b8698a0f37
2009-11-25 H.J. Lu <hongjiu.lu@intel.com> * alias.c: Remove trailing white spaces. * alloc-pool.c: Likewise. * alloc-pool.h: Likewise. * attribs.c: Likewise. * auto-inc-dec.c: Likewise. * basic-block.h: Likewise. * bb-reorder.c: Likewise. * bt-load.c: Likewise. * builtins.c: Likewise. * builtins.def: Likewise. * c-common.c: Likewise. * c-common.h: Likewise. * c-cppbuiltin.c: Likewise. * c-decl.c: Likewise. * c-format.c: Likewise. * c-lex.c: Likewise. * c-omp.c: Likewise. * c-opts.c: Likewise. * c-parser.c: Likewise. * c-pretty-print.c: Likewise. * c-tree.h: Likewise. * c-typeck.c: Likewise. * caller-save.c: Likewise. * calls.c: Likewise. * cfg.c: Likewise. * cfganal.c: Likewise. * cfgexpand.c: Likewise. * cfghooks.c: Likewise. * cfghooks.h: Likewise. * cfglayout.c: Likewise. * cfgloop.c: Likewise. * cfgloop.h: Likewise. * cfgloopmanip.c: Likewise. * cfgrtl.c: Likewise. * cgraph.c: Likewise. * cgraph.h: Likewise. * cgraphbuild.c: Likewise. * cgraphunit.c: Likewise. * cif-code.def: Likewise. * collect2.c: Likewise. * combine.c: Likewise. * convert.c: Likewise. * coverage.c: Likewise. * crtstuff.c: Likewise. * cse.c: Likewise. * cselib.c: Likewise. * dbgcnt.c: Likewise. * dbgcnt.def: Likewise. * dbgcnt.h: Likewise. * dbxout.c: Likewise. * dce.c: Likewise. * ddg.c: Likewise. * ddg.h: Likewise. * defaults.h: Likewise. * df-byte-scan.c: Likewise. * df-core.c: Likewise. * df-problems.c: Likewise. * df-scan.c: Likewise. * df.h: Likewise. * dfp.c: Likewise. * diagnostic.c: Likewise. * diagnostic.h: Likewise. * dominance.c: Likewise. * domwalk.c: Likewise. * double-int.c: Likewise. * double-int.h: Likewise. * dse.c: Likewise. * dwarf2asm.c: Likewise. * dwarf2asm.h: Likewise. * dwarf2out.c: Likewise. * ebitmap.c: Likewise. * ebitmap.h: Likewise. * emit-rtl.c: Likewise. * et-forest.c: Likewise. * except.c: Likewise. * except.h: Likewise. * expmed.c: Likewise. * expr.c: Likewise. * expr.h: Likewise. * final.c: Likewise. * flags.h: Likewise. * fold-const.c: Likewise. * function.c: Likewise. * function.h: Likewise. * fwprop.c: Likewise. * gcc.c: Likewise. * gcov-dump.c: Likewise. * gcov-io.c: Likewise. * gcov-io.h: Likewise. * gcov.c: Likewise. * gcse.c: Likewise. * genattr.c: Likewise. * genattrtab.c: Likewise. * genautomata.c: Likewise. * genchecksum.c: Likewise. * genconfig.c: Likewise. * genflags.c: Likewise. * gengtype-parse.c: Likewise. * gengtype.c: Likewise. * gengtype.h: Likewise. * genmddeps.c: Likewise. * genmodes.c: Likewise. * genopinit.c: Likewise. * genpreds.c: Likewise. * gensupport.c: Likewise. * ggc-common.c: Likewise. * ggc-page.c: Likewise. * ggc-zone.c: Likewise. * ggc.h: Likewise. * gimple-iterator.c: Likewise. * gimple-low.c: Likewise. * gimple-pretty-print.c: Likewise. * gimple.c: Likewise. * gimple.def: Likewise. * gimple.h: Likewise. * gimplify.c: Likewise. * graphds.c: Likewise. * graphite-clast-to-gimple.c: Likewise. * gthr-nks.h: Likewise. * gthr-posix.c: Likewise. * gthr-posix.h: Likewise. * gthr-posix95.h: Likewise. * gthr-single.h: Likewise. * gthr-tpf.h: Likewise. * gthr-vxworks.h: Likewise. * gthr.h: Likewise. * haifa-sched.c: Likewise. * hard-reg-set.h: Likewise. * hooks.c: Likewise. * hooks.h: Likewise. * hosthooks.h: Likewise. * hwint.h: Likewise. * ifcvt.c: Likewise. * incpath.c: Likewise. * init-regs.c: Likewise. * integrate.c: Likewise. * ipa-cp.c: Likewise. * ipa-inline.c: Likewise. * ipa-prop.c: Likewise. * ipa-pure-const.c: Likewise. * ipa-reference.c: Likewise. * ipa-struct-reorg.c: Likewise. * ipa-struct-reorg.h: Likewise. * ipa-type-escape.c: Likewise. * ipa-type-escape.h: Likewise. * ipa-utils.c: Likewise. * ipa-utils.h: Likewise. * ipa.c: Likewise. * ira-build.c: Likewise. * ira-color.c: Likewise. * ira-conflicts.c: Likewise. * ira-costs.c: Likewise. * ira-emit.c: Likewise. * ira-int.h: Likewise. * ira-lives.c: Likewise. * ira.c: Likewise. * jump.c: Likewise. * lambda-code.c: Likewise. * lambda-mat.c: Likewise. * lambda-trans.c: Likewise. * lambda.h: Likewise. * langhooks.c: Likewise. * lcm.c: Likewise. * libgcov.c: Likewise. * lists.c: Likewise. * loop-doloop.c: Likewise. * loop-init.c: Likewise. * loop-invariant.c: Likewise. * loop-iv.c: Likewise. * loop-unroll.c: Likewise. * lower-subreg.c: Likewise. * lto-cgraph.c: Likewise. * lto-compress.c: Likewise. * lto-opts.c: Likewise. * lto-section-in.c: Likewise. * lto-section-out.c: Likewise. * lto-streamer-in.c: Likewise. * lto-streamer-out.c: Likewise. * lto-streamer.c: Likewise. * lto-streamer.h: Likewise. * lto-symtab.c: Likewise. * lto-wpa-fixup.c: Likewise. * matrix-reorg.c: Likewise. * mcf.c: Likewise. * mode-switching.c: Likewise. * modulo-sched.c: Likewise. * omega.c: Likewise. * omega.h: Likewise. * omp-low.c: Likewise. * optabs.c: Likewise. * optabs.h: Likewise. * opts-common.c: Likewise. * opts.c: Likewise. * params.def: Likewise. * params.h: Likewise. * passes.c: Likewise. * plugin.c: Likewise. * postreload-gcse.c: Likewise. * postreload.c: Likewise. * predict.c: Likewise. * predict.def: Likewise. * pretty-print.c: Likewise. * pretty-print.h: Likewise. * print-rtl.c: Likewise. * print-tree.c: Likewise. * profile.c: Likewise. * read-rtl.c: Likewise. * real.c: Likewise. * recog.c: Likewise. * reg-stack.c: Likewise. * regcprop.c: Likewise. * reginfo.c: Likewise. * regmove.c: Likewise. * regrename.c: Likewise. * regs.h: Likewise. * regstat.c: Likewise. * reload.c: Likewise. * reload1.c: Likewise. * resource.c: Likewise. * rtl.c: Likewise. * rtl.def: Likewise. * rtl.h: Likewise. * rtlanal.c: Likewise. * sbitmap.c: Likewise. * sched-deps.c: Likewise. * sched-ebb.c: Likewise. * sched-int.h: Likewise. * sched-rgn.c: Likewise. * sched-vis.c: Likewise. * sdbout.c: Likewise. * sel-sched-dump.c: Likewise. * sel-sched-dump.h: Likewise. * sel-sched-ir.c: Likewise. * sel-sched-ir.h: Likewise. * sel-sched.c: Likewise. * sel-sched.h: Likewise. * sese.c: Likewise. * sese.h: Likewise. * simplify-rtx.c: Likewise. * stack-ptr-mod.c: Likewise. * stmt.c: Likewise. * stor-layout.c: Likewise. * store-motion.c: Likewise. * stringpool.c: Likewise. * stub-objc.c: Likewise. * sync-builtins.def: Likewise. * target-def.h: Likewise. * target.h: Likewise. * targhooks.c: Likewise. * targhooks.h: Likewise. * timevar.c: Likewise. * tlink.c: Likewise. * toplev.c: Likewise. * toplev.h: Likewise. * tracer.c: Likewise. * tree-affine.c: Likewise. * tree-affine.h: Likewise. * tree-browser.def: Likewise. * tree-call-cdce.c: Likewise. * tree-cfg.c: Likewise. * tree-cfgcleanup.c: Likewise. * tree-chrec.c: Likewise. * tree-chrec.h: Likewise. * tree-complex.c: Likewise. * tree-data-ref.c: Likewise. * tree-data-ref.h: Likewise. * tree-dfa.c: Likewise. * tree-dump.c: Likewise. * tree-dump.h: Likewise. * tree-eh.c: Likewise. * tree-flow-inline.h: Likewise. * tree-flow.h: Likewise. * tree-if-conv.c: Likewise. * tree-inline.c: Likewise. * tree-into-ssa.c: Likewise. * tree-loop-distribution.c: Likewise. * tree-loop-linear.c: Likewise. * tree-mudflap.c: Likewise. * tree-nested.c: Likewise. * tree-nomudflap.c: Likewise. * tree-nrv.c: Likewise. * tree-object-size.c: Likewise. * tree-optimize.c: Likewise. * tree-outof-ssa.c: Likewise. * tree-parloops.c: Likewise. * tree-pass.h: Likewise. * tree-phinodes.c: Likewise. * tree-predcom.c: Likewise. * tree-pretty-print.c: Likewise. * tree-profile.c: Likewise. * tree-scalar-evolution.c: Likewise. * tree-ssa-address.c: Likewise. * tree-ssa-alias.c: Likewise. * tree-ssa-ccp.c: Likewise. * tree-ssa-coalesce.c: Likewise. * tree-ssa-copy.c: Likewise. * tree-ssa-copyrename.c: Likewise. * tree-ssa-dce.c: Likewise. * tree-ssa-dom.c: Likewise. * tree-ssa-dse.c: Likewise. * tree-ssa-forwprop.c: Likewise. * tree-ssa-ifcombine.c: Likewise. * tree-ssa-live.c: Likewise. * tree-ssa-live.h: Likewise. * tree-ssa-loop-ch.c: Likewise. * tree-ssa-loop-im.c: Likewise. * tree-ssa-loop-ivcanon.c: Likewise. * tree-ssa-loop-ivopts.c: Likewise. * tree-ssa-loop-manip.c: Likewise. * tree-ssa-loop-niter.c: Likewise. * tree-ssa-loop-prefetch.c: Likewise. * tree-ssa-loop-unswitch.c: Likewise. * tree-ssa-loop.c: Likewise. * tree-ssa-math-opts.c: Likewise. * tree-ssa-operands.c: Likewise. * tree-ssa-operands.h: Likewise. * tree-ssa-phiopt.c: Likewise. * tree-ssa-phiprop.c: Likewise. * tree-ssa-pre.c: Likewise. * tree-ssa-propagate.c: Likewise. * tree-ssa-reassoc.c: Likewise. * tree-ssa-sccvn.c: Likewise. * tree-ssa-sink.c: Likewise. * tree-ssa-structalias.c: Likewise. * tree-ssa-ter.c: Likewise. * tree-ssa-threadedge.c: Likewise. * tree-ssa-threadupdate.c: Likewise. * tree-ssa-uncprop.c: Likewise. * tree-ssa.c: Likewise. * tree-ssanames.c: Likewise. * tree-switch-conversion.c: Likewise. * tree-tailcall.c: Likewise. * tree-vect-data-refs.c: Likewise. * tree-vect-generic.c: Likewise. * tree-vect-loop-manip.c: Likewise. * tree-vect-loop.c: Likewise. * tree-vect-patterns.c: Likewise. * tree-vect-slp.c: Likewise. * tree-vect-stmts.c: Likewise. * tree-vectorizer.c: Likewise. * tree-vectorizer.h: Likewise. * tree-vrp.c: Likewise. * tree.c: Likewise. * tree.def: Likewise. * tree.h: Likewise. * treestruct.def: Likewise. * unwind-compat.c: Likewise. * unwind-dw2-fde-glibc.c: Likewise. * unwind-dw2.c: Likewise. * value-prof.c: Likewise. * value-prof.h: Likewise. * var-tracking.c: Likewise. * varasm.c: Likewise. * varpool.c: Likewise. * vec.c: Likewise. * vec.h: Likewise. * vmsdbgout.c: Likewise. * web.c: Likewise. * xcoffout.c: Likewise. From-SVN: r154645
840 lines
26 KiB
C
840 lines
26 KiB
C
/* Analysis Utilities for Loop Vectorization.
