bfd74f227d
* alloc.c (backtrace_vector_finish): Add error_callback and data parameters. Call backtrace_vector_release. Return address base. * mmap.c (backtrace_vector_finish): Add error_callback and data parameters. Return address base. * dwarf.c (read_function_info): Get new address base from backtrace_vector_finish. * internal.h (backtrace_vector_finish): Update declaration. From-SVN: r205716
3022 lines
76 KiB
C
3022 lines
76 KiB
C
/* dwarf.c -- Get file/line information from DWARF for backtraces.
|
|
Copyright (C) 2012-2013 Free Software Foundation, Inc.
|
|
Written by Ian Lance Taylor, Google.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are
|
|
met:
|
|
|
|
(1) Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
(2) Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in
|
|
the documentation and/or other materials provided with the
|
|
distribution.
|
|
|
|
(3) The name of the author may not be used to
|
|
endorse or promote products derived from this software without
|
|
specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
|
|
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
|
|
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
POSSIBILITY OF SUCH DAMAGE. */
|
|
|
|
#include "config.h"
|
|
|
|
#include <errno.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <sys/types.h>
|
|
|
|
#include "dwarf2.h"
|
|
#include "filenames.h"
|
|
|
|
#include "backtrace.h"
|
|
#include "internal.h"
|
|
|
|
#if !defined(HAVE_DECL_STRNLEN) || !HAVE_DECL_STRNLEN
|
|
|
|
/* If strnlen is not declared, provide our own version. */
|
|
|
|
static size_t
|
|
xstrnlen (const char *s, size_t maxlen)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < maxlen; ++i)
|
|
if (s[i] == '\0')
|
|
break;
|
|
return i;
|
|
}
|
|
|
|
#define strnlen xstrnlen
|
|
|
|
#endif
|
|
|
|
/* A buffer to read DWARF info. */
|
|
|
|
struct dwarf_buf
|
|
{
|
|
/* Buffer name for error messages. */
|
|
const char *name;
|
|
/* Start of the buffer. */
|
|
const unsigned char *start;
|
|
/* Next byte to read. */
|
|
const unsigned char *buf;
|
|
/* The number of bytes remaining. */
|
|
size_t left;
|
|
/* Whether the data is big-endian. */
|
|
int is_bigendian;
|
|
/* Error callback routine. */
|
|
backtrace_error_callback error_callback;
|
|
/* Data for error_callback. */
|
|
void *data;
|
|
/* Non-zero if we've reported an underflow error. */
|
|
int reported_underflow;
|
|
};
|
|
|
|
/* A single attribute in a DWARF abbreviation. */
|
|
|
|
struct attr
|
|
{
|
|
/* The attribute name. */
|
|
enum dwarf_attribute name;
|
|
/* The attribute form. */
|
|
enum dwarf_form form;
|
|
};
|
|
|
|
/* A single DWARF abbreviation. */
|
|
|
|
struct abbrev
|
|
{
|
|
/* The abbrev code--the number used to refer to the abbrev. */
|
|
uint64_t code;
|
|
/* The entry tag. */
|
|
enum dwarf_tag tag;
|
|
/* Non-zero if this abbrev has child entries. */
|
|
int has_children;
|
|
/* The number of attributes. */
|
|
size_t num_attrs;
|
|
/* The attributes. */
|
|
struct attr *attrs;
|
|
};
|
|
|
|
/* The DWARF abbreviations for a compilation unit. This structure
|
|
only exists while reading the compilation unit. Most DWARF readers
|
|
seem to a hash table to map abbrev ID's to abbrev entries.
|
|
However, we primarily care about GCC, and GCC simply issues ID's in
|
|
numerical order starting at 1. So we simply keep a sorted vector,
|
|
and try to just look up the code. */
|
|
|
|
struct abbrevs
|
|
{
|
|
/* The number of abbrevs in the vector. */
|
|
size_t num_abbrevs;
|
|
/* The abbrevs, sorted by the code field. */
|
|
struct abbrev *abbrevs;
|
|
};
|
|
|
|
/* The different kinds of attribute values. */
|
|
|
|
enum attr_val_encoding
|
|
{
|
|
/* An address. */
|
|
ATTR_VAL_ADDRESS,
|
|
/* A unsigned integer. */
|
|
ATTR_VAL_UINT,
|
|
/* A sigd integer. */
|
|
ATTR_VAL_SINT,
|
|
/* A string. */
|
|
ATTR_VAL_STRING,
|
|
/* An offset to other data in the containing unit. */
|
|
ATTR_VAL_REF_UNIT,
|
|
/* An offset to other data within the .dwarf_info section. */
|
|
ATTR_VAL_REF_INFO,
|
|
/* An offset to data in some other section. */
|
|
ATTR_VAL_REF_SECTION,
|
|
/* A type signature. */
|
|
ATTR_VAL_REF_TYPE,
|
|
/* A block of data (not represented). */
|
|
ATTR_VAL_BLOCK,
|
|
/* An expression (not represented). */
|
|
ATTR_VAL_EXPR,
|
|
};
|
|
|
|
/* An attribute value. */
|
|
|
|
struct attr_val
|
|
{
|
|
/* How the value is stored in the field u. */
|
|
enum attr_val_encoding encoding;
|
|
union
|
|
{
|
|
/* ATTR_VAL_ADDRESS, ATTR_VAL_UINT, ATTR_VAL_REF*. */
|
|
uint64_t uint;
|
|
/* ATTR_VAL_SINT. */
|
|
int64_t sint;
|
|
/* ATTR_VAL_STRING. */
|
|
const char *string;
|
|
/* ATTR_VAL_BLOCK not stored. */
|
|
} u;
|
|
};
|
|
|
|
/* The line number program header. */
|
|
|
|
struct line_header
|
|
{
|
|
/* The version of the line number information. */
|
|
int version;
|
|
/* The minimum instruction length. */
|
|
unsigned int min_insn_len;
|
|
/* The maximum number of ops per instruction. */
|
|
unsigned int max_ops_per_insn;
|
|
/* The line base for special opcodes. */
|
|
int line_base;
|
|
/* The line range for special opcodes. */
|
|
unsigned int line_range;
|
|
/* The opcode base--the first special opcode. */
|
|
unsigned int opcode_base;
|
|
/* Opcode lengths, indexed by opcode - 1. */
|
|
const unsigned char *opcode_lengths;
|
|
/* The number of directory entries. */
|
|
size_t dirs_count;
|
|
/* The directory entries. */
|
|
const char **dirs;
|
|
/* The number of filenames. */
|
|
size_t filenames_count;
|
|
/* The filenames. */
|
|
const char **filenames;
|
|
};
|
|
|
|
/* Map a single PC value to a file/line. We will keep a vector of
|
|
these sorted by PC value. Each file/line will be correct from the
|
|
PC up to the PC of the next entry if there is one. We allocate one
|
|
extra entry at the end so that we can use bsearch. */
|
|
|
|
struct line
|
|
{
|
|
/* PC. */
|
|
uintptr_t pc;
|
|
/* File name. Many entries in the array are expected to point to
|
|
the same file name. */
|
|
const char *filename;
|
|
/* Line number. */
|
|
int lineno;
|
|
};
|
|
|
|
/* A growable vector of line number information. This is used while
|
|
reading the line numbers. */
|
|
|
|
struct line_vector
|
|
{
|
|
/* Memory. This is an array of struct line. */
|
|
struct backtrace_vector vec;
|
|
/* Number of valid mappings. */
|
|
size_t count;
|
|
};
|
|
|
|
/* A function described in the debug info. */
|
|
|
|
struct function
|
|
{
|
|
/* The name of the function. */
|
|
const char *name;
|
|
/* If this is an inlined function, the filename of the call
|
|
site. */
|
|
const char *caller_filename;
|
|
/* If this is an inlined function, the line number of the call
|
|
site. */
|
|
int caller_lineno;
|
|
/* Map PC ranges to inlined functions. */
|
|
struct function_addrs *function_addrs;
|
|
size_t function_addrs_count;
|
|
};
|
|
|
|
/* An address range for a function. This maps a PC value to a
|
|
specific function. */
|
|
|
|
struct function_addrs
|
|
{
|
|
/* Range is LOW <= PC < HIGH. */
|
|
uint64_t low;
|
|
uint64_t high;
|
|
/* Function for this address range. */
|
|
struct function *function;
|
|
};
|
|
|
|
/* A growable vector of function address ranges. */
|
|
|
|
struct function_vector
|
|
{
|
|
/* Memory. This is an array of struct function_addrs. */
|
|
struct backtrace_vector vec;
|
|
/* Number of address ranges present. */
|
|
size_t count;
|
|
};
|
|
|
|
/* A DWARF compilation unit. This only holds the information we need
|
|
to map a PC to a file and line. */
|
|
|
|
struct unit
|
|
{
|
|
/* The first entry for this compilation unit. */
|
|
const unsigned char *unit_data;
|
|
/* The length of the data for this compilation unit. */
|
|
size_t unit_data_len;
|
|
/* The offset of UNIT_DATA from the start of the information for
|
|
this compilation unit. */
|
|
size_t unit_data_offset;
|
|
/* DWARF version. */
|
|
int version;
|
|
/* Whether unit is DWARF64. */
|
|
int is_dwarf64;
|
|
/* Address size. */
|
|
int addrsize;
|
|
/* Offset into line number information. */
|
|
off_t lineoff;
|
|
/* Primary source file. */
|
|
const char *filename;
|
|
/* Compilation command working directory. */
|
|
const char *comp_dir;
|
|
/* Absolute file name, only set if needed. */
|
|
const char *abs_filename;
|
|
/* The abbreviations for this unit. */
|
|
struct abbrevs abbrevs;
|
|
|
|
/* The fields above this point are read in during initialization and
|
|
may be accessed freely. The fields below this point are read in
|
|
as needed, and therefore require care, as different threads may
|
|
try to initialize them simultaneously. */
|
|
|
|
/* PC to line number mapping. This is NULL if the values have not
|
|
been read. This is (struct line *) -1 if there was an error
|
|
reading the values. */
|
|
struct line *lines;
|
|
/* Number of entries in lines. */
|
|
size_t lines_count;
|
|
/* PC ranges to function. */
|
|
struct function_addrs *function_addrs;
|
|
size_t function_addrs_count;
|
|
};
|
|
|
|
/* An address range for a compilation unit. This maps a PC value to a
|
|
specific compilation unit. Note that we invert the representation
|
|
in DWARF: instead of listing the units and attaching a list of
|
|
ranges, we list the ranges and have each one point to the unit.
