndef PROT_WRITE
#define PROT_WRITE 2
#endif
/* These flags aren't defined on all targets (mingw32), so provide them
here. */
#ifndef S_IRGRP
#define S_IRGRP 0
#endif
#ifndef S_IWGRP
#define S_IWGRP 0
#endif
#ifndef S_IROTH
#define S_IROTH 0
#endif
#ifndef S_IWOTH
#define S_IWOTH 0
#endif
/* This implementation of stream I/O is based on the paper:
*
* "Exploiting the advantages of mapped files for stream I/O",
* O. Krieger, M. Stumm and R. Umrau, "Proceedings of the 1992 Winter
* USENIX conference", p. 27-42.
*
* It differs in a number of ways from the version described in the
* paper. First of all, threads are not an issue during I/O and we
* also don't have to worry about having multiple regions, since
* fortran's I/O model only allows you to be one place at a time.
*
* On the other hand, we have to be able to writing at the end of a
* stream, read from the start of a stream or read and write blocks of
* bytes from an arbitrary position. After opening a file, a pointer
* to a stream structure is returned, which is used to handle file
* accesses until the file is closed.
*
* salloc_at_r(stream, len, where)-- Given a stream pointer, return a
* pointer to a block of memory that mirror the file at position
* 'where' that is 'len' bytes long. The len integer is updated to
* reflect how many bytes were actually read. The only reason for a
* short read is end of file. The file pointer is updated. The
* pointer is valid until the next call to salloc_*.
*
* salloc_at_w(stream, len, where)-- Given the stream pointer, returns
* a pointer to a block of memory that is updated to reflect the state
* of the file. The length of the buffer is always equal to that
* requested. The buffer must be completely set by the caller. When
* data has been written, the sfree() function must be called to
* indicate that the caller is done writing data to the buffer. This
* may or may not cause a physical write.
*
* Short forms of these are salloc_r() and salloc_w() which drop the
* 'where' parameter and use the current file pointer. */
/*move_pos_offset()-- Move the record pointer right or left
*relative to current position */
int
move_pos_offset (stream* st, int pos_off)
{
unix_stream * str = (unix_stream*)st;
if (pos_off < 0)
{
str->logical_offset += pos_off;
if (str->dirty_offset + str->ndirty > str->logical_offset)
{
if (str->ndirty + pos_off > 0)
str->ndirty += pos_off;
else
{
str->dirty_offset += pos_off + pos_off;
str->ndirty = 0;
}
}
return pos_off;
}
return 0;
}
/* fix_fd()-- Given a file descriptor, make sure it is not one of the
* standard descriptors, returning a non-standard descriptor. If the
* user specifies that system errors should go to standard output,
* then closes standard output, we don't want the system errors to a
* file that has been given file descriptor 1 or 0. We want to send
* the error to the invalid descriptor. */
static int
fix_fd (int fd)
{
int input, output, error;
input = output = error = 0;
/* Unix allocates the lowest descriptors first, so a loop is not
required, but this order is. */
if (fd == STDIN_FILENO)
{
fd = dup (fd);
input = 1;
}
if (fd == STDOUT_FILENO)
{
fd = dup (fd);
output = 1;
}
if (fd == STDERR_FILENO)
{
fd = dup (fd);
error = 1;
}
if (input)
close (STDIN_FILENO);
if (output)
close (STDOUT_FILENO);
if (error)
close (STDERR_FILENO);
return fd;
}
int
is_preconnected (stream * s)
{
int fd;
fd = ((unix_stream *) s)->fd;
if (fd == STDIN_FILENO || fd == STDOUT_FILENO || fd == STDERR_FILENO)
return 1;
else
return 0;
}
/* If the stream corresponds to a preconnected unit, we flush the
corresponding C stream. This is bugware for mixed C-Fortran codes
where the C code doesn't flush I/O before returning. */
void
flush_if_preconnected (stream * s)
{
int fd;
fd = ((unix_stream *) s)->fd;
if (fd == STDIN_FILENO)
fflush (stdin);
else if (fd == STDOUT_FILENO)
fflush (stdout);
else if (fd == STDERR_FILENO)
fflush (stderr);
}
/* Reset a stream after reading/writing. Assumes that the buffers have
been flushed. */
inline static void
reset_stream (unix_stream * s, size_t bytes_rw)
{
s->physical_offset += bytes_rw;
s->logical_offset = s->physical_offset;
if (s->file_length != -1 && s->physical_offset > s->file_length)
s->file_length = s->physical_offset;
}
/* Read bytes into a buffer, allowing for short reads. If the nbytes
* argument is less on return than on entry, it is because we've hit
