e4876be5f5
This is in preparation of turning on escape analysis for the runtime. - In gccgo, systemstack is implemented with mcall, which is not go:noescape. Wrap the closure in noescape so the escape analysis does not think it escapes. - Mark some C functions go:noescape. They do not leak arguments. - Use noescape function to make a few local variables' addresses not escape. The escape analysis cannot figure out because they are assigned to pointer indirections. Reviewed-on: https://go-review.googlesource.com/86244 From-SVN: r256418
471 lines
14 KiB
Go
471 lines
14 KiB
Go
// Copyright 2014 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package runtime
|
|
|
|
import (
|
|
"runtime/internal/atomic"
|
|
"runtime/internal/sys"
|
|
"unsafe"
|
|
)
|
|
|
|
// Should be a built-in for unsafe.Pointer?
|
|
//go:nosplit
|
|
func add(p unsafe.Pointer, x uintptr) unsafe.Pointer {
|
|
return unsafe.Pointer(uintptr(p) + x)
|
|
}
|
|
|
|
// getg returns the pointer to the current g.
|
|
// The compiler rewrites calls to this function into instructions
|
|
// that fetch the g directly (from TLS or from the dedicated register).
|
|
func getg() *g
|
|
|
|
// mcall switches from the g to the g0 stack and invokes fn(g),
|
|
// where g is the goroutine that made the call.
|
|
// mcall saves g's current PC/SP in g->sched so that it can be restored later.
|
|
// It is up to fn to arrange for that later execution, typically by recording
|
|
// g in a data structure, causing something to call ready(g) later.
|
|
// mcall returns to the original goroutine g later, when g has been rescheduled.
|
|
// fn must not return at all; typically it ends by calling schedule, to let the m
|
|
// run other goroutines.
|
|
//
|
|
// mcall can only be called from g stacks (not g0, not gsignal).
|
|
//
|
|
// This must NOT be go:noescape: if fn is a stack-allocated closure,
|
|
// fn puts g on a run queue, and g executes before fn returns, the
|
|
// closure will be invalidated while it is still executing.
|
|
func mcall(fn func(*g))
|
|
|
|
// systemstack runs fn on a system stack.
|
|
//
|
|
// It is common to use a func literal as the argument, in order
|
|
// to share inputs and outputs with the code around the call
|
|
// to system stack:
|
|
//
|
|
// ... set up y ...
|
|
// systemstack(func() {
|
|
// x = bigcall(y)
|
|
// })
|
|
// ... use x ...
|
|
//
|
|
// For the gc toolchain this permits running a function that requires
|
|
// additional stack space in a context where the stack can not be
|
|
// split. We don't really need additional stack space in gccgo, since
|
|
// stack splitting is handled separately. But to keep things looking
|
|
// the same, we do switch to the g0 stack here if necessary.
|
|
func systemstack(fn func()) {
|
|
gp := getg()
|
|
mp := gp.m
|
|
if gp == mp.g0 || gp == mp.gsignal {
|
|
fn()
|
|
} else if gp == mp.curg {
|
|
fn1 := func(origg *g) {
|
|
fn()
|
|
gogo(origg)
|
|
}
|
|
mcall(*(*func(*g))(noescape(unsafe.Pointer(&fn1))))
|
|
} else {
|
|
badsystemstack()
|
|
}
|
|
}
|
|
|
|
func badsystemstack() {
|
|
throw("systemstack called from unexpected goroutine")
|
|
}
|
|
|
|
// memclrNoHeapPointers clears n bytes starting at ptr.
|
|
//
|
|
// Usually you should use typedmemclr. memclrNoHeapPointers should be
|
|
// used only when the caller knows that *ptr contains no heap pointers
|
|
// because either:
|
|
//
|
|
// 1. *ptr is initialized memory and its type is pointer-free.
|
|
//
|
|
// 2. *ptr is uninitialized memory (e.g., memory that's being reused
|
|
// for a new allocation) and hence contains only "junk".
