7bab95badb
2004-09-21 Daniel Berlin <dberlin@dberlin.org> * tree-ssa.c (verify_def): Use print_generic_stmt, not debug_generic_stmt. (verify_use): Ditto. (verify_phi_args): Ditto. (verify_ssa): Ditto. From-SVN: r87835
1397 lines
37 KiB
C
1397 lines
37 KiB
C
/* Miscellaneous SSA utility functions.
|
||
Copyright (C) 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GCC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "tree.h"
|
||
#include "flags.h"
|
||
#include "rtl.h"
|
||
#include "tm_p.h"
|
||
#include "ggc.h"
|
||
#include "langhooks.h"
|
||
#include "hard-reg-set.h"
|
||
#include "basic-block.h"
|
||
#include "output.h"
|
||
#include "errors.h"
|
||
#include "expr.h"
|
||
#include "function.h"
|
||
#include "diagnostic.h"
|
||
#include "bitmap.h"
|
||
#include "tree-flow.h"
|
||
#include "tree-gimple.h"
|
||
#include "tree-inline.h"
|
||
#include "varray.h"
|
||
#include "timevar.h"
|
||
#include "hashtab.h"
|
||
#include "tree-dump.h"
|
||
#include "tree-pass.h"
|
||
|
||
|
||
/* Remove edge E and remove the corresponding arguments from the PHI nodes
|
||
in E's destination block. */
|
||
|
||
void
|
||
ssa_remove_edge (edge e)
|
||
{
|
||
tree phi, next;
|
||
|
||
/* Remove the appropriate PHI arguments in E's destination block. */
|
||
for (phi = phi_nodes (e->dest); phi; phi = next)
|
||
{
|
||
next = PHI_CHAIN (phi);
|
||
remove_phi_arg (phi, e->src);
|
||
}
|
||
|
||
remove_edge (e);
|
||
}
|
||
|
||
/* Remove the corresponding arguments from the PHI nodes in E's
|
||
destination block and redirect it to DEST. Return redirected edge.
|
||
The list of removed arguments is stored in PENDING_STMT (e). */
|
||
|
||
edge
|
||
ssa_redirect_edge (edge e, basic_block dest)
|
||
{
|
||
tree phi, next;
|
||
tree list = NULL, *last = &list;
|
||
tree src, dst, node;
|
||
int i;
|
||
|
||
/* Remove the appropriate PHI arguments in E's destination block. */
|
||
for (phi = phi_nodes (e->dest); phi; phi = next)
|
||
{
|
||
next = PHI_CHAIN (phi);
|
||
|
||
i = phi_arg_from_edge (phi, e);
|
||
if (i < 0)
|
||
continue;
|
||
|
||
src = PHI_ARG_DEF (phi, i);
|
||
dst = PHI_RESULT (phi);
|
||
node = build_tree_list (dst, src);
|
||
*last = node;
|
||
last = &TREE_CHAIN (node);
|
||
|
||
remove_phi_arg_num (phi, i);
|
||
}
|
||
|
||
e = redirect_edge_succ_nodup (e, dest);
|
||
PENDING_STMT (e) = list;
|
||
|
||
return e;
|
||
}
|
||
|
||
|
||
/* Return true if SSA_NAME is malformed and mark it visited.
|
||
|
||
IS_VIRTUAL is true if this SSA_NAME was found inside a virtual
|
||
operand. */
|
||
|
||
static bool
|
||
verify_ssa_name (tree ssa_name, bool is_virtual)
|
||
{
|
||
TREE_VISITED (ssa_name) = 1;
|
||
|
||
if (TREE_CODE (ssa_name) != SSA_NAME)
|
||
{
|
||
error ("Expected an SSA_NAME object");
|
||
return true;
|
||
}
|
||
|
||
if (TREE_TYPE (ssa_name) != TREE_TYPE (SSA_NAME_VAR (ssa_name)))
|
||
{
|
||
error ("Type mismatch between an SSA_NAME and its symbol.");
|
||
return true;
|
||
}
|
||
|
||
if (SSA_NAME_IN_FREE_LIST (ssa_name))
|
||
{
|
||
error ("Found an SSA_NAME that had been released into the free pool");
|
||
return true;
|
||
}
|
||
|
||
if (is_virtual && is_gimple_reg (ssa_name))
|
||
{
|
||
error ("Found a virtual definition for a GIMPLE register");
|
||
return true;
|
||
}
|
||
|
||
if (!is_virtual && !is_gimple_reg (ssa_name))
|
||
{
|
||
error ("Found a real definition for a non-register");
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
|
||
/* Return true if the definition of SSA_NAME at block BB is malformed.
|
||
|
||
STMT is the statement where SSA_NAME is created.
|
||
|
||
DEFINITION_BLOCK is an array of basic blocks indexed by SSA_NAME
|
||
version numbers. If DEFINITION_BLOCK[SSA_NAME_VERSION] is set,
|
||
it means that the block in that array slot contains the
|
||
definition of SSA_NAME.
|
||
|
||
IS_VIRTUAL is true if SSA_NAME is created by a V_MAY_DEF or a
|
||
V_MUST_DEF. */
|
||
|
||
static bool
|
||
verify_def (basic_block bb, basic_block *definition_block, tree ssa_name,
|
||
tree stmt, bool is_virtual)
|
||
{
|
||
if (verify_ssa_name (ssa_name, is_virtual))
|
||
goto err;
|
||
|
||
if (definition_block[SSA_NAME_VERSION (ssa_name)])
|
||
{
|
||
error ("SSA_NAME created in two different blocks %i and %i",
|
||
definition_block[SSA_NAME_VERSION (ssa_name)]->index, bb->index);
|
||
goto err;
|
||
}
|
||
|
||
definition_block[SSA_NAME_VERSION (ssa_name)] = bb;
|
||
|
||
if (SSA_NAME_DEF_STMT (ssa_name) != stmt)
|
||
{
|
||
error ("SSA_NAME_DEF_STMT is wrong");
|
||
fprintf (stderr, "Expected definition statement:\n");
|
||
print_generic_stmt (stderr, SSA_NAME_DEF_STMT (ssa_name), TDF_VOPS);
|
||
fprintf (stderr, "\nActual definition statement:\n");
|
||
print_generic_stmt (stderr, stmt, TDF_VOPS);
|
||
goto err;
|
||
}
|
||
|
||
return false;
|
||
|
||
err:
|
||
fprintf (stderr, "while verifying SSA_NAME ");
|
||
print_generic_expr (stderr, ssa_name, 0);
|
||
fprintf (stderr, " in statement\n");
|
||
print_generic_stmt (stderr, stmt, TDF_VOPS);
|
||
|
||
return true;
|
||
}
|
||
|
||
|
||
/* Return true if the use of SSA_NAME at statement STMT in block BB is
|
||
malformed.
