6e1aa84836
This patch implements Jakub's idea of adding an empty struct with a typecast operator that returns nil vectors. This is useful to shorten all the initializers when declaring vec instances or passing nil vectors as function arguments. 2012-11-20 Diego Novillo <dnovillo@google.com> Jakub Jelinek <jakub@redhat.com> ChangeLog * vec.h (struct vnull): Declare. (vNULL): Declare. * vec.c (vNULL): Define. * bb-reorder.c: Replace all vec<T, A>() initializers with vNULL. * cfgexpand.c: Likewise. * cfgloop.c: Likewise. * cfgloopanal.c: Likewise. * cfgloopmanip.c: Likewise. * cgraph.c: Likewise. * config/c6x/c6x.c: Likewise. * config/i386/i386.c: Likewise. * df-core.c: Likewise. * dominance.c: Likewise. * dwarf2out.c: Likewise. * except.c: Likewise. * function.c: Likewise. * gcse.c: Likewise. * genautomata.c: Likewise. * graphds.c: Likewise. * graphite-scop-detection.c: Likewise. * graphite.c: Likewise. * haifa-sched.c: Likewise. * ifcvt.c: Likewise. * ipa-cp.c: Likewise. * ipa-inline-analysis.c: Likewise. * ipa-inline-transform.c: Likewise. * ipa-inline.c: Likewise. * ipa-prop.c: Likewise. * ipa-split.c: Likewise. * ipa-utils.c: Likewise. * ira-build.c: Likewise. * lto-cgraph.c: Likewise. * lto-streamer-in.c: Likewise. * lto-symtab.c: Likewise. * opts-global.c: Likewise. * passes.c: Likewise. * ree.c: Likewise. * sched-deps.c: Likewise. * sel-sched-ir.c: Likewise. * sel-sched-ir.h: Likewise. * sel-sched.c: Likewise. * stor-layout.c: Likewise. * trans-mem.c: Likewise. * tree-call-cdce.c: Likewise. * tree-cfg.c: Likewise. * tree-data-ref.c: Likewise. * tree-diagnostic.c: Likewise. * tree-eh.c: Likewise. * tree-loop-distribution.c: Likewise. * tree-predcom.c: Likewise. * tree-ssa-loop-im.c: Likewise. * tree-ssa-loop-ivcanon.c: Likewise. * tree-ssa-loop-manip.c: Likewise. * tree-ssa-loop-niter.c: Likewise. * tree-ssa-loop-prefetch.c: Likewise. * tree-ssa-math-opts.c: Likewise. * tree-ssa-phiopt.c: Likewise. * tree-ssa-pre.c: Likewise. * tree-ssa-propagate.c: Likewise. * tree-ssa-reassoc.c: Likewise. * tree-ssa-sccvn.c: Likewise. * tree-ssa-structalias.c: Likewise. * tree-ssa-threadedge.c: Likewise. * tree-ssa-uninit.c: Likewise. * tree-stdarg.c: Likewise. * tree-switch-conversion.c: Likewise. * tree-vect-data-refs.c: Likewise. * tree-vect-loop.c: Likewise. * tree-vect-slp.c: Likewise. * tree-vect-stmts.c: Likewise. * value-prof.c: Likewise. * varasm.c: Likewise. ada/ChangeLog * gcc-interface/decl.c: Replace all vec<T,A>() initializers with vNULL. cp/ChangeLog * name-lookup.c: Replace all vec<T, A>() initializers with vNULL. * semantics.c: Likewise. fortran/ChangeLog * trans-openmp.c: Replace all vec<T, A>() initializers with vNULL. lto/ChangeLog * lto.c: Replace all vec<T, A>() initializers with vNULL. objc/ChangeLog * objc-act.c: Replace all vec<T, A>() initializers with vNULL. Co-Authored-By: Jakub Jelinek <jakub@redhat.com> From-SVN: r193677
2044 lines
60 KiB
C
2044 lines
60 KiB
C
/* Predicate aware uninitialized variable warning.
|
|
Copyright (C) 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2010 Free Software
|
|
Foundation, Inc.
|
|
Contributed by Xinliang David Li <davidxl@google.com>
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3, or (at your option)
|
|
any later version.
|
|
|
|
GCC is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "tm.h"
|
|
#include "tree.h"
|
|
#include "flags.h"
|
|
#include "tm_p.h"
|
|
#include "basic-block.h"
|
|
#include "function.h"
|
|
#include "gimple-pretty-print.h"
|
|
#include "bitmap.h"
|
|
#include "pointer-set.h"
|
|
#include "tree-flow.h"
|
|
#include "gimple.h"
|
|
#include "tree-inline.h"
|
|
#include "hashtab.h"
|
|
#include "tree-pass.h"
|
|
#include "diagnostic-core.h"
|
|
|
|
/* This implements the pass that does predicate aware warning on uses of
|
|
possibly uninitialized variables. The pass first collects the set of
|
|
possibly uninitialized SSA names. For each such name, it walks through
|
|
all its immediate uses. For each immediate use, it rebuilds the condition
|
|
expression (the predicate) that guards the use. The predicate is then
|
|
examined to see if the variable is always defined under that same condition.
|
|
This is done either by pruning the unrealizable paths that lead to the
|
|
default definitions or by checking if the predicate set that guards the
|
|
defining paths is a superset of the use predicate. */
|
|
|
|
|
|
/* Pointer set of potentially undefined ssa names, i.e.,
|
|
ssa names that are defined by phi with operands that
|
|
are not defined or potentially undefined. */
|
|
static struct pointer_set_t *possibly_undefined_names = 0;
|
|
|
|
/* Bit mask handling macros. */
|
|
#define MASK_SET_BIT(mask, pos) mask |= (1 << pos)
|
|
#define MASK_TEST_BIT(mask, pos) (mask & (1 << pos))
|
|
#define MASK_EMPTY(mask) (mask == 0)
|
|
|
|
/* Returns the first bit position (starting from LSB)
|
|
in mask that is non zero. Returns -1 if the mask is empty. */
|
|
static int
|
|
get_mask_first_set_bit (unsigned mask)
|
|
{
|
|
int pos = 0;
|
|
if (mask == 0)
|
|
return -1;
|
|
|
|
while ((mask & (1 << pos)) == 0)
|
|
pos++;
|
|
|
|
return pos;
|
|
}
|
|
#define MASK_FIRST_SET_BIT(mask) get_mask_first_set_bit (mask)
|
|
|
|
|
|
/* Return true if T, an SSA_NAME, has an undefined value. */
|
|
|
|
bool
|
|
ssa_undefined_value_p (tree t)
|
|
{
|
|
tree var = SSA_NAME_VAR (t);
|
|
|
|
if (!var)
|
|
;
|
|
/* Parameters get their initial value from the function entry. */
|
|
else if (TREE_CODE (var) == PARM_DECL)
|
|
return false;
|
|
/* When returning by reference the return address is actually a hidden
|
|
parameter. */
|
|
else if (TREE_CODE (var) == RESULT_DECL && DECL_BY_REFERENCE (var))
|
|
return false;
|
|
/* Hard register variables get their initial value from the ether. */
|
|
else if (TREE_CODE (var) == VAR_DECL && DECL_HARD_REGISTER (var))
|
|
return false;
|
|
|
|
/* The value is undefined iff its definition statement is empty. */
|
|
return (gimple_nop_p (SSA_NAME_DEF_STMT (t))
|
|
|| (possibly_undefined_names
|
|
&& pointer_set_contains (possibly_undefined_names, t)));
|
|
}
|
|
|
|
/* Checks if the operand OPND of PHI is defined by
|
|
another phi with one operand defined by this PHI,
|
|
but the rest operands are all defined. If yes,
|
|
returns true to skip this this operand as being
|
|
redundant. Can be enhanced to be more general. */
|
|
|
|
static bool
|
|
can_skip_redundant_opnd (tree opnd, gimple phi)
|
|
{
|
|
gimple op_def;
|
|
tree phi_def;
|
|
int i, n;
|
|
|
|
phi_def = gimple_phi_result (phi);
|
|
op_def = SSA_NAME_DEF_STMT (opnd);
|
|
if (gimple_code (op_def) != GIMPLE_PHI)
|
|
return false;
|
|
n = gimple_phi_num_args (op_def);
|
|
for (i = 0; i < n; ++i)
|
|
{
|
|
tree op = gimple_phi_arg_def (op_def, i);
|
|
if (TREE_CODE (op) != SSA_NAME)
|
|
continue;
|
|
if (op != phi_def && ssa_undefined_value_p (op))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Returns a bit mask holding the positions of arguments in PHI
|
|
that have empty (or possibly empty) definitions. */
|
|
|
|
static unsigned
|
|
compute_uninit_opnds_pos (gimple phi)
|
|
{
|
|
size_t i, n;
|
|
unsigned uninit_opnds = 0;
|
|
|
|
n = gimple_phi_num_args (phi);
|
|
/* Bail out for phi with too many args. */
|
|
if (n > 32)
|
|
return 0;
|
|
|
|
for (i = 0; i < n; ++i)
|
|
{
|
|
tree op = gimple_phi_arg_def (phi, i);
|
|
if (TREE_CODE (op) == SSA_NAME
|
|
&& ssa_undefined_value_p (op)
|
|
&& !can_skip_redundant_opnd (op, phi))
|
|
MASK_SET_BIT (uninit_opnds, i);
|
|
}
|
|
return uninit_opnds;
|
|
}
|
|
|
|
/* Find the immediate postdominator PDOM of the specified
|
|
basic block BLOCK. */
|
|
|
|
static inline basic_block
|
|
find_pdom (basic_block block)
|
|
{
|
|
if (block == EXIT_BLOCK_PTR)
|
|
return EXIT_BLOCK_PTR;
|
|
else
|
|
{
|
|
basic_block bb
|
|
= get_immediate_dominator (CDI_POST_DOMINATORS, block);
|
|
if (! bb)
|
|
return EXIT_BLOCK_PTR;
|
|
return bb;
|
|
}
|
|
}
|
|
|
|
/* Find the immediate DOM of the specified
|
|
basic block BLOCK. */
|
|
|
|
static inline basic_block
|
|
find_dom (basic_block block)
|
|
{
|
|
if (block == ENTRY_BLOCK_PTR)
|
|
return ENTRY_BLOCK_PTR;
|
|
else
|
|
{
|
|
basic_block bb = get_immediate_dominator (CDI_DOMINATORS, block);
|
|
if (! bb)
|
|
return ENTRY_BLOCK_PTR;
|
|
return bb;
|
|
}
|
|
}
|
|
|
|
/* Returns true if BB1 is postdominating BB2 and BB1 is
|
|
not a loop exit bb. The loop exit bb check is simple and does
|
|
not cover all cases. */
|
|
|
|
static bool
|
|
is_non_loop_exit_postdominating (basic_block bb1, basic_block bb2)
|
|
{
|
|
if (!dominated_by_p (CDI_POST_DOMINATORS, bb2, bb1))
|
