gcc/gcc/sanopt.c
Trevor Saunders 17795822b2 Revert "replace several uses of the anon namespace with GCC_FINAL"
This reverts commit daa5a8a3cf9b04cd9af5544c61e12e6dca14f870.

From-SVN: r226834
2015-08-12 20:09:33 +00:00

755 lines
20 KiB
C

/* Optimize and expand sanitizer functions.
Copyright (C) 2014-2015 Free Software Foundation, Inc.
Contributed by Marek Polacek <polacek@redhat.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "alias.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "hard-reg-set.h"
#include "options.h"
#include "fold-const.h"
#include "internal-fn.h"
#include "gimplify.h"
#include "gimple-iterator.h"
#include "tree-pass.h"
#include "asan.h"
#include "gimple-pretty-print.h"
#include "tm_p.h"
#include "langhooks.h"
#include "ubsan.h"
#include "params.h"
#include "tree-ssa-operands.h"
#include "tree-hash-traits.h"
/* This is used to carry information about basic blocks. It is
attached to the AUX field of the standard CFG block. */
struct sanopt_info
{
/* True if this BB might call (directly or indirectly) free/munmap
or similar operation. */
bool has_freeing_call_p;
/* True if HAS_FREEING_CALL_P flag has been computed. */
bool has_freeing_call_computed_p;
/* True if there is a block with HAS_FREEING_CALL_P flag set
on any path between an immediate dominator of BB, denoted
imm(BB), and BB. */
bool imm_dom_path_with_freeing_call_p;
/* True if IMM_DOM_PATH_WITH_FREEING_CALL_P has been computed. */
bool imm_dom_path_with_freeing_call_computed_p;
/* Number of possibly freeing calls encountered in this bb
(so far). */
uint64_t freeing_call_events;
/* True if BB is currently being visited during computation
of IMM_DOM_PATH_WITH_FREEING_CALL_P flag. */
bool being_visited_p;
/* True if this BB has been visited in the dominator walk. */
bool visited_p;
};
/* If T has a single definition of form T = T2, return T2. */
static tree
maybe_get_single_definition (tree t)
{
if (TREE_CODE (t) == SSA_NAME)
{
gimple g = SSA_NAME_DEF_STMT (t);
if (gimple_assign_single_p (g))
return gimple_assign_rhs1 (g);
}
return NULL_TREE;
}
/* Tree triplet for vptr_check_map. */
struct sanopt_tree_triplet
{
tree t1, t2, t3;
};
/* Traits class for tree triplet hash maps below. */
struct sanopt_tree_triplet_hash : typed_noop_remove <sanopt_tree_triplet>
{
typedef sanopt_tree_triplet value_type;
typedef sanopt_tree_triplet compare_type;
static inline hashval_t
hash (const sanopt_tree_triplet &ref)
{
inchash::hash hstate (0);
inchash::add_expr (ref.t1, hstate);
inchash::add_expr (ref.t2, hstate);
inchash::add_expr (ref.t3, hstate);
return hstate.end ();
}
static inline bool
equal (const sanopt_tree_triplet &ref1, const sanopt_tree_triplet &ref2)
{
return operand_equal_p (ref1.t1, ref2.t1, 0)
&& operand_equal_p (ref1.t2, ref2.t2, 0)
&& operand_equal_p (ref1.t3, ref2.t3, 0);
}
static inline void
mark_deleted (sanopt_tree_triplet &ref)
{
ref.t1 = reinterpret_cast<tree> (1);
}
static inline void
mark_empty (sanopt_tree_triplet &ref)
{
ref.t1 = NULL;
}
static inline bool
is_deleted (const sanopt_tree_triplet &ref)
{
return ref.t1 == (void *) 1;
}
static inline bool
is_empty (const sanopt_tree_triplet &ref)
{
return ref.t1 == NULL;
}
};
/* This is used to carry various hash maps and variables used
in sanopt_optimize_walker. */
struct sanopt_ctx
{
/* This map maps a pointer (the first argument of UBSAN_NULL) to
