gcc/libstdc++-v3/include/experimental/internet
2022-01-03 10:42:10 +01:00

2497 lines
66 KiB
C++

// <experimental/internet> -*- C++ -*-
// Copyright (C) 2015-2022 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/** @file experimental/internet
* This is a TS C++ Library header.
* @ingroup networking-ts
*/
#ifndef _GLIBCXX_EXPERIMENTAL_INTERNET
#define _GLIBCXX_EXPERIMENTAL_INTERNET
#pragma GCC system_header
#if __cplusplus >= 201402L
#include <experimental/netfwd>
#include <experimental/io_context>
#include <experimental/bits/net.h>
#include <array>
#include <forward_list>
#include <sstream>
#include <cstdint>
#include <experimental/string_view>
#ifdef _GLIBCXX_HAVE_UNISTD_H
# include <unistd.h>
#endif
#ifdef _GLIBCXX_HAVE_SYS_SOCKET_H
# include <sys/socket.h> // AF_INET, AF_INET6, SOCK_DGRAM, SOCK_STREAM
#endif
#ifdef _GLIBCXX_HAVE_ARPA_INET_H
# include <arpa/inet.h> // inet_ntop
#endif
#ifdef _GLIBCXX_HAVE_NETINET_IN_H
# include <netinet/in.h> // IPPROTO_IP, IPPROTO_IPV6, in_addr, in6_addr
#endif
#ifdef _GLIBCXX_HAVE_NETINET_TCP_H
# include <netinet/tcp.h> // TCP_NODELAY
#endif
#ifdef _GLIBCXX_HAVE_NETDB_H
# include <netdb.h> // getaddrinfo etc.
#endif
#if defined _WIN32 && __has_include(<ws2tcpip.h>)
# include <ws2tcpip.h>
#endif
namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
namespace experimental
{
namespace net
{
inline namespace v1
{
namespace ip
{
/** @addtogroup networking-ts
* @{
*/
/** Error codes for resolver errors.
* @{
*/
enum class resolver_errc : int {
#ifdef _GLIBCXX_HAVE_NETDB_H
host_not_found = EAI_NONAME,
host_not_found_try_again = EAI_AGAIN,
service_not_found = EAI_SERVICE
// N.B. POSIX defines additional errors that have no enumerator here:
// EAI_BADFLAGS, EAI_FAIL, EAI_FAMILY, EAI_MEMORY, EAI_SOCKTYPE, EAI_SYSTEM
// Some C libraries define additional errors:
// EAI_BADHINTS, EAI_OVERFLOW, EAI_PROTOCOL
// Some C libraries define additional (obsolete?) errors:
// EAI_ADDRFAMILY, EAI_NODATA
#endif
};
/// Error category for resolver errors.
inline const error_category& resolver_category() noexcept // TODO non-inline
{
struct __cat : error_category
{
const char* name() const noexcept { return "resolver"; }
std::string message(int __e) const {
#ifdef _GLIBCXX_HAVE_NETDB_H
return ::gai_strerror(__e);
#else
return "name resolution requires <netdb.h>";
#endif
}
virtual void __message(int) { } // TODO dual ABI XXX
};
static __cat __c;
return __c;
}
inline error_code make_error_code(resolver_errc __e) noexcept
{ return error_code(static_cast<int>(__e), resolver_category()); }
inline error_condition make_error_condition(resolver_errc __e) noexcept
{ return error_condition(static_cast<int>(__e), resolver_category()); }
/// @cond undocumented
inline error_code
__make_resolver_error_code(int __ai_err,
[[__maybe_unused__]] int __sys_err) noexcept
{
#ifdef EAI_SYSTEM
if (__builtin_expect(__ai_err == EAI_SYSTEM, 0))
return error_code(__sys_err, std::generic_category());
#endif
return error_code(__ai_err, resolver_category());
}
/// @endcond
/// @}
using port_type = uint_least16_t; ///< Type used for port numbers.
using scope_id_type = uint_least32_t; ///< Type used for IPv6 scope IDs.
/// Convenience alias for constraining allocators for strings.
template<typename _Alloc>
using __string_with
= enable_if_t<std::is_same<typename _Alloc::value_type, char>::value,
std::basic_string<char, std::char_traits<char>, _Alloc>>;
constexpr errc
__unsupported_err() noexcept
{
#if defined EAFNOSUPPORT
return std::errc::address_family_not_supported;
#else
return std::errc::operation_not_supported;
#endif
}
/** Tag indicating conversion between IPv4 and IPv4-mapped IPv6 addresses.
* @{
*/
struct v4_mapped_t {};
constexpr v4_mapped_t v4_mapped;
/// @}
/// An IPv4 address.
class address_v4
{
public:
// types:
using uint_type = uint_least32_t;
struct bytes_type : array<unsigned char, 4>
{
template<typename... _Tp>
explicit constexpr
bytes_type(_Tp... __tp)
: array<unsigned char, 4>{{static_cast<unsigned char>(__tp)...}}
{
#if UCHAR_MAX > 0xFF
for (auto __b : *this)
if (__b > 0xFF)
__throw_out_of_range("invalid address_v4::bytes_type value");
#endif
}
};
// constructors:
constexpr address_v4() noexcept : _M_addr(0) { }
constexpr address_v4(const address_v4& a) noexcept = default;
constexpr
address_v4(const bytes_type& __b)
: _M_addr((__b[0] << 24) | (__b[1] << 16) | (__b[2] << 8) | __b[3])
{ }
explicit constexpr
address_v4(uint_type __val) : _M_addr(_S_hton_32(__val))
{
#if UINT_LEAST32_MAX > 0xFFFFFFFF
if (__val > 0xFFFFFFFF)
__throw_out_of_range("invalid address_v4::uint_type value");
#endif
}
// assignment:
address_v4& operator=(const address_v4& a) noexcept = default;
// members:
constexpr bool is_unspecified() const noexcept { return to_uint() == 0; }
constexpr bool
is_loopback() const noexcept
{ return (to_uint() & 0xFF000000) == 0x7F000000; }
constexpr bool
is_multicast() const noexcept
{ return (to_uint() & 0xF0000000) == 0xE0000000; }
constexpr bytes_type
to_bytes() const noexcept
{
return bytes_type{
(_M_addr >> 24) & 0xFF,
(_M_addr >> 16) & 0xFF,
(_M_addr >> 8) & 0xFF,
_M_addr & 0xFF
};
}
constexpr uint_type
to_uint() const noexcept { return _S_ntoh_32(_M_addr); }
template<typename _Allocator = allocator<char>>
__string_with<_Allocator>
to_string(const _Allocator& __a = _Allocator()) const
{
#ifdef _GLIBCXX_HAVE_ARPA_INET_H
__string_with<_Allocator> __str(__a);
__str.resize(INET_ADDRSTRLEN);
if (inet_ntop(AF_INET, &_M_addr, &__str.front(), __str.size()))
__str.erase(__str.find('\0'));
else
__str.resize(0);
return __str;
#else
std::__throw_system_error((int)__unsupported_err());
#endif
}
// static members:
static constexpr address_v4 any() noexcept { return address_v4{}; }
static constexpr
address_v4 loopback() noexcept { return address_v4{0x7F000001}; }
static constexpr
address_v4 broadcast() noexcept { return address_v4{0xFFFFFFFF}; }
private:
template<typename _InternetProtocol>
friend class basic_endpoint;
friend address_v4 make_address_v4(const char*, error_code&) noexcept;
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
static constexpr uint16_t _S_hton_16(uint16_t __h) { return __h; }
static constexpr uint16_t _S_ntoh_16(uint16_t __n) { return __n; }
static constexpr uint32_t _S_hton_32(uint32_t __h) { return __h; }
static constexpr uint32_t _S_ntoh_32(uint32_t __n) { return __n; }
#else
static constexpr uint16_t
_S_hton_16(uint16_t __h) { return __builtin_bswap16(__h); }
static constexpr uint16_t
_S_ntoh_16(uint16_t __n) { return __builtin_bswap16(__n); }
static constexpr uint32_t
_S_hton_32(uint32_t __h) { return __builtin_bswap32(__h); }
static constexpr uint32_t
_S_ntoh_32(uint32_t __n) { return __builtin_bswap32(__n); }
#endif
#ifdef _GLIBCXX_HAVE_ARPA_INET_H
in_addr_t _M_addr; // network byte order
#else
uint32_t _M_addr;
#endif
};
/// An IPv6 address.
