gcc/libgcc/config/libbid/bid128_noncomp.c
Jakub Jelinek 8d9254fc8a Update copyright years.
From-SVN: r279813
2020-01-01 12:51:42 +01:00

1201 lines
38 KiB
C

/* Copyright (C) 2007-2020 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#include "bid_internal.h"
/*****************************************************************************
*
* BID128 non-computational functions:
* - bid128_isSigned
* - bid128_isNormal
* - bid128_isSubnormal
* - bid128_isFinite
* - bid128_isZero
* - bid128_isInf
* - bid128_isSignaling
* - bid128_isCanonical
* - bid128_isNaN
* - bid128_copy
* - bid128_negate
* - bid128_abs
* - bid128_copySign
* - bid128_class
* - bid128_totalOrder
* - bid128_totalOrderMag
* - bid128_sameQuantum
* - bid128_radix
****************************************************************************/
#if DECIMAL_CALL_BY_REFERENCE
void
bid128_isSigned (int *pres,
UINT128 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
UINT128 x = *px;
#else
int
bid128_isSigned (UINT128 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
#endif
int res;
res = ((x.w[HIGH_128W] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
// return 1 iff x is not zero, nor NaN nor subnormal nor infinity
#if DECIMAL_CALL_BY_REFERENCE
void
bid128_isNormal (int *pres,
UINT128 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
UINT128 x = *px;
#else
int
bid128_isNormal (UINT128 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
#endif
int res;
UINT64 x_exp, C1_hi, C1_lo;
BID_UI64DOUBLE tmp1;
int exp, q, x_nr_bits;
BID_SWAP128 (x);
// test for special values - infinity or NaN
if ((x.w[1] & MASK_SPECIAL) == MASK_SPECIAL) {
// x is special
res = 0;
BID_RETURN (res);
}
// unpack x
x_exp = x.w[1] & MASK_EXP; // biased and shifted left 49 bit positions
C1_hi = x.w[1] & MASK_COEFF;
C1_lo = x.w[0];
// test for zero
if (C1_hi == 0 && C1_lo == 0) {
res = 0;
BID_RETURN (res);
}
// test for non-canonical values of the argument x
if ((((C1_hi > 0x0001ed09bead87c0ull)
|| ((C1_hi == 0x0001ed09bead87c0ull)
&& (C1_lo > 0x378d8e63ffffffffull)))
&& ((x.w[1] & 0x6000000000000000ull) != 0x6000000000000000ull))
|| ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) {
res = 0;
BID_RETURN (res);
}
// x is subnormal or normal
// determine the number of digits q in the significand
// q = nr. of decimal digits in x
// determine first the nr. of bits in x
if (C1_hi == 0) {
if (C1_lo >= 0x0020000000000000ull) { // x >= 2^53
// split the 64-bit value in two 32-bit halves to avoid rounding errors
if (C1_lo >= 0x0000000100000000ull) { // x >= 2^32
tmp1.d = (double) (C1_lo >> 32); // exact conversion
x_nr_bits =
33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
} else { // x < 2^32
tmp1.d = (double) (C1_lo); // exact conversion
x_nr_bits =
1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
}
} else { // if x < 2^53
tmp1.d = (double) C1_lo; // exact conversion
x_nr_bits =
1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
}
} else { // C1_hi != 0 => nr. bits = 64 + nr_bits (C1_hi)
tmp1.d = (double) C1_hi; // exact conversion
x_nr_bits =
65 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
}
q = nr_digits[x_nr_bits - 1].digits;
if (q == 0) {
q = nr_digits[x_nr_bits - 1].digits1;
if (C1_hi > nr_digits[x_nr_bits - 1].threshold_hi ||
(C1_hi == nr_digits[x_nr_bits - 1].threshold_hi &&
C1_lo >= nr_digits[x_nr_bits - 1].threshold_lo))
q++;
}
exp = (int) (x_exp >> 49) - 6176;
// test for subnormal values of x
if (exp + q <= -6143) {
res = 0;
BID_RETURN (res);
} else {
res = 1;
BID_RETURN (res);
}
}
// return 1 iff x is not zero, nor NaN nor normal nor infinity
#if DECIMAL_CALL_BY_REFERENCE
void
bid128_isSubnormal (int *pres,
UINT128 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
UINT128 x = *px;
#else
int
bid128_isSubnormal (UINT128 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
#endif
int res;
UINT64 x_exp, C1_hi, C1_lo;
BID_UI64DOUBLE tmp1;
int exp, q, x_nr_bits;
BID_SWAP128 (x);
// test for special values - infinity or NaN
if ((x.w[1] & MASK_SPECIAL) == MASK_SPECIAL) {
// x is special
res = 0;
BID_RETURN (res);
}
// unpack x
x_exp = x.w[1] & MASK_EXP; // biased and shifted left 49 bit positions
C1_hi = x.w[1] & MASK_COEFF;
C1_lo = x.w[0];
// test for zero
if (C1_hi == 0 && C1_lo == 0) {
res = 0;
BID_RETURN (res);
}
// test for non-canonical values of the argument x
if ((((C1_hi > 0x0001ed09bead87c0ull)
|| ((C1_hi == 0x0001ed09bead87c0ull)
&& (C1_lo > 0x378d8e63ffffffffull)))
&& ((x.w[1] & 0x6000000000000000ull) != 0x6000000000000000ull))
|| ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) {