|
|
Copyright (C) 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
|
|
Contributed by Dorit Nuzman <dorit@il.ibm.com>
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "tm.h"
|
|
#include "ggc.h"
|
|
#include "tree.h"
|
|
#include "target.h"
|
|
#include "basic-block.h"
|
|
#include "diagnostic.h"
|
|
#include "tree-flow.h"
|
|
#include "tree-dump.h"
|
|
#include "cfgloop.h"
|
|
#include "expr.h"
|
|
#include "optabs.h"
|
|
#include "params.h"
|
|
#include "tree-data-ref.h"
|
|
#include "tree-vectorizer.h"
|
|
#include "recog.h"
|
|
#include "toplev.h"
|
|
|
|
/* Function prototypes */
|
|
static void vect_pattern_recog_1
|
|
(gimple (* ) (gimple, tree *, tree *), gimple_stmt_iterator);
|
|
static bool widened_name_p (tree, gimple, tree *, gimple *);
|
|
|
|
/* Pattern recognition functions */
|
|
static gimple vect_recog_widen_sum_pattern (gimple, tree *, tree *);
|
|
static gimple vect_recog_widen_mult_pattern (gimple, tree *, tree *);
|
|
static gimple vect_recog_dot_prod_pattern (gimple, tree *, tree *);
|
|
static gimple vect_recog_pow_pattern (gimple, tree *, tree *);
|
|
static vect_recog_func_ptr vect_vect_recog_func_ptrs[NUM_PATTERNS] = {
|
|
vect_recog_widen_mult_pattern,
|
|
vect_recog_widen_sum_pattern,
|
|
vect_recog_dot_prod_pattern,
|
|
vect_recog_pow_pattern};
|
|
|
|
|
|
/* Function widened_name_p
|
|
|
|
Check whether NAME, an ssa-name used in USE_STMT,
|
|
is a result of a type-promotion, such that:
|
|
DEF_STMT: NAME = NOP (name0)
|
|
where the type of name0 (HALF_TYPE) is smaller than the type of NAME.
|
|
*/
|
|
|
|
static bool
|
|
widened_name_p (tree name, gimple use_stmt, tree *half_type, gimple *def_stmt)
|
|
{
|
|
tree dummy;
|
|
gimple dummy_gimple;
|
|
loop_vec_info loop_vinfo;
|
|
stmt_vec_info stmt_vinfo;
|
|
tree type = TREE_TYPE (name);
|
|
tree oprnd0;
|
|
enum vect_def_type dt;
|
|
tree def;
|
|
|
|
stmt_vinfo = vinfo_for_stmt (use_stmt);
|
|
loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
|
|
|
|
if (!vect_is_simple_use (name, loop_vinfo, NULL, def_stmt, &def, &dt))
|
|
return false;
|
|
|
|
if (dt != vect_internal_def
|
|
&& dt != vect_external_def && dt != vect_constant_def)
|
|
return false;
|
|
|
|
if (! *def_stmt)
|
|
return false;
|
|
|
|
if (!is_gimple_assign (*def_stmt))
|
|
return false;
|
|
|
|
if (gimple_assign_rhs_code (*def_stmt) != NOP_EXPR)
|
|
return false;
|
|
|
|
oprnd0 = gimple_assign_rhs1 (*def_stmt);
|
|
|
|
*half_type = TREE_TYPE (oprnd0);
|
|
if (!INTEGRAL_TYPE_P (type) || !INTEGRAL_TYPE_P (*half_type)
|
|
|| (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (*half_type))
|
|
|| (TYPE_PRECISION (type) < (TYPE_PRECISION (*half_type) * 2)))
|
|
return false;
|
|
|
|
if (!vect_is_simple_use (oprnd0, loop_vinfo, NULL, &dummy_gimple, &dummy,
|
|
&dt))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Helper to return a new temporary for pattern of TYPE for STMT. If STMT
|
|
is NULL, the caller must set SSA_NAME_DEF_STMT for the returned SSA var. */
|
|
|
|
static tree
|
|
vect_recog_temp_ssa_var (tree type, gimple stmt)
|
|
{
|
|
tree var = create_tmp_var (type, "patt");
|
|
|
|
add_referenced_var (var);
|
|
var = make_ssa_name (var, stmt);
|
|
return var;
|
|
}
|
|
|
|
/* Function vect_recog_dot_prod_pattern
|
|
|
|
Try to find the following pattern:
|
|
|
|
type x_t, y_t;
|
|
TYPE1 prod;
|
|
TYPE2 sum = init;
|
|
loop:
|
|
sum_0 = phi <init, sum_1>
|
|
S1 x_t = ...
|
|
S2 y_t = ...