|
||
|
||
DEF_BB is the block where SSA_NAME was found to be created.
|
||
|
||
IDOM contains immediate dominator information for the flowgraph.
|
||
|
||
CHECK_ABNORMAL is true if the caller wants to check whether this use
|
||
is flowing through an abnormal edge (only used when checking PHI
|
||
arguments).
|
||
|
||
IS_VIRTUAL is true if SSA_NAME is created by a V_MAY_DEF or a
|
||
V_MUST_DEF.
|
||
|
||
If NAMES_DEFINED_IN_BB is not NULL, it contains a bitmap of ssa names
|
||
that are defined before STMT in basic block BB. */
|
||
|
||
static bool
|
||
verify_use (basic_block bb, basic_block def_bb, tree ssa_name,
|
||
tree stmt, bool check_abnormal, bool is_virtual,
|
||
bitmap names_defined_in_bb)
|
||
{
|
||
bool err = false;
|
||
|
||
err = verify_ssa_name (ssa_name, is_virtual);
|
||
|
||
if (IS_EMPTY_STMT (SSA_NAME_DEF_STMT (ssa_name))
|
||
&& var_ann (SSA_NAME_VAR (ssa_name))->default_def == ssa_name)
|
||
; /* Default definitions have empty statements. Nothing to do. */
|
||
else if (!def_bb)
|
||
{
|
||
error ("Missing definition");
|
||
err = true;
|
||
}
|
||
else if (bb != def_bb
|
||
&& !dominated_by_p (CDI_DOMINATORS, bb, def_bb))
|
||
{
|
||
error ("Definition in block %i does not dominate use in block %i",
|
||
def_bb->index, bb->index);
|
||
err = true;
|
||
}
|
||
else if (bb == def_bb
|
||
&& names_defined_in_bb != NULL
|
||
&& !bitmap_bit_p (names_defined_in_bb, SSA_NAME_VERSION (ssa_name)))
|
||
{
|
||
error ("Definition in block %i follows the use", def_bb->index);
|
||
err = true;
|
||
}
|
||
|
||
if (check_abnormal
|
||
&& !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
|
||
{
|
||
error ("SSA_NAME_OCCURS_IN_ABNORMAL_PHI should be set");
|
||
err = true;
|
||
}
|
||
|
||
if (err)
|
||
{
|
||
fprintf (stderr, "for SSA_NAME: ");
|
||
print_generic_expr (stderr, ssa_name, TDF_VOPS);
|
||
fprintf (stderr, "in statement:\n");
|
||
print_generic_stmt (stderr, stmt, TDF_VOPS);
|
||
}
|
||
|
||
return err;
|
||
}
|
||
|
||
|
||
/* Return true if any of the arguments for PHI node PHI at block BB is
|
||
malformed.
|
||
|
||
IDOM contains immediate dominator information for the flowgraph.
|
||
|
||
DEFINITION_BLOCK is an array of basic blocks indexed by SSA_NAME version
|
||
numbers. If DEFINITION_BLOCK[SSA_NAME_VERSION] is set, it means that the
|
||
block in that array slot contains the definition of SSA_NAME. */
|
||
|
||
static bool
|
||
verify_phi_args (tree phi, basic_block bb, basic_block *definition_block)
|
||
{
|
||
edge e;
|
||
bool err = false;
|
||
int i, phi_num_args = PHI_NUM_ARGS (phi);
|
||
|
||
/* Mark all the incoming edges. */
|
||
for (e = bb->pred; e; e = e->pred_next)
|
||
e->aux = (void *) 1;
|
||
|
||
for (i = 0; i < phi_num_args; i++)
|
||
{
|
||
tree op = PHI_ARG_DEF (phi, i);
|
||
|
||
e = PHI_ARG_EDGE (phi, i);
|
||
|
||
if (TREE_CODE (op) == SSA_NAME)
|
||
err = verify_use (e->src, definition_block[SSA_NAME_VERSION (op)], op,
|
||
phi, e->flags & EDGE_ABNORMAL,
|
||
!is_gimple_reg (PHI_RESULT (phi)),
|
||
NULL);
|
||
|
||
if (e->dest != bb)
|
||
{
|
||
error ("Wrong edge %d->%d for PHI argument\n",
|
||
e->src->index, e->dest->index, bb->index);
|
||
err = true;
|
||
}
|
||
|
||
if (e->aux == (void *) 0)
|
||
{
|
||
error ("PHI argument flowing through dead edge %d->%d\n",
|
||
e->src->index, e->dest->index);
|
||
err = true;
|
||
}
|
||
|
||
if (e->aux == (void *) 2)
|
||
{
|
||
error ("PHI argument duplicated for edge %d->%d\n", e->src->index,
|
||
e->dest->index);
|
||
err = true;
|
||
}
|
||
|
||
if (err)
|
||
{
|
||
fprintf (stderr, "PHI argument\n");
|
||
print_generic_stmt (stderr, op, TDF_VOPS);
|
||
goto error;
|
||
}
|
||
|
||
e->aux = (void *) 2;
|
||
}
|
||
|
||
for (e = bb->pred; e; e = e->pred_next)
|
||
{
|
||
if (e->aux != (void *) 2)
|
||
{
|
||
error ("No argument flowing through edge %d->%d\n", e->src->index,
|
||
e->dest->index);
|
||
err = true;
|
||
goto error;
|
||
}
|
||
e->aux = (void *) 0;
|
||
}
|
||
|
||
error:
|
||
if (err)
|
||
{
|
||
fprintf (stderr, "for PHI node\n");
|