* the end of file. */
static int
do_read (unix_stream * s, void * buf, size_t * nbytes)
{
ssize_t trans;
size_t bytes_left;
char *buf_st;
int status;
status = 0;
bytes_left = *nbytes;
buf_st = (char *) buf;
/* We must read in a loop since some systems don't restart system
calls in case of a signal. */
while (bytes_left > 0)
{
/* Requests between SSIZE_MAX and SIZE_MAX are undefined by SUSv3,
so we must read in chunks smaller than SSIZE_MAX. */
trans = (bytes_left < SSIZE_MAX) ? bytes_left : SSIZE_MAX;
trans = read (s->fd, buf_st, trans);
if (trans < 0)
{
if (errno == EINTR)
continue;
else
{
status = errno;
break;
}
}
else if (trans == 0) /* We hit EOF. */
break;
buf_st += trans;
bytes_left -= trans;
}
*nbytes -= bytes_left;
return status;
}
/* Write a buffer to a stream, allowing for short writes. */
static int
do_write (unix_stream * s, const void * buf, size_t * nbytes)
{
ssize_t trans;
size_t bytes_left;
char *buf_st;
int status;
status = 0;
bytes_left = *nbytes;
buf_st = (char *) buf;
/* We must write in a loop since some systems don't restart system
calls in case of a signal. */
while (bytes_left > 0)
{
/* Requests between SSIZE_MAX and SIZE_MAX are undefined by SUSv3,
so we must write in chunks smaller than SSIZE_MAX. */
trans = (bytes_left < SSIZE_MAX) ? bytes_left : SSIZE_MAX;
trans = write (s->fd, buf_st, trans);
if (trans < 0)
{
if (errno == EINTR)
continue;
else
{
status = errno;
break;
}
}
buf_st += trans;
bytes_left -= trans;
}
*nbytes -= bytes_left;
return status;
}
/* get_oserror()-- Get the most recent operating system error. For
* unix, this is errno. */
const char *
get_oserror (void)
{
return strerror (errno);
}
/* sys_exit()-- Terminate the program with an exit code */
void
sys_exit (int code)
{
exit (code);
}
/*********************************************************************
File descriptor stream functions
*********************************************************************/
/* fd_flush()-- Write bytes that need to be written */
static try
fd_flush (unix_stream * s)
{
size_t writelen;
if (s->ndirty == 0)
return SUCCESS;;
if (s->physical_offset != s->dirty_offset &&
lseek (s->fd, s->dirty_offset, SEEK_SET) < 0)
return FAILURE;
writelen = s->ndirty;
if (do_write (s, s->buffer + (s->dirty_offset - s->buffer_offset),
&writelen) != 0)
return FAILURE;
s->physical_offset = s->dirty_offset + writelen;
/* don't increment file_length if the file is non-seekable */
if (s->file_length != -1 && s->physical_offset > s->file_length)
s->file_length = s->physical_offset;
s->ndirty -= writelen;
if (s->ndirty != 0)
return FAILURE;
return SUCCESS;
}
/* fd_alloc()-- Arrange a buffer such that the salloc() request can be
* satisfied. This subroutine gets the buffer ready for whatever is
* to come next. */
static void
fd_alloc (unix_stream * s, gfc_offset where,
int *len __attribute__ ((unused)))
{
char *new_buffer;
int n, read_len;
if (*len <= BUFFER_SIZE)
{
new_buffer = s->small_buffer;
read_len = BUFFER_SIZE;
}
else
{
new_buffer = get_mem (*len);
read_len = *len;
}
/* Salvage bytes currently within the buffer. This is important for
* devices that cannot seek. */
if (s->buffer != NULL && s->buffer_offset <= where &&
where <= s->buffer_offset + s->active)
{
n = s->active - (where - s->buffer_offset);
memmove (new_buffer, s->buffer + (where - s->buffer_offset), n);
s->active = n;
}
else
{ /* new buffer starts off empty */
s->active = 0;
}
s->buffer_offset = where;
/* free the old buffer if necessary */
if (s->buffer != NULL && s->buffer != s->small_buffer)
free_mem (s->buffer);
s->buffer = new_buffer;
s->len = read_len;
}
/* fd_alloc_r_at()-- Allocate a stream buffer for reading. Either
* we've already buffered the data or we need to load it. Returns
* NULL on I/O error. */
static char *
fd_alloc_r_at (unix_stream * s, int *len, gfc_offset where)
{
gfc_offset m;
if (where == -1)
where = s->logical_offset;
if (s->buffer != NULL && s->buffer_offset <= where &&
where + *len <= s->buffer_offset + s->active)
{
/* Return a position within the current buffer */
s->logical_offset = where + *len;
return s->buffer + where - s->buffer_offset;
}
fd_alloc (s, where, len);
m = where + s->active;
if (s->physical_offset != m && lseek (s->fd, m, SEEK_SET) < 0)
return NULL;
/* do_read() hangs on read from terminals for *BSD-systems. Only
use read() in that case. */
