1a2f01efa6
Update the Go library to the 1.10beta1 release. Requires a few changes to the compiler for modifications to the map runtime code, and to handle some nowritebarrier cases in the runtime. Reviewed-on: https://go-review.googlesource.com/86455 gotools/: * Makefile.am (go_cmd_vet_files): New variable. (go_cmd_buildid_files, go_cmd_test2json_files): New variables. (s-zdefaultcc): Change from constants to functions. (noinst_PROGRAMS): Add vet, buildid, and test2json. (cgo$(EXEEXT)): Link against $(LIBGOTOOL). (vet$(EXEEXT)): New target. (buildid$(EXEEXT)): New target. (test2json$(EXEEXT)): New target. (install-exec-local): Install all $(noinst_PROGRAMS). (uninstall-local): Uninstasll all $(noinst_PROGRAMS). (check-go-tool): Depend on $(noinst_PROGRAMS). Copy down objabi.go. (check-runtime): Depend on $(noinst_PROGRAMS). (check-cgo-test, check-carchive-test): Likewise. (check-vet): New target. (check): Depend on check-vet. Look at cmd_vet-testlog. (.PHONY): Add check-vet. * Makefile.in: Rebuild. From-SVN: r256365
1712 lines
52 KiB
Go
1712 lines
52 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Page heap.
|
|
//
|
|
// See malloc.go for overview.
|
|
|
|
package runtime
|
|
|
|
import (
|
|
"runtime/internal/atomic"
|
|
"runtime/internal/sys"
|
|
"unsafe"
|
|
)
|
|
|
|
// minPhysPageSize is a lower-bound on the physical page size. The
|
|
// true physical page size may be larger than this. In contrast,
|
|
// sys.PhysPageSize is an upper-bound on the physical page size.
|
|
const minPhysPageSize = 4096
|
|
|
|
// Main malloc heap.
|
|
// The heap itself is the "free[]" and "large" arrays,
|
|
// but all the other global data is here too.
|
|
//
|
|
// mheap must not be heap-allocated because it contains mSpanLists,
|
|
// which must not be heap-allocated.
|
|
//
|
|
//go:notinheap
|
|
type mheap struct {
|
|
lock mutex
|
|
free [_MaxMHeapList]mSpanList // free lists of given length up to _MaxMHeapList
|
|
freelarge mTreap // free treap of length >= _MaxMHeapList
|
|
busy [_MaxMHeapList]mSpanList // busy lists of large spans of given length
|
|
busylarge mSpanList // busy lists of large spans length >= _MaxMHeapList
|
|
sweepgen uint32 // sweep generation, see comment in mspan
|
|
sweepdone uint32 // all spans are swept
|
|
sweepers uint32 // number of active sweepone calls
|
|
|
|
// allspans is a slice of all mspans ever created. Each mspan
|
|
// appears exactly once.
|
|
//
|
|
// The memory for allspans is manually managed and can be
|
|
// reallocated and move as the heap grows.
|
|
//
|
|
// In general, allspans is protected by mheap_.lock, which
|
|
// prevents concurrent access as well as freeing the backing
|
|
// store. Accesses during STW might not hold the lock, but
|
|
// must ensure that allocation cannot happen around the
|
|
// access (since that may free the backing store).
|
|
allspans []*mspan // all spans out there
|
|
|
|
// spans is a lookup table to map virtual address page IDs to *mspan.
|
|
// For allocated spans, their pages map to the span itself.
|
|
// For free spans, only the lowest and highest pages map to the span itself.
|
|
// Internal pages map to an arbitrary span.
|
|
// For pages that have never been allocated, spans entries are nil.
|
|
//
|
|
// Modifications are protected by mheap.lock. Reads can be
|
|
// performed without locking, but ONLY from indexes that are
|
|
// known to contain in-use or stack spans. This means there
|
|
// must not be a safe-point between establishing that an
|
|
// address is live and looking it up in the spans array.
|
|
//
|
|
// This is backed by a reserved region of the address space so
|
|
// it can grow without moving. The memory up to len(spans) is
|
|
// mapped. cap(spans) indicates the total reserved memory.
|
|
spans []*mspan
|
|
|
|
// sweepSpans contains two mspan stacks: one of swept in-use
|
|
// spans, and one of unswept in-use spans. These two trade
|
|
// roles on each GC cycle. Since the sweepgen increases by 2
|
|
// on each cycle, this means the swept spans are in
|
|
// sweepSpans[sweepgen/2%2] and the unswept spans are in
|
|
// sweepSpans[1-sweepgen/2%2]. Sweeping pops spans from the
|
|
// unswept stack and pushes spans that are still in-use on the
|
|
// swept stack. Likewise, allocating an in-use span pushes it
|
|
// on the swept stack.
|
|
sweepSpans [2]gcSweepBuf
|
|
|
|
_ uint32 // align uint64 fields on 32-bit for atomics
|
|
|
|
// Proportional sweep
|
|
//
|
|
// These parameters represent a linear function from heap_live
|
|
// to page sweep count. The proportional sweep system works to
|
|
// stay in the black by keeping the current page sweep count
|
|
// above this line at the current heap_live.
|
|
//
|
|
// The line has slope sweepPagesPerByte and passes through a
|
|
// basis point at (sweepHeapLiveBasis, pagesSweptBasis). At
|
|
// any given time, the system is at (memstats.heap_live,
|
|
// pagesSwept) in this space.
|
|
//
|
|
// It's important that the line pass through a point we
|
|
// control rather than simply starting at a (0,0) origin
|
|
// because that lets us adjust sweep pacing at any time while
|
|
// accounting for current progress. If we could only adjust
|
|
// the slope, it would create a discontinuity in debt if any
|
|
// progress has already been made.
|
|
pagesInUse uint64 // pages of spans in stats _MSpanInUse; R/W with mheap.lock
|
|
pagesSwept uint64 // pages swept this cycle; updated atomically
|
|
pagesSweptBasis uint64 // pagesSwept to use as the origin of the sweep ratio; updated atomically
|
|
sweepHeapLiveBasis uint64 // value of heap_live to use as the origin of sweep ratio; written with lock, read without
|
|
sweepPagesPerByte float64 // proportional sweep ratio; written with lock, read without
|
|
// TODO(austin): pagesInUse should be a uintptr, but the 386
|
|
// compiler can't 8-byte align fields.
|
|
|
|
// Malloc stats.
|
|
largealloc uint64 // bytes allocated for large objects
|
|
nlargealloc uint64 // number of large object allocations
|
|
largefree uint64 // bytes freed for large objects (>maxsmallsize)
|
|
nlargefree uint64 // number of frees for large objects (>maxsmallsize)
|
|
nsmallfree [_NumSizeClasses]uint64 // number of frees for small objects (<=maxsmallsize)
|
|
|
|
// range of addresses we might see in the heap
|
|
bitmap uintptr // Points to one byte past the end of the bitmap
|
|
bitmap_mapped uintptr
|
|
|
|
// The arena_* fields indicate the addresses of the Go heap.
|
|
//
|
|
// The maximum range of the Go heap is
|
|
// [arena_start, arena_start+_MaxMem+1).
|
|
//
|
|
// The range of the current Go heap is
|
|
// [arena_start, arena_used). Parts of this range may not be
|
|
// mapped, but the metadata structures are always mapped for
|
|
// the full range.
|
|
arena_start uintptr
|
|
arena_used uintptr // Set with setArenaUsed.
|
|
|
|
// The heap is grown using a linear allocator that allocates
|
|
// from the block [arena_alloc, arena_end). arena_alloc is
|
|
// often, but *not always* equal to arena_used.
|
|
arena_alloc uintptr
|
|
arena_end uintptr
|
|
|
|
// arena_reserved indicates that the memory [arena_alloc,
|
|
// arena_end) is reserved (e.g., mapped PROT_NONE). If this is
|
|
// false, we have to be careful not to clobber existing
|
|
// mappings here. If this is true, then we own the mapping
|
|
// here and *must* clobber it to use it.
|
|
arena_reserved bool
|
|
|
|
_ uint32 // ensure 64-bit alignment
|
|
|
|
// central free lists for small size classes.
|
|
// the padding makes sure that the MCentrals are
|
|
// spaced CacheLineSize bytes apart, so that each MCentral.lock
|
|
// gets its own cache line.
|
|
// central is indexed by spanClass.
|
|
central [numSpanClasses]struct {
|
|
mcentral mcentral
|
|
pad [sys.CacheLineSize - unsafe.Sizeof(mcentral{})%sys.CacheLineSize]byte
|
|
}
|
|
|
|
spanalloc fixalloc // allocator for span*
|
|
cachealloc fixalloc // allocator for mcache*
|
|
treapalloc fixalloc // allocator for treapNodes* used by large objects
|
|
specialfinalizeralloc fixalloc // allocator for specialfinalizer*
|
|
specialprofilealloc fixalloc // allocator for specialprofile*
|
|
speciallock mutex // lock for special record allocators.
|
|
|
|
unused *specialfinalizer // never set, just here to force the specialfinalizer type into DWARF
|
|
}
|
|
|
|
var mheap_ mheap
|
|
|
|
// An MSpan is a run of pages.