class address_v6
{
public:
// types:
struct bytes_type : array<unsigned char, 16>
{
template<typename... _Tp>
explicit constexpr
bytes_type(_Tp... __t)
: array<unsigned char, 16>{{static_cast<unsigned char>(__t)...}}
{ }
};
// constructors:
constexpr address_v6() noexcept : _M_bytes(), _M_scope_id() { }
constexpr address_v6(const address_v6& __a) noexcept = default;
constexpr
address_v6(const bytes_type& __bytes, scope_id_type __scope = 0)
: _M_bytes(__bytes), _M_scope_id(__scope)
{ }
// assignment:
address_v6& operator=(const address_v6& __a) noexcept = default;
// members:
void scope_id(scope_id_type __id) noexcept { _M_scope_id = __id; }
constexpr scope_id_type scope_id() const noexcept { return _M_scope_id; }
constexpr bool
is_unspecified() const noexcept
{
for (int __i = 0; __i < 16; ++__i)
if (_M_bytes[__i] != 0x00)
return false;
return _M_scope_id == 0;
}
constexpr bool
is_loopback() const noexcept
{
for (int __i = 0; __i < 15; ++__i)
if (_M_bytes[__i] != 0x00)
return false;
return _M_bytes[15] == 0x01 && _M_scope_id == 0;
}
constexpr bool
is_multicast() const noexcept { return _M_bytes[0] == 0xFF; }
constexpr bool
is_link_local() const noexcept
{ return _M_bytes[0] == 0xFE && (_M_bytes[1] & 0xC0) == 0x80; }
constexpr bool
is_site_local() const noexcept
{ return _M_bytes[0] == 0xFE && (_M_bytes[1] & 0xC0) == 0xC0; }
constexpr bool
is_v4_mapped() const noexcept
{
const bytes_type& __b = _M_bytes;
return __b[0] == 0 && __b[1] == 0 && __b[ 2] == 0 && __b[ 3] == 0
&& __b[4] == 0 && __b[5] == 0 && __b[ 6] == 0 && __b[ 7] == 0
&& __b[8] == 0 && __b[9] == 0 && __b[10] == 0xFF && __b[11] == 0xFF;
}
constexpr bool
is_multicast_node_local() const noexcept
{ return is_multicast() && (_M_bytes[1] & 0x0F) == 0x01; }
constexpr bool
is_multicast_link_local() const noexcept
{ return is_multicast() && (_M_bytes[1] & 0x0F) == 0x02; }
constexpr bool
is_multicast_site_local() const noexcept
{ return is_multicast() && (_M_bytes[1] & 0x0F) == 0x05; }
constexpr bool
is_multicast_org_local() const noexcept
{ return is_multicast() && (_M_bytes[1] & 0x0F) == 0x08; }
constexpr bool
is_multicast_global() const noexcept
{ return is_multicast() && (_M_bytes[1] & 0x0F) == 0x0b; }
constexpr bytes_type to_bytes() const noexcept { return _M_bytes; }
template<typename _Allocator = allocator<char>>
__string_with<_Allocator>
to_string(const _Allocator& __a = _Allocator()) const
{
#ifdef _GLIBCXX_HAVE_ARPA_INET_H
__string_with<_Allocator> __str(__a);
__str.resize(INET6_ADDRSTRLEN + (_M_scope_id ? 11 : 0));
char* const __p = &__str.front();
if (inet_ntop(AF_INET6, &_M_bytes, __p, __str.size()))
{
auto __end = __str.find('\0');
if (unsigned long __scope = _M_scope_id)
{
__end +=
#if _GLIBCXX_USE_C99_STDIO
__builtin_snprintf(__p + __end, __str.size() - __end,
"%%%lu", __scope);
#else
__builtin_sprintf(__p + __end, "%%%lu", __scope);
#endif
}
__str.erase(__end);
}
else
__str.resize(0);
return __str;
#else
std::__throw_system_error((int)__unsupported_err());
#endif
}
// static members:
static constexpr address_v6
any() noexcept
{
return {};
}
static constexpr address_v6
loopback() noexcept
{
return {bytes_type{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}};
}
private:
template<typename _InternetProtocol>
friend class basic_endpoint;
friend constexpr bool
operator==(const address_v6&, const address_v6&) noexcept;
friend constexpr bool
operator< (const address_v6&, const address_v6&) noexcept;
bytes_type _M_bytes;
scope_id_type _M_scope_id;
};
/// Exception type thrown on misuse of IPv4 addresses as IPv6 or vice versa.
class bad_address_cast : public bad_cast
{
public:
bad_address_cast() { }
const char* what() const noexcept { return "bad address cast"; }
};
/// An IPv4 or IPv6 address.
class address
{
public:
// constructors:
constexpr address() noexcept : _M_v4(), _M_is_v4(true) { }
#if __cpp_constexpr_dynamic_alloc
constexpr
#endif
address(const address& __a) noexcept : _M_uninit(), _M_is_v4(__a._M_is_v4)
{
if (_M_is_v4)
std::_Construct(std::addressof(_M_v4), __a.to_v4());
else
std::_Construct(std::addressof(_M_v6), __a.to_v6());
}
constexpr
address(const address_v4& __a) noexcept : _M_v4(__a), _M_is_v4(true) { }
constexpr
address(const address_v6& __a) noexcept : _M_v6(__a), _M_is_v4(false) { }
// assignment:
address&
operator=(const address& __a) noexcept
{
if (__a._M_is_v4)
*this = __a.to_v4();
else
*this = __a.to_v6();
return *this;
}
address&
operator=(const address_v4& __a) noexcept
{
std::_Construct(std::addressof(_M_v4), __a);
_M_is_v4 = true;
return *this;
}
address&
operator=(const address_v6& __a) noexcept
{
std::_Construct(std::addressof(_M_v6), __a);
_M_is_v4 = false;
return *this;
}
// members:
constexpr bool is_v4() const noexcept { return _M_is_v4; }
constexpr bool is_v6() const noexcept { return !_M_is_v4; }
constexpr address_v4
to_v4() const
{
if (!is_v4())
_GLIBCXX_THROW_OR_ABORT(bad_address_cast());
return _M_v4;
}
constexpr address_v6
to_v6() const
{
if (!is_v6())
_GLIBCXX_THROW_OR_ABORT(bad_address_cast());
return _M_v6;
}
constexpr bool
is_unspecified() const noexcept
{ return _M_is_v4 ? _M_v4.is_unspecified() : _M_v6.is_unspecified(); }
constexpr bool
is_loopback() const noexcept
{ return _M_is_v4 ? _M_v4.is_loopback() : _M_v6.is_loopback(); }
constexpr bool
is_multicast() const noexcept
{ return _M_is_v4 ? _M_v4.is_multicast() : _M_v6.is_multicast(); }
template<typename _Allocator = allocator<char>>
__string_with<_Allocator>
to_string(const _Allocator& __a = _Allocator()) const
{
if (_M_is_v4)
return to_v4().to_string(__a);
return to_v6().to_string(__a);
}
private:
template<typename _InternetProtocol>
friend class basic_endpoint;
friend constexpr bool
operator==(const address&, const address&) noexcept;
friend constexpr bool
operator<(const address&, const address&) noexcept;
union {
address_v4 _M_v4;
address_v6 _M_v6;
bool _M_uninit;
};
bool _M_is_v4;
};
/** ip::address_v4 comparisons
* @{
*/
constexpr bool
operator==(const address_v4& __a, const address_v4& __b) noexcept
{ return __a.to_uint() == __b.to_uint(); }
constexpr bool
operator!=(const address_v4& __a, const address_v4& __b) noexcept
{ return !(__a == __b); }
constexpr bool
operator< (const address_v4& __a, const address_v4& __b) noexcept
{ return __a.to_uint() < __b.to_uint(); }
constexpr bool
operator> (const address_v4& __a, const address_v4& __b) noexcept
{ return __b < __a; }
constexpr bool
operator<=(const address_v4& __a, const address_v4& __b) noexcept
{ return !(__b < __a); }
constexpr bool
operator>=(const address_v4& __a, const address_v4& __b) noexcept
{ return !(__a < __b); }
/// @}
/** ip::address_v6 comparisons
* @{
*/
constexpr bool
operator==(const address_v6& __a, const address_v6& __b) noexcept
{
const auto& __aa = __a._M_bytes;
const auto& __bb = __b._M_bytes;
int __i = 0;