|
|
This lets us do a binary search to find the unit. */
|
|
|
|
struct unit_addrs
|
|
{
|
|
/* Range is LOW <= PC < HIGH. */
|
|
uint64_t low;
|
|
uint64_t high;
|
|
/* Compilation unit for this address range. */
|
|
struct unit *u;
|
|
};
|
|
|
|
/* A growable vector of compilation unit address ranges. */
|
|
|
|
struct unit_addrs_vector
|
|
{
|
|
/* Memory. This is an array of struct unit_addrs. */
|
|
struct backtrace_vector vec;
|
|
/* Number of address ranges present. */
|
|
size_t count;
|
|
};
|
|
|
|
/* The information we need to map a PC to a file and line. */
|
|
|
|
struct dwarf_data
|
|
{
|
|
/* The data for the next file we know about. */
|
|
struct dwarf_data *next;
|
|
/* The base address for this file. */
|
|
uintptr_t base_address;
|
|
/* A sorted list of address ranges. */
|
|
struct unit_addrs *addrs;
|
|
/* Number of address ranges in list. */
|
|
size_t addrs_count;
|
|
/* The unparsed .debug_info section. */
|
|
const unsigned char *dwarf_info;
|
|
size_t dwarf_info_size;
|
|
/* The unparsed .debug_line section. */
|
|
const unsigned char *dwarf_line;
|
|
size_t dwarf_line_size;
|
|
/* The unparsed .debug_ranges section. */
|
|
const unsigned char *dwarf_ranges;
|
|
size_t dwarf_ranges_size;
|
|
/* The unparsed .debug_str section. */
|
|
const unsigned char *dwarf_str;
|
|
size_t dwarf_str_size;
|
|
/* Whether the data is big-endian or not. */
|
|
int is_bigendian;
|
|
/* A vector used for function addresses. We keep this here so that
|
|
we can grow the vector as we read more functions. */
|
|
struct function_vector fvec;
|
|
};
|
|
|
|
/* Report an error for a DWARF buffer. */
|
|
|
|
static void
|
|
dwarf_buf_error (struct dwarf_buf *buf, const char *msg)
|
|
{
|
|
char b[200];
|
|
|
|
snprintf (b, sizeof b, "%s in %s at %d",
|
|
msg, buf->name, (int) (buf->buf - buf->start));
|
|
buf->error_callback (buf->data, b, 0);
|
|
}
|
|
|
|
/* Require at least COUNT bytes in BUF. Return 1 if all is well, 0 on
|
|
error. */
|
|
|
|
static int
|
|
require (struct dwarf_buf *buf, size_t count)
|
|
{
|
|
if (buf->left >= count)
|
|
return 1;
|
|
|
|
if (!buf->reported_underflow)
|
|
{
|
|
dwarf_buf_error (buf, "DWARF underflow");
|
|
buf->reported_underflow = 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Advance COUNT bytes in BUF. Return 1 if all is well, 0 on
|
|
error. */
|
|
|
|
static int
|
|
advance (struct dwarf_buf *buf, size_t count)
|
|
{
|
|
if (!require (buf, count))
|
|
return 0;
|
|
buf->buf += count;
|
|
buf->left -= count;
|
|
return 1;
|
|
}
|
|
|
|
/* Read one byte from BUF and advance 1 byte. */
|
|
|
|
static unsigned char
|
|
read_byte (struct dwarf_buf *buf)
|
|
{
|
|
const unsigned char *p = buf->buf;
|
|
|
|
if (!advance (buf, 1))
|
|
return 0;
|
|
return p[0];
|
|
}
|
|
|
|
/* Read a signed char from BUF and advance 1 byte. */
|
|
|
|
static signed char
|
|
read_sbyte (struct dwarf_buf *buf)
|
|
{
|
|
const unsigned char *p = buf->buf;
|
|
|
|
if (!advance (buf, 1))
|
|
return 0;
|
|
return (*p ^ 0x80) - 0x80;
|
|
}
|
|
|
|
/* Read a uint16 from BUF and advance 2 bytes. */
|
|
|
|
static uint16_t
|
|
read_uint16 (struct dwarf_buf *buf)
|
|
{
|
|
const unsigned char *p = buf->buf;
|
|
|
|
if (!advance (buf, 2))
|
|
return 0;
|
|
if (buf->is_bigendian)
|
|
return ((uint16_t) p[0] << 8) | (uint16_t) p[1];
|
|
else
|
|
return ((uint16_t) p[1] << 8) | (uint16_t) p[0];
|
|
}
|
|
|
|
/* Read a uint32 from BUF and advance 4 bytes. */
|
|
|
|
static uint32_t
|
|
read_uint32 (struct dwarf_buf *buf)
|
|
{
|
|
const unsigned char *p = buf->buf;
|
|
|
|
if (!advance (buf, 4))
|
|
return 0;
|
|
if (buf->is_bigendian)
|
|
return (((uint32_t) p[0] << 24) | ((uint32_t) p[1] << 16)
|
|
| ((uint32_t) p[2] << 8) | (uint32_t) p[3]);
|
|
else
|
|
return (((uint32_t) p[3] << 24) | ((uint32_t) p[2] << 16)
|
|
| ((uint32_t) p[1] << 8) | (uint32_t) p[0]);
|
|
}
|
|
|
|
/* Read a uint64 from BUF and advance 8 bytes. */
|
|
|
|
static uint64_t
|
|
read_uint64 (struct dwarf_buf *buf)
|
|
{
|
|
const unsigned char *p = buf->buf;
|
|
|
|
if (!advance (buf, 8))
|
|
return 0;
|
|
if (buf->is_bigendian)
|
|
return (((uint64_t) p[0] << 56) | ((uint64_t) p[1] << 48)
|
|
| ((uint64_t) p[2] << 40) | ((uint64_t) p[3] << 32)
|
|
| ((uint64_t) p[4] << 24) | ((uint64_t) p[5] << 16)
|
|
| ((uint64_t) p[6] << 8) | (uint64_t) p[7]);
|
|
else
|
|
return (((uint64_t) p[7] << 56) | ((uint64_t) p[6] << 48)
|
|
| ((uint64_t) p[5] << 40) | ((uint64_t) p[4] << 32)
|
|
| ((uint64_t) p[3] << 24) | ((uint64_t) p[2] << 16)
|
|
| ((uint64_t) p[1] << 8) | (uint64_t) p[0]);
|
|
}
|
|
|
|
/* Read an offset from BUF and advance the appropriate number of
|
|
bytes. */
|
|
|
|
static uint64_t
|
|
read_offset (struct dwarf_buf *buf, int is_dwarf64)
|
|
{
|
|
if (is_dwarf64)
|
|
return read_uint64 (buf);
|
|
else
|
|
return read_uint32 (buf);
|
|
}
|
|
|
|
/* Read an address from BUF and advance the appropriate number of
|
|
bytes. */
|
|
|
|
static uint64_t
|
|
read_address (struct dwarf_buf *buf, int addrsize)
|
|
{
|
|
switch (addrsize)
|
|
{
|
|
case 1:
|
|
return read_byte (buf);
|
|
case 2:
|
|
return read_uint16 (buf);
|
|
case 4:
|
|
return read_uint32 (buf);
|
|
case 8:
|
|
return read_uint64 (buf);
|
|
default:
|
|
dwarf_buf_error (buf, "unrecognized address size");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Return whether a value is the highest possible address, given the
|
|
address size. */
|
|
|
|
static int
|
|
is_highest_address (uint64_t address, int addrsize)
|
|
{
|
|
switch (addrsize)
|
|
{
|
|
case 1:
|
|
return address == (unsigned char) -1;
|
|
case 2:
|
|
return address == (uint16_t) -1;
|
|
case 4:
|
|
return address == (uint32_t) -1;
|
|
case 8:
|
|
return address == (uint64_t) -1;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Read an unsigned LEB128 number. */
|
|
|
|
static uint64_t
|
|
read_uleb128 (struct dwarf_buf *buf)
|
|
{
|
|
uint64_t ret;
|
|
unsigned int shift;
|
|
int overflow;
|
|
unsigned char b;
|
|
|
|
ret = 0;
|
|
shift = 0;
|
|
overflow = 0;
|
|
do
|
|
{
|
|
const unsigned char *p;
|
|
|
|
p = buf->buf;
|
|
if (!advance (buf, 1))
|
|
return 0;
|
|
b = *p;
|
|
if (shift < 64)
|
|
ret |= ((uint64_t) (b & 0x7f)) << shift;
|
|
else if (!overflow)
|
|
{
|
|
dwarf_buf_error (buf, "LEB128 overflows uint64_t");
|
|
overflow = 1;
|
|
}
|
|
shift += 7;
|
|
}
|
|
while ((b & 0x80) != 0);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Read a signed LEB128 number. */
|
|
|
|
static int64_t
|
|
read_sleb128 (struct dwarf_buf *buf)
|
|
{
|
|
uint64_t val;
|
|
unsigned int shift;
|
|
int overflow;
|
|
unsigned char b;
|
|
|
|
val = 0;
|
|
shift = 0;
|
|
overflow = 0;
|
|
do
|
|
{
|
|
const unsigned char *p;
|
|
|
|
p = buf->buf;
|
|
if (!advance (buf, 1))
|
|
return 0;
|
|
b = *p;
|
|
if (shift < 64)
|
|
val |= ((uint64_t) (b & 0x7f)) << shift;
|
|
else if (!overflow)
|
|
{
|
|
dwarf_buf_error (buf, "signed LEB128 overflows uint64_t");
|
|
overflow = 1;
|
|
}
|
|
shift += 7;
|
|
}
|
|
while ((b & 0x80) != 0);
|
|
|
|
if ((b & 0x40) != 0 && shift < 64)
|
|
val |= ((uint64_t) -1) << shift;
|
|
|
|
return (int64_t) val;
|
|
}
|
|
|
|
/* Return the length of an LEB128 number. */
|
|
|
|
static size_t
|
|
leb128_len (const unsigned char *p)
|
|
{
|
|
size_t ret;
|
|
|
|
ret = 1;
|
|
while ((*p & 0x80) != 0)
|
|
{
|
|
++p;
|
|
++ret;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* Free an abbreviations structure. */
|
|
|
|
static void
|
|
free_abbrevs (struct backtrace_state *state, struct abbrevs *abbrevs,
|
|
backtrace_error_callback error_callback, void *data)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < abbrevs->num_abbrevs; ++i)
|
|
backtrace_free (state, abbrevs->abbrevs[i].attrs,
|
|
abbrevs->abbrevs[i].num_attrs * sizeof (struct attr),
|
|
error_callback, data);
|
|
backtrace_free (state, abbrevs->abbrevs,
|
|
abbrevs->num_abbrevs * sizeof (struct abbrev),
|
|
error_callback, data);
|
|
abbrevs->num_abbrevs = 0;
|
|
abbrevs->abbrevs = NULL;
|
|
}
|
|
|
|
/* Read an attribute value. Returns 1 on success, 0 on failure. If
|
|
the value can be represented as a uint64_t, sets *VAL and sets
|
|
*IS_VALID to 1. We don't try to store the value of other attribute
|
|
forms, because we don't care about them. */
|
|
|
|
static int
|
|
read_attribute (enum dwarf_form form, struct dwarf_buf *buf,
|
|
int is_dwarf64, int version, int addrsize,
|
|
const unsigned char *dwarf_str, size_t dwarf_str_size,
|
|
struct attr_val *val)
|
|
{
|
|
/* Avoid warnings about val.u.FIELD may be used uninitialized if
|
|
this function is inlined. The warnings aren't valid but can
|
|
occur because the different fields are set and used
|
|
conditionally. */
|
|
memset (val, 0, sizeof *val);
|
|
|
|
switch (form)
|
|
{
|
|
case DW_FORM_addr:
|
|
val->encoding = ATTR_VAL_ADDRESS;
|
|
val->u.uint = read_address (buf, addrsize);
|
|
return 1;
|
|
case DW_FORM_block2:
|
|
val->encoding = ATTR_VAL_BLOCK;
|
|
return advance (buf, read_uint16 (buf));
|
|
case DW_FORM_block4:
|
|
val->encoding = ATTR_VAL_BLOCK;
|
|
return advance (buf, read_uint32 (buf));
|
|
case DW_FORM_data2:
|
|
val->encoding = ATTR_VAL_UINT;
|
|
val->u.uint = read_uint16 (buf);
|
|
return 1;
|
|
case DW_FORM_data4:
|
|
val->encoding = ATTR_VAL_UINT;
|
|
val->u.uint = read_uint32 (buf);
|
|
return 1;
|
|
case DW_FORM_data8:
|
|
val->encoding = ATTR_VAL_UINT;
|
|
val->u.uint = read_uint64 (buf);
|
|
return 1;
|
|
case DW_FORM_string:
|
|
val->encoding = ATTR_VAL_STRING;
|
|
val->u.string = (const char *) buf->buf;
|
|
return advance (buf, strnlen ((const char *) buf->buf, buf->left) + 1);
|
|
case DW_FORM_block:
|
|
val->encoding = ATTR_VAL_BLOCK;
|
|
return advance (buf, read_uleb128 (buf));
|
|
case DW_FORM_block1:
|
|
val->encoding = ATTR_VAL_BLOCK;
|
|
return advance (buf, read_byte (buf));
|
|
case DW_FORM_data1:
|
|
val->encoding = ATTR_VAL_UINT;
|
|
val->u.uint = read_byte (buf);
|
|
return 1;
|
|
case DW_FORM_flag:
|
|
val->encoding = ATTR_VAL_UINT;
|
|
val->u.uint = read_byte (buf);
|
|
return 1;
|
|
case DW_FORM_sdata:
|
|
val->encoding = ATTR_VAL_SINT;
|
|
val->u.sint = read_sleb128 (buf);
|
|
return 1;
|
|
case DW_FORM_strp:
|
|
{
|
|
uint64_t offset;
|
|
|
|
offset = read_offset (buf, is_dwarf64);
|
|
if (offset >= dwarf_str_size)
|
|
{
|
|
dwarf_buf_error (buf, "DW_FORM_strp out of range");
|
|
return 0;
|
|
}
|
|
val->encoding = ATTR_VAL_STRING;
|
|
val->u.string = (const char *) dwarf_str + offset;
|
|
return 1;
|
|
}
|
|
case DW_FORM_udata:
|
|
val->encoding = ATTR_VAL_UINT;
|
|
val->u.uint = read_uleb128 (buf);
|
|
return 1;
|
|
case DW_FORM_ref_addr:
|
|
val->encoding = ATTR_VAL_REF_INFO;
|
|
if (version == 2)
|
|
val->u.uint = read_address (buf, addrsize);
|
|
else
|
|
val->u.uint = read_offset (buf, is_dwarf64);
|
|
return 1;
|
|
case DW_FORM_ref1:
|
|
val->encoding = ATTR_VAL_REF_UNIT;
|
|
val->u.uint = read_byte (buf);
|
|
return 1;
|
|
case DW_FORM_ref2:
|
|
val->encoding = ATTR_VAL_REF_UNIT;
|
|
val->u.uint = read_uint16 (buf);
|
|
return 1;
|
|
case DW_FORM_ref4:
|
|
val->encoding = ATTR_VAL_REF_UNIT;
|
|
val->u.uint = read_uint32 (buf);
|
|
return 1;
|
|
case DW_FORM_ref8:
|
|
val->encoding = ATTR_VAL_REF_UNIT;
|
|
val->u.uint = read_uint64 (buf);
|
|
return 1;
|
|
case DW_FORM_ref_udata:
|
|
val->encoding = ATTR_VAL_REF_UNIT;
|
|
val->u.uint = read_uleb128 (buf);
|
|
return 1;
|
|
case DW_FORM_indirect:
|
|
{
|
|
uint64_t form;
|
|
|
|
form = read_uleb128 (buf);
|
|
return read_attribute ((enum dwarf_form) form, buf, is_dwarf64,
|
|
version, addrsize, dwarf_str, dwarf_str_size,
|
|
val);
|
|
}
|
|
case DW_FORM_sec_offset:
|
|
val->encoding = ATTR_VAL_REF_SECTION;
|
|
val->u.uint = read_offset (buf, is_dwarf64);
|
|
return 1;
|
|
case DW_FORM_exprloc:
|
|
val->encoding = ATTR_VAL_EXPR;
|
|
return advance (buf, read_uleb128 (buf));
|
|
case DW_FORM_flag_present:
|
|
val->encoding = ATTR_VAL_UINT;
|
|
val->u.uint = 1;
|
|
return 1;
|
|
case DW_FORM_ref_sig8:
|
|
val->encoding = ATTR_VAL_REF_TYPE;
|
|
val->u.uint = read_uint64 (buf);
|
|
return 1;
|
|
case DW_FORM_GNU_addr_index:
|
|
val->encoding = ATTR_VAL_REF_SECTION;
|
|
val->u.uint = read_uleb128 (buf);
|
|
return 1;
|
|
case DW_FORM_GNU_str_index:
|
|
val->encoding = ATTR_VAL_REF_SECTION;
|
|
val->u.uint = read_uleb128 (buf);
|
|
return 1;
|
|
case DW_FORM_GNU_ref_alt:
|
|
val->encoding = ATTR_VAL_REF_SECTION;
|
|
val->u.uint = read_offset (buf, is_dwarf64);
|
|
return 1;
|
|
case DW_FORM_GNU_strp_alt:
|
|
val->encoding = ATTR_VAL_REF_SECTION;
|
|
val->u.uint = read_offset (buf, is_dwarf64);
|
|
return 1;
|
|
default:
|
|
dwarf_buf_error (buf, "unrecognized DWARF form");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Compare function_addrs for qsort. When ranges are nested, make the
|
|
smallest one sort last. */
|
|
|
|
static int
|
|
function_addrs_compare (const void *v1, const void *v2)
|
|
{
|
|
const struct function_addrs *a1 = (const struct function_addrs *) v1;
|
|
const struct function_addrs *a2 = (const struct function_addrs *) v2;
|
|
|
|
if (a1->low < a2->low)
|
|
return -1;
|
|
if (a1->low > a2->low)
|
|
return 1;
|
|
if (a1->high < a2->high)
|
|
return 1;
|
|
if (a1->high > a2->high)
|
|
return -1;
|
|
return strcmp (a1->function->name, a2->function->name);
|
|
}
|
|
|
|
/* Compare a PC against a function_addrs for bsearch. Note that if
|
|
there are multiple ranges containing PC, which one will be returned
|
|
is unpredictable. We compensate for that in dwarf_fileline. */
|
|
|
|
static int
|
|
function_addrs_search (const void *vkey, const void *ventry)
|
|
{
|
|
const uintptr_t *key = (const uintptr_t *) vkey;
|
|
const struct function_addrs *entry = (const struct function_addrs *) ventry;
|
|
uintptr_t pc;
|
|
|
|
pc = *key;
|
|
if (pc < entry->low)
|
|
return -1;
|
|
else if (pc >= entry->high)
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/* Add a new compilation unit address range to a vector. Returns 1 on
|
|
success, 0 on failure. */
|
|
|
|
static int
|
|
add_unit_addr (struct backtrace_state *state, uintptr_t base_address,
|
|
struct unit_addrs addrs,
|
|
backtrace_error_callback error_callback, void *data,
|
|
struct unit_addrs_vector *vec)
|
|
{
|
|
struct unit_addrs *p;
|
|
|
|
/* Add in the base address of the module here, so that we can look
|
|
up the PC directly. */
|
|
addrs.low += base_address;
|
|
addrs.high += base_address;
|
|
|
|
/* Try to merge with the last entry. */
|
|
if (vec->count > 0)
|
|
{
|
|
p = (struct unit_addrs *) vec->vec.base + (vec->count - 1);
|
|
if ((addrs.low == p->high || addrs.low == p->high + 1)
|
|
&& addrs.u == p->u)
|
|
{
|
|
if (addrs.high > p->high)
|
|
p->high = addrs.high;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
p = ((struct unit_addrs *)
|
|
backtrace_vector_grow (state, sizeof (struct unit_addrs),
|
|
error_callback, data, &vec->vec));
|
|
if (p == NULL)
|
|
return 0;
|
|
|
|
*p = addrs;
|
|
++vec->count;
|
|
return 1;
|
|
}
|
|
|
|
/* Free a unit address vector. */
|
|
|
|
static void
|
|
free_unit_addrs_vector (struct backtrace_state *state,
|
|
struct unit_addrs_vector *vec,
|
|
backtrace_error_callback error_callback, void *data)
|
|
{
|
|
struct unit_addrs *addrs;
|
|
size_t i;
|
|
|
|
addrs = (struct unit_addrs *) vec->vec.base;
|
|
for (i = 0; i < vec->count; ++i)
|
|
free_abbrevs (state, &addrs[i].u->abbrevs, error_callback, data);
|
|
}
|
|
|
|
/* Compare unit_addrs for qsort. When ranges are nested, make the
|
|
smallest one sort last. */
|
|
|
|
static int
|
|
unit_addrs_compare (const void *v1, const void *v2)
|
|
{
|
|
const struct unit_addrs *a1 = (const struct unit_addrs *) v1;
|
|
const struct unit_addrs *a2 = (const struct unit_addrs *) v2;
|
|
|
|
if (a1->low < a2->low)
|
|
return -1;
|
|
if (a1->low > a2->low)
|
|
return 1;
|
|
if (a1->high < a2->high)
|
|
return 1;
|
|
if (a1->high > a2->high)
|
|
return -1;
|
|
if (a1->u->lineoff < a2->u->lineoff)
|
|
return -1;
|
|
if (a1->u->lineoff > a2->u->lineoff)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/* Compare a PC against a unit_addrs for bsearch. Note that if there
|
|
are multiple ranges containing PC, which one will be returned is
|
|
unpredictable. We compensate for that in dwarf_fileline. */
|
|
|
|
static int
|
|
unit_addrs_search (const void *vkey, const void *ventry)
|
|
{
|
|
const uintptr_t *key = (const uintptr_t *) vkey;
|
|
const struct unit_addrs *entry = (const struct unit_addrs *) ventry;
|
|
uintptr_t pc;
|
|
|
|
pc = *key;
|
|
if (pc < entry->low)
|
|
return -1;
|
|
else if (pc >= entry->high)
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/* Sort the line vector by PC. We want a stable sort here. We know
|
|
that the pointers are into the same array, so it is safe to compare
|
|
them directly. */
|
|
|
|
static int
|
|
line_compare (const void *v1, const void *v2)
|
|
{
|
|
const struct line *ln1 = (const struct line *) v1;
|
|
const struct line *ln2 = (const struct line *) v2;
|
|
|
|
if (ln1->pc < ln2->pc)
|
|
return -1;
|
|
else if (ln1->pc > ln2->pc)
|
|
return 1;
|
|
else if (ln1 < ln2)
|
|
return -1;
|
|
else if (ln1 > ln2)
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/* Find a PC in a line vector. We always allocate an extra entry at
|
|
the end of the lines vector, so that this routine can safely look
|
|
at the next entry. Note that when there are multiple mappings for
|
|
the same PC value, this will return the last one. */
|
|
|
|
static int
|
|
line_search (const void *vkey, const void *ventry)
|
|
{
|
|
const uintptr_t *key = (const uintptr_t *) vkey;
|
|
const struct line *entry = (const struct line *) ventry;
|
|
uintptr_t pc;
|
|
|
|
pc = *key;
|
|
if (pc < entry->pc)
|
|
return -1;
|
|
else if (pc >= (entry + 1)->pc)
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/* Sort the abbrevs by the abbrev code. This function is passed to
|
|
both qsort and bsearch. */
|
|
|
|
static int
|
|
abbrev_compare (const void *v1, const void *v2)
|
|
{
|
|
const struct abbrev *a1 = (const struct abbrev *) v1;
|
|
const struct abbrev *a2 = (const struct abbrev *) v2;
|
|
|
|
if (a1->code < a2->code)
|
|
return -1;
|
|
else if (a1->code > a2->code)
|
|
return 1;
|
|
else
|
|
{
|
|
/* This really shouldn't happen. It means there are two
|
|
different abbrevs with the same code, and that means we don't
|
|
know which one lookup_abbrev should return. */
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Read the abbreviation table for a compilation unit. Returns 1 on
|
|
success, 0 on failure. */
|
|
|
|
static int
|
|
read_abbrevs (struct backtrace_state *state, uint64_t abbrev_offset,
|
|
const unsigned char *dwarf_abbrev, size_t dwarf_abbrev_size,
|
|
int is_bigendian, backtrace_error_callback error_callback,
|
|
void *data, struct abbrevs *abbrevs)
|
|
{
|
|
struct dwarf_buf abbrev_buf;
|
|
struct dwarf_buf count_buf;
|
|
size_t num_abbrevs;
|
|
|
|
abbrevs->num_abbrevs = 0;
|
|
abbrevs->abbrevs = NULL;
|
|
|
|
if (abbrev_offset >= dwarf_abbrev_size)
|
|
{
|
|
error_callback (data, "abbrev offset out of range", 0);
|
|
return 0;
|
|
}
|
|
|
|
abbrev_buf.name = ".debug_abbrev";
|
|
abbrev_buf.start = dwarf_abbrev;
|
|
abbrev_buf.buf = dwarf_abbrev + abbrev_offset;
|
|
abbrev_buf.left = dwarf_abbrev_size - abbrev_offset;
|
|
abbrev_buf.is_bigendian = is_bigendian;
|
|
abbrev_buf.error_callback = error_callback;
|
|
abbrev_buf.data = data;
|
|
abbrev_buf.reported_underflow = 0;
|
|
|
|
/* Count the number of abbrevs in this list. */
|
|
|
|
count_buf = abbrev_buf;
|
|
num_abbrevs = 0;
|
|
while (read_uleb128 (&count_buf) != 0)
|
|
{
|
|
if (count_buf.reported_underflow)
|
|
return 0;
|
|
++num_abbrevs;
|
|
// Skip tag.
|
|
read_uleb128 (&count_buf);
|
|
// Skip has_children.
|
|
read_byte (&count_buf);
|
|
// Skip attributes.
|
|
while (read_uleb128 (&count_buf) != 0)
|
|
read_uleb128 (&count_buf);
|
|
// Skip form of last attribute.