|
|
//
|
|
// When a MSpan is in the heap free list, state == MSpanFree
|
|
// and heapmap(s->start) == span, heapmap(s->start+s->npages-1) == span.
|
|
//
|
|
// When a MSpan is allocated, state == MSpanInUse or MSpanManual
|
|
// and heapmap(i) == span for all s->start <= i < s->start+s->npages.
|
|
|
|
// Every MSpan is in one doubly-linked list,
|
|
// either one of the MHeap's free lists or one of the
|
|
// MCentral's span lists.
|
|
|
|
// An MSpan representing actual memory has state _MSpanInUse,
|
|
// _MSpanManual, or _MSpanFree. Transitions between these states are
|
|
// constrained as follows:
|
|
//
|
|
// * A span may transition from free to in-use or manual during any GC
|
|
// phase.
|
|
//
|
|
// * During sweeping (gcphase == _GCoff), a span may transition from
|
|
// in-use to free (as a result of sweeping) or manual to free (as a
|
|
// result of stacks being freed).
|
|
//
|
|
// * During GC (gcphase != _GCoff), a span *must not* transition from
|
|
// manual or in-use to free. Because concurrent GC may read a pointer
|
|
// and then look up its span, the span state must be monotonic.
|
|
type mSpanState uint8
|
|
|
|
const (
|
|
_MSpanDead mSpanState = iota
|
|
_MSpanInUse // allocated for garbage collected heap
|
|
_MSpanManual // allocated for manual management (e.g., stack allocator)
|
|
_MSpanFree
|
|
)
|
|
|
|
// mSpanStateNames are the names of the span states, indexed by
|
|
// mSpanState.
|
|
var mSpanStateNames = []string{
|
|
"_MSpanDead",
|
|
"_MSpanInUse",
|
|
"_MSpanManual",
|
|
"_MSpanFree",
|
|
}
|
|
|
|
// mSpanList heads a linked list of spans.
|
|
//
|
|
//go:notinheap
|
|
type mSpanList struct {
|
|
first *mspan // first span in list, or nil if none
|
|
last *mspan // last span in list, or nil if none
|
|
}
|
|
|
|
//go:notinheap
|
|
type mspan struct {
|
|
next *mspan // next span in list, or nil if none
|
|
prev *mspan // previous span in list, or nil if none
|
|
list *mSpanList // For debugging. TODO: Remove.
|
|
|
|
startAddr uintptr // address of first byte of span aka s.base()
|
|
npages uintptr // number of pages in span
|
|
|
|
manualFreeList gclinkptr // list of free objects in _MSpanManual spans
|
|
|
|
// freeindex is the slot index between 0 and nelems at which to begin scanning
|
|
// for the next free object in this span.
|
|
// Each allocation scans allocBits starting at freeindex until it encounters a 0
|
|
// indicating a free object. freeindex is then adjusted so that subsequent scans begin
|
|
// just past the newly discovered free object.
|
|
//
|
|
// If freeindex == nelem, this span has no free objects.
|
|
//
|
|
// allocBits is a bitmap of objects in this span.
|
|
// If n >= freeindex and allocBits[n/8] & (1<<(n%8)) is 0
|
|
// then object n is free;
|
|
// otherwise, object n is allocated. Bits starting at nelem are
|
|
// undefined and should never be referenced.
|
|
//
|
|
// Object n starts at address n*elemsize + (start << pageShift).
|
|
freeindex uintptr
|
|
// TODO: Look up nelems from sizeclass and remove this field if it
|
|
// helps performance.
|
|
nelems uintptr // number of object in the span.
|
|
|
|
// Cache of the allocBits at freeindex. allocCache is shifted
|
|
// such that the lowest bit corresponds to the bit freeindex.
|
|
// allocCache holds the complement of allocBits, thus allowing
|
|
// ctz (count trailing zero) to use it directly.
|
|
// allocCache may contain bits beyond s.nelems; the caller must ignore
|
|
// these.
|
|
allocCache uint64
|
|
|
|
// allocBits and gcmarkBits hold pointers to a span's mark and
|
|
// allocation bits. The pointers are 8 byte aligned.
|
|
// There are three arenas where this data is held.
|
|
// free: Dirty arenas that are no longer accessed
|
|
// and can be reused.
|
|
// next: Holds information to be used in the next GC cycle.
|
|
// current: Information being used during this GC cycle.
|
|
// previous: Information being used during the last GC cycle.
|
|
// A new GC cycle starts with the call to finishsweep_m.
|
|
// finishsweep_m moves the previous arena to the free arena,
|
|
// the current arena to the previous arena, and
|
|
// the next arena to the current arena.
|
|
// The next arena is populated as the spans request
|
|
// memory to hold gcmarkBits for the next GC cycle as well
|
|
// as allocBits for newly allocated spans.
|
|
//
|
|
// The pointer arithmetic is done "by hand" instead of using
|
|
// arrays to avoid bounds checks along critical performance
|
|
// paths.
|
|
// The sweep will free the old allocBits and set allocBits to the
|
|
// gcmarkBits. The gcmarkBits are replaced with a fresh zeroed
|
|
// out memory.
|
|
allocBits *gcBits
|
|
gcmarkBits *gcBits
|
|
|
|
// sweep generation:
|
|
// if sweepgen == h->sweepgen - 2, the span needs sweeping
|
|
// if sweepgen == h->sweepgen - 1, the span is currently being swept
|
|
// if sweepgen == h->sweepgen, the span is swept and ready to use
|
|
// h->sweepgen is incremented by 2 after every GC
|
|
|
|
sweepgen uint32
|
|
divMul uint16 // for divide by elemsize - divMagic.mul
|
|
baseMask uint16 // if non-0, elemsize is a power of 2, & this will get object allocation base
|
|
allocCount uint16 // number of allocated objects
|
|
spanclass spanClass // size class and noscan (uint8)
|
|
incache bool // being used by an mcache
|
|
state mSpanState // mspaninuse etc
|
|
needzero uint8 // needs to be zeroed before allocation
|
|
divShift uint8 // for divide by elemsize - divMagic.shift
|
|
divShift2 uint8 // for divide by elemsize - divMagic.shift2
|
|
elemsize uintptr // computed from sizeclass or from npages
|
|
unusedsince int64 // first time spotted by gc in mspanfree state
|
|
npreleased uintptr // number of pages released to the os
|
|
limit uintptr // end of data in span
|
|
speciallock mutex // guards specials list
|
|
specials *special // linked list of special records sorted by offset.
|
|
}
|
|
|
|
func (s *mspan) base() uintptr {
|
|
return s.startAddr
|
|
}
|
|
|
|
func (s *mspan) layout() (size, n, total uintptr) {
|
|
total = s.npages << _PageShift
|
|
size = s.elemsize
|
|
if size > 0 {
|
|
n = total / size
|
|
}
|
|
return
|
|
}
|
|
|
|
// recordspan adds a newly allocated span to h.allspans.
|
|
//
|
|
// This only happens the first time a span is allocated from
|
|
// mheap.spanalloc (it is not called when a span is reused).
|
|
//
|
|
// Write barriers are disallowed here because it can be called from
|
|
// gcWork when allocating new workbufs. However, because it's an
|
|
// indirect call from the fixalloc initializer, the compiler can't see
|
|
// this.
|
|
//
|
|
//go:nowritebarrierrec
|
|
func recordspan(vh unsafe.Pointer, p unsafe.Pointer) {
|
|
h := (*mheap)(vh)
|
|
s := (*mspan)(p)
|
|
if len(h.allspans) >= cap(h.allspans) {
|
|
n := 64 * 1024 / sys.PtrSize
|
|
if n < cap(h.allspans)*3/2 {
|
|
n = cap(h.allspans) * 3 / 2
|
|
}
|
|
var new []*mspan
|
|
sp := (*notInHeapSlice)(unsafe.Pointer(&new))
|
|
sp.array = (*notInHeap)(sysAlloc(uintptr(n)*sys.PtrSize, &memstats.other_sys))
|
|
if sp.array == nil {
|
|
throw("runtime: cannot allocate memory")
|
|
}
|
|
sp.len = len(h.allspans)
|
|
sp.cap = n
|
|
if len(h.allspans) > 0 {
|
|
copy(new, h.allspans)
|
|
}
|
|
oldAllspans := h.allspans
|
|
*(*notInHeapSlice)(unsafe.Pointer(&h.allspans)) = *(*notInHeapSlice)(unsafe.Pointer(&new))
|
|
if len(oldAllspans) != 0 {
|
|
sysFree(unsafe.Pointer(&oldAllspans[0]), uintptr(cap(oldAllspans))*unsafe.Sizeof(oldAllspans[0]), &memstats.other_sys)
|
|
}
|
|
}
|
|
h.allspans = h.allspans[:len(h.allspans)+1]
|
|
h.allspans[len(h.allspans)-1] = s
|
|
}
|
|
|
|
// A spanClass represents the size class and noscan-ness of a span.
|
|
//
|
|
// Each size class has a noscan spanClass and a scan spanClass. The
|
|
// noscan spanClass contains only noscan objects, which do not contain
|
|
// pointers and thus do not need to be scanned by the garbage
|
|
// collector.