|
|
S3 x_T = (TYPE1) x_t;
|
|
S4 y_T = (TYPE1) y_t;
|
|
S5 prod = x_T * y_T;
|
|
[S6 prod = (TYPE2) prod; #optional]
|
|
S7 sum_1 = prod + sum_0;
|
|
|
|
where 'TYPE1' is exactly double the size of type 'type', and 'TYPE2' is the
|
|
same size of 'TYPE1' or bigger. This is a special case of a reduction
|
|
computation.
|
|
|
|
Input:
|
|
|
|
* LAST_STMT: A stmt from which the pattern search begins. In the example,
|
|
when this function is called with S7, the pattern {S3,S4,S5,S6,S7} will be
|
|
detected.
|
|
|
|
Output:
|
|
|
|
* TYPE_IN: The type of the input arguments to the pattern.
|
|
|
|
* TYPE_OUT: The type of the output of this pattern.
|
|
|
|
* Return value: A new stmt that will be used to replace the sequence of
|
|
stmts that constitute the pattern. In this case it will be:
|
|
WIDEN_DOT_PRODUCT <x_t, y_t, sum_0>
|
|
|
|
Note: The dot-prod idiom is a widening reduction pattern that is
|
|
vectorized without preserving all the intermediate results. It
|
|
produces only N/2 (widened) results (by summing up pairs of
|
|
intermediate results) rather than all N results. Therefore, we
|
|
cannot allow this pattern when we want to get all the results and in
|
|
the correct order (as is the case when this computation is in an
|
|
inner-loop nested in an outer-loop that us being vectorized). */
|
|
|
|
static gimple
|
|
vect_recog_dot_prod_pattern (gimple last_stmt, tree *type_in, tree *type_out)
|
|
{
|
|
gimple stmt;
|
|
tree oprnd0, oprnd1;
|
|
tree oprnd00, oprnd01;
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
|
|
tree type, half_type;
|
|
gimple pattern_stmt;
|
|
tree prod_type;
|
|
loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_info);
|
|
tree var, rhs;
|
|
|
|
if (!is_gimple_assign (last_stmt))
|
|
return NULL;
|
|
|
|
type = gimple_expr_type (last_stmt);
|
|
|
|
/* Look for the following pattern
|
|
DX = (TYPE1) X;
|
|
DY = (TYPE1) Y;
|
|
DPROD = DX * DY;
|
|
DDPROD = (TYPE2) DPROD;
|
|
sum_1 = DDPROD + sum_0;
|
|
In which
|
|
- DX is double the size of X
|
|
- DY is double the size of Y
|
|
- DX, DY, DPROD all have the same type
|
|
- sum is the same size of DPROD or bigger
|
|
- sum has been recognized as a reduction variable.
|
|
|
|
This is equivalent to:
|
|
DPROD = X w* Y; #widen mult
|
|
sum_1 = DPROD w+ sum_0; #widen summation
|
|
or
|
|
DPROD = X w* Y; #widen mult
|
|
sum_1 = DPROD + sum_0; #summation
|
|
*/
|
|
|
|
/* Starting from LAST_STMT, follow the defs of its uses in search
|
|
of the above pattern. */
|
|
|
|
if (gimple_assign_rhs_code (last_stmt) != PLUS_EXPR)
|
|
return NULL;
|
|
|
|
if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
|
|
{
|
|
/* Has been detected as widening-summation? */
|
|
|
|
stmt = STMT_VINFO_RELATED_STMT (stmt_vinfo);
|
|
type = gimple_expr_type (stmt);
|
|
if (gimple_assign_rhs_code (stmt) != WIDEN_SUM_EXPR)
|
|
return NULL;
|
|
oprnd0 = gimple_assign_rhs1 (stmt);
|
|
oprnd1 = gimple_assign_rhs2 (stmt);
|
|
half_type = TREE_TYPE (oprnd0);
|
|
}
|
|
else
|
|
{
|
|
gimple def_stmt;
|
|
|
|
if (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def)
|
|
return NULL;
|
|
oprnd0 = gimple_assign_rhs1 (last_stmt);
|
|
oprnd1 = gimple_assign_rhs2 (last_stmt);
|
|
if (!types_compatible_p (TREE_TYPE (oprnd0), type)
|
|
|| !types_compatible_p (TREE_TYPE (oprnd1), type))
|
|
return NULL;
|
|
stmt = last_stmt;
|
|
|
|
if (widened_name_p (oprnd0, stmt, &half_type, &def_stmt))
|
|
{
|
|
stmt = def_stmt;
|
|
oprnd0 = gimple_assign_rhs1 (stmt);
|
|
}
|
|
else
|
|
half_type = type;
|
|
}
|
|
|
|
/* So far so good. Since last_stmt was detected as a (summation) reduction,
|
|
we know that oprnd1 is the reduction variable (defined by a loop-header
|
|
phi), and oprnd0 is an ssa-name defined by a stmt in the loop body.