|
return false;
|
|
|
|
if (single_pred_p (bb1) && !single_succ_p (bb2))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Find the closest postdominator of a specified BB, which is control
|
|
equivalent to BB. */
|
|
|
|
static inline basic_block
|
|
find_control_equiv_block (basic_block bb)
|
|
{
|
|
basic_block pdom;
|
|
|
|
pdom = find_pdom (bb);
|
|
|
|
/* Skip the postdominating bb that is also loop exit. */
|
|
if (!is_non_loop_exit_postdominating (pdom, bb))
|
|
return NULL;
|
|
|
|
if (dominated_by_p (CDI_DOMINATORS, pdom, bb))
|
|
return pdom;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
#define MAX_NUM_CHAINS 8
|
|
#define MAX_CHAIN_LEN 5
|
|
|
|
/* Computes the control dependence chains (paths of edges)
|
|
for DEP_BB up to the dominating basic block BB (the head node of a
|
|
chain should be dominated by it). CD_CHAINS is pointer to a
|
|
dynamic array holding the result chains. CUR_CD_CHAIN is the current
|
|
chain being computed. *NUM_CHAINS is total number of chains. The
|
|
function returns true if the information is successfully computed,
|
|
return false if there is no control dependence or not computed. */
|
|
|
|
static bool
|
|
compute_control_dep_chain (basic_block bb, basic_block dep_bb,
|
|
vec<edge> *cd_chains,
|
|
size_t *num_chains,
|
|
vec<edge> *cur_cd_chain)
|
|
{
|
|
edge_iterator ei;
|
|
edge e;
|
|
size_t i;
|
|
bool found_cd_chain = false;
|
|
size_t cur_chain_len = 0;
|
|
|
|
if (EDGE_COUNT (bb->succs) < 2)
|
|
return false;
|
|
|
|
/* Could use a set instead. */
|
|
cur_chain_len = cur_cd_chain->length ();
|
|
if (cur_chain_len > MAX_CHAIN_LEN)
|
|
return false;
|
|
|
|
for (i = 0; i < cur_chain_len; i++)
|
|
{
|
|
edge e = (*cur_cd_chain)[i];
|
|
/* cycle detected. */
|
|
if (e->src == bb)
|
|
return false;
|
|
}
|
|
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
|
{
|
|
basic_block cd_bb;
|
|
if (e->flags & (EDGE_FAKE | EDGE_ABNORMAL))
|
|
continue;
|
|
|
|
cd_bb = e->dest;
|
|
cur_cd_chain->safe_push (e);
|
|
while (!is_non_loop_exit_postdominating (cd_bb, bb))
|
|
{
|
|
if (cd_bb == dep_bb)
|
|
{
|
|
/* Found a direct control dependence. */
|
|
if (*num_chains < MAX_NUM_CHAINS)
|
|
{
|
|
cd_chains[*num_chains] = cur_cd_chain->copy ();
|
|
(*num_chains)++;
|
|
}
|
|
found_cd_chain = true;
|
|
/* check path from next edge. */
|
|
break;
|
|
}
|
|
|
|
/* Now check if DEP_BB is indirectly control dependent on BB. */
|
|
if (compute_control_dep_chain (cd_bb, dep_bb, cd_chains,
|
|
num_chains, cur_cd_chain))
|
|
{
|
|
found_cd_chain = true;
|
|
break;
|
|
}
|
|
|
|
cd_bb = find_pdom (cd_bb);
|
|
if (cd_bb == EXIT_BLOCK_PTR)
|
|
break;
|
|
}
|
|
cur_cd_chain->pop ();
|
|
gcc_assert (cur_cd_chain->length () == cur_chain_len);
|
|
}
|
|
gcc_assert (cur_cd_chain->length () == cur_chain_len);
|
|
|
|
return found_cd_chain;
|
|
}
|
|
|
|
typedef struct use_pred_info
|
|
{
|
|
gimple cond;
|
|
bool invert;
|
|
} *use_pred_info_t;
|
|
|
|
|
|
|
|
/* Converts the chains of control dependence edges into a set of
|
|
predicates. A control dependence chain is represented by a vector
|
|
edges. DEP_CHAINS points to an array of dependence chains.
|
|
NUM_CHAINS is the size of the chain array. One edge in a dependence
|
|
chain is mapped to predicate expression represented by use_pred_info_t
|
|
type. One dependence chain is converted to a composite predicate that
|
|
is the result of AND operation of use_pred_info_t mapped to each edge.
|
|
A composite predicate is presented by a vector of use_pred_info_t. On
|
|
return, *PREDS points to the resulting array of composite predicates.
|
|
*NUM_PREDS is the number of composite predictes. */
|
|
|
|
static bool
|
|
convert_control_dep_chain_into_preds (vec<edge> *dep_chains,
|
|
size_t num_chains,
|
|
vec<use_pred_info_t> **preds,
|
|
size_t *num_preds)
|
|
{
|
|
bool has_valid_pred = false;
|
|
size_t i, j;
|
|
if (num_chains == 0 || num_chains >= MAX_NUM_CHAINS)
|
|
return false;
|
|
|
|
/* Now convert the control dep chain into a set
|
|
of predicates. */
|
|
typedef vec<use_pred_info_t> vec_use_pred_info_t_heap;
|
|
*preds = XCNEWVEC (vec_use_pred_info_t_heap, num_chains);
|
|
*num_preds = num_chains;
|
|
|
|
for (i = 0; i < num_chains; i++)
|
|
{
|
|
vec<edge> one_cd_chain = dep_chains[i];
|
|
|
|
has_valid_pred = false;
|
|
for (j = 0; j < one_cd_chain.length (); j++)
|
|
{
|
|
gimple cond_stmt;
|
|
gimple_stmt_iterator gsi;
|
|
basic_block guard_bb;
|
|
use_pred_info_t one_pred;
|
|
edge e;
|
|
|
|
e = one_cd_chain[j];
|
|
guard_bb = e->src;
|
|
gsi = gsi_last_bb (guard_bb);
|
|
if (gsi_end_p (gsi))
|
|
{
|
|
has_valid_pred = false;
|
|
break;
|
|
}
|
|
cond_stmt = gsi_stmt (gsi);
|
|
if (gimple_code (cond_stmt) == GIMPLE_CALL
|
|
&& EDGE_COUNT (e->src->succs) >= 2)
|
|
{
|
|
/* Ignore EH edge. Can add assertion
|
|
on the other edge's flag. */
|
|
continue;
|
|
}
|
|
/* Skip if there is essentially one succesor. */
|
|
if (EDGE_COUNT (e->src->succs) == 2)
|
|
{
|
|
edge e1;
|
|
edge_iterator ei1;
|
|
bool skip = false;
|
|
|
|
FOR_EACH_EDGE (e1, ei1, e->src->succs)
|
|
{
|
|
if (EDGE_COUNT (e1->dest->succs) == 0)
|
|
{
|
|
skip = true;
|
|
break;
|
|
}
|
|
}
|
|
if (skip)
|
|
continue;
|
|
}
|
|
if (gimple_code (cond_stmt) != GIMPLE_COND)
|
|
{
|
|
has_valid_pred = false;
|
|
break;
|
|
}
|
|
one_pred = XNEW (struct use_pred_info);
|
|
one_pred->cond = cond_stmt;
|
|
one_pred->invert = !!(e->flags & EDGE_FALSE_VALUE);
|
|
(*preds)[i].safe_push (one_pred);
|
|
has_valid_pred = true;
|
|
}
|
|
|
|
if (!has_valid_pred)
|
|
break;
|
|
}
|
|
return has_valid_pred;
|
|
}
|
|
|
|
/* Computes all control dependence chains for USE_BB. The control
|
|
dependence chains are then converted to an array of composite
|
|
predicates pointed to by PREDS. PHI_BB is the basic block of
|
|
the phi whose result is used in USE_BB. */
|
|
|
|
static bool
|
|
find_predicates (vec<use_pred_info_t> **preds,
|
|
size_t *num_preds,
|
|
basic_block phi_bb,
|
|
basic_block use_bb)
|
|
{
|
|
size_t num_chains = 0, i;
|
|
vec<edge> *dep_chains = 0;
|
|
vec<edge> cur_chain = vNULL;
|
|
bool has_valid_pred = false;
|
|
basic_block cd_root = 0;
|
|
|
|
typedef vec<edge> vec_edge_heap;
|
|
dep_chains = XCNEWVEC (vec_edge_heap, MAX_NUM_CHAINS);
|
|
|
|
/* First find the closest bb that is control equivalent to PHI_BB
|
|
that also dominates USE_BB. */
|
|
cd_root = phi_bb;
|
|
while (dominated_by_p (CDI_DOMINATORS, use_bb, cd_root))
|
|
{
|
|
basic_block ctrl_eq_bb = find_control_equiv_block (cd_root);
|
|
if (ctrl_eq_bb && dominated_by_p (CDI_DOMINATORS, use_bb, ctrl_eq_bb))
|
|
cd_root = ctrl_eq_bb;
|
|
else
|
|
break;
|
|
}
|
|
|
|
compute_control_dep_chain (cd_root, use_bb,
|
|
dep_chains, &num_chains,
|
|
&cur_chain);
|
|
|
|
has_valid_pred
|
|
= convert_control_dep_chain_into_preds (dep_chains,
|
|
num_chains,
|
|
preds,
|
|
num_preds);
|
|
/* Free individual chain */
|
|
cur_chain.release ();
|
|
for (i = 0; i < num_chains; i++)
|
|
dep_chains[i].release ();
|
|
free (dep_chains);
|
|
return has_valid_pred;
|
|
}
|
|
|
|
/* Computes the set of incoming edges of PHI that have non empty
|
|
definitions of a phi chain. The collection will be done
|
|
recursively on operands that are defined by phis. CD_ROOT
|
|
is the control dependence root. *EDGES holds the result, and
|
|
VISITED_PHIS is a pointer set for detecting cycles. */
|
|
|
|
static void
|
|
collect_phi_def_edges (gimple phi, basic_block cd_root,
|
|
vec<edge> *edges,
|
|
struct pointer_set_t *visited_phis)
|
|
{
|
|
size_t i, n;
|
|
edge opnd_edge;
|
|
tree opnd;
|
|
|
|
if (pointer_set_insert (visited_phis, phi))
|
|
return;
|
|
|
|
n = gimple_phi_num_args (phi);
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
opnd_edge = gimple_phi_arg_edge (phi, i);
|
|
opnd = gimple_phi_arg_def (phi, i);
|
|
|
|
if (TREE_CODE (opnd) != SSA_NAME)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "\n[CHECK] Found def edge %d in ", (int)i);
|
|
print_gimple_stmt (dump_file, phi, 0, 0);
|
|
}
|
|
edges->safe_push (opnd_edge);
|
|
}
|
|
else
|
|
{
|
|
gimple def = SSA_NAME_DEF_STMT (opnd);
|
|
|
|
if (gimple_code (def) == GIMPLE_PHI
|
|
&& dominated_by_p (CDI_DOMINATORS,
|
|
gimple_bb (def), cd_root))
|
|
collect_phi_def_edges (def, cd_root, edges,
|
|
visited_phis);
|
|
else if (!ssa_undefined_value_p (opnd))
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "\n[CHECK] Found def edge %d in ", (int)i);
|
|
print_gimple_stmt (dump_file, phi, 0, 0);
|
|
}
|
|
edges->safe_push (opnd_edge);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* For each use edge of PHI, computes all control dependence chains.