for (; __i < 16 && __aa[__i] == __bb[__i]; ++__i)
;
return __i == 16 ? __a.scope_id() == __b.scope_id() : false;
}
constexpr bool
operator!=(const address_v6& __a, const address_v6& __b) noexcept
{ return !(__a == __b); }
constexpr bool
operator< (const address_v6& __a, const address_v6& __b) noexcept
{
const auto& __aa = __a._M_bytes;
const auto& __bb = __b._M_bytes;
int __i = 0;
for (; __i < 16 && __aa[__i] == __bb[__i]; ++__i)
;
return __i == 16 ? __a.scope_id() < __b.scope_id() : __aa[__i] < __bb[__i];
}
constexpr bool
operator> (const address_v6& __a, const address_v6& __b) noexcept
{ return __b < __a; }
constexpr bool
operator<=(const address_v6& __a, const address_v6& __b) noexcept
{ return !(__b < __a); }
constexpr bool
operator>=(const address_v6& __a, const address_v6& __b) noexcept
{ return !(__a < __b); }
/// @}
/** ip::address comparisons
* @{
*/
constexpr bool
operator==(const address& __a, const address& __b) noexcept
{
if (__a.is_v4())
return __b.is_v4() ? __a._M_v4 == __b._M_v4 : false;
return __b.is_v4() ? false : __a._M_v6 == __b._M_v6;
}
constexpr bool
operator!=(const address& __a, const address& __b) noexcept
{ return !(__a == __b); }
constexpr bool
operator< (const address& __a, const address& __b) noexcept
{
if (__a.is_v4())
return __b.is_v4() ? __a._M_v4 < __b._M_v4 : true;
return __b.is_v4() ? false : __a._M_v6 < __b._M_v6;
}
constexpr bool
operator> (const address& __a, const address& __b) noexcept
{ return __b < __a; }
constexpr bool
operator<=(const address& __a, const address& __b) noexcept
{ return !(__b < __a); }
constexpr bool
operator>=(const address& __a, const address& __b) noexcept
{ return !(__a < __b); }
/// @}
/** ip::address_v4 creation
* @{
*/
constexpr address_v4
make_address_v4(const address_v4::bytes_type& __b)
{ return address_v4{__b}; }
constexpr address_v4
make_address_v4(address_v4::uint_type __val)
{ return address_v4{__val}; }
constexpr address_v4
make_address_v4(v4_mapped_t, const address_v6& __a)
{
if (!__a.is_v4_mapped())
_GLIBCXX_THROW_OR_ABORT(bad_address_cast());
const auto __v6b = __a.to_bytes();
return address_v4::bytes_type(__v6b[12], __v6b[13], __v6b[14], __v6b[15]);
}
inline address_v4
make_address_v4(const char* __str, error_code& __ec) noexcept
{
#ifdef _GLIBCXX_HAVE_ARPA_INET_H
address_v4 __a;
const int __res = ::inet_pton(AF_INET, __str, &__a._M_addr);
if (__res == 1)
{
__ec.clear();
return __a;
}
if (__res == 0)
__ec = std::make_error_code(std::errc::invalid_argument);
else
__ec.assign(errno, generic_category());
#else
__ec = std::make_error_code(__unsupported_err());
#endif
return {};
}
inline address_v4
make_address_v4(const char* __str)
{ return make_address_v4(__str, __throw_on_error{"make_address_v4"}); }
inline address_v4
make_address_v4(const string& __str, error_code& __ec) noexcept
{ return make_address_v4(__str.c_str(), __ec); }
inline address_v4
make_address_v4(const string& __str)
{ return make_address_v4(__str.c_str()); }
inline address_v4
make_address_v4(string_view __str, error_code& __ec) noexcept
{
char __buf[16]; // INET_ADDRSTRLEN isn't defined on Windows
auto __len = __str.copy(__buf, sizeof(__buf));
if (__len == sizeof(__buf))
{
__ec = std::make_error_code(std::errc::invalid_argument);
return {};
}
__ec.clear();
__buf[__len] = '\0';
return make_address_v4(__buf, __ec);
}
inline address_v4
make_address_v4(string_view __str)
{ return make_address_v4(__str, __throw_on_error{"make_address_v4"}); }
/// @}
/** ip::address_v6 creation
* @{
*/
constexpr address_v6
make_address_v6(const address_v6::bytes_type& __b, scope_id_type __scope = 0)
{ return address_v6{__b, __scope}; }
constexpr address_v6
make_address_v6(v4_mapped_t, const address_v4& __a) noexcept
{
const address_v4::bytes_type __v4b = __a.to_bytes();
address_v6::bytes_type __v6b(0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0xFF, 0xFF,
__v4b[0], __v4b[1], __v4b[2], __v4b[3]);
return address_v6(__v6b);
}
inline address_v6
__make_address_v6(const char* __addr, const char* __scope, error_code& __ec)
{
#ifdef _GLIBCXX_HAVE_ARPA_INET_H
address_v6::bytes_type __b;
const int __res = ::inet_pton(AF_INET6, __addr, __b.data());
if (__res == 1)
{
__ec.clear();
if (!__scope)
{
return { __b };
}
char* __eptr;
unsigned long __val = std::strtoul(__scope, &__eptr, 10);
if (__eptr != __scope && !*__eptr
&& __val <= numeric_limits<scope_id_type>::max())
{
return { __b, static_cast<scope_id_type>(__val) };
}
__ec = std::make_error_code(std::errc::invalid_argument);
}
else if (__res == 0)
__ec = std::make_error_code(std::errc::invalid_argument);
else
__ec.assign(errno, generic_category());
#else
__ec = std::make_error_code(__unsupported_err());
#endif
return {};
}
inline address_v6
make_address_v6(const char* __str, error_code& __ec) noexcept
{
auto __p = __builtin_strchr(__str, '%');
if (__p == nullptr)
return __make_address_v6(__str, nullptr, __ec);
char __buf[64];
char* __out = __buf;
bool __skip_leading_zero = true;
while (__str < __p && __out < std::end(__buf))
{
if (!__skip_leading_zero || *__str != '0')
{
if (*__str == ':' || *__str == '.')
__skip_leading_zero = true;
else
__skip_leading_zero = false;
*__out = *__str;
}
__str++;
}
if (__out == std::end(__buf))
{
__ec = std::make_error_code(std::errc::invalid_argument);
return {};
}
else
{
*__out = '\0';
return __make_address_v6(__buf, __p + 1, __ec);
}
}
inline address_v6
make_address_v6(const char* __str)
{ return make_address_v6(__str, __throw_on_error{"make_address_v6"}); }
inline address_v6
make_address_v6(const string& __str, error_code& __ec) noexcept
{
auto __pos = __str.find('%');
if (__pos == string::npos)
return __make_address_v6(__str.c_str(), nullptr, __ec);
char __buf[64];
char* __out = __buf;
bool __skip_leading_zero = true;
size_t __n = 0;
while (__n < __pos && __out < std::end(__buf))
{
if (!__skip_leading_zero || __str[__n] != '0')
{
if (__str[__n] == ':' || __str[__n] == '.')
__skip_leading_zero = true;
else
__skip_leading_zero = false;
*__out = __str[__n];
}
__n++;
}
if (__out == std::end(__buf))
{
__ec = std::make_error_code(std::errc::invalid_argument);
return {};
}
else
{
*__out = '\0';
return __make_address_v6(__buf, __str.c_str() + __pos + 1, __ec);
}
}
inline address_v6
make_address_v6(const string& __str)
{ return make_address_v6(__str, __throw_on_error{"make_address_v6"}); }
inline address_v6
make_address_v6(string_view __str, error_code& __ec) noexcept
{
char __buf[64];
char* __out = __buf;
char* __scope = nullptr;
bool __skip_leading_zero = true;
size_t __n = 0;
while (__n < __str.length() && __out < std::end(__buf))
{
if (__str[__n] == '%')
{
if (__scope)
__out = std::end(__buf);
else
{
*__out = '\0';
__scope = ++__out;
__skip_leading_zero = true;
}
}
else if (!__skip_leading_zero || __str[__n] != '0')
{
if (__str[__n] == ':' || __str[__n] == '.')