res = 0;
BID_RETURN (res);
}
// x is subnormal or normal
// determine the number of digits q in the significand
// q = nr. of decimal digits in x
// determine first the nr. of bits in x
if (C1_hi == 0) {
if (C1_lo >= 0x0020000000000000ull) { // x >= 2^53
// split the 64-bit value in two 32-bit halves to avoid rounding errors
if (C1_lo >= 0x0000000100000000ull) { // x >= 2^32
tmp1.d = (double) (C1_lo >> 32); // exact conversion
x_nr_bits =
33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
} else { // x < 2^32
tmp1.d = (double) (C1_lo); // exact conversion
x_nr_bits =
1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
}
} else { // if x < 2^53
tmp1.d = (double) C1_lo; // exact conversion
x_nr_bits =
1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
}
} else { // C1_hi != 0 => nr. bits = 64 + nr_bits (C1_hi)
tmp1.d = (double) C1_hi; // exact conversion
x_nr_bits =
65 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
}
q = nr_digits[x_nr_bits - 1].digits;
if (q == 0) {
q = nr_digits[x_nr_bits - 1].digits1;
if (C1_hi > nr_digits[x_nr_bits - 1].threshold_hi ||
(C1_hi == nr_digits[x_nr_bits - 1].threshold_hi &&
C1_lo >= nr_digits[x_nr_bits - 1].threshold_lo))
q++;
}
exp = (int) (x_exp >> 49) - 6176;
// test for subnormal values of x
if (exp + q <= -6143) {
res = 1;
} else {
res = 0;
}
BID_RETURN (res);
}
#if DECIMAL_CALL_BY_REFERENCE
void
bid128_isFinite (int *pres,
UINT128 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
UINT128 x = *px;
#else
int
bid128_isFinite (UINT128 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
#endif
int res;
res = ((x.w[HIGH_128W] & MASK_INF) != MASK_INF);
BID_RETURN (res);
}
#if DECIMAL_CALL_BY_REFERENCE
void
bid128_isZero (int *pres, UINT128 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
UINT128 x = *px;
#else
int
bid128_isZero (UINT128 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
#endif
int res;
UINT128 sig_x;
BID_SWAP128 (x);
if ((x.w[1] & MASK_INF) == MASK_INF) {
res = 0;
BID_RETURN (res);
}
sig_x.w[1] = x.w[1] & 0x0001ffffffffffffull;
sig_x.w[0] = x.w[0];
if ((sig_x.w[1] > 0x0001ed09bead87c0ull) || // significand is non-canonical
((sig_x.w[1] == 0x0001ed09bead87c0ull) && (sig_x.w[0] > 0x378d8e63ffffffffull)) || // significand is non-canonical
((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull && (x.w[1] & MASK_INF) != MASK_INF) || // significand is non-canonical
(sig_x.w[1] == 0 && sig_x.w[0] == 0)) { // significand is 0
res = 1;
BID_RETURN (res);
}
res = 0;
BID_RETURN (res);
}
#if DECIMAL_CALL_BY_REFERENCE
void
bid128_isInf (int *pres, UINT128 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
UINT128 x = *px;
#else
int
bid128_isInf (UINT128 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
#endif
int res;
res = ((x.w[HIGH_128W] & MASK_INF) == MASK_INF)
&& ((x.w[HIGH_128W] & MASK_NAN) != MASK_NAN);
BID_RETURN (res);
}
#if DECIMAL_CALL_BY_REFERENCE
void
bid128_isSignaling (int *pres,
UINT128 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
UINT128 x = *px;
#else
int
bid128_isSignaling (UINT128 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
#endif
int res;
res = ((x.w[HIGH_128W] & MASK_SNAN) == MASK_SNAN);
BID_RETURN (res);
}
// return 1 iff x is a canonical number ,infinity, or NaN.
#if DECIMAL_CALL_BY_REFERENCE
void
bid128_isCanonical (int *pres,
UINT128 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
UINT128 x = *px;
#else
int
bid128_isCanonical (UINT128 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
#endif
int res;
UINT128 sig_x;
BID_SWAP128 (x);
if ((x.w[1] & MASK_NAN) == MASK_NAN) { // NaN
if (x.w[1] & 0x01ffc00000000000ull) {
res = 0;
BID_RETURN (res);
}
sig_x.w[1] = x.w[1] & 0x00003fffffffffffull; // 46 bits
sig_x.w[0] = x.w[0]; // 64 bits
// payload must be < 10^33 = 0x0000314dc6448d93_38c15b0a00000000
if (sig_x.w[1] < 0x0000314dc6448d93ull
|| (sig_x.w[1] == 0x0000314dc6448d93ull
&& sig_x.w[0] < 0x38c15b0a00000000ull)) {
res = 1;
} else {
res = 0;
}
BID_RETURN (res);
} else if ((x.w[1] & MASK_INF) == MASK_INF) { // infinity
if ((x.w[1] & 0x03ffffffffffffffull) || x.w[0]) {
res = 0;
} else {
res = 1;
}
BID_RETURN (res);
}
// not NaN or infinity; extract significand to ensure it is canonical
sig_x.w[1] = x.w[1] & 0x0001ffffffffffffull;
sig_x.w[0] = x.w[0];
// a canonical number has a coefficient < 10^34
// (0x0001ed09_bead87c0_378d8e64_00000000)
if ((sig_x.w[1] > 0x0001ed09bead87c0ull) || // significand is non-canonical
((sig_x.w[1] == 0x0001ed09bead87c0ull) && (sig_x.w[0] > 0x378d8e63ffffffffull)) || // significand is non-canonical
