Janne Blomqvist 7a15726687 Use pointer sized array indices.
Using pointer sized variables (e.g. size_t / ptrdiff_t) when the
variables are used as array indices allows accessing larger arrays,
and can be a slight performance improvement due to no need for sign or
zero extending, or masking.

Regtested on x86_64-pc-linux-gnu.

libgfortran/ChangeLog:

2018-01-31  Janne Blomqvist  <jb@gcc.gnu.org>

	* generated/cshift1_16.c (cshift1): Regenerated.
	* generated/cshift1_4.c (cshift1): Regenerated.
	* generated/cshift1_8.c (cshift1): Regenerated.
	* generated/eoshift1_16.c (eoshift1): Regenerated.
	* generated/eoshift1_4.c (eoshift1): Regenerated.
	* generated/eoshift1_8.c (eoshift1): Regenerated.
	* generated/eoshift3_16.c (eoshift3): Regenerated.
	* generated/eoshift3_4.c (eoshift3): Regenerated.
	* generated/eoshift3_8.c (eoshift3): Regenerated.
	* generated/in_pack_c10.c (internal_pack_c10): Regenerated.
	* generated/in_pack_c16.c (internal_pack_c16): Regenerated.
	* generated/in_pack_c4.c (internal_pack_c4): Regenerated.
	* generated/in_pack_c8.c (internal_pack_c8): Regenerated.
	* generated/in_pack_i1.c (internal_pack_1): Regenerated.
	* generated/in_pack_i16.c (internal_pack_16): Regenerated.
	* generated/in_pack_i2.c (internal_pack_2): Regenerated.
	* generated/in_pack_i4.c (internal_pack_4): Regenerated.
	* generated/in_pack_i8.c (internal_pack_8): Regenerated.
	* generated/in_pack_r10.c (internal_pack_r10): Regenerated.
	* generated/in_pack_r16.c (internal_pack_r16): Regenerated.
	* generated/in_pack_r4.c (internal_pack_r4): Regenerated.
	* generated/in_pack_r8.c (internal_pack_r8): Regenerated.
	* generated/in_unpack_c10.c (internal_unpack_c10): Regenerated.
	* generated/in_unpack_c16.c (internal_unpack_c16): Regenerated.
	* generated/in_unpack_c4.c (internal_unpack_c4): Regenerated.
	* generated/in_unpack_c8.c (internal_unpack_c8): Regenerated.
	* generated/in_unpack_i1.c (internal_unpack_1): Regenerated.
	* generated/in_unpack_i16.c (internal_unpack_16): Regenerated.
	* generated/in_unpack_i2.c (internal_unpack_2): Regenerated.
	* generated/in_unpack_i4.c (internal_unpack_4): Regenerated.
	* generated/in_unpack_i8.c (internal_unpack_8): Regenerated.
	* generated/in_unpack_r10.c (internal_unpack_r10): Regenerated.
	* generated/in_unpack_r16.c (internal_unpack_r16): Regenerated.
	* generated/in_unpack_r4.c (internal_unpack_r4): Regenerated.
	* generated/in_unpack_r8.c (internal_unpack_r8): Regenerated.
	* generated/reshape_c10.c (reshape_c10): Regenerated.
	* generated/reshape_c16.c (reshape_c16): Regenerated.
	* generated/reshape_c4.c (reshape_c4): Regenerated.
	* generated/reshape_c8.c (reshape_c8): Regenerated.
	* generated/reshape_i16.c (reshape_16): Regenerated.
	* generated/reshape_i4.c (reshape_4): Regenerated.
	* generated/reshape_i8.c (reshape_8): Regenerated.
	* generated/reshape_r10.c (reshape_r10): Regenerated.
	* generated/reshape_r16.c (reshape_r16): Regenerated.
	* generated/reshape_r4.c (reshape_r4): Regenerated.
	* generated/reshape_r8.c (reshape_r8): Regenerated.
	* generated/shape_i1.c (shape_1): Regenerated.
	* generated/shape_i16.c (shape_16): Regenerated.
	* generated/shape_i2.c (shape_2): Regenerated.
	* generated/shape_i4.c (shape_4): Regenerated.
	* generated/shape_i8.c (shape_8): Regenerated.
	* generated/spread_c10.c (spread_scalar_c10): Regenerated.
	* generated/spread_c16.c (spread_scalar_c16): Regenerated.
	* generated/spread_c4.c (spread_scalar_c4): Regenerated.
	* generated/spread_c8.c (spread_scalar_c8): Regenerated.
	* generated/spread_i1.c (spread_scalar_i1): Regenerated.
	* generated/spread_i16.c (spread_scalar_i16): Regenerated.
	* generated/spread_i2.c (spread_scalar_i2): Regenerated.
	* generated/spread_i4.c (spread_scalar_i4): Regenerated.
	* generated/spread_i8.c (spread_scalar_i8): Regenerated.
	* generated/spread_r10.c (spread_scalar_r10): Regenerated.
	* generated/spread_r16.c (spread_scalar_r16): Regenerated.
	* generated/spread_r4.c (spread_scalar_r4): Regenerated.
	* generated/spread_r8.c (spread_scalar_r8): Regenerated.
	* intrinsics/random.c (jump): Use size_t for array index in loop.
	(getosrandom): Likewise.
	(arandom_r4): Make n an index_type.
	(arandom_r8): Likewise.
	(arandom_r10): Likewise.
	(arandom_r16): Likewise.
	(scramble_seed): Use size_t for array index in loop.
	* m4/cshift1.m4: Make i an index_type.
	* m4/eoshift1.m4: Likewise.
	* m4/eoshift3.m4: Likewise.
	* m4/in_pack.m4: Make n an index_type.
	* m4/in_unpack.m4: Likewise.
	* m4/reshape.m4: Make n and dim index_type's.
	* m4/shape.m4: Make n an index_type.
	* m4/spread.m4: Likewise, use index_type argument rather than
	copying to int.
	* runtime/bounds.c (bounds_ifunction_return): Make n an
	index_type.
	* runtime/in_pack_generic.c (internal_pack): Likewise.
	* runtime/in_unpack_generic.c (internal_unpack): Make n and size
	index_type's.

