9ff56c9570
From-SVN: r173931
207 lines
5.4 KiB
Go
207 lines
5.4 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Package sort provides primitives for sorting arrays and user-defined
|
|
// collections.
|
|
package sort
|
|
|
|
// A type, typically a collection, that satisfies sort.Interface can be
|
|
// sorted by the routines in this package. The methods require that the
|
|
// elements of the collection be enumerated by an integer index.
|
|
type Interface interface {
|
|
// Len is the number of elements in the collection.
|
|
Len() int
|
|
// Less returns whether the element with index i should sort
|
|
// before the element with index j.
|
|
Less(i, j int) bool
|
|
// Swap swaps the elements with indexes i and j.
|
|
Swap(i, j int)
|
|
}
|
|
|
|
func min(a, b int) int {
|
|
if a < b {
|
|
return a
|
|
}
|
|
return b
|
|
}
|
|
|
|
// Insertion sort
|
|
func insertionSort(data Interface, a, b int) {
|
|
for i := a + 1; i < b; i++ {
|
|
for j := i; j > a && data.Less(j, j-1); j-- {
|
|
data.Swap(j, j-1)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Quicksort, following Bentley and McIlroy,
|
|
// ``Engineering a Sort Function,'' SP&E November 1993.
|
|
|
|
// Move the median of the three values data[a], data[b], data[c] into data[a].
|
|
func medianOfThree(data Interface, a, b, c int) {
|
|
m0 := b
|
|
m1 := a
|
|
m2 := c
|
|
// bubble sort on 3 elements
|
|
if data.Less(m1, m0) {
|
|
data.Swap(m1, m0)
|
|
}
|
|
if data.Less(m2, m1) {
|
|
data.Swap(m2, m1)
|
|
}
|
|
if data.Less(m1, m0) {
|
|
data.Swap(m1, m0)
|
|
}
|
|
// now data[m0] <= data[m1] <= data[m2]
|
|
}
|
|
|
|
func swapRange(data Interface, a, b, n int) {
|
|
for i := 0; i < n; i++ {
|
|
data.Swap(a+i, b+i)
|
|
}
|
|
}
|
|
|
|
func doPivot(data Interface, lo, hi int) (midlo, midhi int) {
|
|
m := lo + (hi-lo)/2 // Written like this to avoid integer overflow.
|
|
if hi-lo > 40 {
|
|
// Tukey's ``Ninther,'' median of three medians of three.
|
|
s := (hi - lo) / 8
|
|
medianOfThree(data, lo, lo+s, lo+2*s)
|
|
medianOfThree(data, m, m-s, m+s)
|
|
medianOfThree(data, hi-1, hi-1-s, hi-1-2*s)
|
|
}
|
|
medianOfThree(data, lo, m, hi-1)
|
|
|
|
// Invariants are:
|
|
// data[lo] = pivot (set up by ChoosePivot)
|
|
// data[lo <= i < a] = pivot
|
|
// data[a <= i < b] < pivot
|
|
// data[b <= i < c] is unexamined
|
|
// data[c <= i < d] > pivot
|
|
// data[d <= i < hi] = pivot
|
|
//
|
|
// Once b meets c, can swap the "= pivot" sections
|
|
// into the middle of the array.