|
|
Left to check that oprnd0 is defined by a (widen_)mult_expr */
|
|
|
|
prod_type = half_type;
|
|
stmt = SSA_NAME_DEF_STMT (oprnd0);
|
|
/* FORNOW. Can continue analyzing the def-use chain when this stmt in a phi
|
|
inside the loop (in case we are analyzing an outer-loop). */
|
|
if (!is_gimple_assign (stmt))
|
|
return NULL;
|
|
stmt_vinfo = vinfo_for_stmt (stmt);
|
|
gcc_assert (stmt_vinfo);
|
|
if (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_internal_def)
|
|
return NULL;
|
|
if (gimple_assign_rhs_code (stmt) != MULT_EXPR)
|
|
return NULL;
|
|
if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
|
|
{
|
|
/* Has been detected as a widening multiplication? */
|
|
|
|
stmt = STMT_VINFO_RELATED_STMT (stmt_vinfo);
|
|
if (gimple_assign_rhs_code (stmt) != WIDEN_MULT_EXPR)
|
|
return NULL;
|
|
stmt_vinfo = vinfo_for_stmt (stmt);
|
|
gcc_assert (stmt_vinfo);
|
|
gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_internal_def);
|
|
oprnd00 = gimple_assign_rhs1 (stmt);
|
|
oprnd01 = gimple_assign_rhs2 (stmt);
|
|
}
|
|
else
|
|
{
|
|
tree half_type0, half_type1;
|
|
gimple def_stmt;
|
|
tree oprnd0, oprnd1;
|
|
|
|
oprnd0 = gimple_assign_rhs1 (stmt);
|
|
oprnd1 = gimple_assign_rhs2 (stmt);
|
|
if (!types_compatible_p (TREE_TYPE (oprnd0), prod_type)
|
|
|| !types_compatible_p (TREE_TYPE (oprnd1), prod_type))
|
|
return NULL;
|
|
if (!widened_name_p (oprnd0, stmt, &half_type0, &def_stmt))
|
|
return NULL;
|
|
oprnd00 = gimple_assign_rhs1 (def_stmt);
|
|
if (!widened_name_p (oprnd1, stmt, &half_type1, &def_stmt))
|
|
return NULL;
|
|
oprnd01 = gimple_assign_rhs1 (def_stmt);
|
|
if (!types_compatible_p (half_type0, half_type1))
|
|
return NULL;
|
|
if (TYPE_PRECISION (prod_type) != TYPE_PRECISION (half_type0) * 2)
|
|
return NULL;
|
|
}
|
|
|
|
half_type = TREE_TYPE (oprnd00);
|
|
*type_in = half_type;
|
|
*type_out = type;
|
|
|
|
/* Pattern detected. Create a stmt to be used to replace the pattern: */
|
|
var = vect_recog_temp_ssa_var (type, NULL);
|
|
rhs = build3 (DOT_PROD_EXPR, type, oprnd00, oprnd01, oprnd1),
|
|
pattern_stmt = gimple_build_assign (var, rhs);
|
|
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
{
|
|
fprintf (vect_dump, "vect_recog_dot_prod_pattern: detected: ");
|
|
print_gimple_stmt (vect_dump, pattern_stmt, 0, TDF_SLIM);
|
|
}
|
|
|
|
/* We don't allow changing the order of the computation in the inner-loop
|
|
when doing outer-loop vectorization. */
|
|
gcc_assert (!nested_in_vect_loop_p (loop, last_stmt));
|
|
|
|
return pattern_stmt;
|
|
}
|
|
|
|
/* Function vect_recog_widen_mult_pattern
|
|
|
|
Try to find the following pattern:
|
|
|
|
type a_t, b_t;
|
|
TYPE a_T, b_T, prod_T;
|
|
|
|
S1 a_t = ;
|
|
S2 b_t = ;
|
|
S3 a_T = (TYPE) a_t;
|
|
S4 b_T = (TYPE) b_t;
|
|
S5 prod_T = a_T * b_T;
|
|
|
|
where type 'TYPE' is at least double the size of type 'type'.
|
|
|
|
Input:
|
|
|
|
* LAST_STMT: A stmt from which the pattern search begins. In the example,
|
|
when this function is called with S5, the pattern {S3,S4,S5} is be detected.
|
|
|
|
Output:
|
|
|
|
* TYPE_IN: The type of the input arguments to the pattern.
|
|
|
|
* TYPE_OUT: The type of the output of this pattern.
|
|
|
|
* Return value: A new stmt that will be used to replace the sequence of
|
|
stmts that constitute the pattern. In this case it will be:
|
|
WIDEN_MULT <a_t, b_t>
|
|
*/
|
|
|
|
static gimple
|
|
vect_recog_widen_mult_pattern (gimple last_stmt,
|
|
tree *type_in,
|
|
tree *type_out)
|
|
{
|
|
gimple def_stmt0, def_stmt1;
|
|
tree oprnd0, oprnd1;
|
|
tree type, half_type0, half_type1;
|
|
gimple pattern_stmt;
|
|
tree vectype;
|
|
tree dummy;
|
|
tree var;
|
|
enum tree_code dummy_code;
|
|
int dummy_int;
|
|
VEC (tree, heap) *dummy_vec;
|
|
|
|
if (!is_gimple_assign (last_stmt))
|
|
return NULL;
|
|
|
|
type = gimple_expr_type (last_stmt);
|
|
|
|
/* Starting from LAST_STMT, follow the defs of its uses in search
|
|
of the above pattern. */
|
|
|
|
if (gimple_assign_rhs_code (last_stmt) != MULT_EXPR)
|
|
return NULL;
|
|
|
|
oprnd0 = gimple_assign_rhs1 (last_stmt);
|
|
oprnd1 = gimple_assign_rhs2 (last_stmt);
|
|
if (!types_compatible_p (TREE_TYPE (oprnd0), type)
|
|
|| !types_compatible_p (TREE_TYPE (oprnd1), type))
|
|
return NULL;
|
|
|
|
/* Check argument 0 */
|
|
if (!widened_name_p (oprnd0, last_stmt, &half_type0, &def_stmt0))
|
|
return NULL;
|
|
oprnd0 = gimple_assign_rhs1 (def_stmt0);
|
|
|
|
/* Check argument 1 */
|
|
if (!widened_name_p (oprnd1, last_stmt, &half_type1, &def_stmt1))
|
|
return NULL;
|
|
oprnd1 = gimple_assign_rhs1 (def_stmt1);
|
|
|
|
if (!types_compatible_p (half_type0, half_type1))
|
|
return NULL;
|
|
|
|
/* Pattern detected. */
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "vect_recog_widen_mult_pattern: detected: ");
|
|
|
|
/* Check target support */
|
|
vectype = get_vectype_for_scalar_type (half_type0);
|
|
if (!vectype
|
|
|| !supportable_widening_operation (WIDEN_MULT_EXPR, last_stmt, vectype,
|
|
&dummy, &dummy, &dummy_code,
|
|
&dummy_code, &dummy_int, &dummy_vec))
|
|
return NULL;
|
|
|
|
*type_in = vectype;
|
|
*type_out = NULL_TREE;
|
|
|
|
/* Pattern supported. Create a stmt to be used to replace the pattern: */
|
|
var = vect_recog_temp_ssa_var (type, NULL);
|
|
pattern_stmt = gimple_build_assign_with_ops (WIDEN_MULT_EXPR, var, oprnd0,
|
|
oprnd1);
|
|
SSA_NAME_DEF_STMT (var) = pattern_stmt;
|
|
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
print_gimple_stmt (vect_dump, pattern_stmt, 0, TDF_SLIM);
|
|
|
|
return pattern_stmt;
|
|
}
|
|
|
|
|
|
/* Function vect_recog_pow_pattern
|
|
|
|
Try to find the following pattern:
|
|
|
|
x = POW (y, N);
|
|
|
|
with POW being one of pow, powf, powi, powif and N being
|
|
either 2 or 0.5.