((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)) {
res = 0;
} else {
res = 1;
}
BID_RETURN (res);
}
#if DECIMAL_CALL_BY_REFERENCE
void
bid128_isNaN (int *pres, UINT128 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
UINT128 x = *px;
#else
int
bid128_isNaN (UINT128 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
#endif
int res;
res = ((x.w[HIGH_128W] & MASK_NAN) == MASK_NAN);
BID_RETURN (res);
}
// copies a floating-point operand x to destination y, with no change
#if DECIMAL_CALL_BY_REFERENCE
void
bid128_copy (UINT128 * pres,
UINT128 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
UINT128 x = *px;
#else
UINT128
bid128_copy (UINT128 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
#endif
UINT128 res;
res = x;
BID_RETURN (res);
}
// copies a floating-point operand x to destination y, reversing the sign
#if DECIMAL_CALL_BY_REFERENCE
void
bid128_negate (UINT128 * pres,
UINT128 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
UINT128 x = *px;
#else
UINT128
bid128_negate (UINT128 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
#endif
UINT128 res;
x.w[HIGH_128W] ^= MASK_SIGN;
res = x;
BID_RETURN (res);
}
// copies a floating-point operand x to destination y, changing the sign to positive
#if DECIMAL_CALL_BY_REFERENCE
void
bid128_abs (UINT128 * pres,
UINT128 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
UINT128 x = *px;
#else
UINT128
bid128_abs (UINT128 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
#endif
UINT128 res;
x.w[HIGH_128W] &= ~MASK_SIGN;
res = x;
BID_RETURN (res);
}
// copies operand x to destination in the same format as x, but with the sign of y
#if DECIMAL_CALL_BY_REFERENCE
void
bid128_copySign (UINT128 * pres, UINT128 * px,
UINT128 * py _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
UINT128 x = *px;
UINT128 y = *py;
#else
UINT128
bid128_copySign (UINT128 x, UINT128 y _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
#endif
UINT128 res;
x.w[HIGH_128W] =
(x.w[HIGH_128W] & ~MASK_SIGN) | (y.w[HIGH_128W] & MASK_SIGN);
res = x;
BID_RETURN (res);
}
#if DECIMAL_CALL_BY_REFERENCE
void
bid128_class (int *pres, UINT128 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
UINT128 x = *px;
#else
int
bid128_class (UINT128 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
#endif
int res;
UINT256 sig_x_prime256;
UINT192 sig_x_prime192;
UINT128 sig_x;
int exp_x;
BID_SWAP128 (x);
if ((x.w[1] & MASK_NAN) == MASK_NAN) {
if ((x.w[1] & MASK_SNAN) == MASK_SNAN) {
res = signalingNaN;
} else {
res = quietNaN;
}
BID_RETURN (res);
}
if ((x.w[1] & MASK_INF) == MASK_INF) {
if ((x.w[1] & MASK_SIGN) == MASK_SIGN) {
res = negativeInfinity;
} else {
res = positiveInfinity;
}
BID_RETURN (res);
}
// decode number into exponent and significand
sig_x.w[1] = x.w[1] & 0x0001ffffffffffffull;
sig_x.w[0] = x.w[0];
// check for zero or non-canonical
if ((sig_x.w[1] > 0x0001ed09bead87c0ull)
|| ((sig_x.w[1] == 0x0001ed09bead87c0ull)
&& (sig_x.w[0] > 0x378d8e63ffffffffull))
|| ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull)
|| ((sig_x.w[1] == 0) && (sig_x.w[0] == 0))) {
if ((x.w[1] & MASK_SIGN) == MASK_SIGN) {
res = negativeZero;
} else {
res = positiveZero;
}
BID_RETURN (res);
}
exp_x = (x.w[1] >> 49) & 0x000000000003fffull;
// if exponent is less than -6176, the number may be subnormal
// (less than the smallest normal value)
// the smallest normal value is 1 x 10^-6143 = 10^33 x 10^-6176
// if (exp_x - 6176 < -6143)
if (exp_x < 33) { // sig_x * 10^exp_x
if (exp_x > 19) {
__mul_128x128_to_256 (sig_x_prime256, sig_x,
ten2k128[exp_x - 20]);
// 10^33 = 0x0000314dc6448d93_38c15b0a00000000
if ((sig_x_prime256.w[3] == 0) && (sig_x_prime256.w[2] == 0)
&& ((sig_x_prime256.w[1] < 0x0000314dc6448d93ull)
|| ((sig_x_prime256.w[1] == 0x0000314dc6448d93ull)
&& (sig_x_prime256.w[0] < 0x38c15b0a00000000ull)))) {
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN) ? negativeSubnormal :
positiveSubnormal;
BID_RETURN (res);
}
} else {
__mul_64x128_to_192 (sig_x_prime192, ten2k64[exp_x], sig_x);
// 10^33 = 0x0000314dc6448d93_38c15b0a00000000
if ((sig_x_prime192.w[2] == 0)
&& ((sig_x_prime192.w[1] < 0x0000314dc6448d93ull)
|| ((sig_x_prime192.w[1] == 0x0000314dc6448d93ull)
&& (sig_x_prime192.w[0] < 0x38c15b0a00000000ull)))) {
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN) ? negativeSubnormal :
positiveSubnormal;
BID_RETURN (res);
}
}
}
// otherwise, normal number, determine the sign
res =
((x.w[1] & MASK_SIGN) ==
MASK_SIGN) ? negativeNormal : positiveNormal;
BID_RETURN (res);
}
// true if the exponents of x and y are the same, false otherwise.