|
|
type spanClass uint8
|
|
|
|
const (
|
|
numSpanClasses = _NumSizeClasses << 1
|
|
tinySpanClass = spanClass(tinySizeClass<<1 | 1)
|
|
)
|
|
|
|
func makeSpanClass(sizeclass uint8, noscan bool) spanClass {
|
|
return spanClass(sizeclass<<1) | spanClass(bool2int(noscan))
|
|
}
|
|
|
|
func (sc spanClass) sizeclass() int8 {
|
|
return int8(sc >> 1)
|
|
}
|
|
|
|
func (sc spanClass) noscan() bool {
|
|
return sc&1 != 0
|
|
}
|
|
|
|
// inheap reports whether b is a pointer into a (potentially dead) heap object.
|
|
// It returns false for pointers into _MSpanManual spans.
|
|
// Non-preemptible because it is used by write barriers.
|
|
//go:nowritebarrier
|
|
//go:nosplit
|
|
func inheap(b uintptr) bool {
|
|
if b == 0 || b < mheap_.arena_start || b >= mheap_.arena_used {
|
|
return false
|
|
}
|
|
// Not a beginning of a block, consult span table to find the block beginning.
|
|
s := mheap_.spans[(b-mheap_.arena_start)>>_PageShift]
|
|
if s == nil || b < s.base() || b >= s.limit || s.state != mSpanInUse {
|
|
return false
|
|
}
|
|
return true
|
|
}
|
|
|
|
// inHeapOrStack is a variant of inheap that returns true for pointers
|
|
// into any allocated heap span.
|
|
//
|
|
//go:nowritebarrier
|
|
//go:nosplit
|
|
func inHeapOrStack(b uintptr) bool {
|
|
if b == 0 || b < mheap_.arena_start || b >= mheap_.arena_used {
|
|
return false
|
|
}
|
|
// Not a beginning of a block, consult span table to find the block beginning.
|
|
s := mheap_.spans[(b-mheap_.arena_start)>>_PageShift]
|
|
if s == nil || b < s.base() {
|
|
return false
|
|
}
|
|
switch s.state {
|
|
case mSpanInUse, _MSpanManual:
|
|
return b < s.limit
|
|
default:
|
|
return false
|
|
}
|
|
}
|
|
|
|
// TODO: spanOf and spanOfUnchecked are open-coded in a lot of places.
|
|
// Use the functions instead.
|
|
|
|
// spanOf returns the span of p. If p does not point into the heap or
|
|
// no span contains p, spanOf returns nil.
|
|
func spanOf(p uintptr) *mspan {
|
|
if p == 0 || p < mheap_.arena_start || p >= mheap_.arena_used {
|
|
return nil
|
|
}
|
|
return spanOfUnchecked(p)
|
|
}
|
|
|
|
// spanOfUnchecked is equivalent to spanOf, but the caller must ensure
|
|
// that p points into the heap (that is, mheap_.arena_start <= p <
|
|
// mheap_.arena_used).
|
|
func spanOfUnchecked(p uintptr) *mspan {
|
|
return mheap_.spans[(p-mheap_.arena_start)>>_PageShift]
|
|
}
|
|
|
|
func mlookup(v uintptr, base *uintptr, size *uintptr, sp **mspan) int32 {
|
|
_g_ := getg()
|
|
|
|
_g_.m.mcache.local_nlookup++
|
|
if sys.PtrSize == 4 && _g_.m.mcache.local_nlookup >= 1<<30 {
|
|
// purge cache stats to prevent overflow
|
|
lock(&mheap_.lock)
|
|
purgecachedstats(_g_.m.mcache)
|
|
unlock(&mheap_.lock)
|
|
}
|
|
|
|
s := mheap_.lookupMaybe(unsafe.Pointer(v))
|
|
if sp != nil {
|
|
*sp = s
|
|
}
|
|
if s == nil {
|
|
if base != nil {
|
|
*base = 0
|
|
}
|
|
if size != nil {
|
|
*size = 0
|
|
}
|
|
return 0
|
|
}
|
|
|
|
p := s.base()
|
|
if s.spanclass.sizeclass() == 0 {
|
|
// Large object.
|
|
if base != nil {
|
|
*base = p
|
|
}
|
|
if size != nil {
|
|
*size = s.npages << _PageShift
|
|
}
|
|
return 1
|
|
}
|
|
|
|
n := s.elemsize
|
|
if base != nil {
|
|
i := (v - p) / n
|
|
*base = p + i*n
|
|
}
|
|
if size != nil {
|
|
*size = n
|
|
}
|
|
|
|
return 1
|
|
}
|
|
|
|
// Initialize the heap.
|
|
func (h *mheap) init(spansStart, spansBytes uintptr) {
|
|
h.treapalloc.init(unsafe.Sizeof(treapNode{}), nil, nil, &memstats.other_sys)
|
|
h.spanalloc.init(unsafe.Sizeof(mspan{}), recordspan, unsafe.Pointer(h), &memstats.mspan_sys)
|
|
h.cachealloc.init(unsafe.Sizeof(mcache{}), nil, nil, &memstats.mcache_sys)
|
|
h.specialfinalizeralloc.init(unsafe.Sizeof(specialfinalizer{}), nil, nil, &memstats.other_sys)
|
|
h.specialprofilealloc.init(unsafe.Sizeof(specialprofile{}), nil, nil, &memstats.other_sys)
|
|
|
|
// Don't zero mspan allocations. Background sweeping can
|
|
// inspect a span concurrently with allocating it, so it's
|
|
// important that the span's sweepgen survive across freeing
|
|
// and re-allocating a span to prevent background sweeping
|
|
// from improperly cas'ing it from 0.
|
|
//
|
|
// This is safe because mspan contains no heap pointers.
|
|
h.spanalloc.zero = false
|
|
|
|
// h->mapcache needs no init
|
|
for i := range h.free {
|
|
h.free[i].init()
|
|
h.busy[i].init()
|
|
}
|
|
|
|
h.busylarge.init()
|
|
for i := range h.central {
|
|
h.central[i].mcentral.init(spanClass(i))
|
|
}
|
|
|
|
sp := (*slice)(unsafe.Pointer(&h.spans))
|
|
sp.array = unsafe.Pointer(spansStart)
|
|
sp.len = 0
|
|
sp.cap = int(spansBytes / sys.PtrSize)
|
|
|
|
// Map metadata structures. But don't map race detector memory
|
|
// since we're not actually growing the arena here (and TSAN
|
|
// gets mad if you map 0 bytes).
|
|
h.setArenaUsed(h.arena_used, false)
|
|
}
|
|
|
|
// setArenaUsed extends the usable arena to address arena_used and
|
|
// maps auxiliary VM regions for any newly usable arena space.
|
|
//
|
|
// racemap indicates that this memory should be managed by the race
|
|
// detector. racemap should be true unless this is covering a VM hole.
|
|
func (h *mheap) setArenaUsed(arena_used uintptr, racemap bool) {
|
|
// Map auxiliary structures *before* h.arena_used is updated.
|
|
// Waiting to update arena_used until after the memory has been mapped
|
|
// avoids faults when other threads try access these regions immediately
|
|
// after observing the change to arena_used.
|
|
|
|
// Map the bitmap.
|
|
h.mapBits(arena_used)
|
|
|
|
// Map spans array.
|
|
h.mapSpans(arena_used)
|
|
|
|
// Tell the race detector about the new heap memory.
|
|
if racemap && raceenabled {
|
|
racemapshadow(unsafe.Pointer(h.arena_used), arena_used-h.arena_used)
|
|
}
|
|
|
|
h.arena_used = arena_used
|
|
}
|
|
|
|
// mapSpans makes sure that the spans are mapped
|
|
// up to the new value of arena_used.
|
|
//
|
|
// Don't call this directly. Call mheap.setArenaUsed.
|
|
func (h *mheap) mapSpans(arena_used uintptr) {
|
|
// Map spans array, PageSize at a time.
|
|
n := arena_used
|
|
n -= h.arena_start
|
|
n = n / _PageSize * sys.PtrSize
|
|
n = round(n, physPageSize)
|
|
need := n / unsafe.Sizeof(h.spans[0])
|
|
have := uintptr(len(h.spans))
|
|
if have >= need {
|
|
return
|
|
}
|
|
h.spans = h.spans[:need]
|
|
sysMap(unsafe.Pointer(&h.spans[have]), (need-have)*unsafe.Sizeof(h.spans[0]), h.arena_reserved, &memstats.other_sys)
|
|
}
|
|
|
|
// Sweeps spans in list until reclaims at least npages into heap.
|
|
// Returns the actual number of pages reclaimed.
|
|
func (h *mheap) reclaimList(list *mSpanList, npages uintptr) uintptr {
|
|
n := uintptr(0)
|
|
sg := mheap_.sweepgen
|
|
retry:
|
|
for s := list.first; s != nil; s = s.next {
|
|
if s.sweepgen == sg-2 && atomic.Cas(&s.sweepgen, sg-2, sg-1) {
|
|
list.remove(s)
|
|
// swept spans are at the end of the list
|
|
list.insertBack(s) // Puts it back on a busy list. s is not in the treap at this point.