if (s->special_file)
{
ssize_t n;
n = read (s->fd, s->buffer + s->active, s->len - s->active);
if (n < 0)
return NULL;
s->physical_offset = where + n;
s->active += n;
}
else
{
size_t n;
n = s->len - s->active;
if (do_read (s, s->buffer + s->active, &n) != 0)
return NULL;
s->physical_offset = where + n;
s->active += n;
}
if (s->active < *len)
*len = s->active; /* Bytes actually available */
s->logical_offset = where + *len;
return s->buffer;
}
/* fd_alloc_w_at()-- Allocate a stream buffer for writing. Either
* we've already buffered the data or we need to load it. */
static char *
fd_alloc_w_at (unix_stream * s, int *len, gfc_offset where)
{
gfc_offset n;
if (where == -1)
where = s->logical_offset;
if (s->buffer == NULL || s->buffer_offset > where ||
where + *len > s->buffer_offset + s->len)
{
if (fd_flush (s) == FAILURE)
return NULL;
fd_alloc (s, where, len);
}
/* Return a position within the current buffer */
if (s->ndirty == 0
|| where > s->dirty_offset + s->ndirty
|| s->dirty_offset > where + *len)
{ /* Discontiguous blocks, start with a clean buffer. */
/* Flush the buffer. */
if (s->ndirty != 0)
fd_flush (s);
s->dirty_offset = where;
s->ndirty = *len;
}
else
{
gfc_offset start; /* Merge with the existing data. */
if (where < s->dirty_offset)
start = where;
else
start = s->dirty_offset;
if (where + *len > s->dirty_offset + s->ndirty)
s->ndirty = where + *len - start;
else
s->ndirty = s->dirty_offset + s->ndirty - start;
s->dirty_offset = start;
}
s->logical_offset = where + *len;
if (where + *len > s->file_length)
s->file_length = where + *len;
n = s->logical_offset - s->buffer_offset;
if (n > s->active)
s->active = n;
return s->buffer + where - s->buffer_offset;
}
static try
fd_sfree (unix_stream * s)
{
if (s->ndirty != 0 &&
(s->buffer != s->small_buffer || options.all_unbuffered ||
s->unbuffered))
return fd_flush (s);
return SUCCESS;
}
static try
fd_seek (unix_stream * s, gfc_offset offset)
{
if (s->physical_offset == offset) /* Are we lucky and avoid syscall? */
{
s->logical_offset = offset;
return SUCCESS;
}
s->physical_offset = s->logical_offset = offset;
s->active = 0;
return (lseek (s->fd, offset, SEEK_SET) < 0) ? FAILURE : SUCCESS;
}
/* truncate_file()-- Given a unit, truncate the file at the current
* position. Sets the physical location to the new end of the file.
* Returns nonzero on error. */
static try
fd_truncate (unix_stream * s)
{
if (lseek (s->fd, s->logical_offset, SEEK_SET) == -1)
return FAILURE;
/* non-seekable files, like terminals and fifo's fail the lseek.
Using ftruncate on a seekable special file (like /dev/null)
is undefined, so we treat it as if the ftruncate succeeded.
*/
#ifdef HAVE_FTRUNCATE
if (s->special_file || ftruncate (s->fd, s->logical_offset))
#else
#ifdef HAVE_CHSIZE
if (s->special_file || chsize (s->fd, s->logical_offset))
#endif
#endif
{
s->physical_offset = s->file_length = 0;
return SUCCESS;
}
s->physical_offset = s->file_length = s->logical_offset;
s->active = 0;
return SUCCESS;
}
/* Similar to memset(), but operating on a stream instead of a string.
Takes care of not using too much memory. */
static try
fd_sset (unix_stream * s, int c, size_t n)
{
size_t bytes_left;
int trans;
void *p;
bytes_left = n;
while (bytes_left > 0)
{
/* memset() in chunks of BUFFER_SIZE. */
trans = (bytes_left < BUFFER_SIZE) ? bytes_left : BUFFER_SIZE;
p = fd_alloc_w_at (s, &trans, -1);
if (p)
memset (p, c, trans);
else
return FAILURE;
bytes_left -= trans;
}
return SUCCESS;
}
/* Stream read function. Avoids using a buffer for big reads. The
interface is like POSIX read(), but the nbytes argument is a
pointer; on return it contains the number of bytes written. The
function return value is the status indicator (0 for success). */
static int
fd_read (unix_stream * s, void * buf, size_t * nbytes)
{
void *p;
int tmp, status;
if (*nbytes < BUFFER_SIZE && !s->unbuffered)
{
tmp = *nbytes;
p = fd_alloc_r_at (s, &tmp, -1);
if (p)
{
*nbytes = tmp;
memcpy (buf, p, *nbytes);
return 0;
}
else
{
*nbytes = 0;
return errno;
}
}
/* If the request is bigger than BUFFER_SIZE we flush the buffers
and read directly. */
if (fd_flush (s) == FAILURE)
{
*nbytes = 0;
return errno;
}
if (is_seekable ((stream *) s) && fd_seek (s, s->logical_offset) == FAILURE)
{
*nbytes = 0;
return errno;
}
status = do_read (s, buf, nbytes);
reset_stream (s, *nbytes);
return status;
}