// The special cases of sameQuantum(NaN, NaN) and sameQuantum(Inf, Inf) are true
// If exactly one operand is infinite or exactly one operand is NaN, then false
#if DECIMAL_CALL_BY_REFERENCE
void
bid128_sameQuantum (int *pres, UINT128 * px,
UINT128 * py _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
UINT128 x = *px;
UINT128 y = *py;
#else
int
bid128_sameQuantum (UINT128 x,
UINT128 y _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
#endif
int res;
UINT64 x_exp, y_exp;
BID_SWAP128 (x);
BID_SWAP128 (y);
// if both operands are NaN, return true
if ((x.w[1] & MASK_NAN) == MASK_NAN
|| ((y.w[1] & MASK_NAN) == MASK_NAN)) {
res = ((x.w[1] & MASK_NAN) == MASK_NAN
&& (y.w[1] & MASK_NAN) == MASK_NAN);
BID_RETURN (res);
}
// if both operands are INF, return true
if ((x.w[1] & MASK_INF) == MASK_INF
|| (y.w[1] & MASK_INF) == MASK_INF) {
res = ((x.w[1] & MASK_INF) == MASK_INF)
&& ((y.w[1] & MASK_INF) == MASK_INF);
BID_RETURN (res);
}
// decode exponents for both numbers, and return true if they match
if ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull) { // G0_G1=11
x_exp = (x.w[1] << 2) & MASK_EXP; // biased and shifted left 49 bits
} else { // G0_G1 != 11
x_exp = x.w[1] & MASK_EXP; // biased and shifted left 49 bits
}
if ((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull) { // G0_G1=11
y_exp = (y.w[1] << 2) & MASK_EXP; // biased and shifted left 49 bits
} else { // G0_G1 != 11
y_exp = y.w[1] & MASK_EXP; // biased and shifted left 49 bits
}
res = (x_exp == y_exp);
BID_RETURN (res);
}
#if DECIMAL_CALL_BY_REFERENCE
void
bid128_totalOrder (int *pres, UINT128 * px,
UINT128 * py _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
UINT128 x = *px;
UINT128 y = *py;
#else
int
bid128_totalOrder (UINT128 x,
UINT128 y _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
#endif
int res;
int exp_x, exp_y;
UINT128 sig_x, sig_y, pyld_y, pyld_x;
UINT192 sig_n_prime192;
UINT256 sig_n_prime256;
char x_is_zero = 0, y_is_zero = 0;
BID_SWAP128 (x);
BID_SWAP128 (y);
// NaN (CASE 1)
// if x and y are unordered numerically because either operand is NaN
// (1) totalOrder(-NaN, number) is true
// (2) totalOrder(number, +NaN) is true
// (3) if x and y are both NaN:
// i) negative sign bit < positive sign bit
// ii) signaling < quiet for +NaN, reverse for -NaN
// iii) lesser payload < greater payload for +NaN (reverse for -NaN)
// iv) else if bitwise identical (in canonical form), return 1
if ((x.w[1] & MASK_NAN) == MASK_NAN) {
// if x is -NaN
if ((x.w[1] & MASK_SIGN) == MASK_SIGN) {
// return true, unless y is -NaN also
if ((y.w[1] & MASK_NAN) != MASK_NAN
|| (y.w[1] & MASK_SIGN) != MASK_SIGN) {
res = 1; // y is a number, return 1
BID_RETURN (res);
} else { // if y and x are both -NaN
pyld_x.w[1] = x.w[1] & 0x00003fffffffffffull;
pyld_x.w[0] = x.w[0];
pyld_y.w[1] = y.w[1] & 0x00003fffffffffffull;
pyld_y.w[0] = y.w[0];
if ((pyld_x.w[1] > 0x0000314dc6448d93ull)
|| ((pyld_x.w[1] == 0x0000314dc6448d93ull)
&& (pyld_x.w[0] > 0x38c15b09ffffffffull))) {
pyld_x.w[1] = 0;
pyld_x.w[0] = 0;
}
if ((pyld_y.w[1] > 0x0000314dc6448d93ull)
|| ((pyld_y.w[1] == 0x0000314dc6448d93ull)
&& (pyld_y.w[0] > 0x38c15b09ffffffffull))) {
pyld_y.w[1] = 0;
pyld_y.w[0] = 0;
}
// if x and y are both -SNaN or both -QNaN, we have to compare payloads
// this statement evaluates to true if both are SNaN or QNaN
if (!
(((y.w[1] & MASK_SNAN) == MASK_SNAN) ^
((x.w[1] & MASK_SNAN) == MASK_SNAN))) {
// it comes down to the payload. we want to return true if x has a
// larger payload, or if the payloads are equal (canonical forms
// are bitwise identical)
if ((pyld_x.w[1] > pyld_y.w[1]) ||
((pyld_x.w[1] == pyld_y.w[1])
&& (pyld_x.w[0] >= pyld_y.w[0])))
res = 1;
else
res = 0;
BID_RETURN (res);
} else {
// either x = -SNaN and y = -QNaN or x = -QNaN and y = -SNaN
res = ((y.w[1] & MASK_SNAN) == MASK_SNAN);
// totalOrder (-QNaN, -SNaN) == 1
BID_RETURN (res);
}
}
} else { // x is +NaN
// return false, unless y is +NaN also
if ((y.w[1] & MASK_NAN) != MASK_NAN
|| (y.w[1] & MASK_SIGN) == MASK_SIGN) {
res = 0; // y is a number, return 1
BID_RETURN (res);
} else {
// x and y are both +NaN;
pyld_x.w[1] = x.w[1] & 0x00003fffffffffffull;
pyld_x.w[0] = x.w[0];
pyld_y.w[1] = y.w[1] & 0x00003fffffffffffull;
pyld_y.w[0] = y.w[0];
if ((pyld_x.w[1] > 0x0000314dc6448d93ull)
|| ((pyld_x.w[1] == 0x0000314dc6448d93ull)
&& (pyld_x.w[0] > 0x38c15b09ffffffffull))) {
pyld_x.w[1] = 0;
pyld_x.w[0] = 0;
}
if ((pyld_y.w[1] > 0x0000314dc6448d93ull)
|| ((pyld_y.w[1] == 0x0000314dc6448d93ull)
&& (pyld_y.w[0] > 0x38c15b09ffffffffull))) {
pyld_y.w[1] = 0;
pyld_y.w[0] = 0;
}
// if x and y are both +SNaN or both +QNaN, we have to compare payloads
// this statement evaluates to true if both are SNaN or QNaN
if (!