|
|
unlock(&h.lock)
|
|
snpages := s.npages
|
|
if s.sweep(false) {
|
|
n += snpages
|
|
}
|
|
lock(&h.lock)
|
|
if n >= npages {
|
|
return n
|
|
}
|
|
// the span could have been moved elsewhere
|
|
goto retry
|
|
}
|
|
if s.sweepgen == sg-1 {
|
|
// the span is being sweept by background sweeper, skip
|
|
continue
|
|
}
|
|
// already swept empty span,
|
|
// all subsequent ones must also be either swept or in process of sweeping
|
|
break
|
|
}
|
|
return n
|
|
}
|
|
|
|
// Sweeps and reclaims at least npage pages into heap.
|
|
// Called before allocating npage pages.
|
|
func (h *mheap) reclaim(npage uintptr) {
|
|
// First try to sweep busy spans with large objects of size >= npage,
|
|
// this has good chances of reclaiming the necessary space.
|
|
for i := int(npage); i < len(h.busy); i++ {
|
|
if h.reclaimList(&h.busy[i], npage) != 0 {
|
|
return // Bingo!
|
|
}
|
|
}
|
|
|
|
// Then -- even larger objects.
|
|
if h.reclaimList(&h.busylarge, npage) != 0 {
|
|
return // Bingo!
|
|
}
|
|
|
|
// Now try smaller objects.
|
|
// One such object is not enough, so we need to reclaim several of them.
|
|
reclaimed := uintptr(0)
|
|
for i := 0; i < int(npage) && i < len(h.busy); i++ {
|
|
reclaimed += h.reclaimList(&h.busy[i], npage-reclaimed)
|
|
if reclaimed >= npage {
|
|
return
|
|
}
|
|
}
|
|
|
|
// Now sweep everything that is not yet swept.
|
|
unlock(&h.lock)
|
|
for {
|
|
n := sweepone()
|
|
if n == ^uintptr(0) { // all spans are swept
|
|
break
|
|
}
|
|
reclaimed += n
|
|
if reclaimed >= npage {
|
|
break
|
|
}
|
|
}
|
|
lock(&h.lock)
|
|
}
|
|
|
|
// Allocate a new span of npage pages from the heap for GC'd memory
|
|
// and record its size class in the HeapMap and HeapMapCache.
|
|
func (h *mheap) alloc_m(npage uintptr, spanclass spanClass, large bool) *mspan {
|
|
_g_ := getg()
|
|
lock(&h.lock)
|
|
|
|
// To prevent excessive heap growth, before allocating n pages
|
|
// we need to sweep and reclaim at least n pages.
|
|
if h.sweepdone == 0 {
|
|
// TODO(austin): This tends to sweep a large number of
|
|
// spans in order to find a few completely free spans
|
|
// (for example, in the garbage benchmark, this sweeps
|
|
// ~30x the number of pages its trying to allocate).
|
|
// If GC kept a bit for whether there were any marks
|
|
// in a span, we could release these free spans
|
|
// at the end of GC and eliminate this entirely.
|
|
if trace.enabled {
|
|
traceGCSweepStart()
|
|
}
|
|
h.reclaim(npage)
|
|
if trace.enabled {
|
|
traceGCSweepDone()
|
|
}
|
|
}
|
|
|
|
// transfer stats from cache to global
|
|
memstats.heap_scan += uint64(_g_.m.mcache.local_scan)
|
|
_g_.m.mcache.local_scan = 0
|
|
memstats.tinyallocs += uint64(_g_.m.mcache.local_tinyallocs)
|
|
_g_.m.mcache.local_tinyallocs = 0
|
|
|
|
s := h.allocSpanLocked(npage, &memstats.heap_inuse)
|
|
if s != nil {
|
|
// Record span info, because gc needs to be
|
|
// able to map interior pointer to containing span.
|
|
atomic.Store(&s.sweepgen, h.sweepgen)
|
|
h.sweepSpans[h.sweepgen/2%2].push(s) // Add to swept in-use list.
|
|
s.state = _MSpanInUse
|
|
s.allocCount = 0
|
|
s.spanclass = spanclass
|
|
if sizeclass := spanclass.sizeclass(); sizeclass == 0 {
|
|
s.elemsize = s.npages << _PageShift
|
|
s.divShift = 0
|
|
s.divMul = 0
|
|
s.divShift2 = 0
|
|
s.baseMask = 0
|
|
} else {
|
|
s.elemsize = uintptr(class_to_size[sizeclass])
|
|
m := &class_to_divmagic[sizeclass]
|
|
s.divShift = m.shift
|
|
s.divMul = m.mul
|
|
s.divShift2 = m.shift2
|
|
s.baseMask = m.baseMask
|
|
}
|
|
|
|
// update stats, sweep lists
|
|
h.pagesInUse += uint64(npage)
|
|
if large {
|
|
memstats.heap_objects++
|
|
mheap_.largealloc += uint64(s.elemsize)
|
|
mheap_.nlargealloc++
|
|
atomic.Xadd64(&memstats.heap_live, int64(npage<<_PageShift))
|
|
// Swept spans are at the end of lists.
|
|
if s.npages < uintptr(len(h.busy)) {
|
|
h.busy[s.npages].insertBack(s)
|
|
} else {
|
|
h.busylarge.insertBack(s)
|
|
}
|
|
}
|
|
}
|
|
// heap_scan and heap_live were updated.
|
|
if gcBlackenEnabled != 0 {
|
|
gcController.revise()
|
|
}
|
|
|
|
if trace.enabled {
|
|
traceHeapAlloc()
|
|
}
|
|
|
|
// h.spans is accessed concurrently without synchronization
|
|
// from other threads. Hence, there must be a store/store
|
|
// barrier here to ensure the writes to h.spans above happen
|
|
// before the caller can publish a pointer p to an object
|
|
// allocated from s. As soon as this happens, the garbage
|
|
// collector running on another processor could read p and
|
|
// look up s in h.spans. The unlock acts as the barrier to
|
|
// order these writes. On the read side, the data dependency
|
|
// between p and the index in h.spans orders the reads.
|
|
unlock(&h.lock)
|
|
return s
|
|
}
|
|
|
|
func (h *mheap) alloc(npage uintptr, spanclass spanClass, large bool, needzero bool) *mspan {
|
|
// Don't do any operations that lock the heap on the G stack.
|
|
// It might trigger stack growth, and the stack growth code needs
|
|
// to be able to allocate heap.
|
|
var s *mspan
|
|
systemstack(func() {
|
|
s = h.alloc_m(npage, spanclass, large)
|
|
})
|
|
|
|
if s != nil {
|
|
if needzero && s.needzero != 0 {
|
|
memclrNoHeapPointers(unsafe.Pointer(s.base()), s.npages<<_PageShift)
|
|
}
|
|
s.needzero = 0
|
|
}
|
|
return s
|
|
}
|
|
|
|
// allocManual allocates a manually-managed span of npage pages.
|
|
// allocManual returns nil if allocation fails.
|
|
//
|
|
// allocManual adds the bytes used to *stat, which should be a
|
|
// memstats in-use field. Unlike allocations in the GC'd heap, the
|
|
// allocation does *not* count toward heap_inuse or heap_sys.
|
|
//
|
|
// The memory backing the returned span may not be zeroed if
|
|
// span.needzero is set.
|
|
//
|
|
// allocManual must be called on the system stack to prevent stack
|
|
// growth. Since this is used by the stack allocator, stack growth
|
|
// during allocManual would self-deadlock.
|
|
//
|
|
//go:systemstack
|
|
func (h *mheap) allocManual(npage uintptr, stat *uint64) *mspan {
|
|
lock(&h.lock)
|
|
s := h.allocSpanLocked(npage, stat)
|
|
if s != nil {
|
|
s.state = _MSpanManual
|
|
s.manualFreeList = 0
|
|
s.allocCount = 0
|
|
s.spanclass = 0
|
|
s.nelems = 0
|
|
s.elemsize = 0
|
|
s.limit = s.base() + s.npages<<_PageShift
|
|
// Manually manged memory doesn't count toward heap_sys.
|
|
memstats.heap_sys -= uint64(s.npages << _PageShift)
|
|
}
|
|
|
|
// This unlock acts as a release barrier. See mheap.alloc_m.
|
|
unlock(&h.lock)
|
|
|
|
return s
|
|
}
|
|
|
|
// Allocates a span of the given size. h must be locked.
|
|
// The returned span has been removed from the
|
|
// free list, but its state is still MSpanFree.
|
|
func (h *mheap) allocSpanLocked(npage uintptr, stat *uint64) *mspan {
|
|
var list *mSpanList
|
|
var s *mspan
|
|
|
|
// Try in fixed-size lists up to max.
|
|
for i := int(npage); i < len(h.free); i++ {
|
|
list = &h.free[i]
|
|
if !list.isEmpty() {
|
|
s = list.first
|
|
list.remove(s)
|
|
goto HaveSpan
|
|
}
|
|
}
|
|
// Best fit in list of large spans.
|
|
s = h.allocLarge(npage) // allocLarge removed s from h.freelarge for us
|
|
if s == nil {
|
|
if !h.grow(npage) {
|
|
return nil
|
|
}
|
|
s = h.allocLarge(npage)
|
|
if s == nil {
|
|
return nil
|
|
}
|
|
}
|
|
|
|
HaveSpan:
|
|
// Mark span in use.
