gcc/libstdc++-v3/include/parallel/multiway_merge.h
Johannes Singler 740936e08e multiway_merge.h: Removed Timing<inactive_tag>
2007-10-25  Johannes Singler  <singler@ira.uka.de>

      * include/parallel/multiway_merge.h: Removed Timing<inactive_tag>
      * include/parallel/random_shuffle.h: Same
      * include/parallel/set_operations.h: Same
      * include/parallel/tree.h: Same
      * include/parallel/multiway_mergesort.h: Same
      * include/parallel/timing.h: Removed completely

From-SVN: r129629
2007-10-25 17:07:56 +00:00

1572 lines
51 KiB
C++

// -*- C++ -*-
// Copyright (C) 2007 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the terms
// of the GNU General Public License as published by the Free Software
// Foundation; either version 2, or (at your option) any later
// version.
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this library; see the file COPYING. If not, write to
// the Free Software Foundation, 59 Temple Place - Suite 330, Boston,
// MA 02111-1307, USA.
// As a special exception, you may use this file as part of a free
// software library without restriction. Specifically, if other files
// instantiate templates or use macros or inline functions from this
// file, or you compile this file and link it with other files to
// produce an executable, this file does not by itself cause the
// resulting executable to be covered by the GNU General Public
// License. This exception does not however invalidate any other
// reasons why the executable file might be covered by the GNU General
// Public License.
/** @file parallel/multiway_merge.h
* @brief Implementation of sequential and parallel multiway merge.
*
* Explanations on the high-speed merging routines in the appendix of
*
* P. Sanders.
* Fast priority queues for cached memory.
* ACM Journal of Experimental Algorithmics, 5, 2000.
*
* This file is a GNU parallel extension to the Standard C++ Library.
*/
// Written by Johannes Singler.
#ifndef _GLIBCXX_PARALLEL_MULTIWAY_MERGE_H
#define _GLIBCXX_PARALLEL_MULTIWAY_MERGE_H
#include <vector>
#include <bits/stl_algo.h>
#include <parallel/features.h>
#include <parallel/parallel.h>
#include <parallel/merge.h>
#include <parallel/losertree.h>
#if _GLIBCXX_ASSERTIONS
#include <parallel/checkers.h>
#endif
/** @brief Length of a sequence described by a pair of iterators. */
#define LENGTH(s) ((s).second - (s).first)
// XXX need iterator typedefs
namespace __gnu_parallel
{
template<typename RandomAccessIterator, typename Comparator>
class guarded_iterator;
template<typename RandomAccessIterator, typename Comparator>
inline bool
operator<(guarded_iterator<RandomAccessIterator, Comparator>& bi1,
guarded_iterator<RandomAccessIterator, Comparator>& bi2);
template<typename RandomAccessIterator, typename Comparator>
inline bool
operator<=(guarded_iterator<RandomAccessIterator, Comparator>& bi1,
guarded_iterator<RandomAccessIterator, Comparator>& bi2);
/** @brief Iterator wrapper supporting an implicit supremum at the end
of the sequence, dominating all comparisons.
* Deriving from RandomAccessIterator is not possible since
* RandomAccessIterator need not be a class.
*/
template<typename RandomAccessIterator, typename Comparator>
class guarded_iterator
{
private:
/** @brief Current iterator position. */
RandomAccessIterator current;
/** @brief End iterator of the sequence. */
RandomAccessIterator end;
/** @brief Comparator. */
Comparator& comp;
public:
/** @brief Constructor. Sets iterator to beginning of sequence.
* @param begin Begin iterator of sequence.
* @param end End iterator of sequence.
* @param comp Comparator provided for associated overloaded
* compare operators. */
inline guarded_iterator(RandomAccessIterator begin,
RandomAccessIterator end, Comparator& comp)
: current(begin), end(end), comp(comp)
{ }
/** @brief Pre-increment operator.
* @return This. */
inline guarded_iterator<RandomAccessIterator, Comparator>&
operator++()
{
++current;
return *this;
}
/** @brief Dereference operator.
