5f9e56b3f2
* tree-ssa-ifcombine.c (get_name_for_bit_test): Use CONVERT_EXPR_P. * cp/typeck.c (is_bitfield_expr_with_lowered_type): Use CASE_CONVERT. (cp_build_unary_op): Likewise. (cp_build_indirect_ref): Use CONVERT_EXPR_P. (maybe_warn_about_returning_address_of_local): Likewise. From-SVN: r136273
653 lines
18 KiB
C
653 lines
18 KiB
C
/* Combining of if-expressions on trees.
|
|
Copyright (C) 2007 Free Software Foundation, Inc.
|
|
Contributed by Richard Guenther <rguenther@suse.de>
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3, or (at your option)
|
|
any later version.
|
|
|
|
GCC is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "tm.h"
|
|
#include "tree.h"
|
|
#include "basic-block.h"
|
|
#include "timevar.h"
|
|
#include "diagnostic.h"
|
|
#include "tree-flow.h"
|
|
#include "tree-pass.h"
|
|
#include "tree-dump.h"
|
|
|
|
/* This pass combines COND_EXPRs to simplify control flow. It
|
|
currently recognizes bit tests and comparisons in chains that
|
|
represent logical and or logical or of two COND_EXPRs.
|
|
|
|
It does so by walking basic blocks in a approximate reverse
|
|
post-dominator order and trying to match CFG patterns that
|
|
represent logical and or logical or of two COND_EXPRs.
|
|
Transformations are done if the COND_EXPR conditions match
|
|
either
|
|
|
|
1. two single bit tests X & (1 << Yn) (for logical and)
|
|
|
|
2. two bit tests X & Yn (for logical or)
|
|
|
|
3. two comparisons X OPn Y (for logical or)
|
|
|
|
To simplify this pass, removing basic blocks and dead code
|
|
is left to CFG cleanup and DCE. */
|
|
|
|
|
|
/* Recognize a if-then-else CFG pattern starting to match with the
|
|
COND_BB basic-block containing the COND_EXPR. The recognized
|
|
then end else blocks are stored to *THEN_BB and *ELSE_BB. If
|
|
*THEN_BB and/or *ELSE_BB are already set, they are required to
|
|
match the then and else basic-blocks to make the pattern match.
|
|
Returns true if the pattern matched, false otherwise. */
|
|
|
|
static bool
|
|
recognize_if_then_else (basic_block cond_bb,
|
|
basic_block *then_bb, basic_block *else_bb)
|
|
{
|
|
edge t, e;
|
|
|
|
if (EDGE_COUNT (cond_bb->succs) != 2)
|
|
return false;
|
|
|
|
/* Find the then/else edges. */
|
|
t = EDGE_SUCC (cond_bb, 0);
|
|
e = EDGE_SUCC (cond_bb, 1);
|
|
if (!(t->flags & EDGE_TRUE_VALUE))
|
|
{
|
|
edge tmp = t;
|
|
t = e;
|
|
e = tmp;
|
|
}
|
|
if (!(t->flags & EDGE_TRUE_VALUE)
|
|
|| !(e->flags & EDGE_FALSE_VALUE))
|
|
return false;
|
|
|
|
/* Check if the edge destinations point to the required block. */
|
|
if (*then_bb
|
|
&& t->dest != *then_bb)
|
|
return false;
|
|
if (*else_bb
|
|
&& e->dest != *else_bb)
|
|
return false;
|
|
|
|
if (!*then_bb)
|
|
*then_bb = t->dest;
|
|
if (!*else_bb)
|
|
*else_bb = e->dest;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Verify if the basic block BB does not have side-effects. Return
|
|
true in this case, else false. */
|
|
|
|
static bool
|
|
bb_no_side_effects_p (basic_block bb)
|
|
{
|
|