__skip_leading_zero = true;
else
__skip_leading_zero = false;
*__out = __str[__n];
__out++;
}
__n++;
}
if (__out == std::end(__buf))
{
__ec = std::make_error_code(std::errc::invalid_argument);
return {};
}
else
{
*__out = '\0';
return __make_address_v6(__buf, __scope, __ec);
}
}
inline address_v6
make_address_v6(string_view __str)
{ return make_address_v6(__str, __throw_on_error{"make_address_v6"}); }
/// @}
/** ip::address creation
* @{
*/
inline address
make_address(const char* __str, error_code& __ec) noexcept
{
address __a;
address_v6 __v6a = make_address_v6(__str, __ec);
if (!__ec)
__a = __v6a;
else
{
address_v4 __v4a = make_address_v4(__str, __ec);
if (!__ec)
__a = __v4a;
}
return __a;
}
inline address
make_address(const char* __str)
{ return make_address(__str, __throw_on_error{"make_address"}); }
inline address
make_address(const string& __str, error_code& __ec) noexcept; // TODO
inline address
make_address(const string& __str)
{ return make_address(__str, __throw_on_error{"make_address"}); }
inline address
make_address(string_view __str, error_code& __ec) noexcept
{
if (__str.rfind('\0') != string_view::npos)
return make_address(__str.data(), __ec);
return make_address(__str.to_string(), __ec); // TODO don't allocate
}
inline address
make_address(string_view __str)
{ return make_address(__str, __throw_on_error{"make_address"}); }
/// @}
/// ip::address I/O
template<typename _CharT, typename _Traits>
inline basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os, const address& __a)
{ return __os << __a.to_string(); }
/// ip::address_v4 I/O
template<typename _CharT, typename _Traits>
inline basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os, const address_v4& __a)
{ return __os << __a.to_string(); }
/// ip::address_v6 I/O
template<typename _CharT, typename _Traits>
inline basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os, const address_v6& __a)
{ return __os << __a.to_string(); }
template<typename> class basic_address_iterator; // not defined
template<> class basic_address_iterator<address_v4>
{
public:
// types:
using value_type = address_v4;
using difference_type = ptrdiff_t;
using pointer = const address_v4*;
using reference = const address_v4&;
using iterator_category = input_iterator_tag;
// constructors:
basic_address_iterator(const address_v4& __a) noexcept
: _M_address(__a) { }
// members:
reference operator*() const noexcept { return _M_address; }
pointer operator->() const noexcept { return &_M_address; }
basic_address_iterator&
operator++() noexcept
{
_M_address = value_type(_M_address.to_uint() + 1);
return *this;
}
basic_address_iterator operator++(int) noexcept
{
auto __tmp = *this;
++*this;
return __tmp;
}
basic_address_iterator& operator--() noexcept
{
_M_address = value_type(_M_address.to_uint() - 1);
return *this;
}
basic_address_iterator
operator--(int) noexcept
{
auto __tmp = *this;
--*this;
return __tmp;
}
bool
operator==(const basic_address_iterator& __rhs) const noexcept
{ return _M_address == __rhs._M_address; }
bool
operator!=(const basic_address_iterator& __rhs) const noexcept
{ return _M_address != __rhs._M_address; }
private:
address_v4 _M_address;
};
using address_v4_iterator = basic_address_iterator<address_v4>;
template<> class basic_address_iterator<address_v6>
{
public:
// types:
using value_type = address_v6;
using difference_type = ptrdiff_t;
using pointer = const address_v6*;
using reference = const address_v6&;
using iterator_category = input_iterator_tag;
// constructors:
basic_address_iterator(const address_v6& __a) noexcept
: _M_address(__a) { }
// members:
reference operator*() const noexcept { return _M_address; }
pointer operator->() const noexcept { return &_M_address; }
basic_address_iterator&
operator++() noexcept; // TODO
basic_address_iterator
operator++(int) noexcept
{
auto __tmp = *this;
++*this;
return __tmp;
}
basic_address_iterator&
operator--() noexcept; // TODO
basic_address_iterator
operator--(int) noexcept
{
auto __tmp = *this;
--*this;
return __tmp;
}
bool
operator==(const basic_address_iterator& __rhs) const noexcept
{ return _M_address == __rhs._M_address; }
bool
operator!=(const basic_address_iterator& __rhs) const noexcept
{ return _M_address != __rhs._M_address; }
private:
address_v6 _M_address;
};
using address_v6_iterator = basic_address_iterator<address_v6>;
template<typename> class basic_address_range; // not defined
/** An IPv6 address range.
* @{
*/
template<> class basic_address_range<address_v4>
{
public:
// types:
using iterator = basic_address_iterator<address_v4>;
// constructors:
basic_address_range() noexcept : _M_begin({}), _M_end({}) { }
basic_address_range(const address_v4& __first,
const address_v4& __last) noexcept
: _M_begin(__first), _M_end(__last) { }
// members:
iterator begin() const noexcept { return _M_begin; }
iterator end() const noexcept { return _M_end; }
_GLIBCXX_NODISCARD bool empty() const noexcept { return _M_begin == _M_end; }
size_t
size() const noexcept { return _M_end->to_uint() - _M_begin->to_uint(); }
iterator
find(const address_v4& __addr) const noexcept
{
if (*_M_begin <= __addr && __addr < *_M_end)
return iterator{__addr};
return end();
}
private:
iterator _M_begin;
iterator _M_end;
};
using address_v4_range = basic_address_range<address_v4>;
/// @}
/** An IPv6 address range.
* @{
*/
template<> class basic_address_range<address_v6>
{
public:
// types:
using iterator = basic_address_iterator<address_v6>;
// constructors:
basic_address_range() noexcept : _M_begin({}), _M_end({}) { }
basic_address_range(const address_v6& __first,
const address_v6& __last) noexcept
: _M_begin(__first), _M_end(__last) { }
// members:
iterator begin() const noexcept { return _M_begin; }
iterator end() const noexcept { return _M_end; }
_GLIBCXX_NODISCARD bool empty() const noexcept { return _M_begin == _M_end; }
iterator
find(const address_v6& __addr) const noexcept
{
if (*_M_begin <= __addr && __addr < *_M_end)
return iterator{__addr};
return end();
}
private:
iterator _M_begin;
iterator _M_end;
};
using address_v6_range = basic_address_range<address_v6>;
/// @}
bool
operator==(const network_v4& __a, const network_v4& __b) noexcept;
bool
operator==(const network_v6& __a, const network_v6& __b) noexcept;
/// An IPv4 network address.
class network_v4
{
public:
// constructors:
constexpr network_v4() noexcept : _M_addr(), _M_prefix_len(0) { }
constexpr
network_v4(const address_v4& __addr, int __prefix_len)
: _M_addr(__addr), _M_prefix_len(__prefix_len)
{
if (_M_prefix_len < 0 || _M_prefix_len > 32)
__throw_out_of_range("network_v4: invalid prefix length");
}
constexpr
network_v4(const address_v4& __addr, const address_v4& __mask)
: _M_addr(__addr), _M_prefix_len(__builtin_popcount(__mask.to_uint()))
{
if (_M_prefix_len != 0)
{
address_v4::uint_type __mask_uint = __mask.to_uint();
if (__builtin_ctz(__mask_uint) != (32 - _M_prefix_len))
__throw_invalid_argument("network_v4: invalid mask");
if ((__mask_uint & 0x80000000) == 0)
__throw_invalid_argument("network_v4: invalid mask");
}
}
// members:
constexpr address_v4 address() const noexcept { return _M_addr; }
constexpr int prefix_length() const noexcept { return _M_prefix_len; }
constexpr address_v4
netmask() const noexcept
{
address_v4::uint_type __val = address_v4::broadcast().to_uint();
__val >>= (32 - _M_prefix_len);
__val <<= (32 - _M_prefix_len);
return address_v4{__val};
}
constexpr address_v4
network() const noexcept
{ return address_v4{_M_addr.to_uint() & netmask().to_uint()}; }
constexpr address_v4
broadcast() const noexcept
{ return address_v4{_M_addr.to_uint() | ~netmask().to_uint()}; }
address_v4_range
hosts() const noexcept
{
if (is_host())
return { address(), *++address_v4_iterator(address()) };
return { network(), broadcast() };
}
constexpr network_v4
canonical() const noexcept
{ return network_v4(network(), prefix_length()); }
constexpr bool is_host() const noexcept { return _M_prefix_len == 32; }
constexpr bool
is_subnet_of(const network_v4& __other) const noexcept
{
if (__other.prefix_length() < prefix_length())
{
network_v4 __net(address(), __other.prefix_length());
return __net.canonical() == __other.canonical();
}
return false;
}
template<typename _Allocator = allocator<char>>
__string_with<_Allocator>
to_string(const _Allocator& __a = _Allocator()) const
{
return address().to_string(__a) + '/'
+ std::to_string(prefix_length());
}
private:
address_v4 _M_addr;
int _M_prefix_len;
};
/// An IPv6 network address.