/* Stream write function. Avoids using a buffer for big writes. The
interface is like POSIX write(), but the nbytes argument is a
pointer; on return it contains the number of bytes written. The
function return value is the status indicator (0 for success). */
static int
fd_write (unix_stream * s, const void * buf, size_t * nbytes)
{
void *p;
int tmp, status;
if (*nbytes < BUFFER_SIZE && !s->unbuffered)
{
tmp = *nbytes;
p = fd_alloc_w_at (s, &tmp, -1);
if (p)
{
*nbytes = tmp;
memcpy (p, buf, *nbytes);
return 0;
}
else
{
*nbytes = 0;
return errno;
}
}
/* If the request is bigger than BUFFER_SIZE we flush the buffers
and write directly. */
if (fd_flush (s) == FAILURE)
{
*nbytes = 0;
return errno;
}
if (is_seekable ((stream *) s) && fd_seek (s, s->logical_offset) == FAILURE)
{
*nbytes = 0;
return errno;
}
status = do_write (s, buf, nbytes);
reset_stream (s, *nbytes);
return status;
}
static try
fd_close (unix_stream * s)
{
if (fd_flush (s) == FAILURE)
return FAILURE;
if (s->buffer != NULL && s->buffer != s->small_buffer)
free_mem (s->buffer);
if (s->fd != STDOUT_FILENO && s->fd != STDERR_FILENO)
{
if (close (s->fd) < 0)
return FAILURE;
}
free_mem (s);
return SUCCESS;
}
static void
fd_open (unix_stream * s)
{
if (isatty (s->fd))
s->unbuffered = 1;
s->st.alloc_r_at = (void *) fd_alloc_r_at;
s->st.alloc_w_at = (void *) fd_alloc_w_at;
s->st.sfree = (void *) fd_sfree;
s->st.close = (void *) fd_close;
s->st.seek = (void *) fd_seek;
s->st.truncate = (void *) fd_truncate;
s->st.read = (void *) fd_read;
s->st.write = (void *) fd_write;
s->st.set = (void *) fd_sset;
s->buffer = NULL;
}
/*********************************************************************
memory stream functions - These are used for internal files
The idea here is that a single stream structure is created and all
requests must be satisfied from it. The location and size of the
buffer is the character variable supplied to the READ or WRITE
statement.
*********************************************************************/
static char *
mem_alloc_r_at (unix_stream * s, int *len, gfc_offset where)
{
gfc_offset n;
if (where == -1)
where = s->logical_offset;
if (where < s->buffer_offset || where > s->buffer_offset + s->active)
return NULL;
s->logical_offset = where + *len;
n = s->buffer_offset + s->active - where;
if (*len > n)
*len = n;
return s->buffer + (where - s->buffer_offset);
}
static char *
mem_alloc_w_at (unix_stream * s, int *len, gfc_offset where)
{
gfc_offset m;
assert (*len >= 0); /* Negative values not allowed. */
if (where == -1)
where = s->logical_offset;
m = where + *len;
if (where < s->buffer_offset)
return NULL;
if (m > s->file_length)
return NULL;
s->logical_offset = m;
return s->buffer + (where - s->buffer_offset);
}
/* Stream read function for internal units. This is not actually used
at the moment, as all internal IO is formatted and the formatted IO
routines use mem_alloc_r_at. */
static int
mem_read (unix_stream * s, void * buf, size_t * nbytes)
{
void *p;
int tmp;
tmp = *nbytes;
p = mem_alloc_r_at (s, &tmp, -1);
if (p)
{
*nbytes = tmp;
memcpy (buf, p, *nbytes);
return 0;
}
else
{
*nbytes = 0;
return errno;
}
}
/* Stream write function for internal units. This is not actually used
at the moment, as all internal IO is formatted and the formatted IO
routines use mem_alloc_w_at. */
static int
mem_write (unix_stream * s, const void * buf, size_t * nbytes)
{
void *p;
int tmp;
errno = 0;
tmp = *nbytes;
p = mem_alloc_w_at (s, &tmp, -1);
if (p)
{
*nbytes = tmp;
memcpy (p, buf, *nbytes);
return 0;
}
else
{
*nbytes = 0;
return errno;
}
}
static int
mem_seek (unix_stream * s, gfc_offset offset)
{
if (offset > s->file_length)
{
errno = ESPIPE;
return FAILURE;
}
s->logical_offset = offset;
return SUCCESS;
}
static try
mem_set (unix_stream * s, int c, size_t n)
{
void *p;
int len;
len = n;
p = mem_alloc_w_at (s, &len, -1);
if (p)
{
memset (p, c, len);
return SUCCESS;
}
else
return FAILURE;
}
static int
mem_truncate (unix_stream * s __attribute__ ((unused)))
{
return SUCCESS;
}
static try
mem_close (unix_stream * s)
{
if (s != NULL)
free_mem (s);
return SUCCESS;
}
static try
mem_sfree (unix_stream * s __attribute__ ((unused)))
{
return SUCCESS;
}
/*********************************************************************
Public functions -- A reimplementation of this module needs to
define functional equivalents of the following.