block_stmt_iterator bsi;
|
|
|
|
for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
|
|
{
|
|
tree stmt = bsi_stmt (bsi);
|
|
stmt_ann_t ann = stmt_ann (stmt);
|
|
|
|
if (ann->has_volatile_ops
|
|
|| !ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Verify if all PHI node arguments in DEST for edges from BB1 or
|
|
BB2 to DEST are the same. This makes the CFG merge point
|
|
free from side-effects. Return true in this case, else false. */
|
|
|
|
static bool
|
|
same_phi_args_p (basic_block bb1, basic_block bb2, basic_block dest)
|
|
{
|
|
edge e1 = find_edge (bb1, dest);
|
|
edge e2 = find_edge (bb2, dest);
|
|
tree phi;
|
|
|
|
for (phi = phi_nodes (dest); phi; phi = PHI_CHAIN (phi))
|
|
if (!operand_equal_p (PHI_ARG_DEF_FROM_EDGE (phi, e1),
|
|
PHI_ARG_DEF_FROM_EDGE (phi, e2), 0))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Return the best representative SSA name for CANDIDATE which is used
|
|
in a bit test. */
|
|
|
|
static tree
|
|
get_name_for_bit_test (tree candidate)
|
|
{
|
|
/* Skip single-use names in favor of using the name from a
|
|
non-widening conversion definition. */
|
|
if (TREE_CODE (candidate) == SSA_NAME
|
|
&& has_single_use (candidate))
|
|
{
|
|
tree def_stmt = SSA_NAME_DEF_STMT (candidate);
|
|
if (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
|
|
&& CONVERT_EXPR_P (GIMPLE_STMT_OPERAND (def_stmt, 1)))
|
|
{
|
|
tree rhs = GIMPLE_STMT_OPERAND (def_stmt, 1);
|
|
if (TYPE_PRECISION (TREE_TYPE (rhs))
|
|
<= TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (rhs, 0))))
|
|
return TREE_OPERAND (rhs, 0);
|
|
}
|
|
}
|
|
|
|
return candidate;
|
|
}
|
|
|
|
/* Recognize a single bit test pattern in COND_EXPR and its defining
|
|
statements. Store the name being tested in *NAME and the bit
|
|
in *BIT. The COND_EXPR computes *NAME & (1 << *BIT).
|
|
Returns true if the pattern matched, false otherwise. */
|
|
|
|
static bool
|
|
recognize_single_bit_test (tree cond_expr, tree *name, tree *bit)
|
|
{
|
|
tree t;
|
|
|
|
/* Get at the definition of the result of the bit test. */
|
|
t = TREE_OPERAND (cond_expr, 0);
|
|
if (TREE_CODE (t) == NE_EXPR
|
|
&& integer_zerop (TREE_OPERAND (t, 1)))
|
|
t = TREE_OPERAND (t, 0);
|
|
if (TREE_CODE (t) != SSA_NAME)
|
|
return false;
|
|
t = SSA_NAME_DEF_STMT (t);
|
|
if (TREE_CODE (t) != GIMPLE_MODIFY_STMT)
|
|
return false;
|
|
t = GIMPLE_STMT_OPERAND (t, 1);
|
|
|
|
/* Look at which bit is tested. One form to recognize is
|
|
D.1985_5 = state_3(D) >> control1_4(D);
|
|
D.1986_6 = (int) D.1985_5;
|
|
D.1987_7 = op0 & 1;
|
|
if (D.1987_7 != 0) */
|
|
if (TREE_CODE (t) == BIT_AND_EXPR
|
|
&& integer_onep (TREE_OPERAND (t, 1))
|
|
&& TREE_CODE (TREE_OPERAND (t, 0)) == SSA_NAME)
|
|
{
|
|
tree orig_name = TREE_OPERAND (t, 0);
|
|
|
|
/* Look through copies and conversions to eventually
|
|
find the stmt that computes the shift. */
|
|
t = orig_name;
|
|
do {
|
|
t = SSA_NAME_DEF_STMT (t);
|
|
if (TREE_CODE (t) != GIMPLE_MODIFY_STMT)
|
|
break;
|
|
t = GIMPLE_STMT_OPERAND (t, 1);