a vector of UBSAN_NULL call statements that check this pointer. */
hash_map<tree, auto_vec<gimple> > null_check_map;
/* This map maps a pointer (the second argument of ASAN_CHECK) to
a vector of ASAN_CHECK call statements that check the access. */
hash_map<tree_operand_hash, auto_vec<gimple> > asan_check_map;
/* This map maps a tree triplet (the first, second and fourth argument
of UBSAN_VPTR) to a vector of UBSAN_VPTR call statements that check
that virtual table pointer. */
hash_map<sanopt_tree_triplet_hash, auto_vec<gimple> > vptr_check_map;
/* Number of IFN_ASAN_CHECK statements. */
int asan_num_accesses;
};
/* Return true if there might be any call to free/munmap operation
on any path in between DOM (which should be imm(BB)) and BB. */
static bool
imm_dom_path_with_freeing_call (basic_block bb, basic_block dom)
{
sanopt_info *info = (sanopt_info *) bb->aux;
edge e;
edge_iterator ei;
if (info->imm_dom_path_with_freeing_call_computed_p)
return info->imm_dom_path_with_freeing_call_p;
info->being_visited_p = true;
FOR_EACH_EDGE (e, ei, bb->preds)
{
sanopt_info *pred_info = (sanopt_info *) e->src->aux;
if (e->src == dom)
continue;
if ((pred_info->imm_dom_path_with_freeing_call_computed_p
&& pred_info->imm_dom_path_with_freeing_call_p)
|| (pred_info->has_freeing_call_computed_p
&& pred_info->has_freeing_call_p))
{
info->imm_dom_path_with_freeing_call_computed_p = true;
info->imm_dom_path_with_freeing_call_p = true;
info->being_visited_p = false;
return true;
}
}
FOR_EACH_EDGE (e, ei, bb->preds)
{
sanopt_info *pred_info = (sanopt_info *) e->src->aux;
if (e->src == dom)
continue;
if (pred_info->has_freeing_call_computed_p)
continue;
gimple_stmt_iterator gsi;
for (gsi = gsi_start_bb (e->src); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple stmt = gsi_stmt (gsi);
if (is_gimple_call (stmt) && !nonfreeing_call_p (stmt))
{
pred_info->has_freeing_call_p = true;
break;
}
}
pred_info->has_freeing_call_computed_p = true;
if (pred_info->has_freeing_call_p)
{
info->imm_dom_path_with_freeing_call_computed_p = true;
info->imm_dom_path_with_freeing_call_p = true;
info->being_visited_p = false;
return true;
}
}
FOR_EACH_EDGE (e, ei, bb->preds)
{
if (e->src == dom)
continue;
basic_block src;
for (src = e->src; src != dom; )
{
sanopt_info *pred_info = (sanopt_info *) src->aux;
if (pred_info->being_visited_p)
break;
basic_block imm = get_immediate_dominator (CDI_DOMINATORS, src);
if (imm_dom_path_with_freeing_call (src, imm))
{
info->imm_dom_path_with_freeing_call_computed_p = true;
info->imm_dom_path_with_freeing_call_p = true;
info->being_visited_p = false;
return true;
}
src = imm;
}
}
info->imm_dom_path_with_freeing_call_computed_p = true;
info->imm_dom_path_with_freeing_call_p = false;
info->being_visited_p = false;
return false;
}
/* Get the first dominating check from the list of stored checks.
Non-dominating checks are silently dropped. */
static gimple
maybe_get_dominating_check (auto_vec<gimple> &v)
{
for (; !v.is_empty (); v.pop ())
{
gimple g = v.last ();
sanopt_info *si = (sanopt_info *) gimple_bb (g)->aux;
if (!si->visited_p)
/* At this point we shouldn't have any statements
that aren't dominating the current BB. */
return g;
}
return NULL;
}
/* Optimize away redundant UBSAN_NULL calls. */
static bool
maybe_optimize_ubsan_null_ifn (struct sanopt_ctx *ctx, gimple stmt)