|
|
|
|
Input:
|
|
|
|
* LAST_STMT: A stmt from which the pattern search begins.
|
|
|
|
Output:
|
|
|
|
* TYPE_IN: The type of the input arguments to the pattern.
|
|
|
|
* TYPE_OUT: The type of the output of this pattern.
|
|
|
|
* Return value: A new stmt that will be used to replace the sequence of
|
|
stmts that constitute the pattern. In this case it will be:
|
|
x = x * x
|
|
or
|
|
x = sqrt (x)
|
|
*/
|
|
|
|
static gimple
|
|
vect_recog_pow_pattern (gimple last_stmt, tree *type_in, tree *type_out)
|
|
{
|
|
tree type;
|
|
tree fn, base, exp = NULL;
|
|
gimple stmt;
|
|
tree var;
|
|
|
|
if (!is_gimple_call (last_stmt) || gimple_call_lhs (last_stmt) == NULL)
|
|
return NULL;
|
|
|
|
type = gimple_expr_type (last_stmt);
|
|
|
|
fn = gimple_call_fndecl (last_stmt);
|
|
switch (DECL_FUNCTION_CODE (fn))
|
|
{
|
|
case BUILT_IN_POWIF:
|
|
case BUILT_IN_POWI:
|
|
case BUILT_IN_POWF:
|
|
case BUILT_IN_POW:
|
|
base = gimple_call_arg (last_stmt, 0);
|
|
exp = gimple_call_arg (last_stmt, 1);
|
|
if (TREE_CODE (exp) != REAL_CST
|
|
&& TREE_CODE (exp) != INTEGER_CST)
|
|
return NULL;
|
|
break;
|
|
|
|
default:
|
|
return NULL;
|
|
}
|
|
|
|
/* We now have a pow or powi builtin function call with a constant
|
|
exponent. */
|
|
|
|
*type_out = NULL_TREE;
|
|
|
|
/* Catch squaring. */
|
|
if ((host_integerp (exp, 0)
|
|
&& tree_low_cst (exp, 0) == 2)
|
|
|| (TREE_CODE (exp) == REAL_CST
|
|
&& REAL_VALUES_EQUAL (TREE_REAL_CST (exp), dconst2)))
|
|
{
|
|
*type_in = TREE_TYPE (base);
|
|
|
|
var = vect_recog_temp_ssa_var (TREE_TYPE (base), NULL);
|
|
stmt = gimple_build_assign_with_ops (MULT_EXPR, var, base, base);
|
|
SSA_NAME_DEF_STMT (var) = stmt;
|
|
return stmt;
|
|
}
|
|
|
|
/* Catch square root. */
|
|
if (TREE_CODE (exp) == REAL_CST
|
|
&& REAL_VALUES_EQUAL (TREE_REAL_CST (exp), dconsthalf))
|
|
{
|
|
tree newfn = mathfn_built_in (TREE_TYPE (base), BUILT_IN_SQRT);
|
|
*type_in = get_vectype_for_scalar_type (TREE_TYPE (base));
|
|
if (*type_in)
|
|
{
|
|
gimple stmt = gimple_build_call (newfn, 1, base);
|
|
if (vectorizable_function (stmt, *type_in, *type_in)
|
|
!= NULL_TREE)
|
|
{
|
|
var = vect_recog_temp_ssa_var (TREE_TYPE (base), stmt);
|
|
gimple_call_set_lhs (stmt, var);
|
|
return stmt;
|
|
}
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/* Function vect_recog_widen_sum_pattern
|
|
|
|
Try to find the following pattern:
|
|
|
|
type x_t;
|
|
TYPE x_T, sum = init;
|
|
loop:
|
|
sum_0 = phi <init, sum_1>
|
|
S1 x_t = *p;
|
|
S2 x_T = (TYPE) x_t;
|
|
S3 sum_1 = x_T + sum_0;
|
|
|
|
where type 'TYPE' is at least double the size of type 'type', i.e - we're
|
|
summing elements of type 'type' into an accumulator of type 'TYPE'. This is
|
|
a special case of a reduction computation.
|
|
|
|
Input:
|
|
|
|
* LAST_STMT: A stmt from which the pattern search begins. In the example,
|
|
when this function is called with S3, the pattern {S2,S3} will be detected.
|
|
|
|
Output:
|
|
|
|
* TYPE_IN: The type of the input arguments to the pattern.
|
|
|
|
* TYPE_OUT: The type of the output of this pattern.
|
|
|
|
* Return value: A new stmt that will be used to replace the sequence of
|
|
stmts that constitute the pattern. In this case it will be:
|
|
WIDEN_SUM <x_t, sum_0>
|
|
|
|
Note: The widening-sum idiom is a widening reduction pattern that is
|
|
vectorized without preserving all the intermediate results. It
|
|
produces only N/2 (widened) results (by summing up pairs of
|
|
intermediate results) rather than all N results. Therefore, we
|
|
cannot allow this pattern when we want to get all the results and in
|
|
the correct order (as is the case when this computation is in an
|
|
inner-loop nested in an outer-loop that us being vectorized). */
|
|
|
|
static gimple
|
|
vect_recog_widen_sum_pattern (gimple last_stmt, tree *type_in, tree *type_out)
|
|
{
|
|
gimple stmt;
|
|
tree oprnd0, oprnd1;
|
|
stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
|
|
tree type, half_type;
|
|
gimple pattern_stmt;
|
|
loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_info);
|
|
tree var;
|
|
|
|
if (!is_gimple_assign (last_stmt))
|
|
return NULL;
|
|
|
|
type = gimple_expr_type (last_stmt);
|
|
|
|
/* Look for the following pattern
|
|
DX = (TYPE) X;
|
|
sum_1 = DX + sum_0;
|
|
In which DX is at least double the size of X, and sum_1 has been
|
|
recognized as a reduction variable.