|
|
read_uleb128 (&count_buf);
|
|
}
|
|
|
|
if (count_buf.reported_underflow)
|
|
return 0;
|
|
|
|
if (num_abbrevs == 0)
|
|
return 1;
|
|
|
|
abbrevs->num_abbrevs = num_abbrevs;
|
|
abbrevs->abbrevs = ((struct abbrev *)
|
|
backtrace_alloc (state,
|
|
num_abbrevs * sizeof (struct abbrev),
|
|
error_callback, data));
|
|
if (abbrevs->abbrevs == NULL)
|
|
return 0;
|
|
memset (abbrevs->abbrevs, 0, num_abbrevs * sizeof (struct abbrev));
|
|
|
|
num_abbrevs = 0;
|
|
while (1)
|
|
{
|
|
uint64_t code;
|
|
struct abbrev a;
|
|
size_t num_attrs;
|
|
struct attr *attrs;
|
|
|
|
if (abbrev_buf.reported_underflow)
|
|
goto fail;
|
|
|
|
code = read_uleb128 (&abbrev_buf);
|
|
if (code == 0)
|
|
break;
|
|
|
|
a.code = code;
|
|
a.tag = (enum dwarf_tag) read_uleb128 (&abbrev_buf);
|
|
a.has_children = read_byte (&abbrev_buf);
|
|
|
|
count_buf = abbrev_buf;
|
|
num_attrs = 0;
|
|
while (read_uleb128 (&count_buf) != 0)
|
|
{
|
|
++num_attrs;
|
|
read_uleb128 (&count_buf);
|
|
}
|
|
|
|
if (num_attrs == 0)
|
|
{
|
|
attrs = NULL;
|
|
read_uleb128 (&abbrev_buf);
|
|
read_uleb128 (&abbrev_buf);
|
|
}
|
|
else
|
|
{
|
|
attrs = ((struct attr *)
|
|
backtrace_alloc (state, num_attrs * sizeof *attrs,
|
|
error_callback, data));
|
|
if (attrs == NULL)
|
|
goto fail;
|
|
num_attrs = 0;
|
|
while (1)
|
|
{
|
|
uint64_t name;
|
|
uint64_t form;
|
|
|
|
name = read_uleb128 (&abbrev_buf);
|
|
form = read_uleb128 (&abbrev_buf);
|
|
if (name == 0)
|
|
break;
|
|
attrs[num_attrs].name = (enum dwarf_attribute) name;
|
|
attrs[num_attrs].form = (enum dwarf_form) form;
|
|
++num_attrs;
|
|
}
|
|
}
|
|
|
|
a.num_attrs = num_attrs;
|
|
a.attrs = attrs;
|
|
|
|
abbrevs->abbrevs[num_abbrevs] = a;
|
|
++num_abbrevs;
|
|
}
|
|
|
|
qsort (abbrevs->abbrevs, abbrevs->num_abbrevs, sizeof (struct abbrev),
|
|
abbrev_compare);
|
|
|
|
return 1;
|
|
|
|
fail:
|
|
free_abbrevs (state, abbrevs, error_callback, data);
|
|
return 0;
|
|
}
|
|
|
|
/* Return the abbrev information for an abbrev code. */
|
|
|
|
static const struct abbrev *
|
|
lookup_abbrev (struct abbrevs *abbrevs, uint64_t code,
|
|
backtrace_error_callback error_callback, void *data)
|
|
{
|
|
struct abbrev key;
|
|
void *p;
|
|
|
|
/* With GCC, where abbrevs are simply numbered in order, we should
|
|
be able to just look up the entry. */
|
|
if (code - 1 < abbrevs->num_abbrevs
|
|
&& abbrevs->abbrevs[code - 1].code == code)
|
|
return &abbrevs->abbrevs[code - 1];
|
|
|
|
/* Otherwise we have to search. */
|
|
memset (&key, 0, sizeof key);
|
|
key.code = code;
|
|
p = bsearch (&key, abbrevs->abbrevs, abbrevs->num_abbrevs,
|
|
sizeof (struct abbrev), abbrev_compare);
|
|
if (p == NULL)
|
|
{
|
|
error_callback (data, "invalid abbreviation code", 0);
|
|
return NULL;
|
|
}
|
|
return (const struct abbrev *) p;
|
|
}
|
|
|
|
/* Add non-contiguous address ranges for a compilation unit. Returns
|
|
1 on success, 0 on failure. */
|
|
|
|
static int
|
|
add_unit_ranges (struct backtrace_state *state, uintptr_t base_address,
|
|
struct unit *u, uint64_t ranges, uint64_t base,
|
|
int is_bigendian, const unsigned char *dwarf_ranges,
|
|
size_t dwarf_ranges_size,
|
|
backtrace_error_callback error_callback, void *data,
|
|
struct unit_addrs_vector *addrs)
|
|
{
|
|
struct dwarf_buf ranges_buf;
|
|
|
|
if (ranges >= dwarf_ranges_size)
|
|
{
|
|
error_callback (data, "ranges offset out of range", 0);
|
|
return 0;
|
|
}
|
|
|
|
ranges_buf.name = ".debug_ranges";
|
|
ranges_buf.start = dwarf_ranges;
|
|
ranges_buf.buf = dwarf_ranges + ranges;
|
|
ranges_buf.left = dwarf_ranges_size - ranges;
|
|
ranges_buf.is_bigendian = is_bigendian;
|
|
ranges_buf.error_callback = error_callback;
|
|
ranges_buf.data = data;
|
|
ranges_buf.reported_underflow = 0;
|
|
|
|
while (1)
|
|
{
|
|
uint64_t low;
|
|
uint64_t high;
|
|
|
|
if (ranges_buf.reported_underflow)
|
|
return 0;
|
|
|
|
low = read_address (&ranges_buf, u->addrsize);
|
|
high = read_address (&ranges_buf, u->addrsize);
|
|
|
|
if (low == 0 && high == 0)
|
|
break;
|
|
|
|
if (is_highest_address (low, u->addrsize))
|
|
base = high;
|
|
else
|
|
{
|
|
struct unit_addrs a;
|
|
|
|
a.low = low + base;
|
|
a.high = high + base;
|
|
a.u = u;
|
|
if (!add_unit_addr (state, base_address, a, error_callback, data,
|
|
addrs))
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (ranges_buf.reported_underflow)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Find the address range covered by a compilation unit, reading from
|
|
UNIT_BUF and adding values to U. Returns 1 if all data could be
|
|
read, 0 if there is some error. */
|
|
|
|
static int
|
|
find_address_ranges (struct backtrace_state *state, uintptr_t base_address,
|
|
struct dwarf_buf *unit_buf,
|
|
const unsigned char *dwarf_str, size_t dwarf_str_size,
|
|
const unsigned char *dwarf_ranges,
|
|
size_t dwarf_ranges_size,
|
|
int is_bigendian, backtrace_error_callback error_callback,
|
|
void *data, struct unit *u,
|
|
struct unit_addrs_vector *addrs)
|
|
{
|
|
while (unit_buf->left > 0)
|
|
{
|
|
uint64_t code;
|
|
const struct abbrev *abbrev;
|
|
uint64_t lowpc;
|
|
int have_lowpc;
|
|
uint64_t highpc;
|
|
int have_highpc;
|
|
int highpc_is_relative;
|
|
uint64_t ranges;
|
|
int have_ranges;
|
|
size_t i;
|
|
|
|
code = read_uleb128 (unit_buf);
|
|
if (code == 0)
|
|
return 1;
|
|
|
|
abbrev = lookup_abbrev (&u->abbrevs, code, error_callback, data);
|
|
if (abbrev == NULL)
|
|
return 0;
|
|
|
|
lowpc = 0;
|
|
have_lowpc = 0;
|
|
highpc = 0;
|
|
have_highpc = 0;
|
|
highpc_is_relative = 0;
|
|
ranges = 0;
|
|
have_ranges = 0;
|
|
for (i = 0; i < abbrev->num_attrs; ++i)
|
|
{
|
|
struct attr_val val;
|
|
|
|
if (!read_attribute (abbrev->attrs[i].form, unit_buf,
|
|
u->is_dwarf64, u->version, u->addrsize,
|
|
dwarf_str, dwarf_str_size, &val))
|
|
return 0;
|
|
|
|
switch (abbrev->attrs[i].name)
|
|
{
|
|
case DW_AT_low_pc:
|
|
if (val.encoding == ATTR_VAL_ADDRESS)
|
|
{
|
|
lowpc = val.u.uint;
|
|
have_lowpc = 1;
|
|
}
|
|
break;
|
|
|
|
case DW_AT_high_pc:
|
|
if (val.encoding == ATTR_VAL_ADDRESS)
|
|
{
|
|
highpc = val.u.uint;
|
|
have_highpc = 1;
|
|
}
|
|
else if (val.encoding == ATTR_VAL_UINT)
|
|
{
|
|
highpc = val.u.uint;
|
|
have_highpc = 1;
|
|
highpc_is_relative = 1;
|
|
}
|
|
break;
|
|
|
|
case DW_AT_ranges:
|
|
if (val.encoding == ATTR_VAL_UINT
|
|
|| val.encoding == ATTR_VAL_REF_SECTION)
|
|
{
|
|
ranges = val.u.uint;
|
|
have_ranges = 1;
|
|
}
|
|
break;
|
|
|
|
case DW_AT_stmt_list:
|
|
if (abbrev->tag == DW_TAG_compile_unit
|
|
&& (val.encoding == ATTR_VAL_UINT
|
|
|| val.encoding == ATTR_VAL_REF_SECTION))
|
|
u->lineoff = val.u.uint;
|
|
break;
|
|
|
|
case DW_AT_name:
|
|
if (abbrev->tag == DW_TAG_compile_unit
|
|
&& val.encoding == ATTR_VAL_STRING)
|
|
u->filename = val.u.string;
|
|
break;
|
|
|
|
case DW_AT_comp_dir:
|
|
if (abbrev->tag == DW_TAG_compile_unit
|
|
&& val.encoding == ATTR_VAL_STRING)
|
|
u->comp_dir = val.u.string;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (abbrev->tag == DW_TAG_compile_unit
|
|
|| abbrev->tag == DW_TAG_subprogram)
|
|
{
|
|
if (have_ranges)
|
|
{
|
|
if (!add_unit_ranges (state, base_address, u, ranges, lowpc,
|
|
is_bigendian, dwarf_ranges,
|
|
dwarf_ranges_size, error_callback,
|
|
data, addrs))
|
|
return 0;
|
|
}
|
|
else if (have_lowpc && have_highpc)
|
|
{
|
|
struct unit_addrs a;
|
|
|
|
if (highpc_is_relative)
|
|
highpc += lowpc;
|
|
a.low = lowpc;
|
|
a.high = highpc;
|
|
a.u = u;
|
|
|
|
if (!add_unit_addr (state, base_address, a, error_callback, data,
|
|
addrs))
|
|
return 0;
|
|
}
|
|
|
|
/* If we found the PC range in the DW_TAG_compile_unit, we
|
|
can stop now. */
|
|
if (abbrev->tag == DW_TAG_compile_unit
|
|
&& (have_ranges || (have_lowpc && have_highpc)))
|
|
return 1;
|
|
}
|
|
|
|
if (abbrev->has_children)
|
|
{
|
|
if (!find_address_ranges (state, base_address, unit_buf,
|
|
dwarf_str, dwarf_str_size,
|
|
dwarf_ranges, dwarf_ranges_size,
|
|
is_bigendian, error_callback, data,
|
|
u, addrs))
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Build a mapping from address ranges to the compilation units where
|
|
the line number information for that range can be found. Returns 1
|
|
on success, 0 on failure. */
|
|
|
|
static int
|
|
build_address_map (struct backtrace_state *state, uintptr_t base_address,
|
|
const unsigned char *dwarf_info, size_t dwarf_info_size,
|
|
const unsigned char *dwarf_abbrev, size_t dwarf_abbrev_size,
|
|
const unsigned char *dwarf_ranges, size_t dwarf_ranges_size,
|
|
const unsigned char *dwarf_str, size_t dwarf_str_size,
|
|
int is_bigendian, backtrace_error_callback error_callback,
|
|
void *data, struct unit_addrs_vector *addrs)
|
|
{
|
|
struct dwarf_buf info;
|
|
struct abbrevs abbrevs;
|
|
|
|
memset (&addrs->vec, 0, sizeof addrs->vec);
|
|
addrs->count = 0;
|
|
|
|
/* Read through the .debug_info section. FIXME: Should we use the
|
|
.debug_aranges section? gdb and addr2line don't use it, but I'm
|
|
not sure why. */
|
|
|
|
info.name = ".debug_info";
|
|
info.start = dwarf_info;
|
|
info.buf = dwarf_info;
|
|
info.left = dwarf_info_size;
|
|
info.is_bigendian = is_bigendian;
|
|
info.error_callback = error_callback;
|
|
info.data = data;
|
|
info.reported_underflow = 0;
|
|
|
|
memset (&abbrevs, 0, sizeof abbrevs);
|
|
while (info.left > 0)
|
|
{
|
|
const unsigned char *unit_data_start;
|
|
uint64_t len;
|
|
int is_dwarf64;
|
|
struct dwarf_buf unit_buf;
|
|
int version;
|
|
uint64_t abbrev_offset;
|
|
int addrsize;
|
|
struct unit *u;
|
|
|
|
if (info.reported_underflow)
|
|
goto fail;
|
|
|
|
unit_data_start = info.buf;
|
|
|
|
is_dwarf64 = 0;
|
|
len = read_uint32 (&info);
|
|
if (len == 0xffffffff)
|
|
{
|
|
len = read_uint64 (&info);
|
|
is_dwarf64 = 1;
|
|
}
|
|
|
|
unit_buf = info;
|
|
unit_buf.left = len;
|
|
|
|
if (!advance (&info, len))
|
|
goto fail;
|
|
|
|
version = read_uint16 (&unit_buf);
|
|
if (version < 2 || version > 4)
|
|
{
|
|
dwarf_buf_error (&unit_buf, "unrecognized DWARF version");
|
|
goto fail;
|
|
}
|
|
|
|
abbrev_offset = read_offset (&unit_buf, is_dwarf64);
|
|
if (!read_abbrevs (state, abbrev_offset, dwarf_abbrev, dwarf_abbrev_size,
|
|
is_bigendian, error_callback, data, &abbrevs))
|
|
goto fail;
|
|
|
|
addrsize = read_byte (&unit_buf);
|
|
|
|
u = ((struct unit *)
|
|
backtrace_alloc (state, sizeof *u, error_callback, data));
|
|
if (u == NULL)
|
|
goto fail;
|
|
u->unit_data = unit_buf.buf;
|
|
u->unit_data_len = unit_buf.left;
|
|
u->unit_data_offset = unit_buf.buf - unit_data_start;
|
|
u->version = version;
|
|
u->is_dwarf64 = is_dwarf64;
|
|
u->addrsize = addrsize;
|
|
u->filename = NULL;
|
|
u->comp_dir = NULL;
|
|
u->abs_filename = NULL;
|
|
u->lineoff = 0;
|
|
u->abbrevs = abbrevs;
|
|
memset (&abbrevs, 0, sizeof abbrevs);
|
|
|
|