|
|
if (CONVERT_EXPR_P (t))
|
|
t = TREE_OPERAND (t, 0);
|
|
} while (TREE_CODE (t) == SSA_NAME);
|
|
|
|
/* If we found such, decompose it. */
|
|
if (TREE_CODE (t) == RSHIFT_EXPR)
|
|
{
|
|
/* op0 & (1 << op1) */
|
|
*bit = TREE_OPERAND (t, 1);
|
|
*name = TREE_OPERAND (t, 0);
|
|
}
|
|
else
|
|
{
|
|
/* t & 1 */
|
|
*bit = integer_zero_node;
|
|
*name = get_name_for_bit_test (orig_name);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Another form is
|
|
D.1987_7 = op0 & (1 << CST)
|
|
if (D.1987_7 != 0) */
|
|
if (TREE_CODE (t) == BIT_AND_EXPR
|
|
&& TREE_CODE (TREE_OPERAND (t, 0)) == SSA_NAME
|
|
&& integer_pow2p (TREE_OPERAND (t, 1)))
|
|
{
|
|
*name = TREE_OPERAND (t, 0);
|
|
*bit = build_int_cst (integer_type_node,
|
|
tree_log2 (TREE_OPERAND (t, 1)));
|
|
return true;
|
|
}
|
|
|
|
/* Another form is
|
|
D.1986_6 = 1 << control1_4(D)
|
|
D.1987_7 = op0 & D.1986_6
|
|
if (D.1987_7 != 0) */
|
|
if (TREE_CODE (t) == BIT_AND_EXPR
|
|
&& TREE_CODE (TREE_OPERAND (t, 0)) == SSA_NAME
|
|
&& TREE_CODE (TREE_OPERAND (t, 1)) == SSA_NAME)
|
|
{
|
|
tree tmp;
|
|
|
|
/* Both arguments of the BIT_AND_EXPR can be the single-bit
|
|
specifying expression. */
|
|
tmp = SSA_NAME_DEF_STMT (TREE_OPERAND (t, 0));
|
|
if (TREE_CODE (tmp) == GIMPLE_MODIFY_STMT
|
|
&& TREE_CODE (GIMPLE_STMT_OPERAND (tmp, 1)) == LSHIFT_EXPR
|
|
&& integer_onep (TREE_OPERAND (GIMPLE_STMT_OPERAND (tmp, 1), 0)))
|
|
{
|
|
*name = TREE_OPERAND (t, 1);
|
|
*bit = TREE_OPERAND (GIMPLE_STMT_OPERAND (tmp, 1), 1);
|
|
return true;
|
|
}
|
|
|
|
tmp = SSA_NAME_DEF_STMT (TREE_OPERAND (t, 1));
|
|
if (TREE_CODE (tmp) == GIMPLE_MODIFY_STMT
|
|
&& TREE_CODE (GIMPLE_STMT_OPERAND (tmp, 1)) == LSHIFT_EXPR
|
|
&& integer_onep (TREE_OPERAND (GIMPLE_STMT_OPERAND (tmp, 1), 0)))
|
|
{
|
|
*name = TREE_OPERAND (t, 0);
|
|
*bit = TREE_OPERAND (GIMPLE_STMT_OPERAND (tmp, 1), 1);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Recognize a bit test pattern in COND_EXPR and its defining
|
|
statements. Store the name being tested in *NAME and the bits
|
|
in *BITS. The COND_EXPR computes *NAME & *BITS.
|
|
Returns true if the pattern matched, false otherwise. */
|
|
|
|
static bool
|
|
recognize_bits_test (tree cond_expr, tree *name, tree *bits)
|
|
{
|
|
tree t;
|
|
|
|
/* Get at the definition of the result of the bit test. */
|
|
t = TREE_OPERAND (cond_expr, 0);
|
|
if (TREE_CODE (t) == NE_EXPR
|
|
&& integer_zerop (TREE_OPERAND (t, 1)))
|
|
t = TREE_OPERAND (t, 0);
|
|
if (TREE_CODE (t) != SSA_NAME)
|
|
return false;
|
|
t = SSA_NAME_DEF_STMT (t);
|
|
if (TREE_CODE (t) != GIMPLE_MODIFY_STMT)
|
|
return false;
|
|
t = GIMPLE_STMT_OPERAND (t, 1);
|
|
|
|
if (TREE_CODE (t) != BIT_AND_EXPR)
|
|
return false;
|
|
|
|
*name = get_name_for_bit_test (TREE_OPERAND (t, 0));
|
|
*bits = TREE_OPERAND (t, 1);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* If-convert on a and pattern with a common else block. The inner
|
|
if is specified by its INNER_COND_BB, the outer by OUTER_COND_BB.