*********************************************************************/
/* empty_internal_buffer()-- Zero the buffer of Internal file */
void
empty_internal_buffer(stream *strm)
{
unix_stream * s = (unix_stream *) strm;
memset(s->buffer, ' ', s->file_length);
}
/* open_internal()-- Returns a stream structure from an internal file */
stream *
open_internal (char *base, int length)
{
unix_stream *s;
s = get_mem (sizeof (unix_stream));
memset (s, '\0', sizeof (unix_stream));
s->buffer = base;
s->buffer_offset = 0;
s->logical_offset = 0;
s->active = s->file_length = length;
s->st.alloc_r_at = (void *) mem_alloc_r_at;
s->st.alloc_w_at = (void *) mem_alloc_w_at;
s->st.sfree = (void *) mem_sfree;
s->st.close = (void *) mem_close;
s->st.seek = (void *) mem_seek;
s->st.truncate = (void *) mem_truncate;
s->st.read = (void *) mem_read;
s->st.write = (void *) mem_write;
s->st.set = (void *) mem_set;
return (stream *) s;
}
/* fd_to_stream()-- Given an open file descriptor, build a stream
* around it. */
static stream *
fd_to_stream (int fd, int prot)
{
struct stat statbuf;
unix_stream *s;
s = get_mem (sizeof (unix_stream));
memset (s, '\0', sizeof (unix_stream));
s->fd = fd;
s->buffer_offset = 0;
s->physical_offset = 0;
s->logical_offset = 0;
s->prot = prot;
/* Get the current length of the file. */
fstat (fd, &statbuf);
s->file_length = S_ISREG (statbuf.st_mode) ? statbuf.st_size : -1;
s->special_file = !S_ISREG (statbuf.st_mode);
fd_open (s);
return (stream *) s;
}
/* Given the Fortran unit number, convert it to a C file descriptor. */
int
unit_to_fd (int unit)
{
gfc_unit *us;
int fd;
us = find_unit (unit);
if (us == NULL)
return -1;
fd = ((unix_stream *) us->s)->fd;
unlock_unit (us);
return fd;
}
/* unpack_filename()-- Given a fortran string and a pointer to a
* buffer that is PATH_MAX characters, convert the fortran string to a
* C string in the buffer. Returns nonzero if this is not possible. */
int
unpack_filename (char *cstring, const char *fstring, int len)
{
len = fstrlen (fstring, len);
if (len >= PATH_MAX)
return 1;
memmove (cstring, fstring, len);
cstring[len] = '\0';
return 0;
}
/* tempfile()-- Generate a temporary filename for a scratch file and
* open it. mkstemp() opens the file for reading and writing, but the
* library mode prevents anything that is not allowed. The descriptor
* is returned, which is -1 on error. The template is pointed to by
* opp->file, which is copied into the unit structure
* and freed later. */
static int
tempfile (st_parameter_open *opp)
{
const char *tempdir;
char *template;
int fd;
tempdir = getenv ("GFORTRAN_TMPDIR");
if (tempdir == NULL)
tempdir = getenv ("TMP");
if (tempdir == NULL)
tempdir = getenv ("TEMP");
if (tempdir == NULL)
tempdir = DEFAULT_TEMPDIR;
template = get_mem (strlen (tempdir) + 20);
st_sprintf (template, "%s/gfortrantmpXXXXXX", tempdir);
#ifdef HAVE_MKSTEMP
fd = mkstemp (template);
#else /* HAVE_MKSTEMP */
if (mktemp (template))
do
#if defined(HAVE_CRLF) && defined(O_BINARY)
fd = open (template, O_RDWR | O_CREAT | O_EXCL | O_BINARY,
S_IREAD | S_IWRITE);
#else
fd = open (template, O_RDWR | O_CREAT | O_EXCL, S_IREAD | S_IWRITE);
#endif
while (!(fd == -1 && errno == EEXIST) && mktemp (template));
else
fd = -1;
#endif /* HAVE_MKSTEMP */
if (fd < 0)
free_mem (template);
else
{
opp->file = template;
opp->file_len = strlen (template); /* Don't include trailing nul */
}
return fd;
}
/* regular_file()-- Open a regular file.
* Change flags->action if it is ACTION_UNSPECIFIED on entry,
* unless an error occurs.