|
|
The control dependence chains are then converted to an array of
|
|
composite predicates pointed to by PREDS. */
|
|
|
|
static bool
|
|
find_def_preds (vec<use_pred_info_t> **preds,
|
|
size_t *num_preds, gimple phi)
|
|
{
|
|
size_t num_chains = 0, i, n;
|
|
vec<edge> *dep_chains = 0;
|
|
vec<edge> cur_chain = vNULL;
|
|
vec<edge> def_edges = vNULL;
|
|
bool has_valid_pred = false;
|
|
basic_block phi_bb, cd_root = 0;
|
|
struct pointer_set_t *visited_phis;
|
|
|
|
typedef vec<edge> vec_edge_heap;
|
|
dep_chains = XCNEWVEC (vec_edge_heap, MAX_NUM_CHAINS);
|
|
|
|
phi_bb = gimple_bb (phi);
|
|
/* First find the closest dominating bb to be
|
|
the control dependence root */
|
|
cd_root = find_dom (phi_bb);
|
|
if (!cd_root)
|
|
return false;
|
|
|
|
visited_phis = pointer_set_create ();
|
|
collect_phi_def_edges (phi, cd_root, &def_edges, visited_phis);
|
|
pointer_set_destroy (visited_phis);
|
|
|
|
n = def_edges.length ();
|
|
if (n == 0)
|
|
return false;
|
|
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
size_t prev_nc, j;
|
|
edge opnd_edge;
|
|
|
|
opnd_edge = def_edges[i];
|
|
prev_nc = num_chains;
|
|
compute_control_dep_chain (cd_root, opnd_edge->src,
|
|
dep_chains, &num_chains,
|
|
&cur_chain);
|
|
/* Free individual chain */
|
|
cur_chain.release ();
|
|
|
|
/* Now update the newly added chains with
|
|
the phi operand edge: */
|
|
if (EDGE_COUNT (opnd_edge->src->succs) > 1)
|
|
{
|
|
if (prev_nc == num_chains
|
|
&& num_chains < MAX_NUM_CHAINS)
|
|
num_chains++;
|
|
for (j = prev_nc; j < num_chains; j++)
|
|
{
|
|
dep_chains[j].safe_push (opnd_edge);
|
|
}
|
|
}
|
|
}
|
|
|
|
has_valid_pred
|
|
= convert_control_dep_chain_into_preds (dep_chains,
|
|
num_chains,
|
|
preds,
|
|
num_preds);
|
|
for (i = 0; i < num_chains; i++)
|
|
dep_chains[i].release ();
|
|
free (dep_chains);
|
|
return has_valid_pred;
|
|
}
|
|
|
|
/* Dumps the predicates (PREDS) for USESTMT. */
|
|
|
|
static void
|
|
dump_predicates (gimple usestmt, size_t num_preds,
|
|
vec<use_pred_info_t> *preds,
|
|
const char* msg)
|
|
{
|
|
size_t i, j;
|
|
vec<use_pred_info_t> one_pred_chain;
|
|
fprintf (dump_file, msg);
|
|
print_gimple_stmt (dump_file, usestmt, 0, 0);
|
|
fprintf (dump_file, "is guarded by :\n");
|
|
/* do some dumping here: */
|
|
for (i = 0; i < num_preds; i++)
|
|
{
|
|
size_t np;
|
|
|
|
one_pred_chain = preds[i];
|
|
np = one_pred_chain.length ();
|
|
|
|
for (j = 0; j < np; j++)
|
|
{
|
|
use_pred_info_t one_pred
|
|
= one_pred_chain[j];
|
|
if (one_pred->invert)
|
|
fprintf (dump_file, " (.NOT.) ");
|
|
print_gimple_stmt (dump_file, one_pred->cond, 0, 0);
|
|
if (j < np - 1)
|
|
fprintf (dump_file, "(.AND.)\n");
|
|
}
|
|
if (i < num_preds - 1)
|
|
fprintf (dump_file, "(.OR.)\n");
|
|
}
|
|
}
|
|
|
|
/* Destroys the predicate set *PREDS. */
|
|
|
|
static void
|
|
destroy_predicate_vecs (size_t n,
|
|
vec<use_pred_info_t> * preds)
|
|
{
|
|
size_t i, j;
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
for (j = 0; j < preds[i].length (); j++)
|
|
free (preds[i][j]);
|
|
preds[i].release ();
|
|
}
|
|
free (preds);
|
|
}
|
|
|
|
|
|
/* Computes the 'normalized' conditional code with operand
|
|
swapping and condition inversion. */
|
|
|
|
static enum tree_code
|
|
get_cmp_code (enum tree_code orig_cmp_code,
|
|
bool swap_cond, bool invert)
|
|
{
|
|
enum tree_code tc = orig_cmp_code;
|
|
|
|
if (swap_cond)
|
|
tc = swap_tree_comparison (orig_cmp_code);
|
|
if (invert)
|
|
tc = invert_tree_comparison (tc, false);
|
|
|
|
switch (tc)
|
|
{
|
|
case LT_EXPR:
|
|
case LE_EXPR:
|
|
case GT_EXPR:
|
|
case GE_EXPR:
|
|
case EQ_EXPR:
|
|
case NE_EXPR:
|
|
break;
|
|
default:
|
|
return ERROR_MARK;
|
|
}
|
|
return tc;
|
|
}
|
|
|
|
/* Returns true if VAL falls in the range defined by BOUNDARY and CMPC, i.e.
|
|
all values in the range satisfies (x CMPC BOUNDARY) == true. */
|
|
|
|
static bool
|
|
is_value_included_in (tree val, tree boundary, enum tree_code cmpc)
|
|
{
|
|
bool inverted = false;
|
|
bool is_unsigned;
|
|
bool result;
|
|
|
|
/* Only handle integer constant here. */
|
|
if (TREE_CODE (val) != INTEGER_CST
|
|
|| TREE_CODE (boundary) != INTEGER_CST)
|
|
return true;
|
|
|
|
is_unsigned = TYPE_UNSIGNED (TREE_TYPE (val));
|
|
|
|
if (cmpc == GE_EXPR || cmpc == GT_EXPR
|
|
|| cmpc == NE_EXPR)
|
|
{
|
|
cmpc = invert_tree_comparison (cmpc, false);
|
|
inverted = true;
|
|
}
|
|
|
|
if (is_unsigned)
|
|
{
|
|
if (cmpc == EQ_EXPR)
|
|
result = tree_int_cst_equal (val, boundary);
|
|
else if (cmpc == LT_EXPR)
|
|
result = INT_CST_LT_UNSIGNED (val, boundary);
|
|
else
|
|
{
|
|
gcc_assert (cmpc == LE_EXPR);
|
|
result = (tree_int_cst_equal (val, boundary)
|
|
|| INT_CST_LT_UNSIGNED (val, boundary));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (cmpc == EQ_EXPR)
|
|
result = tree_int_cst_equal (val, boundary);
|
|
else if (cmpc == LT_EXPR)
|
|
result = INT_CST_LT (val, boundary);
|
|
else
|
|
{
|
|
gcc_assert (cmpc == LE_EXPR);
|
|
result = (tree_int_cst_equal (val, boundary)
|
|
|| INT_CST_LT (val, boundary));
|
|
}
|
|
}
|
|
|
|
if (inverted)
|
|
result ^= 1;
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Returns true if PRED is common among all the predicate
|
|
chains (PREDS) (and therefore can be factored out).