|
|
//
|
|
// in memclr_*.s
|
|
//go:noescape
|
|
func memclrNoHeapPointers(ptr unsafe.Pointer, n uintptr)
|
|
|
|
//go:linkname reflect_memclrNoHeapPointers reflect.memclrNoHeapPointers
|
|
func reflect_memclrNoHeapPointers(ptr unsafe.Pointer, n uintptr) {
|
|
memclrNoHeapPointers(ptr, n)
|
|
}
|
|
|
|
// memmove copies n bytes from "from" to "to".
|
|
//go:noescape
|
|
func memmove(to, from unsafe.Pointer, n uintptr)
|
|
|
|
//go:linkname reflect_memmove reflect.memmove
|
|
func reflect_memmove(to, from unsafe.Pointer, n uintptr) {
|
|
memmove(to, from, n)
|
|
}
|
|
|
|
//go:noescape
|
|
//extern __builtin_memcmp
|
|
func memcmp(a, b unsafe.Pointer, size uintptr) int32
|
|
|
|
// exported value for testing
|
|
var hashLoad = float32(loadFactorNum) / float32(loadFactorDen)
|
|
|
|
//go:nosplit
|
|
func fastrand() uint32 {
|
|
mp := getg().m
|
|
// Implement xorshift64+: 2 32-bit xorshift sequences added together.
|
|
// Shift triplet [17,7,16] was calculated as indicated in Marsaglia's
|
|
// Xorshift paper: https://www.jstatsoft.org/article/view/v008i14/xorshift.pdf
|
|
// This generator passes the SmallCrush suite, part of TestU01 framework:
|
|
// http://simul.iro.umontreal.ca/testu01/tu01.html
|
|
s1, s0 := mp.fastrand[0], mp.fastrand[1]
|
|
s1 ^= s1 << 17
|
|
s1 = s1 ^ s0 ^ s1>>7 ^ s0>>16
|
|
mp.fastrand[0], mp.fastrand[1] = s0, s1
|
|
return s0 + s1
|
|
}
|
|
|
|
//go:nosplit
|
|
func fastrandn(n uint32) uint32 {
|
|
// This is similar to fastrand() % n, but faster.
|
|
// See http://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/
|
|
return uint32(uint64(fastrand()) * uint64(n) >> 32)
|
|
}
|
|
|
|
//go:linkname sync_fastrand sync.fastrand
|
|
func sync_fastrand() uint32 { return fastrand() }
|
|
|
|
// in asm_*.s
|
|
//go:noescape
|
|
func memequal(a, b unsafe.Pointer, size uintptr) bool
|
|
|
|
// noescape hides a pointer from escape analysis. noescape is
|
|
// the identity function but escape analysis doesn't think the
|
|
// output depends on the input. noescape is inlined and currently
|
|
// compiles down to zero instructions.
|
|
// USE CAREFULLY!
|
|
//go:nosplit
|
|
func noescape(p unsafe.Pointer) unsafe.Pointer {
|
|
x := uintptr(p)
|
|
return unsafe.Pointer(x ^ 0)
|
|
}
|
|
|
|
//go:noescape
|
|
func jmpdefer(fv *funcval, argp uintptr)
|
|
func exit1(code int32)
|
|
func setg(gg *g)
|
|
|
|
//extern __builtin_trap
|
|
func breakpoint()
|
|
|
|
func asminit() {}
|
|
|
|
//go:linkname reflectcall reflect.call
|
|
//go:noescape
|
|
func reflectcall(fntype *functype, fn *funcval, isInterface, isMethod bool, params, results *unsafe.Pointer)
|
|
|
|
func procyield(cycles uint32)
|
|
|
|
type neverCallThisFunction struct{}
|
|
|
|
// goexit is the return stub at the top of every goroutine call stack.
|
|
// Each goroutine stack is constructed as if goexit called the
|
|
// goroutine's entry point function, so that when the entry point
|
|
// function returns, it will return to goexit, which will call goexit1
|
|
// to perform the actual exit.