(((y.w[1] & MASK_SNAN) == MASK_SNAN) ^
((x.w[1] & MASK_SNAN) == MASK_SNAN))) {
// it comes down to the payload. we want to return true if x has a
// smaller payload, or if the payloads are equal (canonical forms
// are bitwise identical)
if ((pyld_x.w[1] < pyld_y.w[1]) ||
((pyld_x.w[1] == pyld_y.w[1])
&& (pyld_x.w[0] <= pyld_y.w[0])))
res = 1;
else
res = 0;
BID_RETURN (res);
} else {
// either x = SNaN and y = QNaN or x = QNaN and y = SNaN
res = ((x.w[1] & MASK_SNAN) == MASK_SNAN);
// totalOrder (-QNaN, -SNaN) == 1
BID_RETURN (res);
}
}
}
} else if ((y.w[1] & MASK_NAN) == MASK_NAN) {
// x is certainly not NAN in this case.
// return true if y is positive
res = ((y.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
// SIMPLE (CASE 2)
// if all the bits are the same, the numbers are equal.
if ((x.w[1] == y.w[1]) && (x.w[0] == y.w[0])) {
res = 1;
BID_RETURN (res);
}
// OPPOSITE SIGNS (CASE 3)
// if signs are opposite, return 1 if x is negative
// (if x < y, totalOrder is true)
if (((x.w[1] & MASK_SIGN) == MASK_SIGN) ^ ((y.w[1] & MASK_SIGN) ==
MASK_SIGN)) {
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
// INFINITY (CASE 4)
if ((x.w[1] & MASK_INF) == MASK_INF) {
// if x == neg_inf, return (y == neg_inf);
if ((x.w[1] & MASK_SIGN) == MASK_SIGN) {
res = 1;
BID_RETURN (res);
} else {
// x is positive infinity, only return1 if y is positive infinity as well
res = ((y.w[1] & MASK_INF) == MASK_INF);
BID_RETURN (res);
// && (y & MASK_SIGN) != MASK_SIGN); (we know y has same sign as x)
}
} else if ((y.w[1] & MASK_INF) == MASK_INF) {
// x is finite, so:
// if y is +inf, x<y
// if y is -inf, x>y
res = ((y.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
// CONVERT x
sig_x.w[1] = x.w[1] & 0x0001ffffffffffffull;
sig_x.w[0] = x.w[0];
exp_x = (x.w[1] >> 49) & 0x000000000003fffull;
// CHECK IF x IS CANONICAL
// 9999999999999999999999999999999999 (decimal) =
// 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal)
// [0, 10^34) is the 754r supported canonical range.
// If the value exceeds that, it is interpreted as 0.
if ((((sig_x.w[1] > 0x0001ed09bead87c0ull) ||
((sig_x.w[1] == 0x0001ed09bead87c0ull) &&
(sig_x.w[0] > 0x378d8e63ffffffffull))) &&
((x.w[1] & 0x6000000000000000ull) != 0x6000000000000000ull)) ||
((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull) ||
((sig_x.w[1] == 0) && (sig_x.w[0] == 0))) {
x_is_zero = 1;
// check for the case where the exponent is shifted right by 2 bits!
if ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull) {
exp_x = (x.w[1] >> 47) & 0x000000000003fffull;
}
}
// CONVERT y
exp_y = (y.w[1] >> 49) & 0x0000000000003fffull;
sig_y.w[1] = y.w[1] & 0x0001ffffffffffffull;
sig_y.w[0] = y.w[0];
// CHECK IF y IS CANONICAL
// 9999999999999999999999999999999999(decimal) =
// 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal)
// [0, 10^34) is the 754r supported canonical range.
// If the value exceeds that, it is interpreted as 0.
if ((((sig_y.w[1] > 0x0001ed09bead87c0ull) ||
((sig_y.w[1] == 0x0001ed09bead87c0ull) &&
(sig_y.w[0] > 0x378d8e63ffffffffull))) &&
((y.w[1] & 0x6000000000000000ull) != 0x6000000000000000ull)) ||
((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull) ||
((sig_y.w[1] == 0) && (sig_y.w[0] == 0))) {
y_is_zero = 1;
// check for the case where the exponent is shifted right by 2 bits!