|
|
NUM_PRED_CHAIN is the size of array PREDS. */
|
|
|
|
static bool
|
|
find_matching_predicate_in_rest_chains (use_pred_info_t pred,
|
|
vec<use_pred_info_t> *preds,
|
|
size_t num_pred_chains)
|
|
{
|
|
size_t i, j, n;
|
|
|
|
/* trival case */
|
|
if (num_pred_chains == 1)
|
|
return true;
|
|
|
|
for (i = 1; i < num_pred_chains; i++)
|
|
{
|
|
bool found = false;
|
|
vec<use_pred_info_t> one_chain = preds[i];
|
|
n = one_chain.length ();
|
|
for (j = 0; j < n; j++)
|
|
{
|
|
use_pred_info_t pred2
|
|
= one_chain[j];
|
|
/* can relax the condition comparison to not
|
|
use address comparison. However, the most common
|
|
case is that multiple control dependent paths share
|
|
a common path prefix, so address comparison should
|
|
be ok. */
|
|
|
|
if (pred2->cond == pred->cond
|
|
&& pred2->invert == pred->invert)
|
|
{
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!found)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Forward declaration. */
|
|
static bool
|
|
is_use_properly_guarded (gimple use_stmt,
|
|
basic_block use_bb,
|
|
gimple phi,
|
|
unsigned uninit_opnds,
|
|
struct pointer_set_t *visited_phis);
|
|
|
|
/* Returns true if all uninitialized opnds are pruned. Returns false
|
|
otherwise. PHI is the phi node with uninitialized operands,
|
|
UNINIT_OPNDS is the bitmap of the uninitialize operand positions,
|
|
FLAG_DEF is the statement defining the flag guarding the use of the
|
|
PHI output, BOUNDARY_CST is the const value used in the predicate
|
|
associated with the flag, CMP_CODE is the comparison code used in
|
|
the predicate, VISITED_PHIS is the pointer set of phis visited, and
|
|
VISITED_FLAG_PHIS is the pointer to the pointer set of flag definitions
|
|
that are also phis.
|
|
|
|
Example scenario:
|
|
|
|
BB1:
|
|
flag_1 = phi <0, 1> // (1)
|
|
var_1 = phi <undef, some_val>
|
|
|
|
|
|
BB2:
|
|
flag_2 = phi <0, flag_1, flag_1> // (2)
|
|
var_2 = phi <undef, var_1, var_1>
|
|
if (flag_2 == 1)
|
|
goto BB3;
|
|
|
|
BB3:
|
|
use of var_2 // (3)
|
|
|
|
Because some flag arg in (1) is not constant, if we do not look into the
|
|
flag phis recursively, it is conservatively treated as unknown and var_1
|
|
is thought to be flowed into use at (3). Since var_1 is potentially uninitialized
|
|
a false warning will be emitted. Checking recursively into (1), the compiler can
|
|
find out that only some_val (which is defined) can flow into (3) which is OK.
|
|
|
|
*/
|
|
|
|
static bool
|
|
prune_uninit_phi_opnds_in_unrealizable_paths (
|
|
gimple phi, unsigned uninit_opnds,
|
|
gimple flag_def, tree boundary_cst,
|
|
enum tree_code cmp_code,
|
|
struct pointer_set_t *visited_phis,
|
|
bitmap *visited_flag_phis)
|
|
{
|
|
unsigned i;
|
|
|
|
for (i = 0; i < MIN (32, gimple_phi_num_args (flag_def)); i++)
|
|
{
|
|
tree flag_arg;
|
|
|
|
if (!MASK_TEST_BIT (uninit_opnds, i))
|
|
continue;
|
|
|
|
flag_arg = gimple_phi_arg_def (flag_def, i);
|
|
if (!is_gimple_constant (flag_arg))
|
|
{
|
|
gimple flag_arg_def, phi_arg_def;
|
|
tree phi_arg;
|
|
unsigned uninit_opnds_arg_phi;
|
|
|
|
if (TREE_CODE (flag_arg) != SSA_NAME)
|
|
return false;
|
|
flag_arg_def = SSA_NAME_DEF_STMT (flag_arg);
|
|
if (gimple_code (flag_arg_def) != GIMPLE_PHI)
|
|
return false;
|
|
|
|
phi_arg = gimple_phi_arg_def (phi, i);
|
|
if (TREE_CODE (phi_arg) != SSA_NAME)
|
|
return false;
|
|
|
|
phi_arg_def = SSA_NAME_DEF_STMT (phi_arg);
|
|
if (gimple_code (phi_arg_def) != GIMPLE_PHI)
|
|
return false;
|
|
|
|
if (gimple_bb (phi_arg_def) != gimple_bb (flag_arg_def))
|
|
return false;
|
|
|
|
if (!*visited_flag_phis)
|
|
*visited_flag_phis = BITMAP_ALLOC (NULL);
|
|
|
|
if (bitmap_bit_p (*visited_flag_phis,
|
|
SSA_NAME_VERSION (gimple_phi_result (flag_arg_def))))
|
|
return false;
|
|
|
|
bitmap_set_bit (*visited_flag_phis,
|
|
SSA_NAME_VERSION (gimple_phi_result (flag_arg_def)));
|
|
|
|
/* Now recursively prune the uninitialized phi args. */
|
|
uninit_opnds_arg_phi = compute_uninit_opnds_pos (phi_arg_def);
|
|
if (!prune_uninit_phi_opnds_in_unrealizable_paths (
|
|
phi_arg_def, uninit_opnds_arg_phi,
|
|
flag_arg_def, boundary_cst, cmp_code,
|
|
visited_phis, visited_flag_phis))
|
|
return false;
|
|
|
|
bitmap_clear_bit (*visited_flag_phis,
|
|
SSA_NAME_VERSION (gimple_phi_result (flag_arg_def)));
|
|
continue;
|
|
}
|
|
|
|
/* Now check if the constant is in the guarded range. */
|
|
if (is_value_included_in (flag_arg, boundary_cst, cmp_code))
|
|
{
|
|
tree opnd;
|
|
gimple opnd_def;
|
|
|
|
/* Now that we know that this undefined edge is not
|
|
pruned. If the operand is defined by another phi,
|
|
we can further prune the incoming edges of that
|
|
phi by checking the predicates of this operands. */
|
|
|
|
opnd = gimple_phi_arg_def (phi, i);
|
|
opnd_def = SSA_NAME_DEF_STMT (opnd);
|
|
if (gimple_code (opnd_def) == GIMPLE_PHI)
|
|
{
|
|
edge opnd_edge;
|
|
unsigned uninit_opnds2
|
|
= compute_uninit_opnds_pos (opnd_def);
|
|
gcc_assert (!MASK_EMPTY (uninit_opnds2));
|
|
opnd_edge = gimple_phi_arg_edge (phi, i);
|
|
if (!is_use_properly_guarded (phi,
|
|
opnd_edge->src,
|
|
opnd_def,
|
|
uninit_opnds2,
|
|
visited_phis))
|
|
return false;
|
|
}
|
|
else
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* A helper function that determines if the predicate set
|
|
of the use is not overlapping with that of the uninit paths.
|
|
The most common senario of guarded use is in Example 1:
|
|
Example 1:
|
|
if (some_cond)
|
|
{
|
|
x = ...;
|
|
flag = true;
|
|
}
|
|
|
|
... some code ...
|
|
|
|
if (flag)
|
|
use (x);
|
|
|
|
The real world examples are usually more complicated, but similar
|
|
and usually result from inlining:
|
|
|
|
bool init_func (int * x)
|
|
{
|
|
if (some_cond)
|
|
return false;
|
|
*x = ..
|
|
return true;
|
|
}
|
|
|
|
void foo(..)
|
|
{
|
|
int x;
|
|
|
|
if (!init_func(&x))
|
|
return;
|
|
|
|
.. some_code ...
|
|
use (x);
|
|
}
|
|
|
|
Another possible use scenario is in the following trivial example:
|
|
|
|
Example 2:
|
|
if (n > 0)
|
|
x = 1;
|
|
...
|
|
if (n > 0)
|
|
{
|
|
if (m < 2)
|
|
.. = x;
|
|
}
|
|
|
|
Predicate analysis needs to compute the composite predicate:
|
|
|
|
1) 'x' use predicate: (n > 0) .AND. (m < 2)
|
|
2) 'x' default value (non-def) predicate: .NOT. (n > 0)
|
|
(the predicate chain for phi operand defs can be computed
|
|
starting from a bb that is control equivalent to the phi's
|
|
bb and is dominating the operand def.)
|
|
|
|
and check overlapping:
|
|
(n > 0) .AND. (m < 2) .AND. (.NOT. (n > 0))
|
|
<==> false
|
|
|
|
This implementation provides framework that can handle
|
|
scenarios. (Note that many simple cases are handled properly
|
|
without the predicate analysis -- this is due to jump threading
|
|
transformation which eliminates the merge point thus makes
|
|
path sensitive analysis unnecessary.)