{
gcc_assert (gimple_call_num_args (stmt) == 3);
tree ptr = gimple_call_arg (stmt, 0);
tree cur_align = gimple_call_arg (stmt, 2);
gcc_assert (TREE_CODE (cur_align) == INTEGER_CST);
bool remove = false;
auto_vec<gimple> &v = ctx->null_check_map.get_or_insert (ptr);
gimple g = maybe_get_dominating_check (v);
if (!g)
{
/* For this PTR we don't have any UBSAN_NULL stmts recorded, so there's
nothing to optimize yet. */
v.safe_push (stmt);
return false;
}
/* We already have recorded a UBSAN_NULL check for this pointer. Perhaps we
can drop this one. But only if this check doesn't specify stricter
alignment. */
tree align = gimple_call_arg (g, 2);
int kind = tree_to_shwi (gimple_call_arg (g, 1));
/* If this is a NULL pointer check where we had segv anyway, we can
remove it. */
if (integer_zerop (align)
&& (kind == UBSAN_LOAD_OF
|| kind == UBSAN_STORE_OF
|| kind == UBSAN_MEMBER_ACCESS))
remove = true;
/* Otherwise remove the check in non-recovering mode, or if the
stmts have same location. */
else if (integer_zerop (align))
remove = (flag_sanitize_recover & SANITIZE_NULL) == 0
|| flag_sanitize_undefined_trap_on_error
|| gimple_location (g) == gimple_location (stmt);
else if (tree_int_cst_le (cur_align, align))
remove = (flag_sanitize_recover & SANITIZE_ALIGNMENT) == 0
|| flag_sanitize_undefined_trap_on_error
|| gimple_location (g) == gimple_location (stmt);
if (!remove && gimple_bb (g) == gimple_bb (stmt)
&& tree_int_cst_compare (cur_align, align) == 0)
v.pop ();
if (!remove)
v.safe_push (stmt);
return remove;
}
/* Optimize away redundant UBSAN_VPTR calls. The second argument
is the value loaded from the virtual table, so rely on FRE to find out
when we can actually optimize. */
static bool
maybe_optimize_ubsan_vptr_ifn (struct sanopt_ctx *ctx, gimple stmt)
{
gcc_assert (gimple_call_num_args (stmt) == 5);
sanopt_tree_triplet triplet;
triplet.t1 = gimple_call_arg (stmt, 0);
triplet.t2 = gimple_call_arg (stmt, 1);
triplet.t3 = gimple_call_arg (stmt, 3);
auto_vec<gimple> &v = ctx->vptr_check_map.get_or_insert (triplet);
gimple g = maybe_get_dominating_check (v);
if (!g)
{
/* For this PTR we don't have any UBSAN_VPTR stmts recorded, so there's
nothing to optimize yet. */
v.safe_push (stmt);
return false;
}
return true;
}
/* Returns TRUE if ASan check of length LEN in block BB can be removed
if preceded by checks in V. */
static bool
can_remove_asan_check (auto_vec<gimple> &v, tree len, basic_block bb)
{
unsigned int i;
gimple g;
gimple to_pop = NULL;
bool remove = false;
basic_block last_bb = bb;
bool cleanup = false;
FOR_EACH_VEC_ELT_REVERSE (v, i, g)
{
basic_block gbb = gimple_bb (g);
sanopt_info *si = (sanopt_info *) gbb->aux;
if (gimple_uid (g) < si->freeing_call_events)
{
/* If there is a potentially freeing call after g in gbb, we should
remove it from the vector, can't use in optimization. */
cleanup = true;
continue;
}
tree glen = gimple_call_arg (g, 2);
gcc_assert (TREE_CODE (glen) == INTEGER_CST);
/* If we've checked only smaller length than we want to check now,
we can't remove the current stmt. If g is in the same basic block,
we want to remove it though, as the current stmt is better. */
if (tree_int_cst_lt (glen, len))
{
if (gbb == bb)
{
to_pop = g;
cleanup = true;
}
continue;
}
while (last_bb != gbb)
{
/* Paths from last_bb to bb have been checked before.