/* The actual line number mappings will be read as needed. */
|
|
u->lines = NULL;
|
|
u->lines_count = 0;
|
|
u->function_addrs = NULL;
|
|
u->function_addrs_count = 0;
|
|
|
|
if (!find_address_ranges (state, base_address, &unit_buf,
|
|
dwarf_str, dwarf_str_size,
|
|
dwarf_ranges, dwarf_ranges_size,
|
|
is_bigendian, error_callback, data,
|
|
u, addrs))
|
|
{
|
|
free_abbrevs (state, &u->abbrevs, error_callback, data);
|
|
backtrace_free (state, u, sizeof *u, error_callback, data);
|
|
goto fail;
|
|
}
|
|
|
|
if (unit_buf.reported_underflow)
|
|
{
|
|
free_abbrevs (state, &u->abbrevs, error_callback, data);
|
|
backtrace_free (state, u, sizeof *u, error_callback, data);
|
|
goto fail;
|
|
}
|
|
}
|
|
if (info.reported_underflow)
|
|
goto fail;
|
|
|
|
return 1;
|
|
|
|
fail:
|
|
free_abbrevs (state, &abbrevs, error_callback, data);
|
|
free_unit_addrs_vector (state, addrs, error_callback, data);
|
|
return 0;
|
|
}
|
|
|
|
/* Add a new mapping to the vector of line mappings that we are
|
|
building. Returns 1 on success, 0 on failure. */
|
|
|
|
static int
|
|
add_line (struct backtrace_state *state, struct dwarf_data *ddata,
|
|
uintptr_t pc, const char *filename, int lineno,
|
|
backtrace_error_callback error_callback, void *data,
|
|
struct line_vector *vec)
|
|
{
|
|
struct line *ln;
|
|
|
|
/* If we are adding the same mapping, ignore it. This can happen
|
|
when using discriminators. */
|
|
if (vec->count > 0)
|
|
{
|
|
ln = (struct line *) vec->vec.base + (vec->count - 1);
|
|
if (pc == ln->pc && filename == ln->filename && lineno == ln->lineno)
|
|
return 1;
|
|
}
|
|
|
|
ln = ((struct line *)
|
|
backtrace_vector_grow (state, sizeof (struct line), error_callback,
|
|
data, &vec->vec));
|
|
if (ln == NULL)
|
|
return 0;
|
|
|
|
/* Add in the base address here, so that we can look up the PC
|
|
directly. */
|
|
ln->pc = pc + ddata->base_address;
|
|
|
|
ln->filename = filename;
|
|
ln->lineno = lineno;
|
|
|
|
++vec->count;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Free the line header information. If FREE_FILENAMES is true we
|
|
free the file names themselves, otherwise we leave them, as there
|
|
may be line structures pointing to them. */
|
|
|
|
static void
|
|
free_line_header (struct backtrace_state *state, struct line_header *hdr,
|
|
backtrace_error_callback error_callback, void *data)
|
|
{
|
|
backtrace_free (state, hdr->dirs, hdr->dirs_count * sizeof (const char *),
|
|
error_callback, data);
|
|
backtrace_free (state, hdr->filenames,
|
|
hdr->filenames_count * sizeof (char *),
|
|
error_callback, data);
|
|
}
|
|
|
|
/* Read the line header. Return 1 on success, 0 on failure. */
|
|
|
|
static int
|
|
read_line_header (struct backtrace_state *state, struct unit *u,
|
|
int is_dwarf64, struct dwarf_buf *line_buf,
|
|
struct line_header *hdr)
|
|
{
|
|
uint64_t hdrlen;
|
|
struct dwarf_buf hdr_buf;
|
|
const unsigned char *p;
|
|
const unsigned char *pend;
|
|
size_t i;
|
|
|
|
hdr->version = read_uint16 (line_buf);
|
|
if (hdr->version < 2 || hdr->version > 4)
|
|
{
|
|
dwarf_buf_error (line_buf, "unsupported line number version");
|
|
return 0;
|
|
}
|
|
|
|
hdrlen = read_offset (line_buf, is_dwarf64);
|
|
|
|
hdr_buf = *line_buf;
|
|
hdr_buf.left = hdrlen;
|
|
|
|
if (!advance (line_buf, hdrlen))
|
|
return 0;
|
|
|
|
hdr->min_insn_len = read_byte (&hdr_buf);
|
|
if (hdr->version < 4)
|
|
hdr->max_ops_per_insn = 1;
|
|
else
|
|
hdr->max_ops_per_insn = read_byte (&hdr_buf);
|
|
|
|
/* We don't care about default_is_stmt. */
|
|
read_byte (&hdr_buf);
|
|
|
|
hdr->line_base = read_sbyte (&hdr_buf);
|
|
hdr->line_range = read_byte (&hdr_buf);
|
|
|
|
hdr->opcode_base = read_byte (&hdr_buf);
|
|
hdr->opcode_lengths = hdr_buf.buf;
|
|
if (!advance (&hdr_buf, hdr->opcode_base - 1))
|
|
return 0;
|
|
|
|
/* Count the number of directory entries. */
|
|
hdr->dirs_count = 0;
|
|
p = hdr_buf.buf;
|
|
pend = p + hdr_buf.left;
|
|
while (p < pend && *p != '\0')
|
|
{
|
|
p += strnlen((const char *) p, pend - p) + 1;
|
|
++hdr->dirs_count;
|
|
}
|
|
|
|
hdr->dirs = ((const char **)
|
|
backtrace_alloc (state,
|
|
hdr->dirs_count * sizeof (const char *),
|
|
line_buf->error_callback, line_buf->data));
|
|
if (hdr->dirs == NULL)
|
|
return 0;
|
|
|
|
i = 0;
|
|
while (*hdr_buf.buf != '\0')
|
|
{
|
|
if (hdr_buf.reported_underflow)
|
|
return 0;
|
|
|
|
hdr->dirs[i] = (const char *) hdr_buf.buf;
|
|
++i;
|
|
if (!advance (&hdr_buf,
|
|
strnlen ((const char *) hdr_buf.buf, hdr_buf.left) + 1))
|
|
return 0;
|
|
}
|
|
if (!advance (&hdr_buf, 1))
|
|
return 0;
|
|
|
|
/* Count the number of file entries. */
|
|
hdr->filenames_count = 0;
|
|
p = hdr_buf.buf;
|
|
pend = p + hdr_buf.left;
|
|
while (p < pend && *p != '\0')
|
|
{
|
|
p += strnlen ((const char *) p, pend - p) + 1;
|
|
p += leb128_len (p);
|
|
p += leb128_len (p);
|
|
p += leb128_len (p);
|
|
++hdr->filenames_count;
|
|
}
|
|
|
|
hdr->filenames = ((const char **)
|
|
backtrace_alloc (state,
|
|
hdr->filenames_count * sizeof (char *),
|
|
line_buf->error_callback,
|
|
line_buf->data));
|
|
if (hdr->filenames == NULL)
|
|
return 0;
|
|
i = 0;
|
|
while (*hdr_buf.buf != '\0')
|
|
{
|
|
const char *filename;
|
|
uint64_t dir_index;
|
|
|
|
if (hdr_buf.reported_underflow)
|
|
return 0;
|
|
|
|
filename = (const char *) hdr_buf.buf;
|
|
if (!advance (&hdr_buf,
|
|
strnlen ((const char *) hdr_buf.buf, hdr_buf.left) + 1))
|
|
return 0;
|
|
dir_index = read_uleb128 (&hdr_buf);
|
|
if (IS_ABSOLUTE_PATH (filename)
|
|
|| (dir_index == 0 && u->comp_dir == NULL))
|
|
hdr->filenames[i] = filename;
|
|
else
|
|
{
|
|
const char *dir;
|
|
size_t dir_len;
|
|
size_t filename_len;
|
|
char *s;
|
|
|
|
if (dir_index == 0)
|
|
dir = u->comp_dir;
|
|
else if (dir_index - 1 < hdr->dirs_count)
|
|
dir = hdr->dirs[dir_index - 1];
|
|
else
|
|
{
|
|
dwarf_buf_error (line_buf,
|
|
("invalid directory index in "
|
|
"line number program header"));
|
|
return 0;
|
|
}
|
|
dir_len = strlen (dir);
|
|
filename_len = strlen (filename);
|
|
s = ((char *)
|
|
backtrace_alloc (state, dir_len + filename_len + 2,
|
|
line_buf->error_callback, line_buf->data));
|
|
if (s == NULL)
|
|
return 0;
|
|
memcpy (s, dir, dir_len);
|
|
/* FIXME: If we are on a DOS-based file system, and the
|
|
directory or the file name use backslashes, then we
|
|
should use a backslash here. */
|
|
s[dir_len] = '/';
|
|
memcpy (s + dir_len + 1, filename, filename_len + 1);
|
|
hdr->filenames[i] = s;
|
|
}
|
|
|
|
/* Ignore the modification time and size. */
|
|
read_uleb128 (&hdr_buf);
|
|
read_uleb128 (&hdr_buf);
|
|
|
|
++i;
|
|
}
|
|
|
|
if (hdr_buf.reported_underflow)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Read the line program, adding line mappings to VEC. Return 1 on
|
|
success, 0 on failure. */
|
|
|
|
static int
|
|
read_line_program (struct backtrace_state *state, struct dwarf_data *ddata,
|
|
struct unit *u, const struct line_header *hdr,
|
|
struct dwarf_buf *line_buf, struct line_vector *vec)
|
|
{
|
|
uint64_t address;
|
|
unsigned int op_index;
|
|
const char *reset_filename;
|
|
const char *filename;
|
|
int lineno;
|
|
|
|
address = 0;
|
|
op_index = 0;
|
|
if (hdr->filenames_count > 0)
|
|
reset_filename = hdr->filenames[0];
|
|
else
|
|
reset_filename = "";
|
|
filename = reset_filename;
|
|
lineno = 1;
|
|
while (line_buf->left > 0)
|
|
{
|
|
unsigned int op;
|
|
|
|
op = read_byte (line_buf);
|
|
if (op >= hdr->opcode_base)
|
|
{
|
|
unsigned int advance;
|
|
|
|
/* Special opcode. */
|
|
op -= hdr->opcode_base;
|
|
advance = op / hdr->line_range;
|
|
address += (hdr->min_insn_len * (op_index + advance)
|
|
/ hdr->max_ops_per_insn);
|
|
op_index = (op_index + advance) % hdr->max_ops_per_insn;
|
|
lineno += hdr->line_base + (int) (op % hdr->line_range);
|
|
add_line (state, ddata, address, filename, lineno,
|
|
line_buf->error_callback, line_buf->data, vec);
|
|
}
|
|
else if (op == DW_LNS_extended_op)
|
|
{
|
|
uint64_t len;
|
|
|
|
len = read_uleb128 (line_buf);
|
|
op = read_byte (line_buf);
|
|
switch (op)
|
|
{
|
|
case DW_LNE_end_sequence:
|
|
/* FIXME: Should we mark the high PC here? It seems
|
|
that we already have that information from the
|
|
compilation unit. */
|
|
address = 0;
|
|
op_index = 0;
|
|
filename = reset_filename;
|
|
lineno = 1;
|
|
break;
|
|
case DW_LNE_set_address:
|
|
address = read_address (line_buf, u->addrsize);
|
|
break;
|
|
case DW_LNE_define_file:
|
|
{
|
|
const char *f;
|
|
unsigned int dir_index;
|
|
|
|
f = (const char *) line_buf->buf;
|
|
if (!advance (line_buf, strnlen (f, line_buf->left) + 1))
|
|
return 0;
|
|
dir_index = read_uleb128 (line_buf);
|
|
/* Ignore that time and length. */
|
|
read_uleb128 (line_buf);
|
|
read_uleb128 (line_buf);
|
|
if (IS_ABSOLUTE_PATH (f))
|
|
filename = f;
|
|
else
|
|
{
|
|
const char *dir;
|
|
size_t dir_len;
|
|
size_t f_len;
|
|
char *p;
|
|
|
|
if (dir_index == 0)
|
|
dir = u->comp_dir;
|
|
else if (dir_index - 1 < hdr->dirs_count)
|
|
dir = hdr->dirs[dir_index - 1];
|
|
else
|
|
{
|
|
dwarf_buf_error (line_buf,
|
|
("invalid directory index "
|
|
"in line number program"));
|
|
return 0;
|
|
}
|
|
dir_len = strlen (dir);
|
|
f_len = strlen (f);
|
|
p = ((char *)
|
|
backtrace_alloc (state, dir_len + f_len + 2,
|
|
line_buf->error_callback,
|
|
line_buf->data));
|
|
if (p == NULL)
|
|
return 0;
|
|
memcpy (p, dir, dir_len);
|
|
/* FIXME: If we are on a DOS-based file system,
|
|
and the directory or the file name use
|
|
backslashes, then we should use a backslash
|
|
here. */
|
|
p[dir_len] = '/';
|
|
memcpy (p + dir_len + 1, f, f_len + 1);
|
|
filename = p;
|
|
}
|
|
}
|
|
break;
|
|
case DW_LNE_set_discriminator:
|
|
/* We don't care about discriminators. */
|
|
read_uleb128 (line_buf);
|
|
break;
|
|
default:
|
|
if (!advance (line_buf, len - 1))
|
|
return 0;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
switch (op)
|
|
{
|
|
case DW_LNS_copy:
|
|
add_line (state, ddata, address, filename, lineno,
|
|
line_buf->error_callback, line_buf->data, vec);
|
|
break;
|
|
case DW_LNS_advance_pc:
|
|
{
|
|
uint64_t advance;
|
|
|
|
advance = read_uleb128 (line_buf);
|
|
address += (hdr->min_insn_len * (op_index + advance)
|
|
/ hdr->max_ops_per_insn);
|
|
op_index = (op_index + advance) % hdr->max_ops_per_insn;
|
|
}
|
|
break;
|
|
case DW_LNS_advance_line:
|
|
lineno += (int) read_sleb128 (line_buf);
|
|
break;
|
|
case DW_LNS_set_file:
|
|
{
|
|
uint64_t fileno;
|
|
|
|
fileno = read_uleb128 (line_buf);
|
|
if (fileno == 0)
|
|
filename = "";
|
|
else
|
|
{
|
|
if (fileno - 1 >= hdr->filenames_count)
|
|
{
|
|
dwarf_buf_error (line_buf,
|
|
("invalid file number in "
|
|
"line number program"));
|
|
return 0;
|
|
}
|
|
filename = hdr->filenames[fileno - 1];
|
|
}
|
|
}
|
|
break;
|
|