|
|
|
|
NUM_PREDS is the number is the number predicate chains, PREDS is
|
|
the array of chains, PHI is the phi node whose incoming (undefined)
|
|
paths need to be pruned, and UNINIT_OPNDS is the bitmap holding
|
|
uninit operand positions. VISITED_PHIS is the pointer set of phi
|
|
stmts being checked. */
|
|
|
|
|
|
static bool
|
|
use_pred_not_overlap_with_undef_path_pred (
|
|
size_t num_preds,
|
|
vec<use_pred_info_t> *preds,
|
|
gimple phi, unsigned uninit_opnds,
|
|
struct pointer_set_t *visited_phis)
|
|
{
|
|
unsigned int i, n;
|
|
gimple flag_def = 0;
|
|
tree boundary_cst = 0;
|
|
enum tree_code cmp_code;
|
|
bool swap_cond = false;
|
|
bool invert = false;
|
|
vec<use_pred_info_t> the_pred_chain;
|
|
bitmap visited_flag_phis = NULL;
|
|
bool all_pruned = false;
|
|
|
|
gcc_assert (num_preds > 0);
|
|
/* Find within the common prefix of multiple predicate chains
|
|
a predicate that is a comparison of a flag variable against
|
|
a constant. */
|
|
the_pred_chain = preds[0];
|
|
n = the_pred_chain.length ();
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
gimple cond;
|
|
tree cond_lhs, cond_rhs, flag = 0;
|
|
|
|
use_pred_info_t the_pred
|
|
= the_pred_chain[i];
|
|
|
|
cond = the_pred->cond;
|
|
invert = the_pred->invert;
|
|
cond_lhs = gimple_cond_lhs (cond);
|
|
cond_rhs = gimple_cond_rhs (cond);
|
|
cmp_code = gimple_cond_code (cond);
|
|
|
|
if (cond_lhs != NULL_TREE && TREE_CODE (cond_lhs) == SSA_NAME
|
|
&& cond_rhs != NULL_TREE && is_gimple_constant (cond_rhs))
|
|
{
|
|
boundary_cst = cond_rhs;
|
|
flag = cond_lhs;
|
|
}
|
|
else if (cond_rhs != NULL_TREE && TREE_CODE (cond_rhs) == SSA_NAME
|
|
&& cond_lhs != NULL_TREE && is_gimple_constant (cond_lhs))
|
|
{
|
|
boundary_cst = cond_lhs;
|
|
flag = cond_rhs;
|
|
swap_cond = true;
|
|
}
|
|
|
|
if (!flag)
|
|
continue;
|
|
|
|
flag_def = SSA_NAME_DEF_STMT (flag);
|
|
|
|
if (!flag_def)
|
|
continue;
|
|
|
|
if ((gimple_code (flag_def) == GIMPLE_PHI)
|
|
&& (gimple_bb (flag_def) == gimple_bb (phi))
|
|
&& find_matching_predicate_in_rest_chains (
|
|
the_pred, preds, num_preds))
|
|
break;
|
|
|
|
flag_def = 0;
|
|
}
|
|
|
|
if (!flag_def)
|
|
return false;
|
|
|
|
/* Now check all the uninit incoming edge has a constant flag value
|
|
that is in conflict with the use guard/predicate. */
|
|
cmp_code = get_cmp_code (cmp_code, swap_cond, invert);
|
|
|
|
if (cmp_code == ERROR_MARK)
|
|
return false;
|
|
|
|
all_pruned = prune_uninit_phi_opnds_in_unrealizable_paths (phi,
|
|
uninit_opnds,
|
|
flag_def,
|
|
boundary_cst,
|
|
cmp_code,
|
|
visited_phis,
|
|
&visited_flag_phis);
|
|
|
|
if (visited_flag_phis)
|
|
BITMAP_FREE (visited_flag_phis);
|
|
|
|
return all_pruned;
|
|
}
|
|
|
|
/* Returns true if TC is AND or OR */
|
|
|
|
static inline bool
|
|
is_and_or_or (enum tree_code tc, tree typ)
|
|
{
|
|
return (tc == BIT_IOR_EXPR
|
|
|| (tc == BIT_AND_EXPR
|
|
&& (typ == 0 || TREE_CODE (typ) == BOOLEAN_TYPE)));
|
|
}
|
|
|
|
typedef struct norm_cond
|
|
{
|
|
vec<gimple> conds;
|
|
enum tree_code cond_code;
|
|
bool invert;
|
|
} *norm_cond_t;
|
|
|
|
|
|
/* Normalizes gimple condition COND. The normalization follows
|
|
UD chains to form larger condition expression trees. NORM_COND
|
|
holds the normalized result. COND_CODE is the logical opcode
|
|
(AND or OR) of the normalized tree. */
|
|
|
|
static void
|
|
normalize_cond_1 (gimple cond,
|
|
norm_cond_t norm_cond,
|
|
enum tree_code cond_code)
|
|
{
|
|
enum gimple_code gc;
|
|
enum tree_code cur_cond_code;
|
|
tree rhs1, rhs2;
|
|
|
|
gc = gimple_code (cond);
|
|
if (gc != GIMPLE_ASSIGN)
|
|
{
|
|
norm_cond->conds.safe_push (cond);
|
|
return;
|
|
}
|
|
|
|
cur_cond_code = gimple_assign_rhs_code (cond);
|
|
rhs1 = gimple_assign_rhs1 (cond);
|
|
rhs2 = gimple_assign_rhs2 (cond);
|
|
if (cur_cond_code == NE_EXPR)
|
|
{
|
|
if (integer_zerop (rhs2)
|
|
&& (TREE_CODE (rhs1) == SSA_NAME))
|
|
normalize_cond_1 (
|
|
SSA_NAME_DEF_STMT (rhs1),
|
|
norm_cond, cond_code);
|
|
else if (integer_zerop (rhs1)
|
|
&& (TREE_CODE (rhs2) == SSA_NAME))
|
|
normalize_cond_1 (
|
|
SSA_NAME_DEF_STMT (rhs2),
|
|
norm_cond, cond_code);
|
|
else
|
|
norm_cond->conds.safe_push (cond);
|
|
|
|
return;
|
|
}
|
|
|
|
if (is_and_or_or (cur_cond_code, TREE_TYPE (rhs1))
|
|
&& (cond_code == cur_cond_code || cond_code == ERROR_MARK)
|
|
&& (TREE_CODE (rhs1) == SSA_NAME && TREE_CODE (rhs2) == SSA_NAME))
|
|
{
|
|
normalize_cond_1 (SSA_NAME_DEF_STMT (rhs1),
|
|
norm_cond, cur_cond_code);
|
|
normalize_cond_1 (SSA_NAME_DEF_STMT (rhs2),
|
|
norm_cond, cur_cond_code);
|
|
norm_cond->cond_code = cur_cond_code;
|
|
}
|
|
else
|
|
norm_cond->conds.safe_push (cond);
|
|
}
|
|
|
|
/* See normalize_cond_1 for details. INVERT is a flag to indicate
|
|
if COND needs to be inverted or not. */
|
|
|
|
static void
|
|
normalize_cond (gimple cond, norm_cond_t norm_cond, bool invert)
|
|
{
|
|
enum tree_code cond_code;
|
|
|
|
norm_cond->cond_code = ERROR_MARK;
|
|
norm_cond->invert = false;
|
|
norm_cond->conds.create (0);
|
|
gcc_assert (gimple_code (cond) == GIMPLE_COND);
|
|
cond_code = gimple_cond_code (cond);
|
|
if (invert)
|
|
cond_code = invert_tree_comparison (cond_code, false);
|
|
|
|
if (cond_code == NE_EXPR)
|
|
{
|
|
if (integer_zerop (gimple_cond_rhs (cond))
|
|
&& (TREE_CODE (gimple_cond_lhs (cond)) == SSA_NAME))
|
|
normalize_cond_1 (
|
|
SSA_NAME_DEF_STMT (gimple_cond_lhs (cond)),
|
|
norm_cond, ERROR_MARK);
|
|
else if (integer_zerop (gimple_cond_lhs (cond))
|
|
&& (TREE_CODE (gimple_cond_rhs (cond)) == SSA_NAME))
|
|
normalize_cond_1 (
|
|
SSA_NAME_DEF_STMT (gimple_cond_rhs (cond)),
|
|
norm_cond, ERROR_MARK);
|
|
else
|
|
{
|
|
norm_cond->conds.safe_push (cond);
|
|
norm_cond->invert = invert;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
norm_cond->conds.safe_push (cond);
|
|
norm_cond->invert = invert;
|
|
}
|
|
|
|
gcc_assert (norm_cond->conds.length () == 1
|
|
|| is_and_or_or (norm_cond->cond_code, NULL));
|
|
}
|
|
|
|
/* Returns true if the domain for condition COND1 is a subset of
|
|
COND2. REVERSE is a flag. when it is true the function checks
|
|
if COND1 is a superset of COND2. INVERT1 and INVERT2 are flags
|
|
to indicate if COND1 and COND2 need to be inverted or not. */
|
|
|
|
static bool
|
|
is_gcond_subset_of (gimple cond1, bool invert1,
|
|
gimple cond2, bool invert2,
|
|
bool reverse)
|
|
{
|
|
enum gimple_code gc1, gc2;
|
|
enum tree_code cond1_code, cond2_code;
|
|
gimple tmp;
|
|
tree cond1_lhs, cond1_rhs, cond2_lhs, cond2_rhs;
|
|
|
|
/* Take the short cut. */
|
|
if (cond1 == cond2)
|
|
return true;
|
|
|
|
if (reverse)
|
|
{
|
|
tmp = cond1;
|
|
cond1 = cond2;
|
|
cond2 = tmp;
|
|
}
|
|
|
|
gc1 = gimple_code (cond1);
|
|
gc2 = gimple_code (cond2);
|
|
|
|
if ((gc1 != GIMPLE_ASSIGN && gc1 != GIMPLE_COND)
|
|
|| (gc2 != GIMPLE_ASSIGN && gc2 != GIMPLE_COND))
|
|
return cond1 == cond2;
|
|
|
|
cond1_code = ((gc1 == GIMPLE_ASSIGN)
|
|
? gimple_assign_rhs_code (cond1)
|
|
: gimple_cond_code (cond1));
|
|
|
|
cond2_code = ((gc2 == GIMPLE_ASSIGN)
|
|
? gimple_assign_rhs_code (cond2)
|
|
: gimple_cond_code (cond2));
|
|
|
|
if (TREE_CODE_CLASS (cond1_code) != tcc_comparison
|
|
|| TREE_CODE_CLASS (cond2_code) != tcc_comparison)
|
|
return false;
|
|
|
|
if (invert1)
|
|
cond1_code = invert_tree_comparison (cond1_code, false);
|
|
if (invert2)
|
|
cond2_code = invert_tree_comparison (cond2_code, false);
|
|
|
|
cond1_lhs = ((gc1 == GIMPLE_ASSIGN)
|
|
? gimple_assign_rhs1 (cond1)
|
|
: gimple_cond_lhs (cond1));
|
|
cond1_rhs = ((gc1 == GIMPLE_ASSIGN)
|
|
? gimple_assign_rhs2 (cond1)
|
|
: gimple_cond_rhs (cond1));
|
|
cond2_lhs = ((gc2 == GIMPLE_ASSIGN)
|
|
? gimple_assign_rhs1 (cond2)
|
|
: gimple_cond_lhs (cond2));
|
|
cond2_rhs = ((gc2 == GIMPLE_ASSIGN)
|
|
? gimple_assign_rhs2 (cond2)
|
|
: gimple_cond_rhs (cond2));
|
|
|
|
/* Assuming const operands have been swapped to the
|
|
rhs at this point of the analysis. */
|
|
|
|
if (cond1_lhs != cond2_lhs)
|
|
return false;
|
|
|
|
if (!is_gimple_constant (cond1_rhs)
|
|
|| TREE_CODE (cond1_rhs) != INTEGER_CST)
|
|
return (cond1_rhs == cond2_rhs);
|
|
|
|