if ((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull) {
exp_y = (y.w[1] >> 47) & 0x000000000003fffull;
}
}
// ZERO (CASE 5)
// if x and y represent the same entities, and both are negative
// return true iff exp_x <= exp_y
if (x_is_zero && y_is_zero) {
// we know that signs must be the same because we would have caught it
// in case3 if signs were different
// totalOrder(x,y) iff exp_x >= exp_y for negative numbers
// totalOrder(x,y) iff exp_x <= exp_y for positive numbers
if (exp_x == exp_y) {
res = 1;
BID_RETURN (res);
}
res = ((exp_x <= exp_y) ^ ((x.w[1] & MASK_SIGN) == MASK_SIGN));
BID_RETURN (res);
}
// if x is zero and y isn't, clearly x has the smaller payload
if (x_is_zero) {
res = ((y.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
// if y is zero, and x isn't, clearly y has the smaller payload
if (y_is_zero) {
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
// REDUNDANT REPRESENTATIONS (CASE 6)
// if both components are either bigger or smaller
if (((sig_x.w[1] > sig_y.w[1])
|| (sig_x.w[1] == sig_y.w[1] && sig_x.w[0] > sig_y.w[0]))
&& exp_x >= exp_y) {
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
if (((sig_x.w[1] < sig_y.w[1])
|| (sig_x.w[1] == sig_y.w[1] && sig_x.w[0] < sig_y.w[0]))
&& exp_x <= exp_y) {
res = ((x.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
// if |exp_x - exp_y| < 33, it comes down to the compensated significand
if (exp_x > exp_y) {
// if exp_x is 33 greater than exp_y, it is definitely larger,
// so no need for compensation
if (exp_x - exp_y > 33) {
res = ((x.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
// difference cannot be greater than 10^33
}
// otherwise adjust the x significand upwards
if (exp_x - exp_y > 19) {
__mul_128x128_to_256 (sig_n_prime256, sig_x,
ten2k128[exp_x - exp_y - 20]);
// the compensated significands are equal (ie "x and y represent the same
// entities") return 1 if (negative && expx > expy) ||
// (positive && expx < expy)
if ((sig_n_prime256.w[3] == 0) && (sig_n_prime256.w[2] == 0)
&& (sig_n_prime256.w[1] == sig_y.w[1])
&& (sig_n_prime256.w[0] == sig_y.w[0])) {
// the case exp_x == exp_y cannot occur, because all bits must be
// the same - would have been caught if (x == y)
res = ((exp_x <= exp_y) ^ ((x.w[1] & MASK_SIGN) == MASK_SIGN));
BID_RETURN (res);
}
// if positive, return 1 if adjusted x is smaller than y
res = (((sig_n_prime256.w[3] == 0) && (sig_n_prime256.w[2] == 0)
&& ((sig_n_prime256.w[1] < sig_y.w[1])
|| (sig_n_prime256.w[1] == sig_y.w[1]
&& sig_n_prime256.w[0] <
sig_y.w[0]))) ^ ((x.w[1] & MASK_SIGN) ==
MASK_SIGN));
BID_RETURN (res);
}
__mul_64x128_to_192 (sig_n_prime192, ten2k64[exp_x - exp_y], sig_x);
// if positive, return whichever significand is larger
// (converse if negative)
if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_y.w[1]
&& (sig_n_prime192.w[0] == sig_y.w[0])) {
res = ((exp_x <= exp_y) ^ ((x.w[1] & MASK_SIGN) == MASK_SIGN));
BID_RETURN (res);
}
res = (((sig_n_prime192.w[2] == 0)
&& ((sig_n_prime192.w[1] < sig_y.w[1])
|| (sig_n_prime192.w[1] == sig_y.w[1]
&& sig_n_prime192.w[0] <
sig_y.w[0]))) ^ ((x.w[1] & MASK_SIGN) ==
MASK_SIGN));
BID_RETURN (res);
}
// if exp_x is 33 less than exp_y, it is definitely smaller,
// no need for compensation
if (exp_y - exp_x > 33) {
res = ((x.w[1] & MASK_SIGN) != MASK_SIGN);
BID_RETURN (res);
}
if (exp_y - exp_x > 19) {
// adjust the y significand upwards
__mul_128x128_to_256 (sig_n_prime256, sig_y,
ten2k128[exp_y - exp_x - 20]);
// if x and y represent the same entities and both are negative
// return true iff exp_x <= exp_y
if ((sig_n_prime256.w[3] == 0) && (sig_n_prime256.w[2] == 0)
&& (sig_n_prime256.w[1] == sig_x.w[1])
&& (sig_n_prime256.w[0] == sig_x.w[0])) {
res = (exp_x <= exp_y) ^ ((x.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
// values are not equal, for positive numbers return 1 if x is less than y
// and 0 otherwise
res = (((sig_n_prime256.w[3] != 0) ||
// if upper128 bits of compensated y are non-zero, y is bigger
(sig_n_prime256.w[2] != 0) ||
// if upper128 bits of compensated y are non-zero, y is bigger
(sig_n_prime256.w[1] > sig_x.w[1]) ||
// if compensated y is bigger, y is bigger
(sig_n_prime256.w[1] == sig_x.w[1]
&& sig_n_prime256.w[0] >
sig_x.w[0])) ^ ((x.w[1] & MASK_SIGN) == MASK_SIGN));
BID_RETURN (res);
}
__mul_64x128_to_192 (sig_n_prime192, ten2k64[exp_y - exp_x], sig_y);
if ((sig_n_prime192.w[2] == 0) && (sig_n_prime192.w[1] == sig_x.w[1])
&& (sig_n_prime192.w[0] == sig_x.w[0])) {
res = (exp_x <= exp_y) ^ ((x.w[1] & MASK_SIGN) == MASK_SIGN);
BID_RETURN (res);
}
res = (((sig_n_prime192.w[2] != 0) ||
// if upper128 bits of compensated y are non-zero, y is bigger
(sig_n_prime192.w[1] > sig_x.w[1]) ||
// if compensated y is bigger, y is bigger
(sig_n_prime192.w[1] == sig_x.w[1]
&& sig_n_prime192.w[0] >
sig_x.w[0])) ^ ((x.w[1] & MASK_SIGN) == MASK_SIGN));
BID_RETURN (res);
}
#if DECIMAL_CALL_BY_REFERENCE
void
bid128_totalOrderMag (int *pres, UINT128 * px,
UINT128 * py _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
UINT128 x = *px;
UINT128 y = *py;
#else
int
bid128_totalOrderMag (UINT128 x,
UINT128 y _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
#endif
int res;
int exp_x, exp_y;
UINT128 sig_x, sig_y, pyld_y, pyld_x;
UINT192 sig_n_prime192;
UINT256 sig_n_prime256;
char x_is_zero = 0, y_is_zero = 0;
BID_SWAP128 (x);
BID_SWAP128 (y);
x.w[1] = x.w[1] & 0x7fffffffffffffffull;
y.w[1] = y.w[1] & 0x7fffffffffffffffull;
// NaN (CASE 1)
// if x and y are unordered numerically because either operand is NaN
// (1) totalOrder(number, +NaN) is true
// (2) if x and y are both NaN:
// i) signaling < quiet for +NaN
// ii) lesser payload < greater payload for +NaN
// iii) else if bitwise identical (in canonical form), return 1
if ((x.w[1] & MASK_NAN) == MASK_NAN) {
// x is +NaN
// return false, unless y is +NaN also
if ((y.w[1] & MASK_NAN) != MASK_NAN) {
res = 0; // y is a number, return 0
BID_RETURN (res);
} else {
// x and y are both +NaN;
pyld_x.w[1] = x.w[1] & 0x00003fffffffffffull;
pyld_x.w[0] = x.w[0];
pyld_y.w[1] = y.w[1] & 0x00003fffffffffffull;
pyld_y.w[0] = y.w[0];
if ((pyld_x.w[1] > 0x0000314dc6448d93ull)
|| ((pyld_x.w[1] == 0x0000314dc6448d93ull)
&& (pyld_x.w[0] > 0x38c15b09ffffffffull))) {
pyld_x.w[1] = 0;
pyld_x.w[0] = 0;
}
if ((pyld_y.w[1] > 0x0000314dc6448d93ull)
|| ((pyld_y.w[1] == 0x0000314dc6448d93ull)
&& (pyld_y.w[0] > 0x38c15b09ffffffffull))) {
pyld_y.w[1] = 0;
pyld_y.w[0] = 0;
}
// if x and y are both +SNaN or both +QNaN, we have to compare payloads
// this statement evaluates to true if both are SNaN or QNaN
if (!