case DW_LNS_set_column:
|
|
read_uleb128 (line_buf);
|
|
break;
|
|
case DW_LNS_negate_stmt:
|
|
break;
|
|
case DW_LNS_set_basic_block:
|
|
break;
|
|
case DW_LNS_const_add_pc:
|
|
{
|
|
unsigned int advance;
|
|
|
|
op = 255 - hdr->opcode_base;
|
|
advance = op / hdr->line_range;
|
|
address += (hdr->min_insn_len * (op_index + advance)
|
|
/ hdr->max_ops_per_insn);
|
|
op_index = (op_index + advance) % hdr->max_ops_per_insn;
|
|
}
|
|
break;
|
|
case DW_LNS_fixed_advance_pc:
|
|
address += read_uint16 (line_buf);
|
|
op_index = 0;
|
|
break;
|
|
case DW_LNS_set_prologue_end:
|
|
break;
|
|
case DW_LNS_set_epilogue_begin:
|
|
break;
|
|
case DW_LNS_set_isa:
|
|
read_uleb128 (line_buf);
|
|
break;
|
|
default:
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = hdr->opcode_lengths[op - 1]; i > 0; --i)
|
|
read_uleb128 (line_buf);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Read the line number information for a compilation unit. Returns 1
|
|
on success, 0 on failure. */
|
|
|
|
static int
|
|
read_line_info (struct backtrace_state *state, struct dwarf_data *ddata,
|
|
backtrace_error_callback error_callback, void *data,
|
|
struct unit *u, struct line_header *hdr, struct line **lines,
|
|
size_t *lines_count)
|
|
{
|
|
struct line_vector vec;
|
|
struct dwarf_buf line_buf;
|
|
uint64_t len;
|
|
int is_dwarf64;
|
|
struct line *ln;
|
|
|
|
memset (&vec.vec, 0, sizeof vec.vec);
|
|
vec.count = 0;
|
|
|
|
memset (hdr, 0, sizeof *hdr);
|
|
|
|
if (u->lineoff != (off_t) (size_t) u->lineoff
|
|
|| (size_t) u->lineoff >= ddata->dwarf_line_size)
|
|
{
|
|
error_callback (data, "unit line offset out of range", 0);
|
|
goto fail;
|
|
}
|
|
|
|
line_buf.name = ".debug_line";
|
|
line_buf.start = ddata->dwarf_line;
|
|
line_buf.buf = ddata->dwarf_line + u->lineoff;
|
|
line_buf.left = ddata->dwarf_line_size - u->lineoff;
|
|
line_buf.is_bigendian = ddata->is_bigendian;
|
|
line_buf.error_callback = error_callback;
|
|
line_buf.data = data;
|
|
line_buf.reported_underflow = 0;
|
|
|
|
is_dwarf64 = 0;
|
|
len = read_uint32 (&line_buf);
|
|
if (len == 0xffffffff)
|
|
{
|
|
len = read_uint64 (&line_buf);
|
|
is_dwarf64 = 1;
|
|
}
|
|
line_buf.left = len;
|
|
|
|
if (!read_line_header (state, u, is_dwarf64, &line_buf, hdr))
|
|
goto fail;
|
|
|
|
if (!read_line_program (state, ddata, u, hdr, &line_buf, &vec))
|
|
goto fail;
|
|
|
|
if (line_buf.reported_underflow)
|
|
goto fail;
|
|
|
|
if (vec.count == 0)
|
|
{
|
|
/* This is not a failure in the sense of a generating an error,
|
|
but it is a failure in that sense that we have no useful
|
|
information. */
|
|
goto fail;
|
|
}
|
|
|
|
/* Allocate one extra entry at the end. */
|
|
ln = ((struct line *)
|
|
backtrace_vector_grow (state, sizeof (struct line), error_callback,
|
|
data, &vec.vec));
|
|
if (ln == NULL)
|
|
goto fail;
|
|
ln->pc = (uintptr_t) -1;
|
|
ln->filename = NULL;
|
|
ln->lineno = 0;
|
|
|
|
if (!backtrace_vector_release (state, &vec.vec, error_callback, data))
|
|
goto fail;
|
|
|
|
ln = (struct line *) vec.vec.base;
|
|
qsort (ln, vec.count, sizeof (struct line), line_compare);
|
|
|
|
*lines = ln;
|
|
*lines_count = vec.count;
|
|
|
|
return 1;
|
|
|
|
fail:
|
|
vec.vec.alc += vec.vec.size;
|
|
vec.vec.size = 0;
|
|
backtrace_vector_release (state, &vec.vec, error_callback, data);
|
|
free_line_header (state, hdr, error_callback, data);
|
|
*lines = (struct line *) (uintptr_t) -1;
|
|
*lines_count = 0;
|
|
return 0;
|
|
}
|
|
|
|
/* Read the name of a function from a DIE referenced by a
|
|
DW_AT_abstract_origin or DW_AT_specification tag. OFFSET is within
|
|
the same compilation unit. */
|
|
|
|
static const char *
|
|
read_referenced_name (struct dwarf_data *ddata, struct unit *u,
|
|
uint64_t offset, backtrace_error_callback error_callback,
|
|
void *data)
|
|
{
|
|
struct dwarf_buf unit_buf;
|
|
uint64_t code;
|
|
const struct abbrev *abbrev;
|
|
const char *ret;
|
|
size_t i;
|
|
|
|
/* OFFSET is from the start of the data for this compilation unit.
|
|
U->unit_data is the data, but it starts U->unit_data_offset bytes
|
|
from the beginning. */
|
|
|
|
if (offset < u->unit_data_offset
|
|
|| offset - u->unit_data_offset >= u->unit_data_len)
|
|
{
|
|
error_callback (data,
|
|
"abstract origin or specification out of range",
|
|
0);
|
|
return NULL;
|
|
}
|
|
|
|
offset -= u->unit_data_offset;
|
|
|
|
unit_buf.name = ".debug_info";
|
|
unit_buf.start = ddata->dwarf_info;
|
|
unit_buf.buf = u->unit_data + offset;
|
|
unit_buf.left = u->unit_data_len - offset;
|
|
unit_buf.is_bigendian = ddata->is_bigendian;
|
|
unit_buf.error_callback = error_callback;
|
|
unit_buf.data = data;
|
|
unit_buf.reported_underflow = 0;
|
|
|
|
code = read_uleb128 (&unit_buf);
|
|
if (code == 0)
|
|
{
|
|
dwarf_buf_error (&unit_buf, "invalid abstract origin or specification");
|
|
return NULL;
|
|
}
|
|
|
|
abbrev = lookup_abbrev (&u->abbrevs, code, error_callback, data);
|
|
if (abbrev == NULL)
|
|
return NULL;
|
|
|
|
ret = NULL;
|
|
for (i = 0; i < abbrev->num_attrs; ++i)
|
|
{
|
|
struct attr_val val;
|
|
|
|
if (!read_attribute (abbrev->attrs[i].form, &unit_buf,
|
|
u->is_dwarf64, u->version, u->addrsize,
|
|
ddata->dwarf_str, ddata->dwarf_str_size,
|
|
&val))
|
|
return NULL;
|
|
|
|
switch (abbrev->attrs[i].name)
|
|
{
|
|
case DW_AT_name:
|
|
/* We prefer the linkage name if get one. */
|
|
if (val.encoding == ATTR_VAL_STRING)
|
|
ret = val.u.string;
|
|
break;
|
|
|
|
case DW_AT_linkage_name:
|
|
case DW_AT_MIPS_linkage_name:
|
|
if (val.encoding == ATTR_VAL_STRING)
|
|
return val.u.string;
|
|
break;
|
|
|
|
case DW_AT_specification:
|
|
if (abbrev->attrs[i].form == DW_FORM_ref_addr
|
|
|| abbrev->attrs[i].form == DW_FORM_ref_sig8)
|
|
{
|
|
/* This refers to a specification defined in some other
|
|
compilation unit. We can handle this case if we
|
|
must, but it's harder. */
|
|
break;
|
|
}
|
|
if (val.encoding == ATTR_VAL_UINT
|
|
|| val.encoding == ATTR_VAL_REF_UNIT)
|
|
{
|
|
const char *name;
|
|
|
|
name = read_referenced_name (ddata, u, val.u.uint,
|
|
error_callback, data);
|
|
if (name != NULL)
|
|
ret = name;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Add a single range to U that maps to function. Returns 1 on
|
|
success, 0 on error. */
|
|
|
|
static int
|
|
add_function_range (struct backtrace_state *state, struct dwarf_data *ddata,
|
|
struct function *function, uint64_t lowpc, uint64_t highpc,
|
|
backtrace_error_callback error_callback,
|
|
void *data, struct function_vector *vec)
|
|
{
|
|
struct function_addrs *p;
|
|
|
|
/* Add in the base address here, so that we can look up the PC
|
|
directly. */
|
|
lowpc += ddata->base_address;
|
|
highpc += ddata->base_address;
|
|
|
|
if (vec->count > 0)
|
|
{
|
|
p = (struct function_addrs *) vec->vec.base + vec->count - 1;
|
|
if ((lowpc == p->high || lowpc == p->high + 1)
|
|
&& function == p->function)
|
|
{
|
|
if (highpc > p->high)
|
|
p->high = highpc;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
p = ((struct function_addrs *)
|
|
backtrace_vector_grow (state, sizeof (struct function_addrs),
|
|
error_callback, data, &vec->vec));
|
|
if (p == NULL)
|
|
return 0;
|
|
|
|
p->low = lowpc;
|
|
p->high = highpc;
|
|
p->function = function;
|
|
++vec->count;
|
|
return 1;
|
|
}
|
|
|
|
/* Add PC ranges to U that map to FUNCTION. Returns 1 on success, 0
|
|
on error. */
|
|
|
|
static int
|
|
add_function_ranges (struct backtrace_state *state, struct dwarf_data *ddata,
|
|
struct unit *u, struct function *function,
|
|
uint64_t ranges, uint64_t base,
|
|
backtrace_error_callback error_callback, void *data,
|
|
struct function_vector *vec)
|
|
{
|
|
struct dwarf_buf ranges_buf;
|
|
|
|
if (ranges >= ddata->dwarf_ranges_size)
|
|
{
|
|
error_callback (data, "function ranges offset out of range", 0);
|
|
return 0;
|
|
}
|
|
|
|
ranges_buf.name = ".debug_ranges";
|
|
ranges_buf.start = ddata->dwarf_ranges;
|
|
ranges_buf.buf = ddata->dwarf_ranges + ranges;
|
|
ranges_buf.left = ddata->dwarf_ranges_size - ranges;
|
|
ranges_buf.is_bigendian = ddata->is_bigendian;
|
|
ranges_buf.error_callback = error_callback;
|
|
ranges_buf.data = data;
|
|
ranges_buf.reported_underflow = 0;
|
|
|
|
while (1)
|
|
{
|
|
uint64_t low;
|
|
uint64_t high;
|
|
|
|
if (ranges_buf.reported_underflow)
|
|
return 0;
|
|
|
|
low = read_address (&ranges_buf, u->addrsize);
|
|
high = read_address (&ranges_buf, u->addrsize);
|
|
|
|
if (low == 0 && high == 0)
|
|
break;
|
|
|
|
if (is_highest_address (low, u->addrsize))
|
|
base = high;
|
|
else
|
|
{
|
|
if (!add_function_range (state, ddata, function, low + base,
|
|
high + base, error_callback, data, vec))
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (ranges_buf.reported_underflow)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Read one entry plus all its children. Add function addresses to
|
|
VEC. Returns 1 on success, 0 on error. */
|
|
|
|
static int
|
|
read_function_entry (struct backtrace_state *state, struct dwarf_data *ddata,
|
|
struct unit *u, uint64_t base, struct dwarf_buf *unit_buf,
|
|
const struct line_header *lhdr,
|
|
backtrace_error_callback error_callback, void *data,
|
|
struct function_vector *vec)
|
|
{
|
|
while (unit_buf->left > 0)
|
|
{
|
|
uint64_t code;
|
|
const struct abbrev *abbrev;
|
|
int is_function;
|
|
struct function *function;
|
|
size_t i;
|
|
uint64_t lowpc;
|
|
int have_lowpc;
|
|
uint64_t highpc;
|
|
int have_highpc;
|
|
int highpc_is_relative;
|
|
uint64_t ranges;
|
|
int have_ranges;
|
|
|
|
code = read_uleb128 (unit_buf);
|
|
if (code == 0)
|
|
return 1;
|
|
|
|
abbrev = lookup_abbrev (&u->abbrevs, code, error_callback, data);
|
|
if (abbrev == NULL)
|
|
return 0;
|
|
|
|
is_function = (abbrev->tag == DW_TAG_subprogram
|
|
|| abbrev->tag == DW_TAG_entry_point
|
|
|| abbrev->tag == DW_TAG_inlined_subroutine);
|
|
|
|
function = NULL;
|
|
if (is_function)
|
|
{
|
|
function = ((struct function *)
|
|
backtrace_alloc (state, sizeof *function,
|
|
error_callback, data));
|
|
if (function == NULL)
|
|
return 0;
|
|
memset (function, 0, sizeof *function);
|
|
}
|
|
|
|
lowpc = 0;
|
|
have_lowpc = 0;
|
|
highpc = 0;
|
|
have_highpc = 0;
|
|
highpc_is_relative = 0;
|
|
ranges = 0;
|
|
have_ranges = 0;
|
|
for (i = 0; i < abbrev->num_attrs; ++i)
|
|
{
|
|
struct attr_val val;
|
|
|
|
if (!read_attribute (abbrev->attrs[i].form, unit_buf,
|
|
u->is_dwarf64, u->version, u->addrsize,
|
|
ddata->dwarf_str, ddata->dwarf_str_size,
|
|
&val))
|
|
return 0;
|
|
|
|
/* The compile unit sets the base address for any address
|
|
ranges in the function entries. */
|
|
if (abbrev->tag == DW_TAG_compile_unit
|
|
&& abbrev->attrs[i].name == DW_AT_low_pc
|
|
&& val.encoding == ATTR_VAL_ADDRESS)
|
|
base = val.u.uint;
|
|
|
|
if (is_function)