|
|
Returns true if the edges to the common else basic-block were merged. */
|
|
|
|
static bool
|
|
ifcombine_ifandif (basic_block inner_cond_bb, basic_block outer_cond_bb)
|
|
{
|
|
block_stmt_iterator bsi;
|
|
tree inner_cond, outer_cond;
|
|
tree name1, name2, bit1, bit2;
|
|
|
|
inner_cond = last_stmt (inner_cond_bb);
|
|
if (!inner_cond
|
|
|| TREE_CODE (inner_cond) != COND_EXPR)
|
|
return false;
|
|
|
|
outer_cond = last_stmt (outer_cond_bb);
|
|
if (!outer_cond
|
|
|| TREE_CODE (outer_cond) != COND_EXPR)
|
|
return false;
|
|
|
|
/* See if we test a single bit of the same name in both tests. In
|
|
that case remove the outer test, merging both else edges,
|
|
and change the inner one to test for
|
|
name & (bit1 | bit2) == (bit1 | bit2). */
|
|
if (recognize_single_bit_test (inner_cond, &name1, &bit1)
|
|
&& recognize_single_bit_test (outer_cond, &name2, &bit2)
|
|
&& name1 == name2)
|
|
{
|
|
tree t, t2;
|
|
|
|
/* Do it. */
|
|
bsi = bsi_for_stmt (inner_cond);
|
|
t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (name1),
|
|
build_int_cst (TREE_TYPE (name1), 1), bit1);
|
|
t2 = fold_build2 (LSHIFT_EXPR, TREE_TYPE (name1),
|
|
build_int_cst (TREE_TYPE (name1), 1), bit2);
|
|
t = fold_build2 (BIT_IOR_EXPR, TREE_TYPE (name1), t, t2);
|
|
t = force_gimple_operand_bsi (&bsi, t, true, NULL_TREE,
|
|
true, BSI_SAME_STMT);
|
|
t2 = fold_build2 (BIT_AND_EXPR, TREE_TYPE (name1), name1, t);
|
|
t2 = force_gimple_operand_bsi (&bsi, t2, true, NULL_TREE,
|
|
true, BSI_SAME_STMT);
|
|
COND_EXPR_COND (inner_cond) = fold_build2 (EQ_EXPR, boolean_type_node,
|
|
t2, t);
|
|
update_stmt (inner_cond);
|
|
|
|
/* Leave CFG optimization to cfg_cleanup. */
|
|
COND_EXPR_COND (outer_cond) = boolean_true_node;
|
|
update_stmt (outer_cond);
|
|
|
|
if (dump_file)
|
|
{
|
|
fprintf (dump_file, "optimizing double bit test to ");
|
|
print_generic_expr (dump_file, name1, 0);
|
|
fprintf (dump_file, " & T == T\nwith temporary T = (1 << ");
|
|
print_generic_expr (dump_file, bit1, 0);
|
|
fprintf (dump_file, ") | (1 << ");
|
|
print_generic_expr (dump_file, bit2, 0);
|
|
fprintf (dump_file, ")\n");
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* If-convert on a or pattern with a common then block. The inner
|
|
if is specified by its INNER_COND_BB, the outer by OUTER_COND_BB.
|
|
Returns true, if the edges leading to the common then basic-block
|
|
were merged. */
|
|
|
|
static bool
|
|
ifcombine_iforif (basic_block inner_cond_bb, basic_block outer_cond_bb)
|
|
{
|
|
tree inner_cond, outer_cond;
|
|
tree name1, name2, bits1, bits2;
|
|
|
|
inner_cond = last_stmt (inner_cond_bb);
|
|
if (!inner_cond
|
|
|| TREE_CODE (inner_cond) != COND_EXPR)
|
|
return false;
|
|
|
|
outer_cond = last_stmt (outer_cond_bb);
|
|
if (!outer_cond
|
|
|| TREE_CODE (outer_cond) != COND_EXPR)
|
|
return false;
|
|
|
|
/* See if we have two bit tests of the same name in both tests.
