gcc/libgo/go/time/sleep.go
Ian Lance Taylor 8039ca76a5 Update to current version of Go library.
From-SVN: r171427
2011-03-24 23:46:17 +00:00

178 lines
4.4 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package time
import (
"container/heap"
"sync"
)
// The Timer type represents a single event.
// When the Timer expires, the current time will be sent on C
// unless the Timer represents an AfterFunc event.
type Timer struct {
C <-chan int64
t int64 // The absolute time that the event should fire.
f func(int64) // The function to call when the event fires.
i int // The event's index inside eventHeap.
}
type timerHeap []*Timer
// forever is the absolute time (in ns) of an event that is forever away.
const forever = 1 << 62
// maxSleepTime is the maximum length of time that a sleeper
// sleeps for before checking if it is defunct.
const maxSleepTime = 1e9
var (
// timerMutex guards the variables inside this var group.
timerMutex sync.Mutex
// timers holds a binary heap of pending events, terminated with a sentinel.
timers timerHeap
// currentSleeper is an ever-incrementing counter which represents
// the current sleeper. It allows older sleepers to detect that they are
// defunct and exit.
currentSleeper int64
)
func init() {
timers.Push(&Timer{t: forever}) // sentinel
}
// NewTimer creates a new Timer that will send
// the current time on its channel after at least ns nanoseconds.
func NewTimer(ns int64) *Timer {
c := make(chan int64, 1)
e := after(ns, func(t int64) { c <- t })
e.C = c
return e
}
// After waits at least ns nanoseconds before sending the current time
// on the returned channel.
// It is equivalent to NewTimer(ns).C.
func After(ns int64) <-chan int64 {
return NewTimer(ns).C
}
// AfterFunc waits at least ns nanoseconds before calling f
// in its own goroutine. It returns a Timer that can
// be used to cancel the call using its Stop method.
func AfterFunc(ns int64, f func()) *Timer {
return after(ns, func(_ int64) {
go f()
})
}
// Stop prevents the Timer from firing.
// It returns true if the call stops the timer, false if the timer has already
// expired or stopped.
func (e *Timer) Stop() (ok bool) {
timerMutex.Lock()
// Avoid removing the first event in the queue so that
// we don't start a new sleeper unnecessarily.
if e.i > 0 {
heap.Remove(timers, e.i)
}
ok = e.f != nil
e.f = nil
timerMutex.Unlock()
return
}
// after is the implementation of After and AfterFunc.
// When the current time is after ns, it calls f with the current time.
// It assumes that f will not block.
func after(ns int64, f func(int64)) (e *Timer) {
now := Nanoseconds()
t := Nanoseconds() + ns
if ns > 0 && t < now {
panic("time: time overflow")
}
timerMutex.Lock()
t0 := timers[0].t
e = &Timer{nil, t, f, -1}
heap.Push(timers, e)
// Start a new sleeper if the new event is before
// the first event in the queue. If the length of time
// until the new event is at least maxSleepTime,
// then we're guaranteed that the sleeper will wake up
// in time to service it, so no new sleeper is needed.
if t0 > t && (t0 == forever || ns < maxSleepTime) {
currentSleeper++
go sleeper(currentSleeper)
}
timerMutex.Unlock()
return
}
// sleeper continually looks at the earliest event in the queue, waits until it happens,
// then removes any events in the queue that are due. It stops when the queue
// is empty or when another sleeper has been started.
func sleeper(sleeperId int64) {
timerMutex.Lock()
e := timers[0]
t := Nanoseconds()
for e.t != forever {
if dt := e.t - t; dt > 0 {
if dt > maxSleepTime {
dt = maxSleepTime
}
timerMutex.Unlock()
sysSleep(dt)
timerMutex.Lock()
if currentSleeper != sleeperId {
// Another sleeper has been started, making this one redundant.
break
}
}
e = timers[0]
t = Nanoseconds()
for t >= e.t {
if e.f != nil {
e.f(t)
e.f = nil
}
heap.Pop(timers)
e = timers[0]
}
}
timerMutex.Unlock()
}
func (timerHeap) Len() int {
return len(timers)
}
func (timerHeap) Less(i, j int) bool {
return timers[i].t < timers[j].t
}
func (timerHeap) Swap(i, j int) {
timers[i], timers[j] = timers[j], timers[i]
timers[i].i = i
timers[j].i = j
}
func (timerHeap) Push(x interface{}) {
e := x.(*Timer)
e.i = len(timers)
timers = append(timers, e)
}
func (timerHeap) Pop() interface{} {
// TODO: possibly shrink array.
n := len(timers) - 1
e := timers[n]
timers[n] = nil
timers = timers[0:n]
e.i = -1
return e
}