(((y.w[1] & MASK_SNAN) == MASK_SNAN) ^
((x.w[1] & MASK_SNAN) == MASK_SNAN))) {
// it comes down to the payload. we want to return true if x has a
// smaller payload, or if the payloads are equal (canonical forms
// are bitwise identical)
if ((pyld_x.w[1] < pyld_y.w[1]) ||
((pyld_x.w[1] == pyld_y.w[1])
&& (pyld_x.w[0] <= pyld_y.w[0]))) {
res = 1;
} else {
res = 0;
}
BID_RETURN (res);
} else {
// either x = SNaN and y = QNaN or x = QNaN and y = SNaN
res = ((x.w[1] & MASK_SNAN) == MASK_SNAN);
// totalOrder (-QNaN, -SNaN) == 1
BID_RETURN (res);
}
}
} else if ((y.w[1] & MASK_NAN) == MASK_NAN) {
// x is certainly not NAN in this case.
// return true because y is positive
res = 1;
BID_RETURN (res);
}
// SIMPLE (CASE 2)
// if all the bits are the same, the numbers are equal.
if ((x.w[1] == y.w[1]) && (x.w[0] == y.w[0])) {
res = 1;
BID_RETURN (res);
}
// INFINITY (CASE 3)
if ((x.w[1] & MASK_INF) == MASK_INF) {
// x is positive infinity, only return 1 if y is positive infinity as well
res = ((y.w[1] & MASK_INF) == MASK_INF);
BID_RETURN (res);
// (we know y has same sign as x)
} else if ((y.w[1] & MASK_INF) == MASK_INF) {
// x is finite, so:
// since y is +inf, x<y
res = 1;
BID_RETURN (res);
} else {
; // continue
}
// CONVERT x
sig_x.w[1] = x.w[1] & 0x0001ffffffffffffull;
sig_x.w[0] = x.w[0];
exp_x = (x.w[1] >> 49) & 0x000000000003fffull;
// CHECK IF x IS CANONICAL
// 9999999999999999999999999999999999 (decimal) =
// 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal)
// [0, 10^34) is the 754r supported canonical range.
// If the value exceeds that, it is interpreted as 0.
if ((((sig_x.w[1] > 0x0001ed09bead87c0ull) ||
((sig_x.w[1] == 0x0001ed09bead87c0ull) &&
(sig_x.w[0] > 0x378d8e63ffffffffull))) &&
((x.w[1] & 0x6000000000000000ull) != 0x6000000000000000ull)) ||
((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull) ||
((sig_x.w[1] == 0) && (sig_x.w[0] == 0))) {
x_is_zero = 1;
// check for the case where the exponent is shifted right by 2 bits!
if ((x.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull) {
exp_x = (x.w[1] >> 47) & 0x000000000003fffull;
}
}
// CONVERT y
exp_y = (y.w[1] >> 49) & 0x0000000000003fffull;
sig_y.w[1] = y.w[1] & 0x0001ffffffffffffull;
sig_y.w[0] = y.w[0];
// CHECK IF y IS CANONICAL
// 9999999999999999999999999999999999(decimal) =
// 1ed09_bead87c0_378d8e63_ffffffff(hexadecimal)
// [0, 10^34) is the 754r supported canonical range.