class network_v6
{
public:
// constructors:
constexpr network_v6() noexcept : _M_addr(), _M_prefix_len(0) { }
constexpr
network_v6(const address_v6& __addr, int __prefix_len)
: _M_addr(__addr), _M_prefix_len(__prefix_len)
{
if (_M_prefix_len < 0 || _M_prefix_len > 128)
__throw_out_of_range("network_v6: invalid prefix length");
}
// members:
constexpr address_v6 address() const noexcept { return _M_addr; }
constexpr int prefix_length() const noexcept { return _M_prefix_len; }
constexpr address_v6 network() const noexcept; // TODO
address_v6_range
hosts() const noexcept
{
if (is_host())
return { address(), *++address_v6_iterator(address()) };
return {}; // { network(), XXX broadcast() XXX }; // TODO
}
constexpr network_v6
canonical() const noexcept
{ return network_v6{network(), prefix_length()}; }
constexpr bool is_host() const noexcept { return _M_prefix_len == 128; }
constexpr bool
is_subnet_of(const network_v6& __other) const noexcept
{
if (__other.prefix_length() < prefix_length())
{
network_v6 __net(address(), __other.prefix_length());
return __net.canonical() == __other.canonical();
}
return false;
}
template<typename _Allocator = allocator<char>>
__string_with<_Allocator>
to_string(const _Allocator& __a = _Allocator()) const
{
return address().to_string(__a) + '/'
+ std::to_string(prefix_length());
}
private:
address_v6 _M_addr;
int _M_prefix_len;
};
/** ip::network_v4 comparisons
* @{
*/
inline bool
operator==(const network_v4& __a, const network_v4& __b) noexcept
{
return __a.address() == __b.address()
&& __a.prefix_length() == __b.prefix_length();
}
inline bool
operator!=(const network_v4& __a, const network_v4& __b) noexcept
{ return !(__a == __b); }
/// @}
/** ip::network_v6 comparisons
* @{
*/
inline bool
operator==(const network_v6& __a, const network_v6& __b) noexcept
{
return __a.address() == __b.address()
&& __a.prefix_length() == __b.prefix_length();
}
inline bool
operator!=(const network_v6& __a, const network_v6& __b) noexcept
{ return !(__a == __b); }
/// @}
/** ip::network_v4 creation
* @{
*/
inline network_v4
make_network_v4(const address_v4& __a, int __prefix_len)
{ return network_v4{__a, __prefix_len}; }
inline network_v4
make_network_v4(const address_v4& __a, const address_v4& __mask)
{ return network_v4{ __a, __mask }; }
network_v4 make_network_v4(const char*, error_code&) noexcept; // TODO
inline network_v4
make_network_v4(const char* __str)
{ return make_network_v4(__str, __throw_on_error{"make_network_v4"}); }
network_v4 make_network_v4(const string&, error_code&) noexcept; // TODO
inline network_v4
make_network_v4(const string& __str)
{ return make_network_v4(__str, __throw_on_error{"make_network_v4"}); }
network_v4 make_network_v4(string_view, error_code&) noexcept; // TODO
inline network_v4
make_network_v4(string_view __str)
{ return make_network_v4(__str, __throw_on_error{"make_network_v4"}); }
/// @}
/** ip::network_v6 creation
* @{
*/
inline network_v6
make_network_v6(const address_v6& __a, int __prefix_len)
{ return network_v6{__a, __prefix_len}; }
network_v6 make_network_v6(const char*, error_code&) noexcept; // TODO
inline network_v6
make_network_v6(const char* __str)
{ return make_network_v6(__str, __throw_on_error{"make_network_v6"}); }
network_v6 make_network_v6(const string&, error_code&) noexcept; // TODO
inline network_v6
make_network_v6(const string& __str)
{ return make_network_v6(__str, __throw_on_error{"make_network_v6"}); }
network_v6 make_network_v6(string_view, error_code&) noexcept; // TODO
inline network_v6
make_network_v6(string_view __str)
{ return make_network_v6(__str, __throw_on_error{"make_network_v6"}); }
/// @}
/// ip::network_v4 I/O
template<typename _CharT, typename _Traits>
inline basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os, const network_v4& __net)
{ return __os << __net.to_string(); }
/// ip::network_v6 I/O
template<typename _CharT, typename _Traits>
inline basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os, const network_v6& __net)
{ return __os << __net.to_string(); }
/// An IP endpoint.
template<typename _InternetProtocol>
class basic_endpoint
{
public:
// types:
using protocol_type = _InternetProtocol;
// constructors:
constexpr
basic_endpoint() noexcept : _M_data()
{ _M_data._M_v4.sin_family = protocol_type::v4().family(); }
constexpr
basic_endpoint(const protocol_type& __proto,
port_type __port_num) noexcept
: _M_data()
{
__glibcxx_assert(__proto == protocol_type::v4()
|| __proto == protocol_type::v6());
_M_data._M_v4.sin_family = __proto.family();
_M_data._M_v4.sin_port = address_v4::_S_hton_16(__port_num);
}
constexpr
basic_endpoint(const ip::address& __addr,
port_type __port_num) noexcept
: _M_data()
{
if (__addr.is_v4())
{
_M_data._M_v4.sin_family = protocol_type::v4().family();
_M_data._M_v4.sin_port = address_v4::_S_hton_16(__port_num);
_M_data._M_v4.sin_addr.s_addr = __addr._M_v4._M_addr;
}
else
{
_M_data._M_v6 = {};
_M_data._M_v6.sin6_family = protocol_type::v6().family();
_M_data._M_v6.sin6_port = address_v4::_S_hton_16(__port_num);
__builtin_memcpy(_M_data._M_v6.sin6_addr.s6_addr,
__addr._M_v6._M_bytes.data(), 16);
_M_data._M_v6.sin6_scope_id = __addr._M_v6._M_scope_id;
}
}
// members:
constexpr protocol_type protocol() const noexcept
{
return _M_is_v6() ? protocol_type::v6() : protocol_type::v4();
}
constexpr ip::address
address() const noexcept
{
ip::address __addr;
if (_M_is_v6())
{
__builtin_memcpy(&__addr._M_v6._M_bytes,
_M_data._M_v6.sin6_addr.s6_addr, 16);
__addr._M_is_v4 = false;
}
else
{
__builtin_memcpy(&__addr._M_v4._M_addr,
&_M_data._M_v4.sin_addr.s_addr, 4);
}
return __addr;
}
void
address(const ip::address& __addr) noexcept
{
if (__addr.is_v6())
{
_M_data._M_v6 = {};
_M_data._M_v6.sin6_family = protocol_type::v6().family();
__builtin_memcpy(_M_data._M_v6.sin6_addr.s6_addr,
__addr._M_v6._M_bytes.data(), 16);
_M_data._M_v6.sin6_scope_id = __addr._M_v6._M_scope_id;
}
else
{
_M_data._M_v4.sin_family = protocol_type::v4().family();
_M_data._M_v4.sin_addr.s_addr = __addr._M_v4._M_addr;
}
}
constexpr port_type
port() const noexcept
{ return address_v4::_S_ntoh_16(_M_data._M_v4.sin_port); }
void
port(port_type __port_num) noexcept
{ _M_data._M_v4.sin_port = address_v4::_S_hton_16(__port_num); }
void* data() noexcept { return &_M_data; }
const void* data() const noexcept { return &_M_data; }
constexpr size_t size() const noexcept
{ return _M_is_v6() ? sizeof(sockaddr_in6) : sizeof(sockaddr_in); }
void
resize(size_t __s)
{
if (__s != size())
__throw_length_error("net::ip::basic_endpoint::resize");
}
constexpr size_t capacity() const noexcept { return sizeof(_M_data); }
private:
union
{
sockaddr_in _M_v4;
sockaddr_in6 _M_v6;
} _M_data;
constexpr bool _M_is_v6() const noexcept
{ return _M_data._M_v4.sin_family == AF_INET6; }
};
/** basic_endpoint comparisons
* @{
*/
template<typename _InternetProtocol>
inline bool
operator==(const basic_endpoint<_InternetProtocol>& __a,
const basic_endpoint<_InternetProtocol>& __b)
{ return __a.address() == __b.address() && __a.port() == __b.port(); }
template<typename _InternetProtocol>
inline bool
operator!=(const basic_endpoint<_InternetProtocol>& __a,
const basic_endpoint<_InternetProtocol>& __b)
{ return !(__a == __b); }
template<typename _InternetProtocol>
inline bool
operator< (const basic_endpoint<_InternetProtocol>& __a,
const basic_endpoint<_InternetProtocol>& __b)
{
return __a.address() < __b.address()
|| (!(__b.address() < __a.address()) && __a.port() < __b.port());
}
template<typename _InternetProtocol>
inline bool
operator> (const basic_endpoint<_InternetProtocol>& __a,
const basic_endpoint<_InternetProtocol>& __b)
{ return __b < __a; }
template<typename _InternetProtocol>
inline bool
operator<=(const basic_endpoint<_InternetProtocol>& __a,
const basic_endpoint<_InternetProtocol>& __b)
{ return !(__b < __a); }
template<typename _InternetProtocol>
inline bool
operator>=(const basic_endpoint<_InternetProtocol>& __a,
const basic_endpoint<_InternetProtocol>& __b)
{ return !(__a < __b); }
/// @}
/// basic_endpoint I/O
template<typename _CharT, typename _Traits, typename _InternetProtocol>
inline basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os,
const basic_endpoint<_InternetProtocol>& __ep)
{
basic_ostringstream<_CharT, _Traits> __ss;
if (__ep.protocol()
== basic_endpoint<_InternetProtocol>::protocol_type::v6())
__ss << '[' << __ep.address() << ']';
else
__ss << __ep.address();
__ss << ':' << __ep.port();
__os << __ss.str();
return __os;
}
/** Type representing a single result of name/address resolution.