|
|
if s.state != _MSpanFree {
|
|
throw("MHeap_AllocLocked - MSpan not free")
|
|
}
|
|
if s.npages < npage {
|
|
throw("MHeap_AllocLocked - bad npages")
|
|
}
|
|
if s.npreleased > 0 {
|
|
sysUsed(unsafe.Pointer(s.base()), s.npages<<_PageShift)
|
|
memstats.heap_released -= uint64(s.npreleased << _PageShift)
|
|
s.npreleased = 0
|
|
}
|
|
|
|
if s.npages > npage {
|
|
// Trim extra and put it back in the heap.
|
|
t := (*mspan)(h.spanalloc.alloc())
|
|
t.init(s.base()+npage<<_PageShift, s.npages-npage)
|
|
s.npages = npage
|
|
p := (t.base() - h.arena_start) >> _PageShift
|
|
if p > 0 {
|
|
h.spans[p-1] = s
|
|
}
|
|
h.spans[p] = t
|
|
h.spans[p+t.npages-1] = t
|
|
t.needzero = s.needzero
|
|
s.state = _MSpanManual // prevent coalescing with s
|
|
t.state = _MSpanManual
|
|
h.freeSpanLocked(t, false, false, s.unusedsince)
|
|
s.state = _MSpanFree
|
|
}
|
|
s.unusedsince = 0
|
|
|
|
p := (s.base() - h.arena_start) >> _PageShift
|
|
for n := uintptr(0); n < npage; n++ {
|
|
h.spans[p+n] = s
|
|
}
|
|
|
|
*stat += uint64(npage << _PageShift)
|
|
memstats.heap_idle -= uint64(npage << _PageShift)
|
|
|
|
//println("spanalloc", hex(s.start<<_PageShift))
|
|
if s.inList() {
|
|
throw("still in list")
|
|
}
|
|
return s
|
|
}
|
|
|
|
// Large spans have a minimum size of 1MByte. The maximum number of large spans to support
|
|
// 1TBytes is 1 million, experimentation using random sizes indicates that the depth of
|
|
// the tree is less that 2x that of a perfectly balanced tree. For 1TByte can be referenced
|
|
// by a perfectly balanced tree with a depth of 20. Twice that is an acceptable 40.
|
|
func (h *mheap) isLargeSpan(npages uintptr) bool {
|
|
return npages >= uintptr(len(h.free))
|
|
}
|
|
|
|
// allocLarge allocates a span of at least npage pages from the treap of large spans.
|
|
// Returns nil if no such span currently exists.
|
|
func (h *mheap) allocLarge(npage uintptr) *mspan {
|
|
// Search treap for smallest span with >= npage pages.
|
|
return h.freelarge.remove(npage)
|
|
}
|
|
|
|
// Try to add at least npage pages of memory to the heap,
|
|
// returning whether it worked.
|
|
//
|
|
// h must be locked.
|
|
func (h *mheap) grow(npage uintptr) bool {
|
|
// Ask for a big chunk, to reduce the number of mappings
|
|
// the operating system needs to track; also amortizes
|
|
// the overhead of an operating system mapping.
|
|
// Allocate a multiple of 64kB.
|
|
npage = round(npage, (64<<10)/_PageSize)
|
|
ask := npage << _PageShift
|
|
if ask < _HeapAllocChunk {
|
|
ask = _HeapAllocChunk
|
|
}
|
|
|
|
v := h.sysAlloc(ask)
|
|
if v == nil {
|
|
if ask > npage<<_PageShift {
|
|
ask = npage << _PageShift
|
|
v = h.sysAlloc(ask)
|
|
}
|
|
if v == nil {
|
|
print("runtime: out of memory: cannot allocate ", ask, "-byte block (", memstats.heap_sys, " in use)\n")
|
|
return false
|
|
}
|
|
}
|
|
|
|
// Create a fake "in use" span and free it, so that the
|
|
// right coalescing happens.
|
|
s := (*mspan)(h.spanalloc.alloc())
|
|
s.init(uintptr(v), ask>>_PageShift)
|
|
p := (s.base() - h.arena_start) >> _PageShift
|
|
for i := p; i < p+s.npages; i++ {
|
|
h.spans[i] = s
|
|
}
|
|
atomic.Store(&s.sweepgen, h.sweepgen)
|
|
s.state = _MSpanInUse
|
|
h.pagesInUse += uint64(s.npages)
|
|
h.freeSpanLocked(s, false, true, 0)
|
|
return true
|
|
}
|
|
|
|
// Look up the span at the given address.
|
|
// Address is guaranteed to be in map
|
|
// and is guaranteed to be start or end of span.
|
|
func (h *mheap) lookup(v unsafe.Pointer) *mspan {
|
|
p := uintptr(v)
|
|
p -= h.arena_start
|
|
return h.spans[p>>_PageShift]
|
|
}
|
|
|
|
// Look up the span at the given address.
|
|
// Address is *not* guaranteed to be in map
|
|
// and may be anywhere in the span.
|
|
// Map entries for the middle of a span are only
|
|
// valid for allocated spans. Free spans may have
|
|
// other garbage in their middles, so we have to
|
|
// check for that.
|
|
func (h *mheap) lookupMaybe(v unsafe.Pointer) *mspan {
|
|
if uintptr(v) < h.arena_start || uintptr(v) >= h.arena_used {
|
|
return nil
|
|
}
|
|
s := h.spans[(uintptr(v)-h.arena_start)>>_PageShift]
|
|
if s == nil || uintptr(v) < s.base() || uintptr(v) >= uintptr(unsafe.Pointer(s.limit)) || s.state != _MSpanInUse {
|
|
return nil
|
|
}
|
|
return s
|
|
}
|
|
|
|
// Free the span back into the heap.
|
|
func (h *mheap) freeSpan(s *mspan, acct int32) {
|
|
systemstack(func() {
|
|
mp := getg().m
|
|
lock(&h.lock)
|
|
memstats.heap_scan += uint64(mp.mcache.local_scan)
|
|
mp.mcache.local_scan = 0
|
|
memstats.tinyallocs += uint64(mp.mcache.local_tinyallocs)
|
|
mp.mcache.local_tinyallocs = 0
|
|
if msanenabled {
|
|
// Tell msan that this entire span is no longer in use.
|
|
base := unsafe.Pointer(s.base())
|
|
bytes := s.npages << _PageShift
|
|
msanfree(base, bytes)
|
|
}
|
|
if acct != 0 {
|
|
memstats.heap_objects--
|
|
}
|
|
if gcBlackenEnabled != 0 {
|
|
// heap_scan changed.
|
|
gcController.revise()
|
|
}
|
|
h.freeSpanLocked(s, true, true, 0)
|
|
unlock(&h.lock)
|
|
})
|
|
}
|
|
|
|
// freeManual frees a manually-managed span returned by allocManual.
|
|
// stat must be the same as the stat passed to the allocManual that
|
|
// allocated s.
|
|
//
|
|
// This must only be called when gcphase == _GCoff. See mSpanState for
|
|
// an explanation.
|
|
//
|
|
// freeManual must be called on the system stack to prevent stack
|
|
// growth, just like allocManual.
|
|
//
|
|
//go:systemstack
|
|
func (h *mheap) freeManual(s *mspan, stat *uint64) {
|
|
s.needzero = 1
|
|
lock(&h.lock)
|
|
*stat -= uint64(s.npages << _PageShift)
|
|
memstats.heap_sys += uint64(s.npages << _PageShift)
|
|
h.freeSpanLocked(s, false, true, 0)
|
|
unlock(&h.lock)
|
|
}
|
|
|
|
// s must be on a busy list (h.busy or h.busylarge) or unlinked.
|
|
func (h *mheap) freeSpanLocked(s *mspan, acctinuse, acctidle bool, unusedsince int64) {
|
|
switch s.state {
|
|
case _MSpanManual:
|
|
if s.allocCount != 0 {
|
|
throw("MHeap_FreeSpanLocked - invalid stack free")
|
|
}
|
|
case _MSpanInUse:
|
|
if s.allocCount != 0 || s.sweepgen != h.sweepgen {
|
|
print("MHeap_FreeSpanLocked - span ", s, " ptr ", hex(s.base()), " allocCount ", s.allocCount, " sweepgen ", s.sweepgen, "/", h.sweepgen, "\n")
|
|
throw("MHeap_FreeSpanLocked - invalid free")
|
|
}
|
|
h.pagesInUse -= uint64(s.npages)
|
|
default:
|
|
throw("MHeap_FreeSpanLocked - invalid span state")
|
|
}
|
|
|
|
if acctinuse {
|
|
memstats.heap_inuse -= uint64(s.npages << _PageShift)
|
|
}
|
|
if acctidle {
|
|
memstats.heap_idle += uint64(s.npages << _PageShift)
|
|
}
|
|
s.state = _MSpanFree
|
|
if s.inList() {
|
|
h.busyList(s.npages).remove(s)
|
|
}
|
|
|
|
// Stamp newly unused spans. The scavenger will use that
|
|
// info to potentially give back some pages to the OS.