if (!is_gimple_constant (cond2_rhs)
|
|
|| TREE_CODE (cond2_rhs) != INTEGER_CST)
|
|
return (cond1_rhs == cond2_rhs);
|
|
|
|
if (cond1_code == EQ_EXPR)
|
|
return is_value_included_in (cond1_rhs,
|
|
cond2_rhs, cond2_code);
|
|
if (cond1_code == NE_EXPR || cond2_code == EQ_EXPR)
|
|
return ((cond2_code == cond1_code)
|
|
&& tree_int_cst_equal (cond1_rhs, cond2_rhs));
|
|
|
|
if (((cond1_code == GE_EXPR || cond1_code == GT_EXPR)
|
|
&& (cond2_code == LE_EXPR || cond2_code == LT_EXPR))
|
|
|| ((cond1_code == LE_EXPR || cond1_code == LT_EXPR)
|
|
&& (cond2_code == GE_EXPR || cond2_code == GT_EXPR)))
|
|
return false;
|
|
|
|
if (cond1_code != GE_EXPR && cond1_code != GT_EXPR
|
|
&& cond1_code != LE_EXPR && cond1_code != LT_EXPR)
|
|
return false;
|
|
|
|
if (cond1_code == GT_EXPR)
|
|
{
|
|
cond1_code = GE_EXPR;
|
|
cond1_rhs = fold_binary (PLUS_EXPR, TREE_TYPE (cond1_rhs),
|
|
cond1_rhs,
|
|
fold_convert (TREE_TYPE (cond1_rhs),
|
|
integer_one_node));
|
|
}
|
|
else if (cond1_code == LT_EXPR)
|
|
{
|
|
cond1_code = LE_EXPR;
|
|
cond1_rhs = fold_binary (MINUS_EXPR, TREE_TYPE (cond1_rhs),
|
|
cond1_rhs,
|
|
fold_convert (TREE_TYPE (cond1_rhs),
|
|
integer_one_node));
|
|
}
|
|
|
|
if (!cond1_rhs)
|
|
return false;
|
|
|
|
gcc_assert (cond1_code == GE_EXPR || cond1_code == LE_EXPR);
|
|
|
|
if (cond2_code == GE_EXPR || cond2_code == GT_EXPR ||
|
|
cond2_code == LE_EXPR || cond2_code == LT_EXPR)
|
|
return is_value_included_in (cond1_rhs,
|
|
cond2_rhs, cond2_code);
|
|
else if (cond2_code == NE_EXPR)
|
|
return
|
|
(is_value_included_in (cond1_rhs,
|
|
cond2_rhs, cond2_code)
|
|
&& !is_value_included_in (cond2_rhs,
|
|
cond1_rhs, cond1_code));
|
|
return false;
|
|
}
|
|
|
|
/* Returns true if the domain of the condition expression
|
|
in COND is a subset of any of the sub-conditions
|
|
of the normalized condtion NORM_COND. INVERT is a flag
|
|
to indicate of the COND needs to be inverted.
|
|
REVERSE is a flag. When it is true, the check is reversed --
|
|
it returns true if COND is a superset of any of the subconditions
|
|
of NORM_COND. */
|
|
|
|
static bool
|
|
is_subset_of_any (gimple cond, bool invert,
|
|
norm_cond_t norm_cond, bool reverse)
|
|
{
|
|
size_t i;
|
|
size_t len = norm_cond->conds.length ();
|
|
|
|
for (i = 0; i < len; i++)
|
|
{
|
|
if (is_gcond_subset_of (cond, invert,
|
|
norm_cond->conds[i],
|
|
false, reverse))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* NORM_COND1 and NORM_COND2 are normalized logical/BIT OR
|
|
expressions (formed by following UD chains not control
|
|
dependence chains). The function returns true of domain
|
|
of and expression NORM_COND1 is a subset of NORM_COND2's.
|
|
The implementation is conservative, and it returns false if
|
|
it the inclusion relationship may not hold. */
|
|
|
|
static bool
|
|
is_or_set_subset_of (norm_cond_t norm_cond1,
|
|
norm_cond_t norm_cond2)
|
|
{
|
|
size_t i;
|
|
size_t len = norm_cond1->conds.length ();
|
|
|
|
for (i = 0; i < len; i++)
|
|
{
|
|
if (!is_subset_of_any (norm_cond1->conds[i],
|
|
false, norm_cond2, false))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* NORM_COND1 and NORM_COND2 are normalized logical AND
|
|
expressions (formed by following UD chains not control
|
|
dependence chains). The function returns true of domain
|
|
of and expression NORM_COND1 is a subset of NORM_COND2's. */
|
|
|
|
static bool
|
|
is_and_set_subset_of (norm_cond_t norm_cond1,
|
|
norm_cond_t norm_cond2)
|
|
{
|
|
size_t i;
|
|
size_t len = norm_cond2->conds.length ();
|
|
|
|
for (i = 0; i < len; i++)
|
|
{
|
|
if (!is_subset_of_any (norm_cond2->conds[i],
|
|
false, norm_cond1, true))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Returns true of the domain if NORM_COND1 is a subset
|
|
of that of NORM_COND2. Returns false if it can not be
|
|
proved to be so. */
|
|
|
|
static bool
|
|
is_norm_cond_subset_of (norm_cond_t norm_cond1,
|
|
norm_cond_t norm_cond2)
|
|
{
|
|
size_t i;
|
|
enum tree_code code1, code2;
|
|
|
|
code1 = norm_cond1->cond_code;
|
|
code2 = norm_cond2->cond_code;
|
|
|
|
if (code1 == BIT_AND_EXPR)
|
|
{
|
|
/* Both conditions are AND expressions. */
|
|
if (code2 == BIT_AND_EXPR)
|
|
return is_and_set_subset_of (norm_cond1, norm_cond2);
|
|
/* NORM_COND1 is an AND expression, and NORM_COND2 is an OR
|
|
expression. In this case, returns true if any subexpression
|
|
of NORM_COND1 is a subset of any subexpression of NORM_COND2. */
|
|
else if (code2 == BIT_IOR_EXPR)
|
|
{
|
|
size_t len1;
|
|
len1 = norm_cond1->conds.length ();
|
|
for (i = 0; i < len1; i++)
|
|
{
|
|
gimple cond1 = norm_cond1->conds[i];
|
|
if (is_subset_of_any (cond1, false, norm_cond2, false))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
gcc_assert (code2 == ERROR_MARK);
|
|
gcc_assert (norm_cond2->conds.length () == 1);
|
|
return is_subset_of_any (norm_cond2->conds[0],
|
|
norm_cond2->invert, norm_cond1, true);
|
|
}
|
|
}
|
|
/* NORM_COND1 is an OR expression */
|
|
else if (code1 == BIT_IOR_EXPR)
|
|
{
|
|
if (code2 != code1)
|
|
return false;
|
|
|
|
return is_or_set_subset_of (norm_cond1, norm_cond2);
|
|
}
|
|
else
|
|
{
|
|
gcc_assert (code1 == ERROR_MARK);
|
|
gcc_assert (norm_cond1->conds.length () == 1);
|
|
/* Conservatively returns false if NORM_COND1 is non-decomposible
|
|
and NORM_COND2 is an AND expression. */
|
|
if (code2 == BIT_AND_EXPR)
|
|
return false;
|
|
|
|
if (code2 == BIT_IOR_EXPR)
|
|
return is_subset_of_any (norm_cond1->conds[0],
|
|
norm_cond1->invert, norm_cond2, false);
|
|
|
|
gcc_assert (code2 == ERROR_MARK);
|
|
gcc_assert (norm_cond2->conds.length () == 1);
|
|
return is_gcond_subset_of (norm_cond1->conds[0],
|
|
norm_cond1->invert,
|
|
norm_cond2->conds[0],
|
|
norm_cond2->invert, false);
|
|
}
|
|
}
|
|
|
|
/* Returns true of the domain of single predicate expression
|
|
EXPR1 is a subset of that of EXPR2. Returns false if it
|
|
can not be proved. */
|
|
|
|
static bool
|
|
is_pred_expr_subset_of (use_pred_info_t expr1,
|
|
use_pred_info_t expr2)
|
|
{
|
|
gimple cond1, cond2;
|
|
enum tree_code code1, code2;
|
|
struct norm_cond norm_cond1, norm_cond2;
|
|
bool is_subset = false;
|
|
|
|
cond1 = expr1->cond;
|
|
cond2 = expr2->cond;
|
|
code1 = gimple_cond_code (cond1);
|
|
code2 = gimple_cond_code (cond2);
|
|
|
|
if (expr1->invert)
|
|
code1 = invert_tree_comparison (code1, false);
|
|
if (expr2->invert)
|
|
code2 = invert_tree_comparison (code2, false);
|
|
|
|
/* Fast path -- match exactly */
|
|
if ((gimple_cond_lhs (cond1) == gimple_cond_lhs (cond2))
|
|
&& (gimple_cond_rhs (cond1) == gimple_cond_rhs (cond2))
|
|
&& (code1 == code2))
|
|
return true;
|
|
|
|
/* Normalize conditions. To keep NE_EXPR, do not invert
|
|
with both need inversion. */
|
|
normalize_cond (cond1, &norm_cond1, (expr1->invert));
|
|
normalize_cond (cond2, &norm_cond2, (expr2->invert));
|
|
|
|
is_subset = is_norm_cond_subset_of (&norm_cond1, &norm_cond2);
|
|
|
|
/* Free memory */
|
|
norm_cond1.conds.release ();
|
|
norm_cond2.conds.release ();
|
|
return is_subset ;
|
|
}
|
|
|
|
/* Returns true if the domain of PRED1 is a subset
|
|
of that of PRED2. Returns false if it can not be proved so. */
|
|
|
|
static bool
|
|
is_pred_chain_subset_of (vec<use_pred_info_t> pred1,
|
|
vec<use_pred_info_t> pred2)
|
|
{
|
|
size_t np1, np2, i1, i2;
|
|
|
|
np1 = pred1.length ();
|
|
np2 = pred2.length ();
|
|
|
|
for (i2 = 0; i2 < np2; i2++)
|
|
{
|
|
bool found = false;
|
|
use_pred_info_t info2
|
|
= pred2[i2];
|
|
for (i1 = 0; i1 < np1; i1++)
|
|
{
|
|
use_pred_info_t info1
|
|
= pred1[i1];
|
|
if (is_pred_expr_subset_of (info1, info2))
|
|
{
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!found)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Returns true if the domain defined by
|
|
one pred chain ONE_PRED is a subset of the domain
|
|
of *PREDS. It returns false if ONE_PRED's domain is
|
|
not a subset of any of the sub-domains of PREDS (
|
|
corresponding to each individual chains in it), even
|
|
though it may be still be a subset of whole domain
|
|
of PREDS which is the union (ORed) of all its subdomains.