gbb is necessarily a dominator of last_bb, but not necessarily
immediate dominator. */
if (((sanopt_info *) last_bb->aux)->freeing_call_events)
break;
basic_block imm = get_immediate_dominator (CDI_DOMINATORS, last_bb);
gcc_assert (imm);
if (imm_dom_path_with_freeing_call (last_bb, imm))
break;
last_bb = imm;
}
if (last_bb == gbb)
remove = true;
break;
}
if (cleanup)
{
unsigned int j = 0, l = v.length ();
for (i = 0; i < l; i++)
if (v[i] != to_pop
&& (gimple_uid (v[i])
== ((sanopt_info *)
gimple_bb (v[i])->aux)->freeing_call_events))
{
if (i != j)
v[j] = v[i];
j++;
}
v.truncate (j);
}
return remove;
}
/* Optimize away redundant ASAN_CHECK calls. */
static bool
maybe_optimize_asan_check_ifn (struct sanopt_ctx *ctx, gimple stmt)
{
gcc_assert (gimple_call_num_args (stmt) == 4);
tree ptr = gimple_call_arg (stmt, 1);
tree len = gimple_call_arg (stmt, 2);
basic_block bb = gimple_bb (stmt);
sanopt_info *info = (sanopt_info *) bb->aux;
if (TREE_CODE (len) != INTEGER_CST)
return false;
if (integer_zerop (len))
return false;
gimple_set_uid (stmt, info->freeing_call_events);
auto_vec<gimple> *ptr_checks = &ctx->asan_check_map.get_or_insert (ptr);
tree base_addr = maybe_get_single_definition (ptr);
auto_vec<gimple> *base_checks = NULL;
if (base_addr)
{
base_checks = &ctx->asan_check_map.get_or_insert (base_addr);
/* Original pointer might have been invalidated. */
ptr_checks = ctx->asan_check_map.get (ptr);
}
gimple g = maybe_get_dominating_check (*ptr_checks);
gimple g2 = NULL;
if (base_checks)
/* Try with base address as well. */
g2 = maybe_get_dominating_check (*base_checks);
if (g == NULL && g2 == NULL)
{
/* For this PTR we don't have any ASAN_CHECK stmts recorded, so there's
nothing to optimize yet. */
ptr_checks->safe_push (stmt);
if (base_checks)
base_checks->safe_push (stmt);
return false;
}
bool remove = false;
if (ptr_checks)
remove = can_remove_asan_check (*ptr_checks, len, bb);
if (!remove && base_checks)
/* Try with base address as well. */
remove = can_remove_asan_check (*base_checks, len, bb);
if (!remove)
{
ptr_checks->safe_push (stmt);
if (base_checks)
base_checks->safe_push (stmt);
}
return remove;
}
/* Try to optimize away redundant UBSAN_NULL and ASAN_CHECK calls.
We walk blocks in the CFG via a depth first search of the dominator
tree; we push unique UBSAN_NULL or ASAN_CHECK statements into a vector
in the NULL_CHECK_MAP or ASAN_CHECK_MAP hash maps as we enter the
blocks. When leaving a block, we mark the block as visited; then
when checking the statements in the vector, we ignore statements that
are coming from already visited blocks, because these cannot dominate
anything anymore. CTX is a sanopt context. */
static void
sanopt_optimize_walker (basic_block bb, struct sanopt_ctx *ctx)
{
basic_block son;
gimple_stmt_iterator gsi;
sanopt_info *info = (sanopt_info *) bb->aux;
bool asan_check_optimize = (flag_sanitize & SANITIZE_ADDRESS) != 0;
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
{
gimple stmt = gsi_stmt (gsi);
bool remove = false;
if (!is_gimple_call (stmt))
{
/* Handle asm volatile or asm with "memory" clobber
the same as potentionally freeing call. */
gasm *asm_stmt = dyn_cast <gasm *> (stmt);
if (asm_stmt
&& asan_check_optimize
&& (gimple_asm_clobbers_memory_p (asm_stmt)
|| gimple_asm_volatile_p (asm_stmt)))
info->freeing_call_events++;
gsi_next (&gsi);
continue;
}
if (asan_check_optimize && !nonfreeing_call_p (stmt))
info->freeing_call_events++;
if (gimple_call_internal_p (stmt))
switch (gimple_call_internal_fn (stmt))
{
case IFN_UBSAN_NULL:
remove = maybe_optimize_ubsan_null_ifn (ctx, stmt);
break;
case IFN_UBSAN_VPTR:
remove = maybe_optimize_ubsan_vptr_ifn (ctx, stmt);
break;
case IFN_ASAN_CHECK:
if (asan_check_optimize)
remove = maybe_optimize_asan_check_ifn (ctx, stmt);
if (!remove)
ctx->asan_num_accesses++;
break;
default:
break;
}
if (remove)
{