// If the value exceeds that, it is interpreted as 0.
if ((((sig_y.w[1] > 0x0001ed09bead87c0ull) ||
((sig_y.w[1] == 0x0001ed09bead87c0ull) &&
(sig_y.w[0] > 0x378d8e63ffffffffull))) &&
((y.w[1] & 0x6000000000000000ull) != 0x6000000000000000ull)) ||
((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull) ||
((sig_y.w[1] == 0) && (sig_y.w[0] == 0))) {
y_is_zero = 1;
// check for the case where the exponent is shifted right by 2 bits!
if ((y.w[1] & 0x6000000000000000ull) == 0x6000000000000000ull) {
exp_y = (y.w[1] >> 47) & 0x000000000003fffull;
}
}
// ZERO (CASE 4)
if (x_is_zero && y_is_zero) {
// we know that signs must be the same because we would have caught it
// in case3 if signs were different
// totalOrder(x,y) iff exp_x <= exp_y for positive numbers
if (exp_x == exp_y) {
res = 1;
BID_RETURN (res);
}
res = (exp_x <= exp_y);
BID_RETURN (res);
}
// if x is zero and y isn't, clearly x has the smaller payload
if (x_is_zero) {
res = 1;
BID_RETURN (res);
}
// if y is zero, and x isn't, clearly y has the smaller payload
if (y_is_zero) {
res = 0;
BID_RETURN (res);
}
// REDUNDANT REPRESENTATIONS (CASE 5)
// if both components are either bigger or smaller
if (((sig_x.w[1] > sig_y.w[1])
|| (sig_x.w[1] == sig_y.w[1] && sig_x.w[0] > sig_y.w[0]))
&& exp_x >= exp_y) {
res = 0;
BID_RETURN (res);
}
if (((sig_x.w[1] < sig_y.w[1])
|| (sig_x.w[1] == sig_y.w[1] && sig_x.w[0] < sig_y.w[0]))
&& exp_x <= exp_y) {
res = 1;
BID_RETURN (res);
}
// if |exp_x - exp_y| < 33, it comes down to the compensated significand
if (exp_x > exp_y) {
// if exp_x is 33 greater than exp_y, it is definitely larger,
// so no need for compensation
if (exp_x - exp_y > 33) {
res = 0; // difference cannot be greater than 10^33
BID_RETURN (res);
}
// otherwise adjust the x significand upwards
if (exp_x - exp_y > 19) {
__mul_128x128_to_256 (sig_n_prime256, sig_x,
ten2k128[exp_x - exp_y - 20]);
// the compensated significands are equal (ie "x and y represent the same
// entities") return 1 if (negative && expx > expy) ||
// (positive && expx < expy)
if ((sig_n_prime256.w[3] == 0) && (sig_n_prime256.w[2] == 0)
&& (sig_n_prime256.w[1] == sig_y.w[1])
&& (sig_n_prime256.w[0] == sig_y.w[0])) {
// the case (exp_x == exp_y) cannot occur, because all bits must be
// the same - would have been caught if (x == y)
res = (exp_x <= exp_y);
BID_RETURN (res);
}
// since positive, return 1 if adjusted x is smaller than y
res = ((sig_n_prime256.w[3] == 0) && (sig_n_prime256.w[2] == 0)
&& ((sig_n_prime256.w[1] < sig_y.w[1])
|| (sig_n_prime256.w[1] == sig_y.w[1]
&& sig_n_prime256.w[0] < sig_y.w[0])));
BID_RETURN (res);
}
__mul_64x128_to_192 (sig_n_prime192, ten2k64[exp_x - exp_y], sig_x);
// if positive, return whichever significand is larger
// (converse if negative)
if ((sig_n_prime192.w[2] == 0) && sig_n_prime192.w[1] == sig_y.w[1]
&& (sig_n_prime192.w[0] == sig_y.w[0])) {
res = (exp_x <= exp_y);
BID_RETURN (res);
}
res = ((sig_n_prime192.w[2] == 0)
&& ((sig_n_prime192.w[1] < sig_y.w[1])
|| (sig_n_prime192.w[1] == sig_y.w[1]
&& sig_n_prime192.w[0] < sig_y.w[0])));
BID_RETURN (res);
}
// if exp_x is 33 less than exp_y, it is definitely smaller,
// no need for compensation
if (exp_y - exp_x > 33) {
res = 1;
BID_RETURN (res);
}
if (exp_y - exp_x > 19) {
// adjust the y significand upwards
__mul_128x128_to_256 (sig_n_prime256, sig_y,
ten2k128[exp_y - exp_x - 20]);
if ((sig_n_prime256.w[3] == 0) && (sig_n_prime256.w[2] == 0)
&& (sig_n_prime256.w[1] == sig_x.w[1])
&& (sig_n_prime256.w[0] == sig_x.w[0])) {
res = (exp_x <= exp_y);
BID_RETURN (res);
}
// values are not equal, for positive numbers return 1 if x is less than y
// and 0 otherwise
res = ((sig_n_prime256.w[3] != 0) ||
// if upper128 bits of compensated y are non-zero, y is bigger
(sig_n_prime256.w[2] != 0) ||
// if upper128 bits of compensated y are non-zero, y is bigger
(sig_n_prime256.w[1] > sig_x.w[1]) ||
// if compensated y is bigger, y is bigger
(sig_n_prime256.w[1] == sig_x.w[1]
&& sig_n_prime256.w[0] > sig_x.w[0]));
BID_RETURN (res);
}
__mul_64x128_to_192 (sig_n_prime192, ten2k64[exp_y - exp_x], sig_y);
if ((sig_n_prime192.w[2] == 0) && (sig_n_prime192.w[1] == sig_x.w[1])
&& (sig_n_prime192.w[0] == sig_x.w[0])) {
res = (exp_x <= exp_y);
BID_RETURN (res);
}
res = ((sig_n_prime192.w[2] != 0) ||
// if upper128 bits of compensated y are non-zero, y is bigger
(sig_n_prime192.w[1] > sig_x.w[1]) ||
// if compensated y is bigger, y is bigger
(sig_n_prime192.w[1] == sig_x.w[1]
&& sig_n_prime192.w[0] > sig_x.w[0]));
BID_RETURN (res);
}
#if DECIMAL_CALL_BY_REFERENCE
void
bid128_radix (int *pres, UINT128 * px _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
UINT128 x = *px;
#else
int
bid128_radix (UINT128 x _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
#endif
int res;
if (x.w[LOW_128W]) // dummy test
res = 10;
else
res = 10;
BID_RETURN (res);
}