|
|
In that case remove the outer test and change the inner one to
|
|
test for name & (bits1 | bits2) != 0. */
|
|
if (recognize_bits_test (inner_cond, &name1, &bits1)
|
|
&& recognize_bits_test (outer_cond, &name2, &bits2))
|
|
{
|
|
block_stmt_iterator bsi;
|
|
tree t;
|
|
|
|
/* Find the common name which is bit-tested. */
|
|
if (name1 == name2)
|
|
;
|
|
else if (bits1 == bits2)
|
|
{
|
|
t = name2;
|
|
name2 = bits2;
|
|
bits2 = t;
|
|
t = name1;
|
|
name1 = bits1;
|
|
bits1 = t;
|
|
}
|
|
else if (name1 == bits2)
|
|
{
|
|
t = name2;
|
|
name2 = bits2;
|
|
bits2 = t;
|
|
}
|
|
else if (bits1 == name2)
|
|
{
|
|
t = name1;
|
|
name1 = bits1;
|
|
bits1 = t;
|
|
}
|
|
else
|
|
return false;
|
|
|
|
/* Do it. */
|
|
bsi = bsi_for_stmt (inner_cond);
|
|
t = fold_build2 (BIT_IOR_EXPR, TREE_TYPE (name1), bits1, bits2);
|
|
t = force_gimple_operand_bsi (&bsi, t, true, NULL_TREE,
|
|
true, BSI_SAME_STMT);
|
|
t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (name1), name1, t);
|
|
t = force_gimple_operand_bsi (&bsi, t, true, NULL_TREE,
|
|
true, BSI_SAME_STMT);
|
|
COND_EXPR_COND (inner_cond) = fold_build2 (NE_EXPR, boolean_type_node, t,
|
|
build_int_cst (TREE_TYPE (t), 0));
|
|
update_stmt (inner_cond);
|
|
|
|
/* Leave CFG optimization to cfg_cleanup. */
|
|
COND_EXPR_COND (outer_cond) = boolean_false_node;
|
|
update_stmt (outer_cond);
|
|
|
|
if (dump_file)
|
|
{
|
|
fprintf (dump_file, "optimizing bits or bits test to ");
|
|
print_generic_expr (dump_file, name1, 0);
|
|
fprintf (dump_file, " & T != 0\nwith temporary T = ");
|
|
print_generic_expr (dump_file, bits1, 0);
|
|
fprintf (dump_file, " | ");
|
|
print_generic_expr (dump_file, bits2, 0);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* See if we have two comparisons that we can merge into one.
|
|
This happens for C++ operator overloading where for example
|
|
GE_EXPR is implemented as GT_EXPR || EQ_EXPR. */
|
|
else if (COMPARISON_CLASS_P (COND_EXPR_COND (inner_cond))
|
|
&& COMPARISON_CLASS_P (COND_EXPR_COND (outer_cond))
|
|
&& operand_equal_p (TREE_OPERAND (COND_EXPR_COND (inner_cond), 0),
|
|
TREE_OPERAND (COND_EXPR_COND (outer_cond), 0), 0)
|
|
&& operand_equal_p (TREE_OPERAND (COND_EXPR_COND (inner_cond), 1),
|
|
TREE_OPERAND (COND_EXPR_COND (outer_cond), 1), 0))
|
|
{
|
|
tree ccond1 = COND_EXPR_COND (inner_cond);
|
|
tree ccond2 = COND_EXPR_COND (outer_cond);
|
|
enum tree_code code1 = TREE_CODE (ccond1);
|
|
enum tree_code code2 = TREE_CODE (ccond2);
|
|
enum tree_code code;
|
|
tree t;
|
|
|
|
#define CHK(a,b) ((code1 == a ## _EXPR && code2 == b ## _EXPR) \
|
|
|| (code2 == a ## _EXPR && code1 == b ## _EXPR))
|
|
/* Merge the two condition codes if possible. */
|
|
if (code1 == code2)
|
|
code = code1;
|
|
else if (CHK (EQ, LT))
|
|
code = LE_EXPR;
|
|
else if (CHK (EQ, GT))
|
|
code = GE_EXPR;
|
|
else if (CHK (LT, LE))
|
|
code = LE_EXPR;
|
|
else if (CHK (GT, GE))
|
|
code = GE_EXPR;
|
|
else if (INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (ccond1, 0)))
|
|
|| flag_unsafe_math_optimizations)
|
|
{
|
|
if (CHK (LT, GT))
|
|
code = NE_EXPR;
|
|
else if (CHK (LT, NE))
|
|
code = NE_EXPR;
|
|
else if (CHK (GT, NE))
|
|
code = NE_EXPR;
|
|
else
|
|
return false;
|
|
}
|
|
/* We could check for combinations leading to trivial true/false. */
|
|
else
|
|
return false;
|
|
#undef CHK
|
|
|
|
/* Do it. */
|
|
t = fold_build2 (code, boolean_type_node,
|
|
TREE_OPERAND (ccond2, 0), TREE_OPERAND (ccond2, 1));
|
|
t = canonicalize_cond_expr_cond (t);
|
|
if (!t)
|
|
return false;
|
|
COND_EXPR_COND (inner_cond) = t;
|
|
update_stmt (inner_cond);
|
|
|
|