* @return Referenced element. */
inline typename std::iterator_traits<RandomAccessIterator>::value_type
operator*()
{ return *current; }
/** @brief Convert to wrapped iterator.
* @return Wrapped iterator. */
inline operator RandomAccessIterator()
{ return current; }
friend bool
operator< <RandomAccessIterator, Comparator>(guarded_iterator<RandomAccessIterator, Comparator>& bi1, guarded_iterator<RandomAccessIterator, Comparator>& bi2);
friend bool
operator<= <RandomAccessIterator, Comparator>(guarded_iterator<RandomAccessIterator, Comparator>& bi1, guarded_iterator<RandomAccessIterator, Comparator>& bi2);
};
/** @brief Compare two elements referenced by guarded iterators.
* @param bi1 First iterator.
* @param bi2 Second iterator.
* @return @c True if less. */
template<typename RandomAccessIterator, typename Comparator>
inline bool
operator<(guarded_iterator<RandomAccessIterator, Comparator>& bi1,
guarded_iterator<RandomAccessIterator, Comparator>& bi2)
{
if (bi1.current == bi1.end) //bi1 is sup
return bi2.current == bi2.end; //bi2 is not sup
if (bi2.current == bi2.end) //bi2 is sup
return true;
return (bi1.comp)(*bi1, *bi2); //normal compare
}
/** @brief Compare two elements referenced by guarded iterators.
* @param bi1 First iterator.
* @param bi2 Second iterator.
* @return @c True if less equal. */
template<typename RandomAccessIterator, typename Comparator>
inline bool
operator<=(guarded_iterator<RandomAccessIterator, Comparator>& bi1,
guarded_iterator<RandomAccessIterator, Comparator>& bi2)
{
if (bi2.current == bi2.end) //bi1 is sup
return bi1.current != bi1.end; //bi2 is not sup
if (bi1.current == bi1.end) //bi2 is sup
return false;
return !(bi1.comp)(*bi2, *bi1); //normal compare
}
template<typename RandomAccessIterator, typename Comparator>
class unguarded_iterator;
template<typename RandomAccessIterator, typename Comparator>
inline bool
operator<(unguarded_iterator<RandomAccessIterator, Comparator>& bi1,
unguarded_iterator<RandomAccessIterator, Comparator>& bi2);
template<typename RandomAccessIterator, typename Comparator>
inline bool
operator<=(unguarded_iterator<RandomAccessIterator, Comparator>& bi1,
unguarded_iterator<RandomAccessIterator, Comparator>& bi2);
template<typename RandomAccessIterator, typename Comparator>
class unguarded_iterator
{
private:
/** @brief Current iterator position. */
RandomAccessIterator& current;
/** @brief Comparator. */
mutable Comparator& comp;
public:
/** @brief Constructor. Sets iterator to beginning of sequence.
* @param begin Begin iterator of sequence.
* @param end Unused, only for compatibility.
* @param comp Unused, only for compatibility. */
inline unguarded_iterator(RandomAccessIterator begin,
RandomAccessIterator end, Comparator& comp)
: current(begin), comp(comp)
{ }
/** @brief Pre-increment operator.
* @return This. */
inline unguarded_iterator<RandomAccessIterator, Comparator>&
operator++()
{
current++;
return *this;
}
/** @brief Dereference operator.
* @return Referenced element. */
inline typename std::iterator_traits<RandomAccessIterator>::value_type
operator*()
{ return *current; }
/** @brief Convert to wrapped iterator.
* @return Wrapped iterator. */
inline
operator RandomAccessIterator()
{ return current; }
friend bool
operator< <RandomAccessIterator, Comparator>(unguarded_iterator<RandomAccessIterator, Comparator>& bi1, unguarded_iterator<RandomAccessIterator, Comparator>& bi2);
friend bool
operator<= <RandomAccessIterator, Comparator>(unguarded_iterator<RandomAccessIterator, Comparator>& bi1, unguarded_iterator<RandomAccessIterator, Comparator>& bi2);
};
/** @brief Compare two elements referenced by unguarded iterators.