|
|
*/
|
|
|
|
/* Starting from LAST_STMT, follow the defs of its uses in search
|
|
of the above pattern. */
|
|
|
|
if (gimple_assign_rhs_code (last_stmt) != PLUS_EXPR)
|
|
return NULL;
|
|
|
|
if (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def)
|
|
return NULL;
|
|
|
|
oprnd0 = gimple_assign_rhs1 (last_stmt);
|
|
oprnd1 = gimple_assign_rhs2 (last_stmt);
|
|
if (!types_compatible_p (TREE_TYPE (oprnd0), type)
|
|
|| !types_compatible_p (TREE_TYPE (oprnd1), type))
|
|
return NULL;
|
|
|
|
/* So far so good. Since last_stmt was detected as a (summation) reduction,
|
|
we know that oprnd1 is the reduction variable (defined by a loop-header
|
|
phi), and oprnd0 is an ssa-name defined by a stmt in the loop body.
|
|
Left to check that oprnd0 is defined by a cast from type 'type' to type
|
|
'TYPE'. */
|
|
|
|
if (!widened_name_p (oprnd0, last_stmt, &half_type, &stmt))
|
|
return NULL;
|
|
|
|
oprnd0 = gimple_assign_rhs1 (stmt);
|
|
*type_in = half_type;
|
|
*type_out = type;
|
|
|
|
/* Pattern detected. Create a stmt to be used to replace the pattern: */
|
|
var = vect_recog_temp_ssa_var (type, NULL);
|
|
pattern_stmt = gimple_build_assign_with_ops (WIDEN_SUM_EXPR, var,
|
|
oprnd0, oprnd1);
|
|
SSA_NAME_DEF_STMT (var) = pattern_stmt;
|
|
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
{
|
|
fprintf (vect_dump, "vect_recog_widen_sum_pattern: detected: ");
|
|
print_gimple_stmt (vect_dump, pattern_stmt, 0, TDF_SLIM);
|
|
}
|
|
|
|
/* We don't allow changing the order of the computation in the inner-loop
|
|
when doing outer-loop vectorization. */
|
|
gcc_assert (!nested_in_vect_loop_p (loop, last_stmt));
|
|
|
|
return pattern_stmt;
|
|
}
|
|
|
|
|
|
/* Function vect_pattern_recog_1
|
|
|
|
Input:
|
|
PATTERN_RECOG_FUNC: A pointer to a function that detects a certain
|
|
computation pattern.
|
|
STMT: A stmt from which the pattern search should start.
|
|
|
|
If PATTERN_RECOG_FUNC successfully detected the pattern, it creates an
|
|
expression that computes the same functionality and can be used to
|
|
replace the sequence of stmts that are involved in the pattern.
|
|
|
|
Output:
|
|
This function checks if the expression returned by PATTERN_RECOG_FUNC is
|
|
supported in vector form by the target. We use 'TYPE_IN' to obtain the
|
|
relevant vector type. If 'TYPE_IN' is already a vector type, then this
|
|
indicates that target support had already been checked by PATTERN_RECOG_FUNC.
|
|
If 'TYPE_OUT' is also returned by PATTERN_RECOG_FUNC, we check that it fits
|
|
to the available target pattern.
|
|
|
|
This function also does some bookkeeping, as explained in the documentation
|
|
for vect_recog_pattern. */
|
|
|
|
static void
|
|
vect_pattern_recog_1 (
|
|
gimple (* vect_recog_func) (gimple, tree *, tree *),
|
|
gimple_stmt_iterator si)
|
|
{
|
|
gimple stmt = gsi_stmt (si), pattern_stmt;
|
|
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
stmt_vec_info pattern_stmt_info;
|
|
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
|
tree pattern_vectype;
|
|
tree type_in, type_out;
|
|
enum tree_code code;
|
|
|
|
pattern_stmt = (* vect_recog_func) (stmt, &type_in, &type_out);
|
|
if (!pattern_stmt)
|
|
return;
|
|
|
|
if (VECTOR_MODE_P (TYPE_MODE (type_in)))
|
|
{
|
|
/* No need to check target support (already checked by the pattern
|
|
recognition function). */
|
|
pattern_vectype = type_in;
|
|
}
|
|
else
|
|
{
|
|
enum machine_mode vec_mode;
|
|
enum insn_code icode;
|
|
optab optab;
|
|
|
|
/* Check target support */
|
|
pattern_vectype = get_vectype_for_scalar_type (type_in);
|
|
if (!pattern_vectype)
|
|
return;
|
|
|
|
if (is_gimple_assign (pattern_stmt))
|
|
code = gimple_assign_rhs_code (pattern_stmt);
|
|
else
|
|
{
|
|
gcc_assert (is_gimple_call (pattern_stmt));
|
|
code = CALL_EXPR;
|
|
}
|
|
|
|
optab = optab_for_tree_code (code, pattern_vectype, optab_default);
|
|
vec_mode = TYPE_MODE (pattern_vectype);
|
|
if (!optab
|
|
|| (icode = optab_handler (optab, vec_mode)->insn_code) ==
|
|
CODE_FOR_nothing
|
|
|| (type_out
|
|
&& (!get_vectype_for_scalar_type (type_out)
|
|
|| (insn_data[icode].operand[0].mode !=
|
|
TYPE_MODE (get_vectype_for_scalar_type (type_out))))))
|
|
return;
|
|
}
|
|
|
|
/* Found a vectorizable pattern. */
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
{
|
|
fprintf (vect_dump, "pattern recognized: ");
|
|
print_gimple_stmt (vect_dump, pattern_stmt, 0, TDF_SLIM);
|
|
}
|
|
|
|
/* Mark the stmts that are involved in the pattern. */
|
|
gsi_insert_before (&si, pattern_stmt, GSI_SAME_STMT);
|
|
set_vinfo_for_stmt (pattern_stmt,
|
|
new_stmt_vec_info (pattern_stmt, loop_vinfo, NULL));
|
|
pattern_stmt_info = vinfo_for_stmt (pattern_stmt);
|
|
|
|
STMT_VINFO_RELATED_STMT (pattern_stmt_info) = stmt;
|
|
STMT_VINFO_DEF_TYPE (pattern_stmt_info) = STMT_VINFO_DEF_TYPE (stmt_info);
|
|
STMT_VINFO_VECTYPE (pattern_stmt_info) = pattern_vectype;
|
|
STMT_VINFO_IN_PATTERN_P (stmt_info) = true;
|
|
STMT_VINFO_RELATED_STMT (stmt_info) = pattern_stmt;
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
/* Function vect_pattern_recog
|
|
|
|
Input:
|
|
LOOP_VINFO - a struct_loop_info of a loop in which we want to look for
|
|
computation idioms.