From-SVN: r257234
2018-01-31 16:16:22 +02:00

270 lines
6.8 KiB
C

/* Copyright (C) 2009-2018 Free Software Foundation, Inc.
Contributed by Thomas Koenig
This file is part of the GNU Fortran runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#include "libgfortran.h"
#include <assert.h>
/* Auxiliary functions for bounds checking, mostly to reduce library size. */
/* Bounds checking for the return values of the iforeach functions (such
as maxloc and minloc). The extent of ret_array must
must match the rank of array. */
void
bounds_iforeach_return (array_t *retarray, array_t *array, const char *name)
{
index_type rank;
index_type ret_rank;
index_type ret_extent;
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
/* ret_rank should always be 1, otherwise there is an internal error */
GFC_ASSERT(ret_rank == 1);
rank = GFC_DESCRIPTOR_RANK (array);
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
if (ret_extent != rank)
runtime_error ("Incorrect extent in return value of"
" %s intrinsic: is %ld, should be %ld",
name, (long int) ret_extent, (long int) rank);
}
/* Check the return of functions generated from ifunction.m4.
We check the array descriptor "a" against the extents precomputed
from ifunction.m4, and complain about the argument a_name in the
intrinsic function. */
void
bounds_ifunction_return (array_t * a, const index_type * extent,
const char * a_name, const char * intrinsic)
{
int empty;
int rank;
index_type a_size;
rank = GFC_DESCRIPTOR_RANK (a);
a_size = size0 (a);
empty = 0;
for (index_type n = 0; n < rank; n++)
{
if (extent[n] == 0)
empty = 1;
}
if (empty)
{
if (a_size != 0)
runtime_error ("Incorrect size in %s of %s"
" intrinsic: should be zero-sized",
a_name, intrinsic);
}
else
{
if (a_size == 0)
runtime_error ("Incorrect size of %s in %s"
" intrinsic: should not be zero-sized",
a_name, intrinsic);
for (index_type n = 0; n < rank; n++)
{
index_type a_extent;
a_extent = GFC_DESCRIPTOR_EXTENT(a, n);
if (a_extent != extent[n])
runtime_error("Incorrect extent in %s of %s"
" intrinsic in dimension %ld: is %ld,"
" should be %ld", a_name, intrinsic, (long int) n + 1,
(long int) a_extent, (long int) extent[n]);
}
}
}
/* Check that two arrays have equal extents, or are both zero-sized. Abort
with a runtime error if this is not the case. Complain that a has the
wrong size. */
void
bounds_equal_extents (array_t *a, array_t *b, const char *a_name,
const char *intrinsic)
{
index_type a_size, b_size, n;
assert (GFC_DESCRIPTOR_RANK(a) == GFC_DESCRIPTOR_RANK(b));
a_size = size0 (a);
b_size = size0 (b);
if (b_size == 0)
{
if (a_size != 0)
runtime_error ("Incorrect size of %s in %s"
" intrinsic: should be zero-sized",
a_name, intrinsic);
}
else
{
if (a_size == 0)