* Returns the descriptor, which is less than zero on error. */
static int
regular_file (st_parameter_open *opp, unit_flags *flags)
{
char path[PATH_MAX + 1];
int mode;
int rwflag;
int crflag;
int fd;
if (unpack_filename (path, opp->file, opp->file_len))
{
errno = ENOENT; /* Fake an OS error */
return -1;
}
rwflag = 0;
switch (flags->action)
{
case ACTION_READ:
rwflag = O_RDONLY;
break;
case ACTION_WRITE:
rwflag = O_WRONLY;
break;
case ACTION_READWRITE:
case ACTION_UNSPECIFIED:
rwflag = O_RDWR;
break;
default:
internal_error (&opp->common, "regular_file(): Bad action");
}
switch (flags->status)
{
case STATUS_NEW:
crflag = O_CREAT | O_EXCL;
break;
case STATUS_OLD: /* open will fail if the file does not exist*/
crflag = 0;
break;
case STATUS_UNKNOWN:
case STATUS_SCRATCH:
crflag = O_CREAT;
break;
case STATUS_REPLACE:
crflag = O_CREAT | O_TRUNC;
break;
default:
internal_error (&opp->common, "regular_file(): Bad status");
}
/* rwflag |= O_LARGEFILE; */
#if defined(HAVE_CRLF) && defined(O_BINARY)
crflag |= O_BINARY;
#endif
mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH | S_IWOTH;
fd = open (path, rwflag | crflag, mode);
if (flags->action != ACTION_UNSPECIFIED)
return fd;
if (fd >= 0)
{
flags->action = ACTION_READWRITE;
return fd;
}
if (errno != EACCES)
return fd;
/* retry for read-only access */
rwflag = O_RDONLY;
fd = open (path, rwflag | crflag, mode);
if (fd >=0)
{
flags->action = ACTION_READ;
return fd; /* success */
}
if (errno != EACCES)
return fd; /* failure */
/* retry for write-only access */
rwflag = O_WRONLY;
fd = open (path, rwflag | crflag, mode);
if (fd >=0)
{
flags->action = ACTION_WRITE;
return fd; /* success */
}
return fd; /* failure */
}
/* open_external()-- Open an external file, unix specific version.
* Change flags->action if it is ACTION_UNSPECIFIED on entry.
* Returns NULL on operating system error. */
stream *
open_external (st_parameter_open *opp, unit_flags *flags)
{
int fd, prot;
if (flags->status == STATUS_SCRATCH)
{
fd = tempfile (opp);
if (flags->action == ACTION_UNSPECIFIED)
flags->action = ACTION_READWRITE;
#if HAVE_UNLINK_OPEN_FILE
/* We can unlink scratch files now and it will go away when closed. */
if (fd >= 0)
unlink (opp->file);
#endif
}
else
{
/* regular_file resets flags->action if it is ACTION_UNSPECIFIED and
* if it succeeds */
fd = regular_file (opp, flags);
}
if (fd < 0)
return NULL;
fd = fix_fd (fd);
switch (flags->action)
{
case ACTION_READ:
prot = PROT_READ;
break;
case ACTION_WRITE:
prot = PROT_WRITE;
break;
case ACTION_READWRITE:
prot = PROT_READ | PROT_WRITE;
break;
default:
internal_error (&opp->common, "open_external(): Bad action");
}
return fd_to_stream (fd, prot);
}
/* input_stream()-- Return a stream pointer to the default input stream.
* Called on initialization. */
stream *
input_stream (void)
{
return fd_to_stream (STDIN_FILENO, PROT_READ);
}
/* output_stream()-- Return a stream pointer to the default output stream.
* Called on initialization. */
stream *
output_stream (void)
{
return fd_to_stream (STDOUT_FILENO, PROT_WRITE);
}
/* error_stream()-- Return a stream pointer to the default error stream.
* Called on initialization. */
stream *
error_stream (void)
{
return fd_to_stream (STDERR_FILENO, PROT_WRITE);
}
/* init_error_stream()-- Return a pointer to the error stream. This
* subroutine is called when the stream is needed, rather than at
* initialization. We want to work even if memory has been seriously
* corrupted. */
stream *
init_error_stream (unix_stream *error)
{
memset (error, '\0', sizeof (*error));
error->fd = options.use_stderr ? STDERR_FILENO : STDOUT_FILENO;
error->st.alloc_w_at = (void *) fd_alloc_w_at;
error->st.sfree = (void *) fd_sfree;
error->unbuffered = 1;
error->buffer = error->small_buffer;
return (stream *) error;
}
/* compare_file_filename()-- Given an open stream and a fortran string
* that is a filename, figure out if the file is the same as the
* filename. */
int
compare_file_filename (gfc_unit *u, const char *name, int len)
{
char path[PATH_MAX + 1];
struct stat st1;
#ifdef HAVE_WORKING_STAT
struct stat st2;
#endif
if (unpack_filename (path, name, len))
return 0; /* Can't be the same */
/* If the filename doesn't exist, then there is no match with the
* existing file. */
if (stat (path, &st1) < 0)
return 0;
#ifdef HAVE_WORKING_STAT
fstat (((unix_stream *) (u->s))->fd, &st2);
return (st1.st_dev == st2.st_dev) && (st1.st_ino == st2.st_ino);
#else