||
print_generic_stmt (stderr, phi, TDF_VOPS);
|
||
}
|
||
|
||
|
||
return err;
|
||
}
|
||
|
||
|
||
static void
|
||
verify_flow_insensitive_alias_info (void)
|
||
{
|
||
size_t i;
|
||
tree var;
|
||
bitmap visited = BITMAP_XMALLOC ();
|
||
|
||
for (i = 0; i < num_referenced_vars; i++)
|
||
{
|
||
size_t j;
|
||
var_ann_t ann;
|
||
varray_type may_aliases;
|
||
|
||
var = referenced_var (i);
|
||
ann = var_ann (var);
|
||
may_aliases = ann->may_aliases;
|
||
|
||
for (j = 0; may_aliases && j < VARRAY_ACTIVE_SIZE (may_aliases); j++)
|
||
{
|
||
tree alias = VARRAY_TREE (may_aliases, j);
|
||
|
||
bitmap_set_bit (visited, var_ann (alias)->uid);
|
||
|
||
if (!may_be_aliased (alias))
|
||
{
|
||
error ("Non-addressable variable inside an alias set.");
|
||
debug_variable (alias);
|
||
goto err;
|
||
}
|
||
}
|
||
}
|
||
|
||
for (i = 0; i < num_referenced_vars; i++)
|
||
{
|
||
var_ann_t ann;
|
||
|
||
var = referenced_var (i);
|
||
ann = var_ann (var);
|
||
|
||
if (ann->mem_tag_kind == NOT_A_TAG
|
||
&& ann->is_alias_tag
|
||
&& !bitmap_bit_p (visited, ann->uid))
|
||
{
|
||
error ("Addressable variable that is an alias tag but is not in any alias set.");
|
||
goto err;
|
||
}
|
||
}
|
||
|
||
BITMAP_XFREE (visited);
|
||
return;
|
||
|
||
err:
|
||
debug_variable (var);
|
||
internal_error ("verify_flow_insensitive_alias_info failed.");
|
||
}
|
||
|
||
|
||
static void
|
||
verify_flow_sensitive_alias_info (void)
|
||
{
|
||
size_t i;
|
||
tree ptr;
|
||
|
||
for (i = 1; i < num_ssa_names; i++)
|
||
{
|
||
var_ann_t ann;
|
||
struct ptr_info_def *pi;
|
||
|
||
ptr = ssa_name (i);
|
||
if (!ptr)
|
||
continue;
|
||
ann = var_ann (SSA_NAME_VAR (ptr));
|
||
pi = SSA_NAME_PTR_INFO (ptr);
|
||
|
||
/* We only care for pointers that are actually referenced in the
|
||
program. */
|
||
if (!TREE_VISITED (ptr) || !POINTER_TYPE_P (TREE_TYPE (ptr)))
|
||
continue;
|
||
|
||
/* RESULT_DECL is special. If it's a GIMPLE register, then it
|
||
is only written-to only once in the return statement.
|
||
Otherwise, aggregate RESULT_DECLs may be written-to more than
|
||
once in virtual operands. */
|
||
if (TREE_CODE (SSA_NAME_VAR (ptr)) == RESULT_DECL
|
||
&& is_gimple_reg (ptr))
|
||
continue;
|
||
|
||
if (pi == NULL)
|
||
continue;
|
||
|
||
if (pi->is_dereferenced && !pi->name_mem_tag && !ann->type_mem_tag)
|
||
{
|
||
error ("Dereferenced pointers should have a name or a type tag");
|
||
goto err;
|
||
}
|
||
|
||
if (pi->name_mem_tag
|
||
&& !pi->pt_malloc
|
||
&& (pi->pt_vars == NULL
|
||
|| bitmap_first_set_bit (pi->pt_vars) < 0))
|
||
{
|
||
error ("Pointers with a memory tag, should have points-to sets or point to malloc");
|
||
goto err;
|
||
}
|
||
|
||
if (pi->value_escapes_p
|
||
&& pi->name_mem_tag
|
||
&& !is_call_clobbered (pi->name_mem_tag))
|
||
{
|
||
error ("Pointer escapes but its name tag is not call-clobbered.");
|
||
goto err;
|
||
}
|
||
|
||
if (pi->name_mem_tag && pi->pt_vars)
|
||
{
|
||
size_t j;
|
||
|
||
for (j = i + 1; j < num_ssa_names; j++)
|
||
if (ssa_name (j))
|
||
{
|
||
tree ptr2 = ssa_name (j);
|
||
struct ptr_info_def *pi2 = SSA_NAME_PTR_INFO (ptr2);
|
||
|
||
if (!TREE_VISITED (ptr2) || !POINTER_TYPE_P (TREE_TYPE (ptr2)))
|
||
continue;
|
||
|
||
if (pi2
|
||
&& pi2->name_mem_tag
|
||
&& pi2->pt_vars
|
||
&& bitmap_first_set_bit (pi2->pt_vars) >= 0
|
||
&& pi->name_mem_tag != pi2->name_mem_tag
|
||
&& bitmap_equal_p (pi->pt_vars, pi2->pt_vars))
|
||
{
|
||
error ("Two pointers with different name tags and identical points-to sets");
|
||
debug_variable (ptr2);
|
||
goto err;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
return;
|
||
|
||
err:
|
||
debug_variable (ptr);
|
||
internal_error ("verify_flow_sensitive_alias_info failed.");
|
||
}
|
||
|
||
|
||
/* Verify the consistency of aliasing information. */
|
||
|
||
static void
|
||
verify_alias_info (void)
|
||
{
|
||
verify_flow_sensitive_alias_info ();
|
||
verify_flow_insensitive_alias_info ();
|
||
}
|
||
|
||
|
||
/* Verify common invariants in the SSA web.