|
|
//
|
|
// This function must never be called directly. Call goexit1 instead.
|
|
// gentraceback assumes that goexit terminates the stack. A direct
|
|
// call on the stack will cause gentraceback to stop walking the stack
|
|
// prematurely and if there is leftover state it may panic.
|
|
func goexit(neverCallThisFunction)
|
|
|
|
// publicationBarrier performs a store/store barrier (a "publication"
|
|
// or "export" barrier). Some form of synchronization is required
|
|
// between initializing an object and making that object accessible to
|
|
// another processor. Without synchronization, the initialization
|
|
// writes and the "publication" write may be reordered, allowing the
|
|
// other processor to follow the pointer and observe an uninitialized
|
|
// object. In general, higher-level synchronization should be used,
|
|
// such as locking or an atomic pointer write. publicationBarrier is
|
|
// for when those aren't an option, such as in the implementation of
|
|
// the memory manager.
|
|
//
|
|
// There's no corresponding barrier for the read side because the read
|
|
// side naturally has a data dependency order. All architectures that
|
|
// Go supports or seems likely to ever support automatically enforce
|
|
// data dependency ordering.
|
|
func publicationBarrier()
|
|
|
|
// getcallerpc returns the program counter (PC) of its caller's caller.
|
|
// getcallersp returns the stack pointer (SP) of its caller's caller.
|
|
// argp must be a pointer to the caller's first function argument.
|
|
// The implementation may or may not use argp, depending on
|
|
// the architecture. The implementation may be a compiler
|
|
// intrinsic; there is not necessarily code implementing this
|
|
// on every platform.
|
|
//
|
|
// For example:
|
|
//
|
|
// func f(arg1, arg2, arg3 int) {
|
|
// pc := getcallerpc()
|
|
// sp := getcallersp(unsafe.Pointer(&arg1))
|
|
// }
|
|
//
|
|
// These two lines find the PC and SP immediately following
|
|
// the call to f (where f will return).
|
|
//
|
|
// The call to getcallerpc and getcallersp must be done in the
|
|
// frame being asked about. It would not be correct for f to pass &arg1
|
|
// to another function g and let g call getcallerpc/getcallersp.
|
|
// The call inside g might return information about g's caller or
|
|
// information about f's caller or complete garbage.
|
|
//
|
|
// The result of getcallersp is correct at the time of the return,
|
|
// but it may be invalidated by any subsequent call to a function
|
|
// that might relocate the stack in order to grow or shrink it.
|
|
// A general rule is that the result of getcallersp should be used
|
|
// immediately and can only be passed to nosplit functions.
|
|
|
|
//go:noescape
|
|
func getcallerpc() uintptr
|
|
|
|
//go:noescape
|
|
func getcallersp(argp unsafe.Pointer) uintptr
|
|
|
|
func asmcgocall(fn, arg unsafe.Pointer) int32 {
|
|
throw("asmcgocall")
|
|
return 0
|
|
}
|
|
|
|
// argp used in Defer structs when there is no argp.
|
|
const _NoArgs = ^uintptr(0)
|
|
|
|
//extern __builtin_prefetch
|
|
func prefetch(addr unsafe.Pointer, rw int32, locality int32)
|
|
|
|
func prefetcht0(addr uintptr) {
|
|
prefetch(unsafe.Pointer(addr), 0, 3)
|
|
}
|
|
|
|
func prefetcht1(addr uintptr) {
|
|
prefetch(unsafe.Pointer(addr), 0, 2)
|
|
}
|
|
|
|
func prefetcht2(addr uintptr) {
|
|
prefetch(unsafe.Pointer(addr), 0, 1)
|
|
}
|
|
|
|
func prefetchnta(addr uintptr) {
|
|
prefetch(unsafe.Pointer(addr), 0, 0)
|
|
}
|
|
|
|
// round n up to a multiple of a. a must be a power of 2.