|
|
{
|
|
switch (abbrev->attrs[i].name)
|
|
{
|
|
case DW_AT_call_file:
|
|
if (val.encoding == ATTR_VAL_UINT)
|
|
{
|
|
if (val.u.uint == 0)
|
|
function->caller_filename = "";
|
|
else
|
|
{
|
|
if (val.u.uint - 1 >= lhdr->filenames_count)
|
|
{
|
|
dwarf_buf_error (unit_buf,
|
|
("invalid file number in "
|
|
"DW_AT_call_file attribute"));
|
|
return 0;
|
|
}
|
|
function->caller_filename =
|
|
lhdr->filenames[val.u.uint - 1];
|
|
}
|
|
}
|
|
break;
|
|
|
|
case DW_AT_call_line:
|
|
if (val.encoding == ATTR_VAL_UINT)
|
|
function->caller_lineno = val.u.uint;
|
|
break;
|
|
|
|
case DW_AT_abstract_origin:
|
|
case DW_AT_specification:
|
|
if (abbrev->attrs[i].form == DW_FORM_ref_addr
|
|
|| abbrev->attrs[i].form == DW_FORM_ref_sig8)
|
|
{
|
|
/* This refers to an abstract origin defined in
|
|
some other compilation unit. We can handle
|
|
this case if we must, but it's harder. */
|
|
break;
|
|
}
|
|
if (val.encoding == ATTR_VAL_UINT
|
|
|| val.encoding == ATTR_VAL_REF_UNIT)
|
|
{
|
|
const char *name;
|
|
|
|
name = read_referenced_name (ddata, u, val.u.uint,
|
|
error_callback, data);
|
|
if (name != NULL)
|
|
function->name = name;
|
|
}
|
|
break;
|
|
|
|
case DW_AT_name:
|
|
if (val.encoding == ATTR_VAL_STRING)
|
|
{
|
|
/* Don't override a name we found in some other
|
|
way, as it will normally be more
|
|
useful--e.g., this name is normally not
|
|
mangled. */
|
|
if (function->name == NULL)
|
|
function->name = val.u.string;
|
|
}
|
|
break;
|
|
|
|
case DW_AT_linkage_name:
|
|
case DW_AT_MIPS_linkage_name:
|
|
if (val.encoding == ATTR_VAL_STRING)
|
|
function->name = val.u.string;
|
|
break;
|
|
|
|
case DW_AT_low_pc:
|
|
if (val.encoding == ATTR_VAL_ADDRESS)
|
|
{
|
|
lowpc = val.u.uint;
|
|
have_lowpc = 1;
|
|
}
|
|
break;
|
|
|
|
case DW_AT_high_pc:
|
|
if (val.encoding == ATTR_VAL_ADDRESS)
|
|
{
|
|
highpc = val.u.uint;
|
|
have_highpc = 1;
|
|
}
|
|
else if (val.encoding == ATTR_VAL_UINT)
|
|
{
|
|
highpc = val.u.uint;
|
|
have_highpc = 1;
|
|
highpc_is_relative = 1;
|
|
}
|
|
break;
|
|
|
|
case DW_AT_ranges:
|
|
if (val.encoding == ATTR_VAL_UINT
|
|
|| val.encoding == ATTR_VAL_REF_SECTION)
|
|
{
|
|
ranges = val.u.uint;
|
|
have_ranges = 1;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If we couldn't find a name for the function, we have no use
|
|
for it. */
|
|
if (is_function && function->name == NULL)
|
|
{
|
|
backtrace_free (state, function, sizeof *function,
|
|
error_callback, data);
|
|
is_function = 0;
|
|
}
|
|
|
|
if (is_function)
|
|
{
|
|
if (have_ranges)
|
|
{
|
|
if (!add_function_ranges (state, ddata, u, function, ranges,
|
|
base, error_callback, data, vec))
|
|
return 0;
|
|
}
|
|
else if (have_lowpc && have_highpc)
|
|
{
|
|
if (highpc_is_relative)
|
|
highpc += lowpc;
|
|
if (!add_function_range (state, ddata, function, lowpc, highpc,
|
|
error_callback, data, vec))
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
backtrace_free (state, function, sizeof *function,
|
|
error_callback, data);
|
|
is_function = 0;
|
|
}
|
|
}
|
|
|
|
if (abbrev->has_children)
|
|
{
|
|
if (!is_function)
|
|
{
|
|
if (!read_function_entry (state, ddata, u, base, unit_buf, lhdr,
|
|
error_callback, data, vec))
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
struct function_vector fvec;
|
|
|
|
/* Gather any information for inlined functions in
|
|
FVEC. */
|
|
|
|
memset (&fvec, 0, sizeof fvec);
|
|
|
|
if (!read_function_entry (state, ddata, u, base, unit_buf, lhdr,
|
|
error_callback, data, &fvec))
|
|
return 0;
|
|
|
|
if (fvec.count > 0)
|
|
{
|
|
struct function_addrs *faddrs;
|
|
|
|
if (!backtrace_vector_release (state, &fvec.vec,
|
|
error_callback, data))
|
|
return 0;
|
|
|
|
faddrs = (struct function_addrs *) fvec.vec.base;
|
|
qsort (faddrs, fvec.count,
|
|
sizeof (struct function_addrs),
|
|
function_addrs_compare);
|
|
|
|
function->function_addrs = faddrs;
|
|
function->function_addrs_count = fvec.count;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Read function name information for a compilation unit. We look
|
|
through the whole unit looking for function tags. */
|
|
|
|
static void
|
|
read_function_info (struct backtrace_state *state, struct dwarf_data *ddata,
|
|
const struct line_header *lhdr,
|
|
backtrace_error_callback error_callback, void *data,
|
|
struct unit *u, struct function_vector *fvec,
|
|
struct function_addrs **ret_addrs,
|
|
size_t *ret_addrs_count)
|
|
{
|
|
struct function_vector lvec;
|
|
struct function_vector *pfvec;
|
|
struct dwarf_buf unit_buf;
|
|
struct function_addrs *addrs;
|
|
size_t addrs_count;
|
|
|
|
/* Use FVEC if it is not NULL. Otherwise use our own vector. */
|
|
if (fvec != NULL)
|
|
pfvec = fvec;
|
|
else
|
|
{
|
|
memset (&lvec, 0, sizeof lvec);
|
|
pfvec = &lvec;
|
|
}
|
|
|
|
unit_buf.name = ".debug_info";
|
|
unit_buf.start = ddata->dwarf_info;
|
|
unit_buf.buf = u->unit_data;
|
|
unit_buf.left = u->unit_data_len;
|
|
unit_buf.is_bigendian = ddata->is_bigendian;
|
|
unit_buf.error_callback = error_callback;
|
|
unit_buf.data = data;
|
|
unit_buf.reported_underflow = 0;
|
|
|
|
while (unit_buf.left > 0)
|
|
{
|
|
if (!read_function_entry (state, ddata, u, 0, &unit_buf, lhdr,
|
|
error_callback, data, pfvec))
|
|
return;
|
|
}
|
|
|
|
if (pfvec->count == 0)
|
|
return;
|
|
|
|
addrs_count = pfvec->count;
|
|
|
|
if (fvec == NULL)
|
|
{
|
|
if (!backtrace_vector_release (state, &lvec.vec, error_callback, data))
|
|
return;
|
|
addrs = (struct function_addrs *) pfvec->vec.base;
|
|
}
|
|
else
|
|
{
|
|
/* Finish this list of addresses, but leave the remaining space in
|
|
the vector available for the next function unit. */
|
|
addrs = ((struct function_addrs *)
|
|
backtrace_vector_finish (state, &fvec->vec,
|
|
error_callback, data));
|
|
if (addrs == NULL)
|
|
return;
|
|
fvec->count = 0;
|
|
}
|
|
|
|
qsort (addrs, addrs_count, sizeof (struct function_addrs),
|
|
function_addrs_compare);
|
|
|
|
*ret_addrs = addrs;
|
|
*ret_addrs_count = addrs_count;
|
|
}
|
|
|
|
/* See if PC is inlined in FUNCTION. If it is, print out the inlined
|
|
information, and update FILENAME and LINENO for the caller.
|
|
Returns whatever CALLBACK returns, or 0 to keep going. */
|
|
|
|
static int
|
|
report_inlined_functions (uintptr_t pc, struct function *function,
|
|
backtrace_full_callback callback, void *data,
|
|
const char **filename, int *lineno)
|
|
{
|
|
struct function_addrs *function_addrs;
|
|
struct function *inlined;
|
|
int ret;
|
|
|
|
if (function->function_addrs_count == 0)
|
|
return 0;
|
|
|
|
function_addrs = ((struct function_addrs *)
|
|
bsearch (&pc, function->function_addrs,
|
|
function->function_addrs_count,
|
|
sizeof (struct function_addrs),
|
|
function_addrs_search));
|
|
if (function_addrs == NULL)
|
|
return 0;
|
|
|
|
while (((size_t) (function_addrs - function->function_addrs) + 1
|
|
< function->function_addrs_count)
|
|
&& pc >= (function_addrs + 1)->low
|
|
&& pc < (function_addrs + 1)->high)
|
|
++function_addrs;
|
|
|
|
/* We found an inlined call. */
|
|
|
|
inlined = function_addrs->function;
|
|
|
|
/* Report any calls inlined into this one. */
|
|
ret = report_inlined_functions (pc, inlined, callback, data,
|
|
filename, lineno);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
/* Report this inlined call. */
|
|
ret = callback (data, pc, *filename, *lineno, inlined->name);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
/* Our caller will report the caller of the inlined function; tell
|
|
it the appropriate filename and line number. */
|
|
*filename = inlined->caller_filename;
|
|
*lineno = inlined->caller_lineno;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Look for a PC in the DWARF mapping for one module. On success,
|
|
call CALLBACK and return whatever it returns. On error, call
|
|
ERROR_CALLBACK and return 0. Sets *FOUND to 1 if the PC is found,
|
|
0 if not. */
|
|
|
|
static int
|
|
dwarf_lookup_pc (struct backtrace_state *state, struct dwarf_data *ddata,
|
|
uintptr_t pc, backtrace_full_callback callback,
|
|
backtrace_error_callback error_callback, void *data,
|
|
int *found)
|
|
{
|
|
struct unit_addrs *entry;
|
|
struct unit *u;
|
|
int new_data;
|
|
struct line *lines;
|
|
struct line *ln;
|
|
struct function_addrs *function_addrs;
|
|
struct function *function;
|
|
const char *filename;
|
|
int lineno;
|
|
int ret;
|
|
|
|
*found = 1;
|
|
|
|
/* Find an address range that includes PC. */
|
|
entry = bsearch (&pc, ddata->addrs, ddata->addrs_count,
|
|
sizeof (struct unit_addrs), unit_addrs_search);
|
|
|
|
if (entry == NULL)
|
|
{
|
|
*found = 0;
|
|
return 0;
|
|
}
|
|
|
|
/* If there are multiple ranges that contain PC, use the last one,
|
|
in order to produce predictable results. If we assume that all
|
|
ranges are properly nested, then the last range will be the
|
|
smallest one. */
|
|
while ((size_t) (entry - ddata->addrs) + 1 < ddata->addrs_count
|
|
&& pc >= (entry + 1)->low
|
|
&& pc < (entry + 1)->high)
|
|
++entry;
|
|
|
|
/* We need the lines, lines_count, function_addrs,
|
|
function_addrs_count fields of u. If they are not set, we need
|
|
to set them. When running in threaded mode, we need to allow for
|
|
the possibility that some other thread is setting them
|
|
simultaneously. */
|
|
|
|
u = entry->u;
|
|
lines = u->lines;
|
|
|
|
/* Skip units with no useful line number information by walking
|
|
backward. Useless line number information is marked by setting
|
|
lines == -1. */
|
|
while (entry > ddata->addrs
|
|
&& pc >= (entry - 1)->low
|
|
&& pc < (entry - 1)->high)
|
|
{
|
|
if (state->threaded)
|
|
lines = (struct line *) backtrace_atomic_load_pointer (&u->lines);
|
|
|
|
if (lines != (struct line *) (uintptr_t) -1)
|
|
break;
|
|
|
|
--entry;
|
|
|
|
u = entry->u;
|
|
lines = u->lines;
|
|
}
|
|
|
|
if (state->threaded)
|
|
lines = backtrace_atomic_load_pointer (&u->lines);
|
|
|
|
new_data = 0;
|
|
if (lines == NULL)
|
|
{
|
|
size_t function_addrs_count;
|
|
struct line_header lhdr;
|
|
size_t count;
|
|
|
|
/* We have never read the line information for this unit. Read
|
|
it now. */
|
|
|
|
function_addrs = NULL;
|
|
function_addrs_count = 0;
|
|
if (read_line_info (state, ddata, error_callback, data, entry->u, &lhdr,
|
|
&lines, &count))
|
|
{
|
|
struct function_vector *pfvec;
|
|
|
|
/* If not threaded, reuse DDATA->FVEC for better memory
|
|
consumption. */
|
|
if (state->threaded)
|
|
pfvec = NULL;
|
|
else
|
|
pfvec = &ddata->fvec;
|
|
read_function_info (state, ddata, &lhdr, error_callback, data,
|
|
entry->u, pfvec, &function_addrs,
|
|
&function_addrs_count);
|
|
free_line_header (state, &lhdr, error_callback, data);
|
|
new_data = 1;
|
|
}
|
|
|
|
/* Atomically store the information we just read into the unit.