* @{
*/
template<typename _InternetProtocol>
class basic_resolver_entry
{
public:
// types:
using protocol_type = _InternetProtocol;
using endpoint_type = typename _InternetProtocol::endpoint;
// constructors:
basic_resolver_entry() { }
basic_resolver_entry(const endpoint_type& __ep,
string_view __h, string_view __s)
: _M_ep(__ep), _M_host(__h), _M_svc(__s) { }
// members:
endpoint_type endpoint() const { return _M_ep; }
operator endpoint_type() const { return _M_ep; }
template<typename _Allocator = allocator<char>>
__string_with<_Allocator>
host_name(const _Allocator& __a = _Allocator()) const
{ return { _M_host, __a }; }
template<typename _Allocator = allocator<char>>
__string_with<_Allocator>
service_name(const _Allocator& __a = _Allocator()) const
{ return { _M_svc, __a }; }
private:
basic_endpoint<_InternetProtocol> _M_ep;
string _M_host;
string _M_svc;
};
template<typename _InternetProtocol>
inline bool
operator==(const basic_resolver_entry<_InternetProtocol>& __a,
const basic_resolver_entry<_InternetProtocol>& __b)
{
return __a.endpoint() == __b.endpoint()
&& __a.host_name() == __b.host_name()
&& __a.service_name() == __b.service_name();
}
template<typename _InternetProtocol>
inline bool
operator!=(const basic_resolver_entry<_InternetProtocol>& __a,
const basic_resolver_entry<_InternetProtocol>& __b)
{ return !(__a == __b); }
/// @}
/** Base class defining flags for name/address resolution.
* @{
*/
class resolver_base
{
public:
enum flags : int { };
static constexpr flags passive = (flags)AI_PASSIVE;
static constexpr flags canonical_name = (flags)AI_CANONNAME;
static constexpr flags numeric_host = (flags)AI_NUMERICHOST;
#ifdef AI_NUMERICSERV
static constexpr flags numeric_service = (flags)AI_NUMERICSERV;
#endif
#ifdef AI_V4MAPPED
static constexpr flags v4_mapped = (flags)AI_V4MAPPED;
#endif
#ifdef AI_ALL
static constexpr flags all_matching = (flags)AI_ALL;
#endif
#ifdef AI_ADDRCONFIG
static constexpr flags address_configured = (flags)AI_ADDRCONFIG;
#endif
friend constexpr flags
operator&(flags __f1, flags __f2) noexcept
{ return flags( int(__f1) & int(__f2) ); }
friend constexpr flags
operator|(flags __f1, flags __f2) noexcept
{ return flags( int(__f1) | int(__f2) ); }
friend constexpr flags
operator^(flags __f1, flags __f2) noexcept
{ return flags( int(__f1) ^ int(__f2) ); }
friend constexpr flags
operator~(flags __f) noexcept
{ return flags( ~int(__f) ); }
friend constexpr flags&
operator&=(flags& __f1, flags __f2) noexcept
{ return __f1 = (__f1 & __f2); }
friend constexpr flags&
operator|=(flags& __f1, flags __f2) noexcept
{ return __f1 = (__f1 | __f2); }
friend constexpr flags&
operator^=(flags& __f1, flags __f2) noexcept
{ return __f1 = (__f1 ^ __f2); }
protected:
resolver_base() = default;
~resolver_base() = default;
};
// TODO define resolver_base::flags static constants in .so for C++14 mode
/// @}
/** Container for results of name/address resolution.
* @{
*/
template<typename _InternetProtocol>
class basic_resolver_results
{
public:
// types:
using protocol_type = _InternetProtocol;
using endpoint_type = typename protocol_type::endpoint;
using value_type = basic_resolver_entry<protocol_type>;
using const_reference = const value_type&;
using reference = value_type&;
using const_iterator = typename forward_list<value_type>::const_iterator;
using iterator = const_iterator;
using difference_type = ptrdiff_t;
using size_type = size_t;
// construct / copy / destroy:
basic_resolver_results() = default;
basic_resolver_results(const basic_resolver_results&) = default;
basic_resolver_results(basic_resolver_results&&) noexcept = default;
basic_resolver_results&
operator=(const basic_resolver_results&) = default;
basic_resolver_results&
operator=(basic_resolver_results&&) = default;
~basic_resolver_results() = default;
// size:
size_type size() const noexcept { return _M_size; }
size_type max_size() const noexcept { return _M_results.max_size(); }
_GLIBCXX_NODISCARD bool
empty() const noexcept { return _M_results.empty(); }
// element access:
const_iterator begin() const { return _M_results.begin(); }
const_iterator end() const { return _M_results.end(); }
const_iterator cbegin() const { return _M_results.begin(); }
const_iterator cend() const { return _M_results.end(); }
// swap:
void
swap(basic_resolver_results& __that) noexcept
{ _M_results.swap(__that._M_results); }
private:
friend class basic_resolver<protocol_type>;
basic_resolver_results(string_view, string_view, resolver_base::flags,
error_code&, protocol_type* = nullptr);
basic_resolver_results(const endpoint_type&, error_code&);
forward_list<value_type> _M_results;
size_t _M_size = 0;
};
template<typename _InternetProtocol>
inline bool
operator==(const basic_resolver_results<_InternetProtocol>& __a,
const basic_resolver_results<_InternetProtocol>& __b)
{
return __a.size() == __b.size()
&& std::equal(__a.begin(), __a.end(), __b.begin());
}
template<typename _InternetProtocol>
inline bool
operator!=(const basic_resolver_results<_InternetProtocol>& __a,
const basic_resolver_results<_InternetProtocol>& __b)
{ return !(__a == __b); }
/// @}
/// Perform name/address resolution.
template<typename _InternetProtocol>
class basic_resolver : public resolver_base
{
public:
// types:
using executor_type = io_context::executor_type;
using protocol_type = _InternetProtocol;
using endpoint_type = typename _InternetProtocol::endpoint;
using results_type = basic_resolver_results<_InternetProtocol>;
// construct / copy / destroy:
explicit basic_resolver(io_context& __ctx) : _M_ctx(&__ctx) { }
basic_resolver(const basic_resolver&) = delete;
basic_resolver(basic_resolver&& __rhs) noexcept
: _M_ctx(__rhs._M_ctx)
{ } // TODO move state/tasks etc.