/* Leave CFG optimization to cfg_cleanup. */
|
|
COND_EXPR_COND (outer_cond) = boolean_false_node;
|
|
update_stmt (outer_cond);
|
|
|
|
if (dump_file)
|
|
{
|
|
fprintf (dump_file, "optimizing two comparisons to ");
|
|
print_generic_expr (dump_file, t, 0);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Recognize a CFG pattern and dispatch to the appropriate
|
|
if-conversion helper. We start with BB as the innermost
|
|
worker basic-block. Returns true if a transformation was done. */
|
|
|
|
static bool
|
|
tree_ssa_ifcombine_bb (basic_block inner_cond_bb)
|
|
{
|
|
basic_block then_bb = NULL, else_bb = NULL;
|
|
|
|
if (!recognize_if_then_else (inner_cond_bb, &then_bb, &else_bb))
|
|
return false;
|
|
|
|
/* Recognize && and || of two conditions with a common
|
|
then/else block which entry edges we can merge. That is:
|
|
if (a || b)
|
|
;
|
|
and
|
|
if (a && b)
|
|
;
|
|
This requires a single predecessor of the inner cond_bb. */
|
|
if (single_pred_p (inner_cond_bb))
|
|
{
|
|
basic_block outer_cond_bb = single_pred (inner_cond_bb);
|
|
|
|
/* The && form is characterized by a common else_bb with
|
|
the two edges leading to it mergable. The latter is
|
|
guaranteed by matching PHI arguments in the else_bb and
|
|
the inner cond_bb having no side-effects. */
|
|
if (recognize_if_then_else (outer_cond_bb, &inner_cond_bb, &else_bb)
|
|
&& same_phi_args_p (outer_cond_bb, inner_cond_bb, else_bb)
|
|
&& bb_no_side_effects_p (inner_cond_bb))
|
|
{
|
|
/* We have
|
|
<outer_cond_bb>
|
|
if (q) goto inner_cond_bb; else goto else_bb;
|
|
<inner_cond_bb>
|
|
if (p) goto ...; else goto else_bb;
|
|
...
|
|
<else_bb>
|
|
...
|
|
*/
|
|
return ifcombine_ifandif (inner_cond_bb, outer_cond_bb);
|
|
}
|
|
|
|
/* The || form is characterized by a common then_bb with the
|
|
two edges leading to it mergable. The latter is guaranteed
|
|
by matching PHI arguments in the then_bb and the inner cond_bb
|
|
having no side-effects. */
|
|
if (recognize_if_then_else (outer_cond_bb, &then_bb, &inner_cond_bb)
|
|
&& same_phi_args_p (outer_cond_bb, inner_cond_bb, then_bb)
|
|
&& bb_no_side_effects_p (inner_cond_bb))
|
|
{
|
|
/* We have
|
|
<outer_cond_bb>
|
|
if (q) goto then_bb; else goto inner_cond_bb;
|
|
<inner_cond_bb>
|
|
if (q) goto then_bb; else goto ...;
|
|
<then_bb>
|
|
...
|
|
*/
|
|
return ifcombine_iforif (inner_cond_bb, outer_cond_bb);
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Main entry for the tree if-conversion pass. */
|
|
|
|
static unsigned int
|
|
tree_ssa_ifcombine (void)
|
|
{
|
|
basic_block *bbs;
|
|
bool cfg_changed = false;
|
|
int i;
|
|
|
|
bbs = blocks_in_phiopt_order ();
|
|
|
|
for (i = 0; i < n_basic_blocks - NUM_FIXED_BLOCKS; ++i)
|
|
{
|
|
basic_block bb = bbs[i];
|
|
tree stmt = last_stmt (bb);
|
|
|
|
if (stmt
|
|
&& TREE_CODE (stmt) == COND_EXPR)
|
|
cfg_changed |= tree_ssa_ifcombine_bb (bb);
|
|
}
|
|
|
|
free (bbs);
|
|
|
|
return cfg_changed ? TODO_cleanup_cfg : 0;
|
|
}
|
|
|
|
static bool
|
|
gate_ifcombine (void)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
struct gimple_opt_pass pass_tree_ifcombine =
|
|
{
|
|
{
|
|
GIMPLE_PASS,
|
|
"ifcombine", /* name */
|
|
gate_ifcombine, /* gate */
|
|
tree_ssa_ifcombine, /* execute */
|
|
NULL, /* sub */
|
|
NULL, /* next */
|
|
0, /* static_pass_number */
|
|
TV_TREE_IFCOMBINE, /* tv_id */
|
|
PROP_cfg | PROP_ssa, /* properties_required */
|
|
0, /* properties_provided */
|
|
0, /* properties_destroyed */
|
|
0, /* todo_flags_start */
|
|
TODO_dump_func
|
|
| TODO_ggc_collect
|
|
| TODO_update_ssa
|
|
| TODO_verify_ssa /* todo_flags_finish */
|
|
}
|
|
};
|