|
|
func round(n, a uintptr) uintptr {
|
|
return (n + a - 1) &^ (a - 1)
|
|
}
|
|
|
|
// checkASM returns whether assembly runtime checks have passed.
|
|
func checkASM() bool {
|
|
return true
|
|
}
|
|
|
|
func eqstring(x, y string) bool {
|
|
a := stringStructOf(&x)
|
|
b := stringStructOf(&y)
|
|
if a.len != b.len {
|
|
return false
|
|
}
|
|
if a.str == b.str {
|
|
return true
|
|
}
|
|
return memequal(a.str, b.str, uintptr(a.len))
|
|
}
|
|
|
|
// For gccgo this is in the C code.
|
|
func osyield()
|
|
|
|
// For gccgo this can be called directly.
|
|
//extern syscall
|
|
func syscall(trap uintptr, a1, a2, a3, a4, a5, a6 uintptr) uintptr
|
|
|
|
// For gccgo, to communicate from the C code to the Go code.
|
|
//go:linkname setIsCgo runtime.setIsCgo
|
|
func setIsCgo() {
|
|
iscgo = true
|
|
}
|
|
|
|
// For gccgo, to communicate from the C code to the Go code.
|
|
//go:linkname setCpuidECX runtime.setCpuidECX
|
|
func setCpuidECX(v uint32) {
|
|
cpuid_ecx = v
|
|
}
|
|
|
|
// For gccgo, to communicate from the C code to the Go code.
|
|
//go:linkname setSupportAES runtime.setSupportAES
|
|
func setSupportAES(v bool) {
|
|
support_aes = v
|
|
}
|
|
|
|
// Here for gccgo until we port atomic_pointer.go and mgc.go.
|
|
//go:nosplit
|
|
func casp(ptr *unsafe.Pointer, old, new unsafe.Pointer) bool {
|
|
if !atomic.Casp1((*unsafe.Pointer)(noescape(unsafe.Pointer(ptr))), noescape(old), new) {
|
|
return false
|
|
}
|
|
return true
|
|
}
|
|
|
|
// Here for gccgo until we port lock_*.go.
|
|
func lock(l *mutex)
|
|
func unlock(l *mutex)
|
|
|
|
// Here for gccgo.
|
|
func errno() int
|
|
|
|
// Temporary for gccgo until we port proc.go.
|
|
func entersyscall(int32)
|
|
func entersyscallblock(int32)
|
|
|
|
// Here for gccgo until we port mgc.go.
|
|
func GC()
|
|
|
|
// For gccgo to call from C code, so that the C code and the Go code
|
|
// can share the memstats variable for now.
|
|
//go:linkname getMstats runtime.getMstats
|
|
func getMstats() *mstats {
|
|
return &memstats
|
|
}
|
|
|
|
// Temporary for gccgo until we port mem_GOOS.go.
|
|
func sysAlloc(n uintptr, sysStat *uint64) unsafe.Pointer
|
|
func sysFree(v unsafe.Pointer, n uintptr, sysStat *uint64)
|
|
|
|
// Temporary for gccgo until we port malloc.go
|
|
func persistentalloc(size, align uintptr, sysStat *uint64) unsafe.Pointer
|
|
|
|
// Temporary for gccgo until we port mheap.go
|
|
func setprofilebucket(p unsafe.Pointer, b *bucket)
|
|
|
|
// Temporary for gccgo until we port atomic_pointer.go.
|
|
//go:nosplit
|
|
func atomicstorep(ptr unsafe.Pointer, new unsafe.Pointer) {
|
|
atomic.StorepNoWB(noescape(ptr), new)
|
|
}
|
|
|
|
// Get signal trampoline, written in C.
|
|
func getSigtramp() uintptr
|
|
|
|
// The sa_handler field is generally hidden in a union, so use C accessors.