|
|
s.unusedsince = unusedsince
|
|
if unusedsince == 0 {
|
|
s.unusedsince = nanotime()
|
|
}
|
|
s.npreleased = 0
|
|
|
|
// Coalesce with earlier, later spans.
|
|
p := (s.base() - h.arena_start) >> _PageShift
|
|
if p > 0 {
|
|
before := h.spans[p-1]
|
|
if before != nil && before.state == _MSpanFree {
|
|
// Now adjust s.
|
|
s.startAddr = before.startAddr
|
|
s.npages += before.npages
|
|
s.npreleased = before.npreleased // absorb released pages
|
|
s.needzero |= before.needzero
|
|
p -= before.npages
|
|
h.spans[p] = s
|
|
// The size is potentially changing so the treap needs to delete adjacent nodes and
|
|
// insert back as a combined node.
|
|
if h.isLargeSpan(before.npages) {
|
|
// We have a t, it is large so it has to be in the treap so we can remove it.
|
|
h.freelarge.removeSpan(before)
|
|
} else {
|
|
h.freeList(before.npages).remove(before)
|
|
}
|
|
before.state = _MSpanDead
|
|
h.spanalloc.free(unsafe.Pointer(before))
|
|
}
|
|
}
|
|
|
|
// Now check to see if next (greater addresses) span is free and can be coalesced.
|
|
if (p + s.npages) < uintptr(len(h.spans)) {
|
|
after := h.spans[p+s.npages]
|
|
if after != nil && after.state == _MSpanFree {
|
|
s.npages += after.npages
|
|
s.npreleased += after.npreleased
|
|
s.needzero |= after.needzero
|
|
h.spans[p+s.npages-1] = s
|
|
if h.isLargeSpan(after.npages) {
|
|
h.freelarge.removeSpan(after)
|
|
} else {
|
|
h.freeList(after.npages).remove(after)
|
|
}
|
|
after.state = _MSpanDead
|
|
h.spanalloc.free(unsafe.Pointer(after))
|
|
}
|
|
}
|
|
|
|
// Insert s into appropriate list or treap.
|
|
if h.isLargeSpan(s.npages) {
|
|
h.freelarge.insert(s)
|
|
} else {
|
|
h.freeList(s.npages).insert(s)
|
|
}
|
|
}
|
|
|
|
func (h *mheap) freeList(npages uintptr) *mSpanList {
|
|
return &h.free[npages]
|
|
}
|
|
|
|
func (h *mheap) busyList(npages uintptr) *mSpanList {
|
|
if npages < uintptr(len(h.busy)) {
|
|
return &h.busy[npages]
|
|
}
|
|
return &h.busylarge
|
|
}
|
|
|
|
func scavengeTreapNode(t *treapNode, now, limit uint64) uintptr {
|
|
s := t.spanKey
|
|
var sumreleased uintptr
|
|
if (now-uint64(s.unusedsince)) > limit && s.npreleased != s.npages {
|
|
start := s.base()
|
|
end := start + s.npages<<_PageShift
|
|
if physPageSize > _PageSize {
|
|
// We can only release pages in
|
|
// physPageSize blocks, so round start
|
|
// and end in. (Otherwise, madvise
|
|
// will round them *out* and release
|
|
// more memory than we want.)
|
|
start = (start + physPageSize - 1) &^ (physPageSize - 1)
|
|
end &^= physPageSize - 1
|
|
if end <= start {
|
|
// start and end don't span a
|
|
// whole physical page.
|
|
return sumreleased
|
|
}
|
|
}
|
|
len := end - start
|
|
released := len - (s.npreleased << _PageShift)
|
|
if physPageSize > _PageSize && released == 0 {
|
|
return sumreleased
|
|
}
|
|
memstats.heap_released += uint64(released)
|
|
sumreleased += released
|
|
s.npreleased = len >> _PageShift
|
|
sysUnused(unsafe.Pointer(start), len)
|
|
}
|
|
return sumreleased
|
|
}
|
|
|
|
func scavengelist(list *mSpanList, now, limit uint64) uintptr {
|
|
if list.isEmpty() {
|
|
return 0
|
|
}
|
|
|
|
var sumreleased uintptr
|
|
for s := list.first; s != nil; s = s.next {
|
|
if (now-uint64(s.unusedsince)) <= limit || s.npreleased == s.npages {
|
|
continue
|
|
}
|
|
start := s.base()
|
|
end := start + s.npages<<_PageShift
|
|
if physPageSize > _PageSize {
|
|
// We can only release pages in
|
|
// physPageSize blocks, so round start
|
|
// and end in. (Otherwise, madvise
|
|
// will round them *out* and release
|
|
// more memory than we want.)
|
|
start = (start + physPageSize - 1) &^ (physPageSize - 1)
|
|
end &^= physPageSize - 1
|
|
if end <= start {
|
|
// start and end don't span a
|
|
// whole physical page.
|
|
continue
|
|
}
|
|
}
|
|
len := end - start
|
|
|
|
released := len - (s.npreleased << _PageShift)
|
|
if physPageSize > _PageSize && released == 0 {
|
|
continue
|
|
}
|
|
memstats.heap_released += uint64(released)
|
|
sumreleased += released
|
|
s.npreleased = len >> _PageShift
|
|
sysUnused(unsafe.Pointer(start), len)
|
|
}
|
|
return sumreleased
|
|
}
|
|
|
|
func (h *mheap) scavenge(k int32, now, limit uint64) {
|
|
// Disallow malloc or panic while holding the heap lock. We do
|
|
// this here because this is an non-mallocgc entry-point to
|
|
// the mheap API.
|
|
gp := getg()
|
|
gp.m.mallocing++
|
|
lock(&h.lock)
|
|
var sumreleased uintptr
|
|
for i := 0; i < len(h.free); i++ {
|
|
sumreleased += scavengelist(&h.free[i], now, limit)
|
|
}
|
|
sumreleased += scavengetreap(h.freelarge.treap, now, limit)
|
|
unlock(&h.lock)
|
|
gp.m.mallocing--
|
|
|
|
if debug.gctrace > 0 {
|
|
if sumreleased > 0 {
|
|
print("scvg", k, ": ", sumreleased>>20, " MB released\n")
|
|
}
|
|
print("scvg", k, ": inuse: ", memstats.heap_inuse>>20, ", idle: ", memstats.heap_idle>>20, ", sys: ", memstats.heap_sys>>20, ", released: ", memstats.heap_released>>20, ", consumed: ", (memstats.heap_sys-memstats.heap_released)>>20, " (MB)\n")
|
|
}
|
|
}
|
|
|
|
//go:linkname runtime_debug_freeOSMemory runtime_debug.freeOSMemory
|
|
func runtime_debug_freeOSMemory() {
|
|
GC()
|
|
systemstack(func() { mheap_.scavenge(-1, ^uint64(0), 0) })
|
|
}
|
|
|
|
// Initialize a new span with the given start and npages.
|
|
func (span *mspan) init(base uintptr, npages uintptr) {
|
|
// span is *not* zeroed.
|
|
span.next = nil
|
|
span.prev = nil
|
|
span.list = nil
|
|
span.startAddr = base
|
|
span.npages = npages
|
|
span.allocCount = 0
|
|
span.spanclass = 0
|
|
span.incache = false
|
|
span.elemsize = 0
|
|
span.state = _MSpanDead
|
|
span.unusedsince = 0
|
|
span.npreleased = 0
|
|
span.speciallock.key = 0
|
|
span.specials = nil
|
|
span.needzero = 0
|
|
span.freeindex = 0
|
|
span.allocBits = nil
|
|
span.gcmarkBits = nil
|
|
}
|
|
|
|
func (span *mspan) inList() bool {
|
|
return span.list != nil
|
|
}
|
|
|
|
// Initialize an empty doubly-linked list.
|
|
func (list *mSpanList) init() {
|
|
list.first = nil
|
|
list.last = nil
|
|
}
|
|
|
|
func (list *mSpanList) remove(span *mspan) {
|
|
if span.list != list {
|
|
print("runtime: failed MSpanList_Remove span.npages=", span.npages,
|
|
" span=", span, " prev=", span.prev, " span.list=", span.list, " list=", list, "\n")
|
|
throw("MSpanList_Remove")
|
|
}
|
|
if list.first == span {
|
|
list.first = span.next
|
|
} else {
|
|
span.prev.next = span.next
|
|
}
|
|
if list.last == span {
|
|
list.last = span.prev
|
|
} else {
|
|
span.next.prev = span.prev
|
|
}
|
|
span.next = nil
|
|
span.prev = nil
|
|
span.list = nil
|
|
}
|
|
|
|
func (list *mSpanList) isEmpty() bool {
|
|
return list.first == nil
|
|
}
|
|
|
|
func (list *mSpanList) insert(span *mspan) {
|
|
if span.next != nil || span.prev != nil || span.list != nil {
|
|
println("runtime: failed MSpanList_Insert", span, span.next, span.prev, span.list)
|
|
throw("MSpanList_Insert")
|
|
}
|
|
span.next = list.first
|
|
if list.first != nil {
|
|
// The list contains at least one span; link it in.