|
|
In other words, the result is conservative. */
|
|
|
|
static bool
|
|
is_included_in (vec<use_pred_info_t> one_pred,
|
|
vec<use_pred_info_t> *preds,
|
|
size_t n)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
if (is_pred_chain_subset_of (one_pred, preds[i]))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* compares two predicate sets PREDS1 and PREDS2 and returns
|
|
true if the domain defined by PREDS1 is a superset
|
|
of PREDS2's domain. N1 and N2 are array sizes of PREDS1 and
|
|
PREDS2 respectively. The implementation chooses not to build
|
|
generic trees (and relying on the folding capability of the
|
|
compiler), but instead performs brute force comparison of
|
|
individual predicate chains (won't be a compile time problem
|
|
as the chains are pretty short). When the function returns
|
|
false, it does not necessarily mean *PREDS1 is not a superset
|
|
of *PREDS2, but mean it may not be so since the analysis can
|
|
not prove it. In such cases, false warnings may still be
|
|
emitted. */
|
|
|
|
static bool
|
|
is_superset_of (vec<use_pred_info_t> *preds1,
|
|
size_t n1,
|
|
vec<use_pred_info_t> *preds2,
|
|
size_t n2)
|
|
{
|
|
size_t i;
|
|
vec<use_pred_info_t> one_pred_chain;
|
|
|
|
for (i = 0; i < n2; i++)
|
|
{
|
|
one_pred_chain = preds2[i];
|
|
if (!is_included_in (one_pred_chain, preds1, n1))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Comparison function used by qsort. It is used to
|
|
sort predicate chains to allow predicate
|
|
simplification. */
|
|
|
|
static int
|
|
pred_chain_length_cmp (const void *p1, const void *p2)
|
|
{
|
|
use_pred_info_t i1, i2;
|
|
vec<use_pred_info_t> const *chain1
|
|
= (vec<use_pred_info_t> const *)p1;
|
|
vec<use_pred_info_t> const *chain2
|
|
= (vec<use_pred_info_t> const *)p2;
|
|
|
|
if (chain1->length () != chain2->length ())
|
|
return (chain1->length () - chain2->length ());
|
|
|
|
i1 = (*chain1)[0];
|
|
i2 = (*chain2)[0];
|
|
|
|
/* Allow predicates with similar prefix come together. */
|
|
if (!i1->invert && i2->invert)
|
|
return -1;
|
|
else if (i1->invert && !i2->invert)
|
|
return 1;
|
|
|
|
return gimple_uid (i1->cond) - gimple_uid (i2->cond);
|
|
}
|
|
|
|
/* x OR (!x AND y) is equivalent to x OR y.
|
|
This function normalizes x1 OR (!x1 AND x2) OR (!x1 AND !x2 AND x3)
|
|
into x1 OR x2 OR x3. PREDS is the predicate chains, and N is
|
|
the number of chains. Returns true if normalization happens. */
|
|
|
|
static bool
|
|
normalize_preds (vec<use_pred_info_t> *preds, size_t *n)
|
|
{
|
|
size_t i, j, ll;
|
|
vec<use_pred_info_t> pred_chain;
|
|
vec<use_pred_info_t> x = vNULL;
|
|
use_pred_info_t xj = 0, nxj = 0;
|
|
|
|
if (*n < 2)
|
|
return false;
|
|
|
|
/* First sort the chains in ascending order of lengths. */
|
|
qsort (preds, *n, sizeof (void *), pred_chain_length_cmp);
|
|
pred_chain = preds[0];
|
|
ll = pred_chain.length ();
|
|
if (ll != 1)
|
|
{
|
|
if (ll == 2)
|
|
{
|
|
use_pred_info_t xx, yy, xx2, nyy;
|
|
vec<use_pred_info_t> pred_chain2 = preds[1];
|
|
if (pred_chain2.length () != 2)
|
|
return false;
|
|
|
|
/* See if simplification x AND y OR x AND !y is possible. */
|
|
xx = pred_chain[0];
|
|
yy = pred_chain[1];
|
|
xx2 = pred_chain2[0];
|
|
nyy = pred_chain2[1];
|
|
if (gimple_cond_lhs (xx->cond) != gimple_cond_lhs (xx2->cond)
|
|
|| gimple_cond_rhs (xx->cond) != gimple_cond_rhs (xx2->cond)
|
|
|| gimple_cond_code (xx->cond) != gimple_cond_code (xx2->cond)
|
|
|| (xx->invert != xx2->invert))
|
|
return false;
|
|
if (gimple_cond_lhs (yy->cond) != gimple_cond_lhs (nyy->cond)
|
|
|| gimple_cond_rhs (yy->cond) != gimple_cond_rhs (nyy->cond)
|
|
|| gimple_cond_code (yy->cond) != gimple_cond_code (nyy->cond)
|
|
|| (yy->invert == nyy->invert))
|
|
return false;
|
|
|
|
/* Now merge the first two chains. */
|
|
free (yy);
|
|
free (nyy);
|
|
free (xx2);
|
|
pred_chain.release ();
|
|
pred_chain2.release ();
|
|
pred_chain.safe_push (xx);
|
|
preds[0] = pred_chain;
|
|
for (i = 1; i < *n - 1; i++)
|
|
preds[i] = preds[i + 1];
|
|
|
|
preds[*n - 1].create (0);
|
|
*n = *n - 1;
|
|
}
|
|
else
|
|
return false;
|
|
}
|
|
|
|
x.safe_push (pred_chain[0]);
|
|
|
|
/* The loop extracts x1, x2, x3, etc from chains
|
|
x1 OR (!x1 AND x2) OR (!x1 AND !x2 AND x3) OR ... */
|
|
for (i = 1; i < *n; i++)
|
|
{
|
|
pred_chain = preds[i];
|
|
if (pred_chain.length () != i + 1)
|
|
return false;
|
|
|
|
for (j = 0; j < i; j++)
|
|
{
|
|
xj = x[j];
|
|
nxj = pred_chain[j];
|
|
|
|
/* Check if nxj is !xj */
|
|
if (gimple_cond_lhs (xj->cond) != gimple_cond_lhs (nxj->cond)
|
|
|| gimple_cond_rhs (xj->cond) != gimple_cond_rhs (nxj->cond)
|
|
|| gimple_cond_code (xj->cond) != gimple_cond_code (nxj->cond)
|
|
|| (xj->invert == nxj->invert))
|
|
return false;
|
|
}
|
|
|
|
x.safe_push (pred_chain[i]);
|
|
}
|
|
|
|
/* Now normalize the pred chains using the extraced x1, x2, x3 etc. */
|
|
for (j = 0; j < *n; j++)
|
|
{
|
|
use_pred_info_t t;
|
|
xj = x[j];
|
|
|
|
t = XNEW (struct use_pred_info);
|
|
*t = *xj;
|
|
|
|
x[j] = t;
|
|
}
|
|
|
|
for (i = 0; i < *n; i++)
|
|
{
|
|
pred_chain = preds[i];
|
|
for (j = 0; j < pred_chain.length (); j++)
|
|
free (pred_chain[j]);
|
|
pred_chain.release ();
|
|
/* A new chain. */
|
|
pred_chain.safe_push (x[i]);
|
|
preds[i] = pred_chain;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
/* Computes the predicates that guard the use and checks
|
|
if the incoming paths that have empty (or possibly
|
|
empty) definition can be pruned/filtered. The function returns
|
|
true if it can be determined that the use of PHI's def in
|
|
USE_STMT is guarded with a predicate set not overlapping with
|
|
predicate sets of all runtime paths that do not have a definition.