|
||
TODO: verify the variable annotations. */
|
||
|
||
void
|
||
verify_ssa (void)
|
||
{
|
||
size_t i;
|
||
basic_block bb;
|
||
basic_block *definition_block = xcalloc (num_ssa_names, sizeof (basic_block));
|
||
ssa_op_iter iter;
|
||
tree op;
|
||
enum dom_state orig_dom_state = dom_computed[CDI_DOMINATORS];
|
||
bitmap names_defined_in_bb = BITMAP_XMALLOC ();
|
||
|
||
timevar_push (TV_TREE_SSA_VERIFY);
|
||
|
||
/* Keep track of SSA names present in the IL. */
|
||
for (i = 1; i < num_ssa_names; i++)
|
||
if (ssa_name (i))
|
||
TREE_VISITED (ssa_name (i)) = 0;
|
||
|
||
calculate_dominance_info (CDI_DOMINATORS);
|
||
|
||
/* Verify and register all the SSA_NAME definitions found in the
|
||
function. */
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
tree phi;
|
||
block_stmt_iterator bsi;
|
||
|
||
for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
|
||
if (verify_def (bb, definition_block, PHI_RESULT (phi), phi,
|
||
!is_gimple_reg (PHI_RESULT (phi))))
|
||
goto err;
|
||
|
||
for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
|
||
{
|
||
tree stmt;
|
||
|
||
stmt = bsi_stmt (bsi);
|
||
get_stmt_operands (stmt);
|
||
|
||
if (stmt_ann (stmt)->makes_aliased_stores
|
||
&& NUM_V_MAY_DEFS (STMT_V_MAY_DEF_OPS (stmt)) == 0)
|
||
{
|
||
error ("Statement makes aliased stores, but has no V_MAY_DEFS");
|
||
print_generic_stmt (stderr, stmt, TDF_VOPS);
|
||
goto err;
|
||
}
|
||
|
||
FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_VIRTUAL_DEFS)
|
||
{
|
||
if (verify_def (bb, definition_block, op, stmt, true))
|
||
goto err;
|
||
}
|
||
|
||
FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_DEF)
|
||
{
|
||
if (verify_def (bb, definition_block, op, stmt, false))
|
||
goto err;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Now verify all the uses and make sure they agree with the definitions
|
||
found in the previous pass. */
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
edge e;
|
||
tree phi;
|
||
block_stmt_iterator bsi;
|
||
|
||
/* Make sure that all edges have a clear 'aux' field. */
|
||
for (e = bb->pred; e; e = e->pred_next)
|
||
{
|
||
if (e->aux)
|
||
{
|
||
error ("AUX pointer initialized for edge %d->%d\n", e->src->index,
|
||
e->dest->index);
|
||
goto err;
|
||
}
|
||
}
|
||
|
||
/* Verify the arguments for every PHI node in the block. */
|
||
for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
|
||
{
|
||
if (verify_phi_args (phi, bb, definition_block))
|
||
goto err;
|
||
bitmap_set_bit (names_defined_in_bb,
|
||
SSA_NAME_VERSION (PHI_RESULT (phi)));
|
||
}
|
||
|
||
/* Now verify all the uses and vuses in every statement of the block. */
|
||
for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
|
||
{
|
||
tree stmt = bsi_stmt (bsi);
|
||
|
||
FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_VIRTUAL_USES)
|
||
{
|
||
if (verify_use (bb, definition_block[SSA_NAME_VERSION (op)],
|
||
op, stmt, false, true,
|
||
names_defined_in_bb))
|
||
goto err;
|
||
}
|
||
|
||
FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_USE)
|
||
{
|
||
if (verify_use (bb, definition_block[SSA_NAME_VERSION (op)],
|
||
op, stmt, false, false,
|
||
names_defined_in_bb))
|
||
goto err;
|
||
}
|
||
|
||
FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_ALL_DEFS)
|
||
{
|
||
bitmap_set_bit (names_defined_in_bb, SSA_NAME_VERSION (op));
|
||
}
|
||
}
|
||
|
||
/* Verify the uses in arguments of PHI nodes at the exits from the
|
||
block. */
|
||
for (e = bb->succ; e; e = e->succ_next)
|
||
{
|
||
for (phi = phi_nodes (e->dest); phi; phi = PHI_CHAIN (phi))
|
||
{
|
||
bool virtual = !is_gimple_reg (PHI_RESULT (phi));
|
||
op = PHI_ARG_DEF_FROM_EDGE (phi, e);
|
||
if (TREE_CODE (op) != SSA_NAME)
|
||
continue;
|
||
|
||
if (verify_use (bb, definition_block[SSA_NAME_VERSION (op)],
|
||
op, phi, false, virtual,
|
||
names_defined_in_bb))
|
||
goto err;
|
||
}
|
||
}
|
||
|
||
bitmap_clear (names_defined_in_bb);
|
||
}
|
||
|
||
/* Finally, verify alias information. */
|
||
verify_alias_info ();
|
||
|
||
free (definition_block);
|
||
/* Restore the dominance information to its prior known state, so
|
||
that we do not perturb the compiler's subsequent behavior. */
|
||
if (orig_dom_state == DOM_NONE)
|
||
free_dominance_info (CDI_DOMINATORS);
|
||
else
|
||
dom_computed[CDI_DOMINATORS] = orig_dom_state;
|
||
|
||
BITMAP_XFREE (names_defined_in_bb);
|
||
timevar_pop (TV_TREE_SSA_VERIFY);
|
||
return;
|
||
|
||
err:
|
||
internal_error ("verify_ssa failed.");
|
||
}
|
||
|
||
|
||
/* Initialize global DFA and SSA structures. */
|
||
|
||
void
|
||
init_tree_ssa (void)
|
||
{
|
||
VARRAY_TREE_INIT (referenced_vars, 20, "referenced_vars");
|
||
call_clobbered_vars = BITMAP_XMALLOC ();
|
||
addressable_vars = BITMAP_XMALLOC ();
|
||
init_ssa_operands ();
|
||
init_ssanames ();
|
||
init_phinodes ();
|
||
global_var = NULL_TREE;
|
||
}
|
||
|
||
|
||
/* Deallocate memory associated with SSA data structures for FNDECL. */
|
||
|
||
void
|
||
delete_tree_ssa (void)
|
||
{
|
||
size_t i;
|
||
basic_block bb;
|
||
block_stmt_iterator bsi;
|
||
|
||
/* Remove annotations from every tree in the function. */
|
||
FOR_EACH_BB (bb)
|
||
for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
|
||
{
|
||
tree stmt = bsi_stmt (bsi);
|
||
release_defs (stmt);
|
||
ggc_free (stmt->common.ann);
|
||
stmt->common.ann = NULL;
|
||
}
|
||
|
||
/* Remove annotations from every referenced variable. */
|
||
if (referenced_vars)
|
||
{
|
||
for (i = 0; i < num_referenced_vars; i++)
|
||
{
|
||
tree var = referenced_var (i);
|
||
ggc_free (var->common.ann);
|
||
var->common.ann = NULL;
|
||
}
|
||
referenced_vars = NULL;
|
||
}
|
||
|
||
fini_ssanames ();
|
||
fini_phinodes ();
|
||
fini_ssa_operands ();
|
||
|
||
global_var = NULL_TREE;