|
|
pivot := lo
|
|
a, b, c, d := lo+1, lo+1, hi, hi
|
|
for b < c {
|
|
if data.Less(b, pivot) { // data[b] < pivot
|
|
b++
|
|
continue
|
|
}
|
|
if !data.Less(pivot, b) { // data[b] = pivot
|
|
data.Swap(a, b)
|
|
a++
|
|
b++
|
|
continue
|
|
}
|
|
if data.Less(pivot, c-1) { // data[c-1] > pivot
|
|
c--
|
|
continue
|
|
}
|
|
if !data.Less(c-1, pivot) { // data[c-1] = pivot
|
|
data.Swap(c-1, d-1)
|
|
c--
|
|
d--
|
|
continue
|
|
}
|
|
// data[b] > pivot; data[c-1] < pivot
|
|
data.Swap(b, c-1)
|
|
b++
|
|
c--
|
|
}
|
|
|
|
n := min(b-a, a-lo)
|
|
swapRange(data, lo, b-n, n)
|
|
|
|
n = min(hi-d, d-c)
|
|
swapRange(data, c, hi-n, n)
|
|
|
|
return lo + b - a, hi - (d - c)
|
|
}
|
|
|
|
func quickSort(data Interface, a, b int) {
|
|
for b-a > 7 {
|
|
mlo, mhi := doPivot(data, a, b)
|
|
// Avoiding recursion on the larger subproblem guarantees
|
|
// a stack depth of at most lg(b-a).
|
|
if mlo-a < b-mhi {
|
|
quickSort(data, a, mlo)
|
|
a = mhi // i.e., quickSort(data, mhi, b)
|
|
} else {
|
|
quickSort(data, mhi, b)
|
|
b = mlo // i.e., quickSort(data, a, mlo)
|
|
}
|
|
}
|
|
if b-a > 1 {
|
|
insertionSort(data, a, b)
|
|
}
|
|
}
|
|
|
|
func Sort(data Interface) { quickSort(data, 0, data.Len()) }
|
|
|
|
|
|
func IsSorted(data Interface) bool {
|
|
n := data.Len()
|
|
for i := n - 1; i > 0; i-- {
|
|
if data.Less(i, i-1) {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
|
|
// Convenience types for common cases
|
|
|
|
// IntArray attaches the methods of Interface to []int, sorting in increasing order.
|
|
type IntArray []int
|
|
|
|
func (p IntArray) Len() int { return len(p) }
|
|
func (p IntArray) Less(i, j int) bool { return p[i] < p[j] }
|
|
func (p IntArray) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
|
|
|
|
// Sort is a convenience method.
|
|
func (p IntArray) Sort() { Sort(p) }
|
|
|
|
|
|
// Float64Array attaches the methods of Interface to []float64, sorting in increasing order.
|
|
type Float64Array []float64
|
|
|
|
func (p Float64Array) Len() int { return len(p) }
|
|
func (p Float64Array) Less(i, j int) bool { return p[i] < p[j] }
|
|
func (p Float64Array) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
|
|
|
|
// Sort is a convenience method.
|
|
func (p Float64Array) Sort() { Sort(p) }
|
|
|
|
|
|
// StringArray attaches the methods of Interface to []string, sorting in increasing order.
|
|
type StringArray []string
|
|
|
|
func (p StringArray) Len() int { return len(p) }
|
|
func (p StringArray) Less(i, j int) bool { return p[i] < p[j] }
|
|
func (p StringArray) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
|
|
|
|
// Sort is a convenience method.
|
|
func (p StringArray) Sort() { Sort(p) }
|
|
|
|
|
|
// Convenience wrappers for common cases
|
|
|
|
// SortInts sorts an array of ints in increasing order.
|
|
func SortInts(a []int) { Sort(IntArray(a)) }
|
|
// SortFloat64s sorts an array of float64s in increasing order.
|
|
func SortFloat64s(a []float64) { Sort(Float64Array(a)) }
|
|
// SortStrings sorts an array of strings in increasing order.
|
|
func SortStrings(a []string) { Sort(StringArray(a)) }
|
|
|
|
|
|
// IntsAreSorted tests whether an array of ints is sorted in increasing order.
|
|
func IntsAreSorted(a []int) bool { return IsSorted(IntArray(a)) }
|
|
// Float64sAreSorted tests whether an array of float64s is sorted in increasing order.
|
|
func Float64sAreSorted(a []float64) bool { return IsSorted(Float64Array(a)) }
|
|
// StringsAreSorted tests whether an array of strings is sorted in increasing order.
|
|
func StringsAreSorted(a []string) bool { return IsSorted(StringArray(a)) }
|