if (len != u->file_len)
return 0;
return (memcmp(path, u->file, len) == 0);
#endif
}
#ifdef HAVE_WORKING_STAT
# define FIND_FILE0_DECL struct stat *st
# define FIND_FILE0_ARGS st
#else
# define FIND_FILE0_DECL const char *file, gfc_charlen_type file_len
# define FIND_FILE0_ARGS file, file_len
#endif
/* find_file0()-- Recursive work function for find_file() */
static gfc_unit *
find_file0 (gfc_unit *u, FIND_FILE0_DECL)
{
gfc_unit *v;
if (u == NULL)
return NULL;
#ifdef HAVE_WORKING_STAT
if (u->s != NULL
&& fstat (((unix_stream *) u->s)->fd, &st[1]) >= 0 &&
st[0].st_dev == st[1].st_dev && st[0].st_ino == st[1].st_ino)
return u;
#else
if (compare_string (u->file_len, u->file, file_len, file) == 0)
return u;
#endif
v = find_file0 (u->left, FIND_FILE0_ARGS);
if (v != NULL)
return v;
v = find_file0 (u->right, FIND_FILE0_ARGS);
if (v != NULL)
return v;
return NULL;
}
/* find_file()-- Take the current filename and see if there is a unit
* that has the file already open. Returns a pointer to the unit if so. */
gfc_unit *
find_file (const char *file, gfc_charlen_type file_len)
{
char path[PATH_MAX + 1];
struct stat st[2];
gfc_unit *u;
if (unpack_filename (path, file, file_len))
return NULL;
if (stat (path, &st[0]) < 0)
return NULL;
__gthread_mutex_lock (&unit_lock);
retry:
u = find_file0 (unit_root, FIND_FILE0_ARGS);
if (u != NULL)
{
/* Fast path. */
if (! __gthread_mutex_trylock (&u->lock))
{
/* assert (u->closed == 0); */
__gthread_mutex_unlock (&unit_lock);
return u;
}
inc_waiting_locked (u);
}
__gthread_mutex_unlock (&unit_lock);
if (u != NULL)
{
__gthread_mutex_lock (&u->lock);
if (u->closed)
{
__gthread_mutex_lock (&unit_lock);
__gthread_mutex_unlock (&u->lock);
if (predec_waiting_locked (u) == 0)
free_mem (u);
goto retry;
}
dec_waiting_unlocked (u);
}
return u;
}
static gfc_unit *
flush_all_units_1 (gfc_unit *u, int min_unit)
{
while (u != NULL)
{
if (u->unit_number > min_unit)
{
gfc_unit *r = flush_all_units_1 (u->left, min_unit);
if (r != NULL)
return r;
}
if (u->unit_number >= min_unit)
{
if (__gthread_mutex_trylock (&u->lock))
return u;
if (u->s)
flush (u->s);
__gthread_mutex_unlock (&u->lock);
}
u = u->right;
}
return NULL;
}
void
flush_all_units (void)
{
gfc_unit *u;
int min_unit = 0;
__gthread_mutex_lock (&unit_lock);
do
{
u = flush_all_units_1 (unit_root, min_unit);
if (u != NULL)
inc_waiting_locked (u);
__gthread_mutex_unlock (&unit_lock);
if (u == NULL)
return;
__gthread_mutex_lock (&u->lock);
min_unit = u->unit_number + 1;
if (u->closed == 0)
{
flush (u->s);
__gthread_mutex_lock (&unit_lock);
__gthread_mutex_unlock (&u->lock);
(void) predec_waiting_locked (u);
}
else
{
__gthread_mutex_lock (&unit_lock);
__gthread_mutex_unlock (&u->lock);
if (predec_waiting_locked (u) == 0)
free_mem (u);
}
}
while (1);
}
/* stream_at_bof()-- Returns nonzero if the stream is at the beginning
* of the file. */
int
stream_at_bof (stream * s)
{
unix_stream *us;
if (!is_seekable (s))
return 0;
us = (unix_stream *) s;
return us->logical_offset == 0;
}
/* stream_at_eof()-- Returns nonzero if the stream is at the end
* of the file. */
int
stream_at_eof (stream * s)
{
unix_stream *us;
if (!is_seekable (s))
return 0;
us = (unix_stream *) s;
return us->logical_offset == us->dirty_offset;
}
/* delete_file()-- Given a unit structure, delete the file associated
* with the unit. Returns nonzero if something went wrong. */
int
delete_file (gfc_unit * u)
{
char path[PATH_MAX + 1];
if (unpack_filename (path, u->file, u->file_len))
{ /* Shouldn't be possible */
errno = ENOENT;
return 1;
}
return unlink (path);
}
/* file_exists()-- Returns nonzero if the current filename exists on
* the system */
int
file_exists (const char *file, gfc_charlen_type file_len)
{
char path[PATH_MAX + 1];
struct stat statbuf;
if (unpack_filename (path, file, file_len))
return 0;
if (stat (path, &statbuf) < 0)
return 0;
return 1;
}
static const char yes[] = "YES", no[] = "NO", unknown[] = "UNKNOWN";
/* inquire_sequential()-- Given a fortran string, determine if the
* file is suitable for sequential access. Returns a C-style
* string. */
const char *
inquire_sequential (const char *string, int len)
{
char path[PATH_MAX + 1];
struct stat statbuf;
if (string == NULL ||
unpack_filename (path, string, len) || stat (path, &statbuf) < 0)
return unknown;
if (S_ISREG (statbuf.st_mode) ||
S_ISCHR (statbuf.st_mode) || S_ISFIFO (statbuf.st_mode))
return yes;
if (S_ISDIR (statbuf.st_mode) || S_ISBLK (statbuf.st_mode))