|
||
BITMAP_XFREE (call_clobbered_vars);
|
||
call_clobbered_vars = NULL;
|
||
BITMAP_XFREE (addressable_vars);
|
||
addressable_vars = NULL;
|
||
}
|
||
|
||
|
||
/* Return true if EXPR is a useless type conversion, otherwise return
|
||
false. */
|
||
|
||
bool
|
||
tree_ssa_useless_type_conversion_1 (tree outer_type, tree inner_type)
|
||
{
|
||
/* If the inner and outer types are effectively the same, then
|
||
strip the type conversion and enter the equivalence into
|
||
the table. */
|
||
if (inner_type == outer_type
|
||
|| (lang_hooks.types_compatible_p (inner_type, outer_type)))
|
||
return true;
|
||
|
||
/* If both types are pointers and the outer type is a (void *), then
|
||
the conversion is not necessary. The opposite is not true since
|
||
that conversion would result in a loss of information if the
|
||
equivalence was used. Consider an indirect function call where
|
||
we need to know the exact type of the function to correctly
|
||
implement the ABI. */
|
||
else if (POINTER_TYPE_P (inner_type)
|
||
&& POINTER_TYPE_P (outer_type)
|
||
&& TREE_CODE (TREE_TYPE (outer_type)) == VOID_TYPE)
|
||
return true;
|
||
|
||
/* Pointers and references are equivalent once we get to GENERIC,
|
||
so strip conversions that just switch between them. */
|
||
else if (POINTER_TYPE_P (inner_type)
|
||
&& POINTER_TYPE_P (outer_type)
|
||
&& lang_hooks.types_compatible_p (TREE_TYPE (inner_type),
|
||
TREE_TYPE (outer_type)))
|
||
return true;
|
||
|
||
/* If both the inner and outer types are integral types, then the
|
||
conversion is not necessary if they have the same mode and
|
||
signedness and precision, and both or neither are boolean. Some
|
||
code assumes an invariant that boolean types stay boolean and do
|
||
not become 1-bit bit-field types. Note that types with precision
|
||
not using all bits of the mode (such as bit-field types in C)
|
||
mean that testing of precision is necessary. */
|
||
else if (INTEGRAL_TYPE_P (inner_type)
|
||
&& INTEGRAL_TYPE_P (outer_type)
|
||
&& TYPE_MODE (inner_type) == TYPE_MODE (outer_type)
|
||
&& TYPE_UNSIGNED (inner_type) == TYPE_UNSIGNED (outer_type)
|
||
&& TYPE_PRECISION (inner_type) == TYPE_PRECISION (outer_type))
|
||
{
|
||
bool first_boolean = (TREE_CODE (inner_type) == BOOLEAN_TYPE);
|
||
bool second_boolean = (TREE_CODE (outer_type) == BOOLEAN_TYPE);
|
||
if (first_boolean == second_boolean)
|
||
return true;
|
||
}
|
||
|
||
/* Recurse for complex types. */
|
||
else if (TREE_CODE (inner_type) == COMPLEX_TYPE
|
||
&& TREE_CODE (outer_type) == COMPLEX_TYPE
|
||
&& tree_ssa_useless_type_conversion_1 (TREE_TYPE (outer_type),
|
||
TREE_TYPE (inner_type)))
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Return true if EXPR is a useless type conversion, otherwise return
|
||
false. */
|
||
|
||
bool
|
||
tree_ssa_useless_type_conversion (tree expr)
|
||
{
|
||
/* If we have an assignment that merely uses a NOP_EXPR to change
|
||
the top of the RHS to the type of the LHS and the type conversion
|
||
is "safe", then strip away the type conversion so that we can
|
||
enter LHS = RHS into the const_and_copies table. */
|
||
if (TREE_CODE (expr) == NOP_EXPR || TREE_CODE (expr) == CONVERT_EXPR
|
||
|| TREE_CODE (expr) == VIEW_CONVERT_EXPR
|
||
|| TREE_CODE (expr) == NON_LVALUE_EXPR)
|
||
return tree_ssa_useless_type_conversion_1 (TREE_TYPE (expr),
|
||
TREE_TYPE (TREE_OPERAND (expr,
|
||
0)));
|
||
|
||
|
||
return false;
|
||
}
|
||
|
||
|
||
/* Internal helper for walk_use_def_chains. VAR, FN and DATA are as
|
||
described in walk_use_def_chains.
|
||
|
||
VISITED is a bitmap used to mark visited SSA_NAMEs to avoid
|
||
infinite loops.
|
||
|
||
IS_DFS is true if the caller wants to perform a depth-first search
|
||
when visiting PHI nodes. A DFS will visit each PHI argument and
|
||
call FN after each one. Otherwise, all the arguments are
|
||
visited first and then FN is called with each of the visited
|
||
arguments in a separate pass. */
|
||
|
||
static bool
|
||
walk_use_def_chains_1 (tree var, walk_use_def_chains_fn fn, void *data,
|
||
bitmap visited, bool is_dfs)
|
||
{
|
||
tree def_stmt;
|
||
|
||
if (bitmap_bit_p (visited, SSA_NAME_VERSION (var)))
|
||
return false;
|
||
|
||
bitmap_set_bit (visited, SSA_NAME_VERSION (var));
|
||
|
||
def_stmt = SSA_NAME_DEF_STMT (var);
|
||
|
||
if (TREE_CODE (def_stmt) != PHI_NODE)
|
||
{
|
||
/* If we reached the end of the use-def chain, call FN. */
|
||
return fn (var, def_stmt, data);
|
||
}
|
||
else
|
||
{
|
||
int i;
|
||
|
||
/* When doing a breadth-first search, call FN before following the
|
||
use-def links for each argument. */
|
||
if (!is_dfs)
|
||
for (i = 0; i < PHI_NUM_ARGS (def_stmt); i++)
|
||
if (fn (PHI_ARG_DEF (def_stmt, i), def_stmt, data))
|
||
return true;
|
||
|
||
/* Follow use-def links out of each PHI argument. */
|
||
for (i = 0; i < PHI_NUM_ARGS (def_stmt); i++)
|
||
{
|
||
tree arg = PHI_ARG_DEF (def_stmt, i);
|
||
if (TREE_CODE (arg) == SSA_NAME
|
||
&& walk_use_def_chains_1 (arg, fn, data, visited, is_dfs))
|
||
return true;
|
||
}
|
||
|
||
/* When doing a depth-first search, call FN after following the
|
||
use-def links for each argument. */
|
||
if (is_dfs)
|
||
for (i = 0; i < PHI_NUM_ARGS (def_stmt); i++)
|
||
if (fn (PHI_ARG_DEF (def_stmt, i), def_stmt, data))
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
|
||
|
||
/* Walk use-def chains starting at the SSA variable VAR. Call
|
||
function FN at each reaching definition found. FN takes three
|
||
arguments: VAR, its defining statement (DEF_STMT) and a generic
|
||
pointer to whatever state information that FN may want to maintain
|
||
(DATA). FN is able to stop the walk by returning true, otherwise
|
||
in order to continue the walk, FN should return false.