|
|
Returns false if it is not or it can not be determined. USE_BB is
|
|
the bb of the use (for phi operand use, the bb is not the bb of
|
|
the phi stmt, but the src bb of the operand edge). UNINIT_OPNDS
|
|
is a bit vector. If an operand of PHI is uninitialized, the
|
|
corresponding bit in the vector is 1. VISIED_PHIS is a pointer
|
|
set of phis being visted. */
|
|
|
|
static bool
|
|
is_use_properly_guarded (gimple use_stmt,
|
|
basic_block use_bb,
|
|
gimple phi,
|
|
unsigned uninit_opnds,
|
|
struct pointer_set_t *visited_phis)
|
|
{
|
|
basic_block phi_bb;
|
|
vec<use_pred_info_t> *preds = 0;
|
|
vec<use_pred_info_t> *def_preds = 0;
|
|
size_t num_preds = 0, num_def_preds = 0;
|
|
bool has_valid_preds = false;
|
|
bool is_properly_guarded = false;
|
|
|
|
if (pointer_set_insert (visited_phis, phi))
|
|
return false;
|
|
|
|
phi_bb = gimple_bb (phi);
|
|
|
|
if (is_non_loop_exit_postdominating (use_bb, phi_bb))
|
|
return false;
|
|
|
|
has_valid_preds = find_predicates (&preds, &num_preds,
|
|
phi_bb, use_bb);
|
|
|
|
if (!has_valid_preds)
|
|
{
|
|
destroy_predicate_vecs (num_preds, preds);
|
|
return false;
|
|
}
|
|
|
|
if (dump_file)
|
|
dump_predicates (use_stmt, num_preds, preds,
|
|
"\nUse in stmt ");
|
|
|
|
has_valid_preds = find_def_preds (&def_preds,
|
|
&num_def_preds, phi);
|
|
|
|
if (has_valid_preds)
|
|
{
|
|
bool normed;
|
|
if (dump_file)
|
|
dump_predicates (phi, num_def_preds, def_preds,
|
|
"Operand defs of phi ");
|
|
|
|
normed = normalize_preds (def_preds, &num_def_preds);
|
|
if (normed && dump_file)
|
|
{
|
|
fprintf (dump_file, "\nNormalized to\n");
|
|
dump_predicates (phi, num_def_preds, def_preds,
|
|
"Operand defs of phi ");
|
|
}
|
|
is_properly_guarded =
|
|
is_superset_of (def_preds, num_def_preds,
|
|
preds, num_preds);
|
|
}
|
|
|
|
/* further prune the dead incoming phi edges. */
|
|
if (!is_properly_guarded)
|
|
is_properly_guarded
|
|
= use_pred_not_overlap_with_undef_path_pred (
|
|
num_preds, preds, phi, uninit_opnds, visited_phis);
|
|
|
|
destroy_predicate_vecs (num_preds, preds);
|
|
destroy_predicate_vecs (num_def_preds, def_preds);
|
|
return is_properly_guarded;
|
|
}
|
|
|
|
/* Searches through all uses of a potentially
|
|
uninitialized variable defined by PHI and returns a use
|
|
statement if the use is not properly guarded. It returns
|
|
NULL if all uses are guarded. UNINIT_OPNDS is a bitvector
|
|
holding the position(s) of uninit PHI operands. WORKLIST
|
|
is the vector of candidate phis that may be updated by this
|
|
function. ADDED_TO_WORKLIST is the pointer set tracking
|
|
if the new phi is already in the worklist. */
|
|
|
|
static gimple
|
|
find_uninit_use (gimple phi, unsigned uninit_opnds,
|
|
vec<gimple> *worklist,
|
|
struct pointer_set_t *added_to_worklist)
|
|
{
|
|
tree phi_result;
|
|
use_operand_p use_p;
|
|
gimple use_stmt;
|
|
imm_use_iterator iter;
|
|
|
|
phi_result = gimple_phi_result (phi);
|
|
|
|
FOR_EACH_IMM_USE_FAST (use_p, iter, phi_result)
|
|
{
|
|
struct pointer_set_t *visited_phis;
|
|
basic_block use_bb;
|
|
|
|
use_stmt = USE_STMT (use_p);
|
|
if (is_gimple_debug (use_stmt))
|
|
continue;
|
|
|
|
visited_phis = pointer_set_create ();
|
|
|
|
if (gimple_code (use_stmt) == GIMPLE_PHI)
|
|
use_bb = gimple_phi_arg_edge (use_stmt,
|
|
PHI_ARG_INDEX_FROM_USE (use_p))->src;
|
|
else
|
|
use_bb = gimple_bb (use_stmt);
|
|
|
|
if (is_use_properly_guarded (use_stmt,
|
|
use_bb,
|
|
phi,
|
|
uninit_opnds,
|
|
visited_phis))
|
|
{
|
|
pointer_set_destroy (visited_phis);
|
|
continue;
|
|
}
|
|
pointer_set_destroy (visited_phis);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "[CHECK]: Found unguarded use: ");
|
|
print_gimple_stmt (dump_file, use_stmt, 0, 0);
|
|
}
|
|
/* Found one real use, return. */
|
|
if (gimple_code (use_stmt) != GIMPLE_PHI)
|
|
return use_stmt;
|
|
|
|
/* Found a phi use that is not guarded,
|
|
add the phi to the worklist. */
|
|
if (!pointer_set_insert (added_to_worklist,
|
|
use_stmt))
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "[WORKLIST]: Update worklist with phi: ");
|
|
print_gimple_stmt (dump_file, use_stmt, 0, 0);
|
|
}
|
|
|
|
worklist->safe_push (use_stmt);
|
|
pointer_set_insert (possibly_undefined_names, phi_result);
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Look for inputs to PHI that are SSA_NAMEs that have empty definitions
|
|
and gives warning if there exists a runtime path from the entry to a
|
|
use of the PHI def that does not contain a definition. In other words,
|
|
the warning is on the real use. The more dead paths that can be pruned
|
|
by the compiler, the fewer false positives the warning is. WORKLIST
|
|
is a vector of candidate phis to be examined. ADDED_TO_WORKLIST is
|
|
a pointer set tracking if the new phi is added to the worklist or not. */
|
|
|
|
static void
|
|
warn_uninitialized_phi (gimple phi, vec<gimple> *worklist,
|
|
struct pointer_set_t *added_to_worklist)
|
|
{
|
|
unsigned uninit_opnds;
|
|
gimple uninit_use_stmt = 0;
|
|
tree uninit_op;
|
|
|
|
/* Don't look at virtual operands. */
|
|
if (virtual_operand_p (gimple_phi_result (phi)))
|
|
return;
|
|
|
|
uninit_opnds = compute_uninit_opnds_pos (phi);
|
|
|
|
if (MASK_EMPTY (uninit_opnds))
|
|
return;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "[CHECK]: examining phi: ");
|
|
print_gimple_stmt (dump_file, phi, 0, 0);
|
|
}
|
|
|
|
/* Now check if we have any use of the value without proper guard. */
|
|
uninit_use_stmt = find_uninit_use (phi, uninit_opnds,
|
|
worklist, added_to_worklist);
|
|
|
|
/* All uses are properly guarded. */
|
|
if (!uninit_use_stmt)
|
|
return;
|
|
|
|
uninit_op = gimple_phi_arg_def (phi, MASK_FIRST_SET_BIT (uninit_opnds));
|
|
if (SSA_NAME_VAR (uninit_op) == NULL_TREE)
|
|
return;
|
|
warn_uninit (OPT_Wmaybe_uninitialized, uninit_op, SSA_NAME_VAR (uninit_op),
|
|
SSA_NAME_VAR (uninit_op),
|
|
"%qD may be used uninitialized in this function",
|
|
uninit_use_stmt);
|
|
|
|
}
|
|
|
|
|
|
/* Entry point to the late uninitialized warning pass. */
|
|
|
|
static unsigned int
|
|
execute_late_warn_uninitialized (void)
|
|
{
|
|
basic_block bb;
|
|
gimple_stmt_iterator gsi;
|
|
vec<gimple> worklist = vNULL;
|
|
struct pointer_set_t *added_to_worklist;
|
|
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
|
calculate_dominance_info (CDI_POST_DOMINATORS);
|
|
/* Re-do the plain uninitialized variable check, as optimization may have
|
|
straightened control flow. Do this first so that we don't accidentally
|
|
get a "may be" warning when we'd have seen an "is" warning later. */
|
|
warn_uninitialized_vars (/*warn_possibly_uninitialized=*/1);
|
|
|
|
timevar_push (TV_TREE_UNINIT);
|
|
|
|
possibly_undefined_names = pointer_set_create ();
|
|
added_to_worklist = pointer_set_create ();
|
|
|
|
/* Initialize worklist */
|
|
FOR_EACH_BB (bb)
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
gimple phi = gsi_stmt (gsi);
|
|
size_t n, i;
|
|
|
|
n = gimple_phi_num_args (phi);
|
|
|
|
/* Don't look at virtual operands. */
|
|
if (virtual_operand_p (gimple_phi_result (phi)))
|
|
continue;
|
|
|
|
for (i = 0; i < n; ++i)
|
|
{
|
|
tree op = gimple_phi_arg_def (phi, i);
|
|
if (TREE_CODE (op) == SSA_NAME
|
|
&& ssa_undefined_value_p (op))
|
|
{
|
|
worklist.safe_push (phi);
|
|
pointer_set_insert (added_to_worklist, phi);
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "[WORKLIST]: add to initial list: ");
|
|
print_gimple_stmt (dump_file, phi, 0, 0);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
while (worklist.length () != 0)
|
|
{
|
|
gimple cur_phi = 0;
|
|
cur_phi = worklist.pop ();
|
|
warn_uninitialized_phi (cur_phi, &worklist, added_to_worklist);
|
|
}
|
|
|
|
worklist.release ();
|
|
pointer_set_destroy (added_to_worklist);
|
|
pointer_set_destroy (possibly_undefined_names);
|
|
possibly_undefined_names = NULL;
|
|
free_dominance_info (CDI_POST_DOMINATORS);
|
|
timevar_pop (TV_TREE_UNINIT);
|
|
return 0;
|
|
}
|
|
|
|
static bool
|
|
gate_warn_uninitialized (void)
|
|
{
|
|
return warn_uninitialized != 0;
|
|
}
|
|
|
|
struct gimple_opt_pass pass_late_warn_uninitialized =
|
|
{
|
|
{
|
|
GIMPLE_PASS,
|
|
"uninit", /* name */
|
|
OPTGROUP_NONE, /* optinfo_flags */
|
|
gate_warn_uninitialized, /* gate */
|
|
execute_late_warn_uninitialized, /* execute */
|
|
NULL, /* sub */
|
|
NULL, /* next */
|
|
0, /* static_pass_number */
|
|
TV_NONE, /* tv_id */
|
|
PROP_ssa, /* properties_required */
|
|
0, /* properties_provided */
|
|
0, /* properties_destroyed */
|
|
0, /* todo_flags_start */
|
|
0 /* todo_flags_finish */
|
|
}
|
|
};
|