|
|
|
|
Output - for each computation idiom that is detected we insert a new stmt
|
|
that provides the same functionality and that can be vectorized. We
|
|
also record some information in the struct_stmt_info of the relevant
|
|
stmts, as explained below:
|
|
|
|
At the entry to this function we have the following stmts, with the
|
|
following initial value in the STMT_VINFO fields:
|
|
|
|
stmt in_pattern_p related_stmt vec_stmt
|
|
S1: a_i = .... - - -
|
|
S2: a_2 = ..use(a_i).. - - -
|
|
S3: a_1 = ..use(a_2).. - - -
|
|
S4: a_0 = ..use(a_1).. - - -
|
|
S5: ... = ..use(a_0).. - - -
|
|
|
|
Say the sequence {S1,S2,S3,S4} was detected as a pattern that can be
|
|
represented by a single stmt. We then:
|
|
- create a new stmt S6 that will replace the pattern.
|
|
- insert the new stmt S6 before the last stmt in the pattern
|
|
- fill in the STMT_VINFO fields as follows:
|
|
|
|
in_pattern_p related_stmt vec_stmt
|
|
S1: a_i = .... - - -
|
|
S2: a_2 = ..use(a_i).. - - -
|
|
S3: a_1 = ..use(a_2).. - - -
|
|
> S6: a_new = .... - S4 -
|
|
S4: a_0 = ..use(a_1).. true S6 -
|
|
S5: ... = ..use(a_0).. - - -
|
|
|
|
(the last stmt in the pattern (S4) and the new pattern stmt (S6) point
|
|
to each other through the RELATED_STMT field).
|
|
|
|
S6 will be marked as relevant in vect_mark_stmts_to_be_vectorized instead
|
|
of S4 because it will replace all its uses. Stmts {S1,S2,S3} will
|
|
remain irrelevant unless used by stmts other than S4.
|
|
|
|
If vectorization succeeds, vect_transform_stmt will skip over {S1,S2,S3}
|
|
(because they are marked as irrelevant). It will vectorize S6, and record
|
|
a pointer to the new vector stmt VS6 both from S6 (as usual), and also
|
|
from S4. We do that so that when we get to vectorizing stmts that use the
|
|
def of S4 (like S5 that uses a_0), we'll know where to take the relevant
|
|
vector-def from. S4 will be skipped, and S5 will be vectorized as usual:
|
|
|
|
in_pattern_p related_stmt vec_stmt
|
|
S1: a_i = .... - - -
|
|
S2: a_2 = ..use(a_i).. - - -
|
|
S3: a_1 = ..use(a_2).. - - -
|
|
> VS6: va_new = .... - - -
|
|
S6: a_new = .... - S4 VS6
|
|
S4: a_0 = ..use(a_1).. true S6 VS6
|
|
> VS5: ... = ..vuse(va_new).. - - -
|
|
S5: ... = ..use(a_0).. - - -
|
|
|
|
DCE could then get rid of {S1,S2,S3,S4,S5,S6} (if their defs are not used
|
|
elsewhere), and we'll end up with:
|
|
|
|
VS6: va_new = ....
|
|
VS5: ... = ..vuse(va_new)..
|
|
|
|
If vectorization does not succeed, DCE will clean S6 away (its def is
|
|
not used), and we'll end up with the original sequence.
|
|
*/
|
|
|
|
void
|
|
vect_pattern_recog (loop_vec_info loop_vinfo)
|
|
{
|
|
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
|
|
unsigned int nbbs = loop->num_nodes;
|
|
gimple_stmt_iterator si;
|
|
gimple stmt;
|
|
unsigned int i, j;
|
|
gimple (* vect_recog_func_ptr) (gimple, tree *, tree *);
|
|
|
|
if (vect_print_dump_info (REPORT_DETAILS))
|
|
fprintf (vect_dump, "=== vect_pattern_recog ===");
|
|
|
|
/* Scan through the loop stmts, applying the pattern recognition
|
|
functions starting at each stmt visited: */
|
|
for (i = 0; i < nbbs; i++)
|
|
{
|
|
basic_block bb = bbs[i];
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
|
|
{
|
|
stmt = gsi_stmt (si);
|
|
|
|
/* Scan over all generic vect_recog_xxx_pattern functions. */
|
|
for (j = 0; j < NUM_PATTERNS; j++)
|
|
{
|
|
vect_recog_func_ptr = vect_vect_recog_func_ptrs[j];
|
|
vect_pattern_recog_1 (vect_recog_func_ptr, si);
|
|
}
|
|
}
|
|
}
|
|
}
|