|
||
|
||
Note, that if DEF_STMT is a PHI node, the semantics are slightly
|
||
different. The first argument to FN is no longer the original
|
||
variable VAR, but the PHI argument currently being examined. If FN
|
||
wants to get at VAR, it should call PHI_RESULT (PHI).
|
||
|
||
If IS_DFS is true, this function will:
|
||
|
||
1- walk the use-def chains for all the PHI arguments, and,
|
||
2- call (*FN) (ARG, PHI, DATA) on all the PHI arguments.
|
||
|
||
If IS_DFS is false, the two steps above are done in reverse order
|
||
(i.e., a breadth-first search). */
|
||
|
||
|
||
void
|
||
walk_use_def_chains (tree var, walk_use_def_chains_fn fn, void *data,
|
||
bool is_dfs)
|
||
{
|
||
tree def_stmt;
|
||
|
||
gcc_assert (TREE_CODE (var) == SSA_NAME);
|
||
|
||
def_stmt = SSA_NAME_DEF_STMT (var);
|
||
|
||
/* We only need to recurse if the reaching definition comes from a PHI
|
||
node. */
|
||
if (TREE_CODE (def_stmt) != PHI_NODE)
|
||
(*fn) (var, def_stmt, data);
|
||
else
|
||
{
|
||
bitmap visited = BITMAP_XMALLOC ();
|
||
walk_use_def_chains_1 (var, fn, data, visited, is_dfs);
|
||
BITMAP_XFREE (visited);
|
||
}
|
||
}
|
||
|
||
|
||
/* Replaces VAR with REPL in memory reference expression *X in
|
||
statement STMT. */
|
||
|
||
static void
|
||
propagate_into_addr (tree stmt, tree var, tree *x, tree repl)
|
||
{
|
||
tree new_var, ass_stmt, addr_var;
|
||
basic_block bb;
|
||
block_stmt_iterator bsi;
|
||
|
||
/* There is nothing special to handle in the other cases. */
|
||
if (TREE_CODE (repl) != ADDR_EXPR)
|
||
return;
|
||
addr_var = TREE_OPERAND (repl, 0);
|
||
|
||
while (handled_component_p (*x)
|
||
|| TREE_CODE (*x) == REALPART_EXPR
|
||
|| TREE_CODE (*x) == IMAGPART_EXPR)
|
||
x = &TREE_OPERAND (*x, 0);
|
||
|
||
if (TREE_CODE (*x) != INDIRECT_REF
|
||
|| TREE_OPERAND (*x, 0) != var)
|
||
return;
|
||
|
||
if (TREE_TYPE (*x) == TREE_TYPE (addr_var))
|
||
{
|
||
*x = addr_var;
|
||
mark_new_vars_to_rename (stmt, vars_to_rename);
|
||
return;
|
||
}
|
||
|
||
|
||
/* Frontends sometimes produce expressions like *&a instead of a[0].
|
||
Create a temporary variable to handle this case. */
|
||
ass_stmt = build2 (MODIFY_EXPR, void_type_node, NULL_TREE, repl);
|
||
new_var = duplicate_ssa_name (var, ass_stmt);
|
||
TREE_OPERAND (*x, 0) = new_var;
|
||
TREE_OPERAND (ass_stmt, 0) = new_var;
|
||
|
||
bb = bb_for_stmt (stmt);
|
||
tree_block_label (bb);
|
||
bsi = bsi_after_labels (bb);
|
||
bsi_insert_after (&bsi, ass_stmt, BSI_NEW_STMT);
|
||
|
||
mark_new_vars_to_rename (stmt, vars_to_rename);
|
||
}
|
||
|
||
/* Replaces immediate uses of VAR by REPL. */
|
||
|
||
static void
|
||
replace_immediate_uses (tree var, tree repl)
|
||
{
|
||
int i, j, n;
|
||
dataflow_t df;
|
||
tree stmt;
|
||
bool mark_new_vars;
|
||
ssa_op_iter iter;
|
||
use_operand_p use_p;
|
||
|
||
df = get_immediate_uses (SSA_NAME_DEF_STMT (var));
|
||
n = num_immediate_uses (df);
|
||
|
||
for (i = 0; i < n; i++)
|
||
{
|
||
stmt = immediate_use (df, i);
|
||
|
||
if (TREE_CODE (stmt) == PHI_NODE)
|
||
{
|
||
for (j = 0; j < PHI_NUM_ARGS (stmt); j++)
|
||
if (PHI_ARG_DEF (stmt, j) == var)
|
||
{
|
||
SET_PHI_ARG_DEF (stmt, j, repl);
|
||
if (TREE_CODE (repl) == SSA_NAME
|
||
&& PHI_ARG_EDGE (stmt, j)->flags & EDGE_ABNORMAL)
|
||
SSA_NAME_OCCURS_IN_ABNORMAL_PHI (repl) = 1;
|
||
}
|
||
|
||
continue;
|
||
}
|
||
|
||
get_stmt_operands (stmt);
|
||
mark_new_vars = false;
|
||
if (is_gimple_reg (SSA_NAME_VAR (var)))
|
||
{
|
||
if (TREE_CODE (stmt) == MODIFY_EXPR)
|
||
{
|
||
propagate_into_addr (stmt, var, &TREE_OPERAND (stmt, 0), repl);
|
||
propagate_into_addr (stmt, var, &TREE_OPERAND (stmt, 1), repl);
|
||
}
|
||
|
||
FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
|
||
if (USE_FROM_PTR (use_p) == var)
|
||
{
|
||
propagate_value (use_p, repl);
|
||
mark_new_vars = POINTER_TYPE_P (TREE_TYPE (repl));
|
||
}
|
||
}
|
||
else
|
||
{
|
||
FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_VIRTUAL_USES)
|
||
if (USE_FROM_PTR (use_p) == var)
|
||
propagate_value (use_p, repl);
|
||
}
|
||
|
||
/* FIXME. If REPL is a constant, we need to fold STMT.
|
||
However, fold_stmt wants a pointer to the statement, because
|
||
it may happen that it needs to replace the whole statement
|
||
with a new expression. Since the current def-use machinery
|
||
does not return pointers to statements, we call fold_stmt
|
||
with the address of a local temporary, if that call changes
|
||
the temporary then we fall on our swords.