runtime_error ("Incorrect size of %s of %s"
" intrinsic: Should not be zero-sized",
a_name, intrinsic);
for (n = 0; n < GFC_DESCRIPTOR_RANK (b); n++)
{
index_type a_extent, b_extent;
a_extent = GFC_DESCRIPTOR_EXTENT(a, n);
b_extent = GFC_DESCRIPTOR_EXTENT(b, n);
if (a_extent != b_extent)
runtime_error("Incorrect extent in %s of %s"
" intrinsic in dimension %ld: is %ld,"
" should be %ld", a_name, intrinsic, (long int) n + 1,
(long int) a_extent, (long int) b_extent);
}
}
}
/* Check that the extents of a and b agree, except that a has a missing
dimension in argument which. Complain about a if anything is wrong. */
void
bounds_reduced_extents (array_t *a, array_t *b, int which, const char *a_name,
const char *intrinsic)
{
index_type i, n, a_size, b_size;
assert (GFC_DESCRIPTOR_RANK(a) == GFC_DESCRIPTOR_RANK(b) - 1);
a_size = size0 (a);
b_size = size0 (b);
if (b_size == 0)
{
if (a_size != 0)
runtime_error ("Incorrect size in %s of %s"
" intrinsic: should not be zero-sized",
a_name, intrinsic);
}
else
{
if (a_size == 0)
runtime_error ("Incorrect size of %s of %s"
" intrinsic: should be zero-sized",
a_name, intrinsic);
i = 0;
for (n = 0; n < GFC_DESCRIPTOR_RANK (b); n++)
{
index_type a_extent, b_extent;
if (n != which)
{
a_extent = GFC_DESCRIPTOR_EXTENT(a, i);
b_extent = GFC_DESCRIPTOR_EXTENT(b, n);
if (a_extent != b_extent)
runtime_error("Incorrect extent in %s of %s"
" intrinsic in dimension %ld: is %ld,"
" should be %ld", a_name, intrinsic, (long int) i + 1,
(long int) a_extent, (long int) b_extent);
i++;
}
}
}
}
/* count_0 - count all the true elements in an array. The front
end usually inlines this, we need this for bounds checking
for unpack. */
index_type count_0 (const gfc_array_l1 * array)
{
const GFC_LOGICAL_1 * restrict base;
index_type rank;
int kind;
int continue_loop;
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type sstride[GFC_MAX_DIMENSIONS];
index_type result;
index_type n;
rank = GFC_DESCRIPTOR_RANK (array);
kind = GFC_DESCRIPTOR_SIZE (array);
base = array->base_addr;
if (kind == 1 || kind == 2 || kind == 4 || kind == 8
#ifdef HAVE_GFC_LOGICAL_16
|| kind == 16
#endif
)
{
if (base)
base = GFOR_POINTER_TO_L1 (base, kind);
}
else
internal_error (NULL, "Funny sized logical array in count_0");
for (n = 0; n < rank; n++)
{
sstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(array,n);
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
count[n] = 0;
if (extent[n] <= 0)
return 0;
}
result = 0;
continue_loop = 1;
while (continue_loop)
{
if (*base)
result ++;
count[0]++;
base += sstride[0];
n = 0;
while (count[n] == extent[n])
{
count[n] = 0;
base -= sstride[n] * extent[n];
n++;
if (n == rank)
{
continue_loop = 0;
break;
}
else
{
count[n]++;
base += sstride[n];
}
}
}
return result;
}