/* Drop this check. */
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Optimizing out\n ");
print_gimple_stmt (dump_file, stmt, 0, dump_flags);
fprintf (dump_file, "\n");
}
unlink_stmt_vdef (stmt);
gsi_remove (&gsi, true);
}
else
gsi_next (&gsi);
}
if (asan_check_optimize)
{
info->has_freeing_call_p = info->freeing_call_events != 0;
info->has_freeing_call_computed_p = true;
}
for (son = first_dom_son (CDI_DOMINATORS, bb);
son;
son = next_dom_son (CDI_DOMINATORS, son))
sanopt_optimize_walker (son, ctx);
/* We're leaving this BB, so mark it to that effect. */
info->visited_p = true;
}
/* Try to remove redundant sanitizer checks in function FUN. */
static int
sanopt_optimize (function *fun)
{
struct sanopt_ctx ctx;
ctx.asan_num_accesses = 0;
/* Set up block info for each basic block. */
alloc_aux_for_blocks (sizeof (sanopt_info));
/* We're going to do a dominator walk, so ensure that we have
dominance information. */
calculate_dominance_info (CDI_DOMINATORS);
/* Recursively walk the dominator tree optimizing away
redundant checks. */
sanopt_optimize_walker (ENTRY_BLOCK_PTR_FOR_FN (fun), &ctx);
free_aux_for_blocks ();
return ctx.asan_num_accesses;
}
/* Perform optimization of sanitize functions. */
namespace {
const pass_data pass_data_sanopt =
{
GIMPLE_PASS, /* type */
"sanopt", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_NONE, /* tv_id */
( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_update_ssa, /* todo_flags_finish */
};
class pass_sanopt : public gimple_opt_pass
{
public:
pass_sanopt (gcc::context *ctxt)
: gimple_opt_pass (pass_data_sanopt, ctxt)
{}
/* opt_pass methods: */
virtual bool gate (function *) { return flag_sanitize; }
virtual unsigned int execute (function *);
}; // class pass_sanopt
unsigned int
pass_sanopt::execute (function *fun)
{
basic_block bb;
int asan_num_accesses = 0;
/* Try to remove redundant checks. */
if (optimize
&& (flag_sanitize
& (SANITIZE_NULL | SANITIZE_ALIGNMENT
| SANITIZE_ADDRESS | SANITIZE_VPTR)))
asan_num_accesses = sanopt_optimize (fun);
else if (flag_sanitize & SANITIZE_ADDRESS)
{
gimple_stmt_iterator gsi;
FOR_EACH_BB_FN (bb, fun)
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple stmt = gsi_stmt (gsi);
if (is_gimple_call (stmt) && gimple_call_internal_p (stmt)
&& gimple_call_internal_fn (stmt) == IFN_ASAN_CHECK)
++asan_num_accesses;
}
}
bool use_calls = ASAN_INSTRUMENTATION_WITH_CALL_THRESHOLD < INT_MAX
&& asan_num_accesses >= ASAN_INSTRUMENTATION_WITH_CALL_THRESHOLD;
FOR_EACH_BB_FN (bb, fun)
{
gimple_stmt_iterator gsi;
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
{
gimple stmt = gsi_stmt (gsi);
bool no_next = false;
if (!is_gimple_call (stmt))
{
gsi_next (&gsi);
continue;
}
if (gimple_call_internal_p (stmt))
{
enum internal_fn ifn = gimple_call_internal_fn (stmt);
switch (ifn)
{
case IFN_UBSAN_NULL:
no_next = ubsan_expand_null_ifn (&gsi);
break;
case IFN_UBSAN_BOUNDS:
no_next = ubsan_expand_bounds_ifn (&gsi);
break;
case IFN_UBSAN_OBJECT_SIZE:
no_next = ubsan_expand_objsize_ifn (&gsi);
break;
case IFN_UBSAN_VPTR:
no_next = ubsan_expand_vptr_ifn (&gsi);
break;
case IFN_ASAN_CHECK:
no_next = asan_expand_check_ifn (&gsi, use_calls);
break;
default:
break;
}
}
else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
{
tree callee = gimple_call_fndecl (stmt);
switch (DECL_FUNCTION_CODE (callee))
{
case BUILT_IN_UNREACHABLE:
if (flag_sanitize & SANITIZE_UNREACHABLE
&& !lookup_attribute ("no_sanitize_undefined",
DECL_ATTRIBUTES (fun->decl)))
no_next = ubsan_instrument_unreachable (&gsi);
break;
default:
break;
}
}
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Expanded\n ");
print_gimple_stmt (dump_file, stmt, 0, dump_flags);
fprintf (dump_file, "\n");
}
if (!no_next)
gsi_next (&gsi);
}
}
return 0;
}
} // anon namespace
gimple_opt_pass *
make_pass_sanopt (gcc::context *ctxt)
{
return new pass_sanopt (ctxt);
}