|
|
If another thread is simultaneously writing, it presumably
|
|
read the same information, and we don't care which one we
|
|
wind up with; we just leak the other one. We do have to
|
|
write the lines field last, so that the acquire-loads above
|
|
ensure that the other fields are set. */
|
|
|
|
if (!state->threaded)
|
|
{
|
|
u->lines_count = count;
|
|
u->function_addrs = function_addrs;
|
|
u->function_addrs_count = function_addrs_count;
|
|
u->lines = lines;
|
|
}
|
|
else
|
|
{
|
|
backtrace_atomic_store_size_t (&u->lines_count, count);
|
|
backtrace_atomic_store_pointer (&u->function_addrs, function_addrs);
|
|
backtrace_atomic_store_size_t (&u->function_addrs_count,
|
|
function_addrs_count);
|
|
backtrace_atomic_store_pointer (&u->lines, lines);
|
|
}
|
|
}
|
|
|
|
/* Now all fields of U have been initialized. */
|
|
|
|
if (lines == (struct line *) (uintptr_t) -1)
|
|
{
|
|
/* If reading the line number information failed in some way,
|
|
try again to see if there is a better compilation unit for
|
|
this PC. */
|
|
if (new_data)
|
|
return dwarf_lookup_pc (state, ddata, pc, callback, error_callback,
|
|
data, found);
|
|
return callback (data, pc, NULL, 0, NULL);
|
|
}
|
|
|
|
/* Search for PC within this unit. */
|
|
|
|
ln = (struct line *) bsearch (&pc, lines, entry->u->lines_count,
|
|
sizeof (struct line), line_search);
|
|
if (ln == NULL)
|
|
{
|
|
/* The PC is between the low_pc and high_pc attributes of the
|
|
compilation unit, but no entry in the line table covers it.
|
|
This implies that the start of the compilation unit has no
|
|
line number information. */
|
|
|
|
if (entry->u->abs_filename == NULL)
|
|
{
|
|
const char *filename;
|
|
|
|
filename = entry->u->filename;
|
|
if (filename != NULL
|
|
&& !IS_ABSOLUTE_PATH (filename)
|
|
&& entry->u->comp_dir != NULL)
|
|
{
|
|
size_t filename_len;
|
|
const char *dir;
|
|
size_t dir_len;
|
|
char *s;
|
|
|
|
filename_len = strlen (filename);
|
|
dir = entry->u->comp_dir;
|
|
dir_len = strlen (dir);
|
|
s = (char *) backtrace_alloc (state, dir_len + filename_len + 2,
|
|
error_callback, data);
|
|
if (s == NULL)
|
|
{
|
|
*found = 0;
|
|
return 0;
|
|
}
|
|
memcpy (s, dir, dir_len);
|
|
/* FIXME: Should use backslash if DOS file system. */
|
|
s[dir_len] = '/';
|
|
memcpy (s + dir_len + 1, filename, filename_len + 1);
|
|
filename = s;
|
|
}
|
|
entry->u->abs_filename = filename;
|
|
}
|
|
|
|
return callback (data, pc, entry->u->abs_filename, 0, NULL);
|
|
}
|
|
|
|
/* Search for function name within this unit. */
|
|
|
|
if (entry->u->function_addrs_count == 0)
|
|
return callback (data, pc, ln->filename, ln->lineno, NULL);
|
|
|
|
function_addrs = ((struct function_addrs *)
|
|
bsearch (&pc, entry->u->function_addrs,
|
|
entry->u->function_addrs_count,
|
|
sizeof (struct function_addrs),
|
|
function_addrs_search));
|
|
if (function_addrs == NULL)
|
|
return callback (data, pc, ln->filename, ln->lineno, NULL);
|
|
|
|
/* If there are multiple function ranges that contain PC, use the
|
|
last one, in order to produce predictable results. */
|
|
|
|
while (((size_t) (function_addrs - entry->u->function_addrs + 1)
|
|
< entry->u->function_addrs_count)
|
|
&& pc >= (function_addrs + 1)->low
|
|
&& pc < (function_addrs + 1)->high)
|
|
++function_addrs;
|
|
|
|
function = function_addrs->function;
|
|
|
|
filename = ln->filename;
|
|
lineno = ln->lineno;
|
|
|
|
ret = report_inlined_functions (pc, function, callback, data,
|
|
&filename, &lineno);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
return callback (data, pc, filename, lineno, function->name);
|
|
}
|
|
|
|
|
|
/* Return the file/line information for a PC using the DWARF mapping
|
|
we built earlier. */
|
|
|
|
static int
|
|
dwarf_fileline (struct backtrace_state *state, uintptr_t pc,
|
|
backtrace_full_callback callback,
|
|
backtrace_error_callback error_callback, void *data)
|
|
{
|
|
struct dwarf_data *ddata;
|
|
int found;
|
|
int ret;
|
|
|
|
if (!state->threaded)
|
|
{
|
|
for (ddata = (struct dwarf_data *) state->fileline_data;
|
|
ddata != NULL;
|
|
ddata = ddata->next)
|
|
{
|
|
ret = dwarf_lookup_pc (state, ddata, pc, callback, error_callback,
|
|
data, &found);
|
|
if (ret != 0 || found)
|
|
return ret;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
struct dwarf_data **pp;
|
|
|
|
pp = (struct dwarf_data **) (void *) &state->fileline_data;
|
|
while (1)
|
|
{
|
|
ddata = backtrace_atomic_load_pointer (pp);
|
|
if (ddata == NULL)
|
|
break;
|
|
|
|
ret = dwarf_lookup_pc (state, ddata, pc, callback, error_callback,
|
|
data, &found);
|
|
if (ret != 0 || found)
|
|
return ret;
|
|
|
|
pp = &ddata->next;
|
|
}
|
|
}
|
|
|
|
/* FIXME: See if any libraries have been dlopen'ed. */
|
|
|
|
return callback (data, pc, NULL, 0, NULL);
|
|
}
|
|
|
|
/* Initialize our data structures from the DWARF debug info for a
|
|
file. Return NULL on failure. */
|
|
|
|
static struct dwarf_data *
|
|
build_dwarf_data (struct backtrace_state *state,
|
|
uintptr_t base_address,
|
|
const unsigned char *dwarf_info,
|
|
size_t dwarf_info_size,
|
|
const unsigned char *dwarf_line,
|
|
size_t dwarf_line_size,
|
|
const unsigned char *dwarf_abbrev,
|
|
size_t dwarf_abbrev_size,
|
|
const unsigned char *dwarf_ranges,
|
|
size_t dwarf_ranges_size,
|
|
const unsigned char *dwarf_str,
|
|
size_t dwarf_str_size,
|
|
int is_bigendian,
|
|
backtrace_error_callback error_callback,
|
|
void *data)
|
|
{
|
|
struct unit_addrs_vector addrs_vec;
|
|
struct unit_addrs *addrs;
|
|
size_t addrs_count;
|
|
struct dwarf_data *fdata;
|
|
|
|
if (!build_address_map (state, base_address, dwarf_info, dwarf_info_size,
|
|
dwarf_abbrev, dwarf_abbrev_size, dwarf_ranges,
|
|
dwarf_ranges_size, dwarf_str, dwarf_str_size,
|
|
is_bigendian, error_callback, data, &addrs_vec))
|
|
return NULL;
|
|
|
|
if (!backtrace_vector_release (state, &addrs_vec.vec, error_callback, data))
|
|
return NULL;
|
|
addrs = (struct unit_addrs *) addrs_vec.vec.base;
|
|
addrs_count = addrs_vec.count;
|
|
qsort (addrs, addrs_count, sizeof (struct unit_addrs), unit_addrs_compare);
|
|
|
|
fdata = ((struct dwarf_data *)
|
|
backtrace_alloc (state, sizeof (struct dwarf_data),
|
|
error_callback, data));
|
|
if (fdata == NULL)
|
|
return NULL;
|
|
|
|
fdata->next = NULL;
|
|
fdata->base_address = base_address;
|
|
fdata->addrs = addrs;
|
|
fdata->addrs_count = addrs_count;
|
|
fdata->dwarf_info = dwarf_info;
|
|
fdata->dwarf_info_size = dwarf_info_size;
|
|
fdata->dwarf_line = dwarf_line;
|
|
fdata->dwarf_line_size = dwarf_line_size;
|
|
fdata->dwarf_ranges = dwarf_ranges;
|
|
fdata->dwarf_ranges_size = dwarf_ranges_size;
|
|
fdata->dwarf_str = dwarf_str;
|
|
fdata->dwarf_str_size = dwarf_str_size;
|
|
fdata->is_bigendian = is_bigendian;
|
|
memset (&fdata->fvec, 0, sizeof fdata->fvec);
|
|
|
|
return fdata;
|
|
}
|
|
|
|
/* Build our data structures from the DWARF sections for a module.
|
|
Set FILELINE_FN and STATE->FILELINE_DATA. Return 1 on success, 0
|
|
on failure. */
|
|
|
|
int
|
|
backtrace_dwarf_add (struct backtrace_state *state,
|
|
uintptr_t base_address,
|
|
const unsigned char *dwarf_info,
|
|
size_t dwarf_info_size,
|
|
const unsigned char *dwarf_line,
|
|
size_t dwarf_line_size,
|
|
const unsigned char *dwarf_abbrev,
|
|
size_t dwarf_abbrev_size,
|
|
const unsigned char *dwarf_ranges,
|
|
size_t dwarf_ranges_size,
|
|
const unsigned char *dwarf_str,
|
|
size_t dwarf_str_size,
|
|
int is_bigendian,
|
|
backtrace_error_callback error_callback,
|
|
void *data, fileline *fileline_fn)
|
|
{
|
|
struct dwarf_data *fdata;
|
|
|
|
fdata = build_dwarf_data (state, base_address, dwarf_info, dwarf_info_size,
|
|
dwarf_line, dwarf_line_size, dwarf_abbrev,
|
|
dwarf_abbrev_size, dwarf_ranges, dwarf_ranges_size,
|
|
dwarf_str, dwarf_str_size, is_bigendian,
|
|
error_callback, data);
|
|
if (fdata == NULL)
|
|
return 0;
|
|
|
|
if (!state->threaded)
|
|
{
|
|
struct dwarf_data **pp;
|
|
|
|
for (pp = (struct dwarf_data **) (void *) &state->fileline_data;
|
|
*pp != NULL;
|
|
pp = &(*pp)->next)
|
|
;
|
|
*pp = fdata;
|
|
}
|
|
else
|
|
{
|
|
while (1)
|
|
{
|
|
struct dwarf_data **pp;
|
|
|
|
pp = (struct dwarf_data **) (void *) &state->fileline_data;
|
|
|
|
while (1)
|
|
{
|
|
struct dwarf_data *p;
|
|
|
|
p = backtrace_atomic_load_pointer (pp);
|
|
|
|
if (p == NULL)
|
|
break;
|
|
|
|
pp = &p->next;
|
|
}
|
|
|
|
if (__sync_bool_compare_and_swap (pp, NULL, fdata))
|
|
break;
|
|
}
|
|
}
|
|
|
|
*fileline_fn = dwarf_fileline;
|
|
|
|
return 1;
|
|
}
|