|
|
// The last span in the list doesn't change.
|
|
list.first.prev = span
|
|
} else {
|
|
// The list contains no spans, so this is also the last span.
|
|
list.last = span
|
|
}
|
|
list.first = span
|
|
span.list = list
|
|
}
|
|
|
|
func (list *mSpanList) insertBack(span *mspan) {
|
|
if span.next != nil || span.prev != nil || span.list != nil {
|
|
println("runtime: failed MSpanList_InsertBack", span, span.next, span.prev, span.list)
|
|
throw("MSpanList_InsertBack")
|
|
}
|
|
span.prev = list.last
|
|
if list.last != nil {
|
|
// The list contains at least one span.
|
|
list.last.next = span
|
|
} else {
|
|
// The list contains no spans, so this is also the first span.
|
|
list.first = span
|
|
}
|
|
list.last = span
|
|
span.list = list
|
|
}
|
|
|
|
// takeAll removes all spans from other and inserts them at the front
|
|
// of list.
|
|
func (list *mSpanList) takeAll(other *mSpanList) {
|
|
if other.isEmpty() {
|
|
return
|
|
}
|
|
|
|
// Reparent everything in other to list.
|
|
for s := other.first; s != nil; s = s.next {
|
|
s.list = list
|
|
}
|
|
|
|
// Concatenate the lists.
|
|
if list.isEmpty() {
|
|
*list = *other
|
|
} else {
|
|
// Neither list is empty. Put other before list.
|
|
other.last.next = list.first
|
|
list.first.prev = other.last
|
|
list.first = other.first
|
|
}
|
|
|
|
other.first, other.last = nil, nil
|
|
}
|
|
|
|
const (
|
|
_KindSpecialFinalizer = 1
|
|
_KindSpecialProfile = 2
|
|
// Note: The finalizer special must be first because if we're freeing
|
|
// an object, a finalizer special will cause the freeing operation
|
|
// to abort, and we want to keep the other special records around
|
|
// if that happens.
|
|
)
|
|
|
|
//go:notinheap
|
|
type special struct {
|
|
next *special // linked list in span
|
|
offset uint16 // span offset of object
|
|
kind byte // kind of special
|
|
}
|
|
|
|
// Adds the special record s to the list of special records for
|
|
// the object p. All fields of s should be filled in except for
|
|
// offset & next, which this routine will fill in.
|
|
// Returns true if the special was successfully added, false otherwise.
|
|
// (The add will fail only if a record with the same p and s->kind
|
|
// already exists.)
|
|
func addspecial(p unsafe.Pointer, s *special) bool {
|
|
span := mheap_.lookupMaybe(p)
|
|
if span == nil {
|
|
throw("addspecial on invalid pointer")
|
|
}
|
|
|
|
// Ensure that the span is swept.
|
|
// Sweeping accesses the specials list w/o locks, so we have
|
|
// to synchronize with it. And it's just much safer.
|
|
mp := acquirem()
|
|
span.ensureSwept()
|
|
|
|
offset := uintptr(p) - span.base()
|
|
kind := s.kind
|
|
|
|
lock(&span.speciallock)
|
|
|
|
// Find splice point, check for existing record.
|
|
t := &span.specials
|
|
for {
|
|
x := *t
|
|
if x == nil {
|
|
break
|
|
}
|
|
if offset == uintptr(x.offset) && kind == x.kind {
|
|
unlock(&span.speciallock)
|
|
releasem(mp)
|
|
return false // already exists
|
|
}
|
|
if offset < uintptr(x.offset) || (offset == uintptr(x.offset) && kind < x.kind) {
|
|
break
|
|
}
|
|
t = &x.next
|
|
}
|
|
|
|
// Splice in record, fill in offset.
|
|
s.offset = uint16(offset)
|
|
s.next = *t
|
|
*t = s
|
|
unlock(&span.speciallock)
|
|
releasem(mp)
|
|
|
|
return true
|
|
}
|
|
|
|
// Removes the Special record of the given kind for the object p.
|
|
// Returns the record if the record existed, nil otherwise.
|
|
// The caller must FixAlloc_Free the result.
|
|
func removespecial(p unsafe.Pointer, kind uint8) *special {
|
|
span := mheap_.lookupMaybe(p)
|
|
if span == nil {
|
|
throw("removespecial on invalid pointer")
|
|
}
|
|
|
|
// Ensure that the span is swept.
|
|
// Sweeping accesses the specials list w/o locks, so we have
|
|
// to synchronize with it. And it's just much safer.
|
|
mp := acquirem()
|
|
span.ensureSwept()
|
|
|
|
offset := uintptr(p) - span.base()
|
|
|
|
lock(&span.speciallock)
|
|
t := &span.specials
|
|
for {
|
|
s := *t
|
|
if s == nil {
|
|
break
|
|
}
|
|
// This function is used for finalizers only, so we don't check for
|
|
// "interior" specials (p must be exactly equal to s->offset).
|
|
if offset == uintptr(s.offset) && kind == s.kind {
|
|
*t = s.next
|
|
unlock(&span.speciallock)
|
|
releasem(mp)
|
|
return s
|
|
}
|
|
t = &s.next
|
|
}
|
|
unlock(&span.speciallock)
|
|
releasem(mp)
|
|
return nil
|
|
}
|
|
|
|
// The described object has a finalizer set for it.
|
|
//
|
|
// specialfinalizer is allocated from non-GC'd memory, so any heap
|
|
// pointers must be specially handled.
|
|
//
|
|
//go:notinheap
|
|
type specialfinalizer struct {
|
|
special special
|
|
fn *funcval // May be a heap pointer.
|
|
ft *functype // May be a heap pointer, but always live.
|
|
ot *ptrtype // May be a heap pointer, but always live.
|
|
}
|
|
|
|
// Adds a finalizer to the object p. Returns true if it succeeded.
|
|
func addfinalizer(p unsafe.Pointer, f *funcval, ft *functype, ot *ptrtype) bool {
|
|
lock(&mheap_.speciallock)
|
|
s := (*specialfinalizer)(mheap_.specialfinalizeralloc.alloc())
|
|
unlock(&mheap_.speciallock)
|
|
s.special.kind = _KindSpecialFinalizer
|
|
s.fn = f
|
|
s.ft = ft
|
|
s.ot = ot
|
|
if addspecial(p, &s.special) {
|
|
// This is responsible for maintaining the same
|
|
// GC-related invariants as markrootSpans in any
|
|
// situation where it's possible that markrootSpans
|
|
// has already run but mark termination hasn't yet.
|
|
if gcphase != _GCoff {
|
|
_, base, _ := findObject(p)
|
|
mp := acquirem()
|
|
gcw := &mp.p.ptr().gcw
|
|
// Mark everything reachable from the object
|
|
// so it's retained for the finalizer.
|
|
scanobject(uintptr(base), gcw)
|
|
// Mark the finalizer itself, since the
|
|
// special isn't part of the GC'd heap.
|
|
scanblock(uintptr(unsafe.Pointer(&s.fn)), sys.PtrSize, &oneptrmask[0], gcw)
|
|
if gcBlackenPromptly {
|
|
gcw.dispose()
|
|
}
|
|
releasem(mp)
|
|
}
|
|
return true
|
|
}
|
|
|
|
// There was an old finalizer
|
|
lock(&mheap_.speciallock)
|
|
mheap_.specialfinalizeralloc.free(unsafe.Pointer(s))
|
|
unlock(&mheap_.speciallock)
|
|
return false
|
|
}
|
|
|
|
// Removes the finalizer (if any) from the object p.
|
|
func removefinalizer(p unsafe.Pointer) {
|
|
s := (*specialfinalizer)(unsafe.Pointer(removespecial(p, _KindSpecialFinalizer)))
|
|
if s == nil {
|
|
return // there wasn't a finalizer to remove
|
|
}
|
|
lock(&mheap_.speciallock)
|
|
mheap_.specialfinalizeralloc.free(unsafe.Pointer(s))
|
|
unlock(&mheap_.speciallock)
|
|
}
|
|
|
|
// The described object is being heap profiled.
|
|
//
|
|
//go:notinheap
|
|
type specialprofile struct {
|
|
special special
|
|
b *bucket
|
|
}
|
|
|
|
// Set the heap profile bucket associated with addr to b.
|
|
func setprofilebucket(p unsafe.Pointer, b *bucket) {
|
|
lock(&mheap_.speciallock)
|
|
s := (*specialprofile)(mheap_.specialprofilealloc.alloc())
|
|
unlock(&mheap_.speciallock)
|
|
s.special.kind = _KindSpecialProfile
|
|
s.b = b
|
|
if !addspecial(p, &s.special) {
|
|
throw("setprofilebucket: profile already set")
|
|
}
|
|
}
|
|
|
|
// Do whatever cleanup needs to be done to deallocate s. It has
|
|
// already been unlinked from the MSpan specials list.