return no;
return unknown;
}
/* inquire_direct()-- Given a fortran string, determine if the file is
* suitable for direct access. Returns a C-style string. */
const char *
inquire_direct (const char *string, int len)
{
char path[PATH_MAX + 1];
struct stat statbuf;
if (string == NULL ||
unpack_filename (path, string, len) || stat (path, &statbuf) < 0)
return unknown;
if (S_ISREG (statbuf.st_mode) || S_ISBLK (statbuf.st_mode))
return yes;
if (S_ISDIR (statbuf.st_mode) ||
S_ISCHR (statbuf.st_mode) || S_ISFIFO (statbuf.st_mode))
return no;
return unknown;
}
/* inquire_formatted()-- Given a fortran string, determine if the file
* is suitable for formatted form. Returns a C-style string. */
const char *
inquire_formatted (const char *string, int len)
{
char path[PATH_MAX + 1];
struct stat statbuf;
if (string == NULL ||
unpack_filename (path, string, len) || stat (path, &statbuf) < 0)
return unknown;
if (S_ISREG (statbuf.st_mode) ||
S_ISBLK (statbuf.st_mode) ||
S_ISCHR (statbuf.st_mode) || S_ISFIFO (statbuf.st_mode))
return yes;
if (S_ISDIR (statbuf.st_mode))
return no;
return unknown;
}
/* inquire_unformatted()-- Given a fortran string, determine if the file
* is suitable for unformatted form. Returns a C-style string. */
const char *
inquire_unformatted (const char *string, int len)
{
return inquire_formatted (string, len);
}
/* inquire_access()-- Given a fortran string, determine if the file is
* suitable for access. */
static const char *
inquire_access (const char *string, int len, int mode)
{
char path[PATH_MAX + 1];
if (string == NULL || unpack_filename (path, string, len) ||
access (path, mode) < 0)
return no;
return yes;
}
/* inquire_read()-- Given a fortran string, determine if the file is
* suitable for READ access. */
const char *
inquire_read (const char *string, int len)
{
return inquire_access (string, len, R_OK);
}
/* inquire_write()-- Given a fortran string, determine if the file is
* suitable for READ access. */
const char *
inquire_write (const char *string, int len)
{
return inquire_access (string, len, W_OK);
}
/* inquire_readwrite()-- Given a fortran string, determine if the file is
* suitable for read and write access. */
const char *
inquire_readwrite (const char *string, int len)
{
return inquire_access (string, len, R_OK | W_OK);
}
/* file_length()-- Return the file length in bytes, -1 if unknown */
gfc_offset
file_length (stream * s)
{
return ((unix_stream *) s)->file_length;
}
/* file_position()-- Return the current position of the file */
gfc_offset
file_position (stream * s)
{
return ((unix_stream *) s)->logical_offset;
}
/* is_seekable()-- Return nonzero if the stream is seekable, zero if
* it is not */
int
is_seekable (stream * s)
{
/* By convention, if file_length == -1, the file is not
seekable. */
return ((unix_stream *) s)->file_length!=-1;
}
try
flush (stream *s)
{
return fd_flush( (unix_stream *) s);
}
int
stream_isatty (stream *s)
{
return isatty (((unix_stream *) s)->fd);
}
char *
stream_ttyname (stream *s)
{
#ifdef HAVE_TTYNAME
return ttyname (((unix_stream *) s)->fd);
#else
return NULL;
#endif
}
gfc_offset
stream_offset (stream *s)
{
return (((unix_stream *) s)->logical_offset);
}
/* How files are stored: This is an operating-system specific issue,
and therefore belongs here. There are three cases to consider.
Direct Access:
Records are written as block of bytes corresponding to the record
length of the file. This goes for both formatted and unformatted
records. Positioning is done explicitly for each data transfer,
so positioning is not much of an issue.
Sequential Formatted:
Records are separated by newline characters. The newline character
is prohibited from appearing in a string. If it does, this will be
messed up on the next read. End of file is also the end of a record.
Sequential Unformatted:
In this case, we are merely copying bytes to and from main storage,
yet we need to keep track of varying record lengths. We adopt
the solution used by f2c. Each record contains a pair of length
markers:
Length of record n in bytes
Data of record n
Length of record n in bytes
Length of record n+1 in bytes
Data of record n+1
Length of record n+1 in bytes
The length is stored at the end of a record to allow backspacing to the
previous record. Between data transfer statements, the file pointer
is left pointing to the first length of the current record.
ENDFILE records are never explicitly stored.
*/