|
||
|
||
Note that all this will become unnecessary soon. This
|
||
pass is being replaced with a proper copy propagation pass
|
||
for 4.1 (dnovillo, 2004-09-17). */
|
||
if (TREE_CODE (repl) != SSA_NAME)
|
||
{
|
||
tree tmp = stmt;
|
||
fold_stmt (&tmp);
|
||
if (tmp != stmt)
|
||
abort ();
|
||
}
|
||
|
||
/* If REPL is a pointer, it may have different memory tags associated
|
||
with it. For instance, VAR may have had a name tag while REPL
|
||
only had a type tag. In these cases, the virtual operands (if
|
||
any) in the statement will refer to different symbols which need
|
||
to be renamed. */
|
||
if (mark_new_vars)
|
||
mark_new_vars_to_rename (stmt, vars_to_rename);
|
||
else
|
||
modify_stmt (stmt);
|
||
}
|
||
}
|
||
|
||
/* Gets the value VAR is equivalent to according to EQ_TO. */
|
||
|
||
static tree
|
||
get_eq_name (tree *eq_to, tree var)
|
||
{
|
||
unsigned ver;
|
||
tree val = var;
|
||
|
||
while (TREE_CODE (val) == SSA_NAME)
|
||
{
|
||
ver = SSA_NAME_VERSION (val);
|
||
if (!eq_to[ver])
|
||
break;
|
||
|
||
val = eq_to[ver];
|
||
}
|
||
|
||
while (TREE_CODE (var) == SSA_NAME)
|
||
{
|
||
ver = SSA_NAME_VERSION (var);
|
||
if (!eq_to[ver])
|
||
break;
|
||
|
||
var = eq_to[ver];
|
||
eq_to[ver] = val;
|
||
}
|
||
|
||
return val;
|
||
}
|
||
|
||
/* Checks whether phi node PHI is redundant and if it is, records the ssa name
|
||
its result is redundant to to EQ_TO array. */
|
||
|
||
static void
|
||
check_phi_redundancy (tree phi, tree *eq_to)
|
||
{
|
||
tree val = NULL_TREE, def, res = PHI_RESULT (phi), stmt;
|
||
unsigned i, ver = SSA_NAME_VERSION (res), n;
|
||
dataflow_t df;
|
||
|
||
/* It is unlikely that such large phi node would be redundant. */
|
||
if (PHI_NUM_ARGS (phi) > 16)
|
||
return;
|
||
|
||
for (i = 0; i < (unsigned) PHI_NUM_ARGS (phi); i++)
|
||
{
|
||
def = PHI_ARG_DEF (phi, i);
|
||
|
||
if (TREE_CODE (def) == SSA_NAME)
|
||
{
|
||
def = get_eq_name (eq_to, def);
|
||
if (def == res)
|
||
continue;
|
||
}
|
||
|
||
if (val
|
||
&& !operand_equal_p (val, def, 0))
|
||
return;
|
||
|
||
val = def;
|
||
}
|
||
|
||
/* At least one of the arguments should not be equal to the result, or
|
||
something strange is happening. */
|
||
gcc_assert (val);
|
||
|
||
if (get_eq_name (eq_to, res) == val)
|
||
return;
|
||
|
||
if (!may_propagate_copy (res, val))
|
||
return;
|
||
|
||
eq_to[ver] = val;
|
||
|
||
df = get_immediate_uses (SSA_NAME_DEF_STMT (res));
|
||
n = num_immediate_uses (df);
|
||
|
||
for (i = 0; i < n; i++)
|
||
{
|
||
stmt = immediate_use (df, i);
|
||
|
||
if (TREE_CODE (stmt) == PHI_NODE)
|
||
check_phi_redundancy (stmt, eq_to);
|
||
}
|
||
}
|
||
|
||
/* Removes redundant phi nodes.
|
||
|
||
A redundant PHI node is a PHI node where all of its PHI arguments
|
||
are the same value, excluding any PHI arguments which are the same
|
||
as the PHI result.
|
||
|
||
A redundant PHI node is effectively a copy, so we forward copy propagate
|
||
which removes all uses of the destination of the PHI node then
|
||
finally we delete the redundant PHI node.
|
||
|
||
Note that if we can not copy propagate the PHI node, then the PHI
|
||
will not be removed. Thus we do not have to worry about dependencies
|
||
between PHIs and the problems serializing PHIs into copies creates.
|
||
|
||
The most important effect of this pass is to remove degenerate PHI
|
||
nodes created by removing unreachable code. */
|
||
|
||
void
|
||
kill_redundant_phi_nodes (void)
|
||
{
|
||
tree *eq_to;
|
||
unsigned i, old_num_ssa_names;
|
||
basic_block bb;
|
||
tree phi, var, repl, stmt;
|
||
|
||
/* The EQ_TO[VER] holds the value by that the ssa name VER should be
|
||
replaced. If EQ_TO[VER] is ssa name and it is decided to replace it by
|
||
other value, it may be necessary to follow the chain till the final value.
|
||
We perform path shortening (replacing the entries of the EQ_TO array with
|
||
heads of these chains) whenever we access the field to prevent quadratic
|
||
complexity (probably would not occur in practice anyway, but let us play
|
||
it safe). */
|
||
eq_to = xcalloc (num_ssa_names, sizeof (tree));
|
||
|
||
/* We have had cases where computing immediate uses takes a
|
||
significant amount of compile time. If we run into such
|
||
problems here, we may want to only compute immediate uses for
|
||
a subset of all the SSA_NAMEs instead of computing it for
|
||
all of the SSA_NAMEs. */
|
||
compute_immediate_uses (TDFA_USE_OPS | TDFA_USE_VOPS, NULL);
|
||
old_num_ssa_names = num_ssa_names;
|
||
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
for (phi = phi_nodes (bb); phi; phi = TREE_CHAIN (phi))
|
||
{
|
||
var = PHI_RESULT (phi);
|
||
check_phi_redundancy (phi, eq_to);
|
||
}
|
||
}
|
||
|
||
/* Now propagate the values. */
|
||
for (i = 0; i < old_num_ssa_names; i++)
|
||
{
|
||
if (!ssa_name (i))
|
||
continue;
|
||
|
||
repl = get_eq_name (eq_to, ssa_name (i));
|
||
if (repl != ssa_name (i))
|
||
replace_immediate_uses (ssa_name (i), repl);
|
||
}
|
||
|
||
/* And remove the dead phis. */
|
||
for (i = 0; i < old_num_ssa_names; i++)
|
||
{
|
||
if (!ssa_name (i))
|
||
continue;
|
||
|
||
repl = get_eq_name (eq_to, ssa_name (i));
|
||
if (repl != ssa_name (i))
|
||
{
|
||
stmt = SSA_NAME_DEF_STMT (ssa_name (i));
|
||
remove_phi_node (stmt, NULL_TREE, bb_for_stmt (stmt));
|
||
}
|
||
}
|
||
|
||
free_df ();
|
||
free (eq_to);
|
||
}
|
||
|
||
struct tree_opt_pass pass_redundant_phi =
|
||
{
|
||
"redphi", /* name */
|
||
NULL, /* gate */
|
||
kill_redundant_phi_nodes, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
0, /* tv_id */
|
||
PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
TODO_dump_func | TODO_rename_vars
|
||
| TODO_ggc_collect | TODO_verify_ssa, /* todo_flags_finish */
|
||
0 /* letter */
|
||
};
|
||
|
||
/* Emit warnings for uninitialized variables. This is done in two passes.