|
|
func freespecial(s *special, p unsafe.Pointer, size uintptr) {
|
|
switch s.kind {
|
|
case _KindSpecialFinalizer:
|
|
sf := (*specialfinalizer)(unsafe.Pointer(s))
|
|
queuefinalizer(p, sf.fn, sf.ft, sf.ot)
|
|
lock(&mheap_.speciallock)
|
|
mheap_.specialfinalizeralloc.free(unsafe.Pointer(sf))
|
|
unlock(&mheap_.speciallock)
|
|
case _KindSpecialProfile:
|
|
sp := (*specialprofile)(unsafe.Pointer(s))
|
|
mProf_Free(sp.b, size)
|
|
lock(&mheap_.speciallock)
|
|
mheap_.specialprofilealloc.free(unsafe.Pointer(sp))
|
|
unlock(&mheap_.speciallock)
|
|
default:
|
|
throw("bad special kind")
|
|
panic("not reached")
|
|
}
|
|
}
|
|
|
|
// gcBits is an alloc/mark bitmap. This is always used as *gcBits.
|
|
//
|
|
//go:notinheap
|
|
type gcBits uint8
|
|
|
|
// bytep returns a pointer to the n'th byte of b.
|
|
func (b *gcBits) bytep(n uintptr) *uint8 {
|
|
return addb((*uint8)(b), n)
|
|
}
|
|
|
|
// bitp returns a pointer to the byte containing bit n and a mask for
|
|
// selecting that bit from *bytep.
|
|
func (b *gcBits) bitp(n uintptr) (bytep *uint8, mask uint8) {
|
|
return b.bytep(n / 8), 1 << (n % 8)
|
|
}
|
|
|
|
const gcBitsChunkBytes = uintptr(64 << 10)
|
|
const gcBitsHeaderBytes = unsafe.Sizeof(gcBitsHeader{})
|
|
|
|
type gcBitsHeader struct {
|
|
free uintptr // free is the index into bits of the next free byte.
|
|
next uintptr // *gcBits triggers recursive type bug. (issue 14620)
|
|
}
|
|
|
|
//go:notinheap
|
|
type gcBitsArena struct {
|
|
// gcBitsHeader // side step recursive type bug (issue 14620) by including fields by hand.
|
|
free uintptr // free is the index into bits of the next free byte; read/write atomically
|
|
next *gcBitsArena
|
|
bits [gcBitsChunkBytes - gcBitsHeaderBytes]gcBits
|
|
}
|
|
|
|
var gcBitsArenas struct {
|
|
lock mutex
|
|
free *gcBitsArena
|
|
next *gcBitsArena // Read atomically. Write atomically under lock.
|
|
current *gcBitsArena
|
|
previous *gcBitsArena
|
|
}
|
|
|
|
// tryAlloc allocates from b or returns nil if b does not have enough room.
|
|
// This is safe to call concurrently.
|
|
func (b *gcBitsArena) tryAlloc(bytes uintptr) *gcBits {
|
|
if b == nil || atomic.Loaduintptr(&b.free)+bytes > uintptr(len(b.bits)) {
|
|
return nil
|
|
}
|
|
// Try to allocate from this block.
|
|
end := atomic.Xadduintptr(&b.free, bytes)
|
|
if end > uintptr(len(b.bits)) {
|
|
return nil
|
|
}
|
|
// There was enough room.
|
|
start := end - bytes
|
|
return &b.bits[start]
|
|
}
|
|
|
|
// newMarkBits returns a pointer to 8 byte aligned bytes
|
|
// to be used for a span's mark bits.
|
|
func newMarkBits(nelems uintptr) *gcBits {
|
|
blocksNeeded := uintptr((nelems + 63) / 64)
|
|
bytesNeeded := blocksNeeded * 8
|
|
|
|
// Try directly allocating from the current head arena.
|
|
head := (*gcBitsArena)(atomic.Loadp(unsafe.Pointer(&gcBitsArenas.next)))
|
|
if p := head.tryAlloc(bytesNeeded); p != nil {
|
|
return p
|
|
}
|
|
|
|
// There's not enough room in the head arena. We may need to
|
|
// allocate a new arena.
|
|
lock(&gcBitsArenas.lock)
|
|
// Try the head arena again, since it may have changed. Now
|
|
// that we hold the lock, the list head can't change, but its
|
|
// free position still can.
|
|
if p := gcBitsArenas.next.tryAlloc(bytesNeeded); p != nil {
|
|
unlock(&gcBitsArenas.lock)
|
|
return p
|
|
}
|
|
|
|
// Allocate a new arena. This may temporarily drop the lock.
|
|
fresh := newArenaMayUnlock()
|
|
// If newArenaMayUnlock dropped the lock, another thread may
|
|
// have put a fresh arena on the "next" list. Try allocating
|
|
// from next again.
|
|
if p := gcBitsArenas.next.tryAlloc(bytesNeeded); p != nil {
|
|
// Put fresh back on the free list.
|
|
// TODO: Mark it "already zeroed"
|
|
fresh.next = gcBitsArenas.free
|
|
gcBitsArenas.free = fresh
|
|
unlock(&gcBitsArenas.lock)
|
|
return p
|
|
}
|
|
|
|
// Allocate from the fresh arena. We haven't linked it in yet, so
|
|
// this cannot race and is guaranteed to succeed.
|
|
p := fresh.tryAlloc(bytesNeeded)
|
|
if p == nil {
|
|
throw("markBits overflow")
|
|
}
|
|
|
|
// Add the fresh arena to the "next" list.
|
|
fresh.next = gcBitsArenas.next
|
|
atomic.StorepNoWB(unsafe.Pointer(&gcBitsArenas.next), unsafe.Pointer(fresh))
|
|
|
|
unlock(&gcBitsArenas.lock)
|
|
return p
|
|
}
|
|
|
|
// newAllocBits returns a pointer to 8 byte aligned bytes
|
|
// to be used for this span's alloc bits.
|
|
// newAllocBits is used to provide newly initialized spans
|
|
// allocation bits. For spans not being initialized the
|
|
// the mark bits are repurposed as allocation bits when
|
|
// the span is swept.
|
|
func newAllocBits(nelems uintptr) *gcBits {
|
|
return newMarkBits(nelems)
|
|
}
|
|
|
|
// nextMarkBitArenaEpoch establishes a new epoch for the arenas
|
|
// holding the mark bits. The arenas are named relative to the
|
|
// current GC cycle which is demarcated by the call to finishweep_m.
|
|
//
|
|
// All current spans have been swept.
|
|
// During that sweep each span allocated room for its gcmarkBits in
|
|
// gcBitsArenas.next block. gcBitsArenas.next becomes the gcBitsArenas.current
|
|
// where the GC will mark objects and after each span is swept these bits
|
|
// will be used to allocate objects.
|
|
// gcBitsArenas.current becomes gcBitsArenas.previous where the span's
|
|
// gcAllocBits live until all the spans have been swept during this GC cycle.
|
|
// The span's sweep extinguishes all the references to gcBitsArenas.previous
|
|
// by pointing gcAllocBits into the gcBitsArenas.current.
|
|
// The gcBitsArenas.previous is released to the gcBitsArenas.free list.
|
|
func nextMarkBitArenaEpoch() {
|
|
lock(&gcBitsArenas.lock)
|
|
if gcBitsArenas.previous != nil {
|
|
if gcBitsArenas.free == nil {
|
|
gcBitsArenas.free = gcBitsArenas.previous
|
|
} else {
|
|
// Find end of previous arenas.
|
|
last := gcBitsArenas.previous
|
|
for last = gcBitsArenas.previous; last.next != nil; last = last.next {
|
|
}
|
|
last.next = gcBitsArenas.free
|
|
gcBitsArenas.free = gcBitsArenas.previous
|
|
}
|
|
}
|
|
gcBitsArenas.previous = gcBitsArenas.current
|
|
gcBitsArenas.current = gcBitsArenas.next
|
|
atomic.StorepNoWB(unsafe.Pointer(&gcBitsArenas.next), nil) // newMarkBits calls newArena when needed
|
|
unlock(&gcBitsArenas.lock)
|
|
}
|
|
|
|
// newArenaMayUnlock allocates and zeroes a gcBits arena.
|
|
// The caller must hold gcBitsArena.lock. This may temporarily release it.
|
|
func newArenaMayUnlock() *gcBitsArena {
|
|
var result *gcBitsArena
|
|
if gcBitsArenas.free == nil {
|
|
unlock(&gcBitsArenas.lock)
|
|
result = (*gcBitsArena)(sysAlloc(gcBitsChunkBytes, &memstats.gc_sys))
|
|
if result == nil {
|
|
throw("runtime: cannot allocate memory")
|
|
}
|
|
lock(&gcBitsArenas.lock)
|
|
} else {
|
|
result = gcBitsArenas.free
|
|
gcBitsArenas.free = gcBitsArenas.free.next
|
|
memclrNoHeapPointers(unsafe.Pointer(result), gcBitsChunkBytes)
|
|
}
|
|
result.next = nil
|
|
// If result.bits is not 8 byte aligned adjust index so
|
|
// that &result.bits[result.free] is 8 byte aligned.
|
|
if uintptr(unsafe.Offsetof(gcBitsArena{}.bits))&7 == 0 {
|
|
result.free = 0
|
|
} else {
|
|
result.free = 8 - (uintptr(unsafe.Pointer(&result.bits[0])) & 7)
|
|
}
|
|
return result
|
|
}
|