~basic_resolver() { cancel(); }
basic_resolver& operator=(const basic_resolver&) = delete;
basic_resolver& operator=(basic_resolver&& __rhs)
{
cancel();
_M_ctx = __rhs._M_ctx;
// TODO move state/tasks etc.
return *this;
}
// basic_resolver operations:
executor_type get_executor() noexcept { return _M_ctx->get_executor(); }
void cancel() { } // TODO
results_type
resolve(string_view __host_name, string_view __service_name)
{
return resolve(__host_name, __service_name, resolver_base::flags(),
__throw_on_error{"basic_resolver::resolve"});
}
results_type
resolve(string_view __host_name, string_view __service_name,
error_code& __ec)
{
return resolve(__host_name, __service_name, resolver_base::flags(),
__ec);
}
results_type
resolve(string_view __host_name, string_view __service_name, flags __f)
{
return resolve(__host_name, __service_name, __f,
__throw_on_error{"basic_resolver::resolve"});
}
results_type
resolve(string_view __host_name, string_view __service_name, flags __f,
error_code& __ec)
{ return {__host_name, __service_name, __f, __ec}; }
template<typename _CompletionToken>
__deduced_t<_CompletionToken, void(error_code, results_type)>
async_resolve(string_view __host_name, string_view __service_name,
_CompletionToken&& __token)
{
return async_resolve(__host_name, __service_name,
resolver_base::flags(),
forward<_CompletionToken>(__token));
}
template<typename _CompletionToken>
__deduced_t<_CompletionToken, void(error_code, results_type)>
async_resolve(string_view __host_name, string_view __service_name,
flags __f, _CompletionToken&& __token); // TODO
results_type
resolve(const protocol_type& __protocol,
string_view __host_name, string_view __service_name)
{
return resolve(__protocol, __host_name, __service_name,
resolver_base::flags(),
__throw_on_error{"basic_resolver::resolve"});
}
results_type
resolve(const protocol_type& __protocol,
string_view __host_name, string_view __service_name,
error_code& __ec)
{
return resolve(__protocol, __host_name, __service_name,
resolver_base::flags(), __ec);
}
results_type
resolve(const protocol_type& __protocol,
string_view __host_name, string_view __service_name, flags __f)
{
return resolve(__protocol, __host_name, __service_name, __f,
__throw_on_error{"basic_resolver::resolve"});
}
results_type
resolve(const protocol_type& __protocol,
string_view __host_name, string_view __service_name,
flags __f, error_code& __ec)
{ return {__host_name, __service_name, __f, __ec, &__protocol}; }
template<typename _CompletionToken>
__deduced_t<_CompletionToken, void(error_code, results_type)>
async_resolve(const protocol_type& __protocol,
string_view __host_name, string_view __service_name,
_CompletionToken&& __token)
{
return async_resolve(__protocol, __host_name, __service_name,
resolver_base::flags(),
forward<_CompletionToken>(__token));
}
template<typename _CompletionToken>
__deduced_t<_CompletionToken, void(error_code, results_type)>
async_resolve(const protocol_type& __protocol,
string_view __host_name, string_view __service_name,
flags __f, _CompletionToken&& __token); // TODO
results_type
resolve(const endpoint_type& __ep)
{ return resolve(__ep, __throw_on_error{"basic_resolver::resolve"}); }
results_type
resolve(const endpoint_type& __ep, error_code& __ec)
{ return { __ep, __ec }; }
template<typename _CompletionToken> // TODO
__deduced_t<_CompletionToken, void(error_code, results_type)>
async_resolve(const endpoint_type& __ep, _CompletionToken&& __token);
private:
io_context* _M_ctx;
};
/// Private constructor to synchronously resolve host and service names.
template<typename _InternetProtocol>
basic_resolver_results<_InternetProtocol>::
basic_resolver_results(string_view __host_name, string_view __service_name,
resolver_base::flags __f, error_code& __ec,
protocol_type* __protocol)
{
#ifdef _GLIBCXX_HAVE_NETDB_H
string __host;
const char* __h = __host_name.data()
? (__host = __host_name.to_string()).c_str()
: nullptr;
string __svc;
const char* __s = __service_name.data()
? (__svc = __service_name.to_string()).c_str()
: nullptr;
::addrinfo __hints{ };
__hints.ai_flags = static_cast<int>(__f);
if (__protocol)
{
__hints.ai_family = __protocol->family();
__hints.ai_socktype = __protocol->type();
__hints.ai_protocol = __protocol->protocol();
}
else
{
auto __p = endpoint_type{}.protocol();
__hints.ai_family = AF_UNSPEC;
__hints.ai_socktype = __p.type();
__hints.ai_protocol = __p.protocol();
}
struct __scoped_addrinfo
{
~__scoped_addrinfo() { if (_M_p) ::freeaddrinfo(_M_p); }
::addrinfo* _M_p = nullptr;
} __sai;
if (int __err = ::getaddrinfo(__h, __s, &__hints, &__sai._M_p))
{
__ec = ip::__make_resolver_error_code(__err, errno);
return;
}
__ec.clear();
endpoint_type __ep;
auto __tail = _M_results.before_begin();
for (auto __ai = __sai._M_p; __ai != nullptr; __ai = __ai->ai_next)
{
if (__ai->ai_family == AF_INET || __ai->ai_family == AF_INET6)
{
if (__ai->ai_addrlen <= __ep.capacity())
__builtin_memcpy(__ep.data(), __ai->ai_addr, __ai->ai_addrlen);
__ep.resize(__ai->ai_addrlen);
__tail = _M_results.emplace_after(__tail, __ep, __host, __svc);
_M_size++;
}
}
#else
__ec = std::make_error_code(errc::operation_not_supported);
#endif
}
/// Private constructor to synchronously resolve an endpoint.
template<typename _InternetProtocol>
basic_resolver_results<_InternetProtocol>::
basic_resolver_results(const endpoint_type& __ep, error_code& __ec)
{
#ifdef _GLIBCXX_HAVE_NETDB_H
char __host_name[1025]; // glibc NI_MAXHOST
char __service_name[32]; // glibc NI_MAXSERV
int __flags = 0;
if (__ep.protocol().type() == SOCK_DGRAM)
__flags |= NI_DGRAM;
auto __sa = static_cast<const sockaddr*>(__ep.data());
int __err = ::getnameinfo(__sa, __ep.size(),
__host_name, sizeof(__host_name),
__service_name, sizeof(__service_name),
__flags);
if (__err)
{
__flags |= NI_NUMERICSERV;
__err = ::getnameinfo(__sa, __ep.size(),
__host_name, sizeof(__host_name),
__service_name, sizeof(__service_name),
__flags);
}
if (__err)
__ec = ip::__make_resolver_error_code(__err, errno);
else
{
__ec.clear();
_M_results.emplace_front(__ep, __host_name, __service_name);
_M_size = 1;
}
#else
__ec = std::make_error_code(errc::operation_not_supported);
#endif
}
/** The name of the local host.
* @{
*/
template<typename _Allocator>
__string_with<_Allocator>
host_name(const _Allocator& __a, error_code& __ec)
{
#ifdef HOST_NAME_MAX
constexpr size_t __maxlen = HOST_NAME_MAX;
#else
constexpr size_t __maxlen = 256;
#endif
char __buf[__maxlen + 1];
if (::gethostname(__buf, __maxlen) == -1)
__ec.assign(errno, generic_category());
__buf[__maxlen] = '\0';
return { __buf, __a };
}
template<typename _Allocator>
inline __string_with<_Allocator>
host_name(const _Allocator& __a)
{ return host_name(__a, __throw_on_error{"host_name"}); }
inline string
host_name(error_code& __ec)
{ return host_name(std::allocator<char>{}, __ec); }
inline string
host_name()
{ return host_name(std::allocator<char>{}, __throw_on_error{"host_name"}); }
/// @}
#ifdef IPPROTO_TCP
/// The TCP byte-stream protocol.
class tcp
{
public:
// types:
using endpoint = basic_endpoint<tcp>; ///< A TCP endpoint.
using resolver = basic_resolver<tcp>; ///< A TCP resolver.
using socket = basic_stream_socket<tcp>; ///< A TCP socket.
using acceptor = basic_socket_acceptor<tcp>; ///< A TCP acceptor.
using iostream = basic_socket_iostream<tcp>; /// A TCP iostream.