|
||
|
||
The first pass notices real uses of SSA names with default definitions.
|
||
Such uses are unconditionally uninitialized, and we can be certain that
|
||
such a use is a mistake. This pass is run before most optimizations,
|
||
so that we catch as many as we can.
|
||
|
||
The second pass follows PHI nodes to find uses that are potentially
|
||
uninitialized. In this case we can't necessarily prove that the use
|
||
is really uninitialized. This pass is run after most optimizations,
|
||
so that we thread as many jumps and possible, and delete as much dead
|
||
code as possible, in order to reduce false positives. We also look
|
||
again for plain uninitialized variables, since optimization may have
|
||
changed conditionally uninitialized to unconditionally uninitialized. */
|
||
|
||
/* Emit a warning for T, an SSA_NAME, being uninitialized. The exact
|
||
warning text is in MSGID and LOCUS may contain a location or be null. */
|
||
|
||
static void
|
||
warn_uninit (tree t, const char *msgid, location_t *locus)
|
||
{
|
||
tree var = SSA_NAME_VAR (t);
|
||
tree def = SSA_NAME_DEF_STMT (t);
|
||
|
||
/* Default uses (indicated by an empty definition statement),
|
||
are uninitialized. */
|
||
if (!IS_EMPTY_STMT (def))
|
||
return;
|
||
|
||
/* Except for PARMs of course, which are always initialized. */
|
||
if (TREE_CODE (var) == PARM_DECL)
|
||
return;
|
||
|
||
/* Hard register variables get their initial value from the ether. */
|
||
if (DECL_HARD_REGISTER (var))
|
||
return;
|
||
|
||
/* TREE_NO_WARNING either means we already warned, or the front end
|
||
wishes to suppress the warning. */
|
||
if (TREE_NO_WARNING (var))
|
||
return;
|
||
|
||
if (!locus)
|
||
locus = &DECL_SOURCE_LOCATION (var);
|
||
warning (msgid, locus, var);
|
||
TREE_NO_WARNING (var) = 1;
|
||
}
|
||
|
||
/* Called via walk_tree, look for SSA_NAMEs that have empty definitions
|
||
and warn about them. */
|
||
|
||
static tree
|
||
warn_uninitialized_var (tree *tp, int *walk_subtrees, void *data)
|
||
{
|
||
location_t *locus = data;
|
||
tree t = *tp;
|
||
|
||
/* We only do data flow with SSA_NAMEs, so that's all we can warn about. */
|
||
if (TREE_CODE (t) == SSA_NAME)
|
||
{
|
||
warn_uninit (t, "%H'%D' is used uninitialized in this function", locus);
|
||
*walk_subtrees = 0;
|
||
}
|
||
else if (IS_TYPE_OR_DECL_P (t))
|
||
*walk_subtrees = 0;
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Look for inputs to PHI that are SSA_NAMEs that have empty definitions
|
||
and warn about them. */
|
||
|
||
static void
|
||
warn_uninitialized_phi (tree phi)
|
||
{
|
||
int i, n = PHI_NUM_ARGS (phi);
|
||
|
||
/* Don't look at memory tags. */
|
||
if (!is_gimple_reg (PHI_RESULT (phi)))
|
||
return;
|
||
|
||
for (i = 0; i < n; ++i)
|
||
{
|
||
tree op = PHI_ARG_DEF (phi, i);
|
||
if (TREE_CODE (op) == SSA_NAME)
|
||
warn_uninit (op, "%H'%D' may be used uninitialized in this function",
|
||
NULL);
|
||
}
|
||
}
|
||
|
||
static void
|
||
execute_early_warn_uninitialized (void)
|
||
{
|
||
block_stmt_iterator bsi;
|
||
basic_block bb;
|
||
|
||
FOR_EACH_BB (bb)
|
||
for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
|
||
walk_tree (bsi_stmt_ptr (bsi), warn_uninitialized_var,
|
||
EXPR_LOCUS (bsi_stmt (bsi)), NULL);
|
||
}
|
||
|
||
static void
|
||
execute_late_warn_uninitialized (void)
|
||
{
|
||
basic_block bb;
|
||
tree phi;
|
||
|
||
/* Re-do the plain uninitialized variable check, as optimization may have
|
||
straightened control flow. Do this first so that we don't accidentally
|
||
get a "may be" warning when we'd have seen an "is" warning later. */
|
||
execute_early_warn_uninitialized ();
|
||
|
||
FOR_EACH_BB (bb)
|
||
for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
|
||
warn_uninitialized_phi (phi);
|
||
}
|
||
|
||
static bool
|
||
gate_warn_uninitialized (void)
|
||
{
|
||
return warn_uninitialized != 0;
|
||
}
|
||
|
||
struct tree_opt_pass pass_early_warn_uninitialized =
|
||
{
|
||
NULL, /* name */
|
||
gate_warn_uninitialized, /* gate */
|
||
execute_early_warn_uninitialized, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
0, /* tv_id */
|
||
PROP_ssa, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
0, /* todo_flags_finish */
|
||
0 /* letter */
|
||
};
|
||
|
||
struct tree_opt_pass pass_late_warn_uninitialized =
|
||
{
|
||
NULL, /* name */
|
||
gate_warn_uninitialized, /* gate */
|
||
execute_late_warn_uninitialized, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
0, /* tv_id */
|
||
PROP_ssa, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
0, /* todo_flags_finish */
|
||
0 /* letter */
|
||
};
|