|
|
//go:noescape
|
|
func getSigactionHandler(*_sigaction) uintptr
|
|
|
|
//go:noescape
|
|
func setSigactionHandler(*_sigaction, uintptr)
|
|
|
|
// Retrieve fields from the siginfo_t and ucontext_t pointers passed
|
|
// to a signal handler using C, as they are often hidden in a union.
|
|
// Returns and, if available, PC where signal occurred.
|
|
func getSiginfo(*_siginfo_t, unsafe.Pointer) (sigaddr uintptr, sigpc uintptr)
|
|
|
|
// Implemented in C for gccgo.
|
|
func dumpregs(*_siginfo_t, unsafe.Pointer)
|
|
|
|
// Temporary for gccgo until we port proc.go.
|
|
//go:linkname getsched runtime.getsched
|
|
func getsched() *schedt {
|
|
return &sched
|
|
}
|
|
|
|
// Temporary for gccgo until we port proc.go.
|
|
//go:linkname getCgoHasExtraM runtime.getCgoHasExtraM
|
|
func getCgoHasExtraM() *bool {
|
|
return &cgoHasExtraM
|
|
}
|
|
|
|
// Temporary for gccgo until we port proc.go.
|
|
//go:linkname getAllP runtime.getAllP
|
|
func getAllP() **p {
|
|
return &allp[0]
|
|
}
|
|
|
|
// Temporary for gccgo until we port proc.go.
|
|
//go:linkname allocg runtime.allocg
|
|
func allocg() *g {
|
|
return new(g)
|
|
}
|
|
|
|
// Temporary for gccgo until we port the garbage collector.
|
|
//go:linkname getallglen runtime.getallglen
|
|
func getallglen() uintptr {
|
|
return allglen
|
|
}
|
|
|
|
// Temporary for gccgo until we port the garbage collector.
|
|
//go:linkname getallg runtime.getallg
|
|
func getallg(i int) *g {
|
|
return allgs[i]
|
|
}
|
|
|
|
// Temporary for gccgo until we port the garbage collector.
|
|
//go:linkname getallm runtime.getallm
|
|
func getallm() *m {
|
|
return allm
|
|
}
|
|
|
|
// Throw and rethrow an exception.
|
|
func throwException()
|
|
func rethrowException()
|
|
|
|
// Fetch the size and required alignment of the _Unwind_Exception type
|
|
// used by the stack unwinder.
|
|
func unwindExceptionSize() uintptr
|
|
|
|
// Temporary for gccgo until C code no longer needs it.
|
|
//go:nosplit
|
|
//go:linkname getPanicking runtime.getPanicking
|
|
func getPanicking() uint32 {
|
|
return panicking
|
|
}
|
|
|
|
// Called by C code to set the number of CPUs.
|
|
//go:linkname setncpu runtime.setncpu
|
|
func setncpu(n int32) {
|
|
ncpu = n
|
|
}
|
|
|
|
// Called by C code to set the page size.
|
|
//go:linkname setpagesize runtime.setpagesize
|
|
func setpagesize(s uintptr) {
|
|
if physPageSize == 0 {
|
|
physPageSize = s
|
|
}
|
|
}
|
|
|
|
// Called by C code during library initialization.
|
|
//go:linkname runtime_m0 runtime.runtime_m0
|
|
func runtime_m0() *m {
|
|
return &m0
|
|
}
|
|
|
|
// Temporary for gccgo until we port mgc.go.
|
|
//go:linkname runtime_g0 runtime.runtime_g0
|
|
func runtime_g0() *g {
|
|
return &g0
|
|
}
|
|
|
|
const uintptrMask = 1<<(8*sys.PtrSize) - 1
|
|
|
|
type bitvector struct {
|
|
n int32 // # of bits
|
|
bytedata *uint8
|
|
}
|
|
|
|
// bool2int returns 0 if x is false or 1 if x is true.
|
|
func bool2int(x bool) int {
|
|
if x {
|
|
return 1
|
|
}
|
|
return 0
|
|
}
|