#ifdef TCP_NODELAY
/// Disable coalescing of small segments (i.e. the Nagle algorithm).
struct no_delay : __sockopt_crtp<no_delay, bool>
{
using __sockopt_crtp::__sockopt_crtp;
using __sockopt_crtp::operator=;
static const int _S_level = IPPROTO_TCP;
static const int _S_name = TCP_NODELAY;
};
#endif
// static members:
/// A protocol object representing IPv4 TCP.
static constexpr tcp v4() noexcept { return tcp(AF_INET); }
/// A protocol object representing IPv6 TCP.
static constexpr tcp v6() noexcept { return tcp(AF_INET6); }
tcp() = delete;
constexpr int family() const noexcept { return _M_family; }
constexpr int type() const noexcept { return SOCK_STREAM; }
constexpr int protocol() const noexcept { return IPPROTO_TCP; }
private:
constexpr explicit tcp(int __family) : _M_family(__family) { }
int _M_family;
};
/** tcp comparisons
* @{
*/
constexpr bool
operator==(const tcp& __a, const tcp& __b) noexcept
{ return __a.family() == __b.family(); }
constexpr bool
operator!=(const tcp& __a, const tcp& __b) noexcept
{ return !(__a == __b); }
/// @}
#endif // IPPROTO_TCP
#ifdef IPPROTO_UDP
/// The UDP datagram protocol.
class udp
{
public:
// types:
using endpoint = basic_endpoint<udp>;
using resolver = basic_resolver<udp>;
using socket = basic_datagram_socket<udp>;
// static members:
static constexpr udp v4() noexcept { return udp(AF_INET); }
static constexpr udp v6() noexcept { return udp(AF_INET6); }
udp() = delete;
constexpr int family() const noexcept { return _M_family; }
constexpr int type() const noexcept { return SOCK_DGRAM; }
constexpr int protocol() const noexcept { return IPPROTO_UDP; }
private:
constexpr explicit udp(int __family) : _M_family(__family) { }
int _M_family;
};
/** udp comparisons
* @{
*/
constexpr bool
operator==(const udp& __a, const udp& __b) noexcept
{ return __a.family() == __b.family(); }
constexpr bool
operator!=(const udp& __a, const udp& __b) noexcept
{ return !(__a == __b); }
/// @}
#endif // IPPROTO_UDP
#if defined IPPROTO_IP && defined IPPROTO_IPV6
/// Restrict a socket created for an IPv6 protocol to IPv6 only.
class v6_only : public __sockopt_crtp<v6_only, bool>
{
public:
using __sockopt_crtp::__sockopt_crtp;
using __sockopt_crtp::operator=;
private:
friend __sockopt_crtp<v6_only, bool>;
static const int _S_level = IPPROTO_IPV6;
static const int _S_name = IPV6_V6ONLY;
};
namespace unicast
{
/// Set the default number of hops (TTL) for outbound datagrams.
class hops : public __sockopt_crtp<hops>
{
public:
using __sockopt_crtp::__sockopt_crtp;
using __sockopt_crtp::operator=;
template<typename _Protocol>
int
level(const _Protocol& __p) const noexcept
{ return __p.family() == AF_INET6 ? IPPROTO_IPV6 : IPPROTO_IP; }
template<typename _Protocol>
int
name(const _Protocol& __p) const noexcept
{ return __p.family() == AF_INET6 ? IPV6_UNICAST_HOPS : IP_TTL; }
};
} // namespace unicast
namespace multicast
{
class __mcastopt
{
public:
explicit
__mcastopt(const address& __grp) noexcept
: __mcastopt(__grp.is_v4() ? __mcastopt(__grp.to_v4()) : __mcastopt(__grp.to_v6()))
{ }
explicit
__mcastopt(const address_v4& __grp,
const address_v4& __iface = address_v4::any()) noexcept
{
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
_M_v4.imr_multiaddr.s_addr = __grp.to_uint();
_M_v4.imr_interface.s_addr = __iface.to_uint();
#else
_M_v4.imr_multiaddr.s_addr = __builtin_bswap32(__grp.to_uint());
_M_v4.imr_interface.s_addr = __builtin_bswap32(__iface.to_uint());
#endif
}
explicit
__mcastopt(const address_v6& __grp, unsigned int __iface = 0) noexcept
{
const auto __addr = __grp.to_bytes();
__builtin_memcpy(_M_v6.ipv6mr_multiaddr.s6_addr, __addr.data(), 16);
_M_v6.ipv6mr_interface = __iface;
}
template<typename _Protocol>
int
level(const _Protocol& __p) const noexcept
{ return __p.family() == AF_INET6 ? IPPROTO_IPV6 : IPPROTO_IP; }
template<typename _Protocol>
const void*
data(const _Protocol& __p) const noexcept
{ return __p.family() == AF_INET6 ? &_M_v6 : &_M_v4; }
template<typename _Protocol>
size_t
size(const _Protocol& __p) const noexcept
{ return __p.family() == AF_INET6 ? sizeof(_M_v6) : sizeof(_M_v4); }
private:
ipv6_mreq _M_v6 = {};
ip_mreq _M_v4 = {};
};
/// Request that a socket joins a multicast group.
class join_group : private __mcastopt
{
public:
using __mcastopt::__mcastopt;
using __mcastopt::level;
using __mcastopt::data;
using __mcastopt::size;
template<typename _Protocol>
int
name(const _Protocol& __p) const noexcept
{
if (__p.family() == AF_INET6)
return IPV6_JOIN_GROUP;
return IP_ADD_MEMBERSHIP;
}
};
/// Request that a socket leaves a multicast group.
class leave_group : private __mcastopt
{
public:
using __mcastopt::__mcastopt;
using __mcastopt::level;
using __mcastopt::data;
using __mcastopt::size;
template<typename _Protocol>
int
name(const _Protocol& __p) const noexcept
{
if (__p.family() == AF_INET6)
return IPV6_LEAVE_GROUP;
return IP_DROP_MEMBERSHIP;
}
};
/// Specify the network interface for outgoing multicast datagrams.
class outbound_interface
{
public:
explicit
outbound_interface(const address_v4& __v4) noexcept
{
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
_M_v4.s_addr = __v4.to_uint();
#else
_M_v4.s_addr = __builtin_bswap32(__v4.to_uint());
#endif
}
explicit
outbound_interface(unsigned int __v6) noexcept
: _M_v4(), _M_v6(__v6)
{ }
template<typename _Protocol>
int
level(const _Protocol& __p) const noexcept
{ return __p.family() == AF_INET6 ? IPPROTO_IPV6 : IPPROTO_IP; }
template<typename _Protocol>
int
name(const _Protocol& __p) const noexcept
{
return __p.family() == AF_INET6
? IPV6_MULTICAST_IF : IP_MULTICAST_IF;
}
template<typename _Protocol>
const void*
data(const _Protocol& __p) const noexcept
{ return __p.family() == AF_INET6 ? &_M_v6 : &_M_v4; }
template<typename _Protocol>
size_t
size(const _Protocol& __p) const noexcept
{ return __p.family() == AF_INET6 ? sizeof(_M_v6) : sizeof(_M_v4); }
private:
in_addr _M_v4;
unsigned _M_v6 = 0;
};
/// Set the default number of hops (TTL) for outbound datagrams.
class hops : public __sockopt_crtp<hops>
{
public:
using __sockopt_crtp::__sockopt_crtp;
using __sockopt_crtp::operator=;
template<typename _Protocol>
int
level(const _Protocol& __p) const noexcept
{ return __p.family() == AF_INET6 ? IPPROTO_IPV6 : IPPROTO_IP; }
template<typename _Protocol>
int
name(const _Protocol& __p) const noexcept
{
return __p.family() == AF_INET6
? IPV6_MULTICAST_HOPS : IP_MULTICAST_TTL;
}
};
/// Set whether datagrams are delivered back to the local application.
class enable_loopback : public __sockopt_crtp<enable_loopback, bool>
{
public:
using __sockopt_crtp::__sockopt_crtp;
using __sockopt_crtp::operator=;
template<typename _Protocol>
int
level(const _Protocol& __p) const noexcept
{ return __p.family() == AF_INET6 ? IPPROTO_IPV6 : IPPROTO_IP; }
template<typename _Protocol>
int
name(const _Protocol& __p) const noexcept
{
return __p.family() == AF_INET6
? IPV6_MULTICAST_LOOP : IP_MULTICAST_LOOP;
}
};
} // namespace multicast
#endif // IPPROTO_IP && IPPROTO_IPV6
/// @}
} // namespace ip
} // namespace v1
} // namespace net
} // namespace experimental
template<>
struct is_error_condition_enum<experimental::net::v1::ip::resolver_errc>
: public true_type {};
// hash support
template<typename _Tp> struct hash;
template<>
struct hash<experimental::net::v1::ip::address>
: __hash_base<size_t, experimental::net::v1::ip::address>
{
size_t
operator()(const experimental::net::v1::ip::address& __a) const
{
if (__a.is_v4())
return _Hash_impl::hash(__a.to_v4());
else
return _Hash_impl::hash(__a.to_v6());
}
};
template<>
struct hash<experimental::net::v1::ip::address_v4>
: __hash_base<size_t, experimental::net::v1::ip::address_v4>
{
size_t
operator()(const experimental::net::v1::ip::address_v4& __a) const
{ return _Hash_impl::hash(__a.to_bytes()); }
};
template<> struct hash<experimental::net::v1::ip::address_v6>
: __hash_base<size_t, experimental::net::v1::ip::address_v6>
{
size_t
operator()(const experimental::net::v1::ip::address_v6& __a) const
{ return _Hash_impl::hash(__a.to_bytes()); }
};
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std
#endif // C++14
#endif // _GLIBCXX_EXPERIMENTAL_INTERNET