* @param bi1 First iterator.
* @param bi2 Second iterator.
* @return @c True if less. */
template<typename RandomAccessIterator, typename Comparator>
inline bool
operator<(unguarded_iterator<RandomAccessIterator, Comparator>& bi1,
unguarded_iterator<RandomAccessIterator, Comparator>& bi2)
{
// Normal compare.
return (bi1.comp)(*bi1, *bi2);
}
/** @brief Compare two elements referenced by unguarded iterators.
* @param bi1 First iterator.
* @param bi2 Second iterator.
* @return @c True if less equal. */
template<typename RandomAccessIterator, typename Comparator>
inline bool
operator<=(unguarded_iterator<RandomAccessIterator, Comparator>& bi1,
unguarded_iterator<RandomAccessIterator, Comparator>& bi2)
{
// Normal compare.
return !(bi1.comp)(*bi2, *bi1);
}
/** Prepare a set of sequences to be merged without a (end) guard
* @param seqs_begin
* @param seqs_end
* @param comp
* @param min_sequence
* @param stable
* @pre (seqs_end - seqs_begin > 0) */
template<typename RandomAccessIteratorIterator, typename Comparator>
typename std::iterator_traits<typename std::iterator_traits<RandomAccessIteratorIterator>::value_type::first_type>::difference_type
prepare_unguarded(RandomAccessIteratorIterator seqs_begin,
RandomAccessIteratorIterator seqs_end, Comparator comp,
int& min_sequence, bool stable)
{
_GLIBCXX_CALL(seqs_end - seqs_begin)
typedef typename std::iterator_traits<RandomAccessIteratorIterator>::value_type::first_type
RandomAccessIterator1;
typedef typename std::iterator_traits<RandomAccessIterator1>::value_type
value_type;
typedef typename std::iterator_traits<RandomAccessIterator1>::difference_type
difference_type;
if ((*seqs_begin).first == (*seqs_begin).second)
{
// Empty sequence found, it's the first one.
min_sequence = 0;
return -1;
}
// Last element in sequence.
value_type min = *((*seqs_begin).second - 1);
min_sequence = 0;
for (RandomAccessIteratorIterator s = seqs_begin + 1; s != seqs_end; s++)
{
if ((*s).first == (*s).second)
{
// Empty sequence found.
min_sequence = static_cast<int>(s - seqs_begin);
return -1;
}
// Last element in sequence.
const value_type& v = *((*s).second - 1);
if (comp(v, min)) //strictly smaller
{
min = v;
min_sequence = static_cast<int>(s - seqs_begin);
}
}
difference_type overhang_size = 0;
int s = 0;
for (s = 0; s <= min_sequence; s++)
{
RandomAccessIterator1 split;
if (stable)
split = std::upper_bound(seqs_begin[s].first, seqs_begin[s].second,
min, comp);
else
split = std::lower_bound(seqs_begin[s].first, seqs_begin[s].second,
min, comp);
overhang_size += seqs_begin[s].second - split;
}
for (; s < (seqs_end - seqs_begin); s++)
{
RandomAccessIterator1 split = std::lower_bound(seqs_begin[s].first, seqs_begin[s].second, min, comp);
overhang_size += seqs_begin[s].second - split;
}
// So many elements will be left over afterwards.
return overhang_size;
}
/** Prepare a set of sequences to be merged with a (end) guard (sentinel)
* @param seqs_begin
* @param seqs_end
* @param comp */
template<typename RandomAccessIteratorIterator, typename Comparator>
typename std::iterator_traits<typename std::iterator_traits<RandomAccessIteratorIterator>::value_type::first_type>::difference_type
prepare_unguarded_sentinel(RandomAccessIteratorIterator seqs_begin,
RandomAccessIteratorIterator seqs_end,
Comparator comp)
{
_GLIBCXX_CALL(seqs_end - seqs_begin)
typedef typename std::iterator_traits<RandomAccessIteratorIterator>::value_type::first_type
RandomAccessIterator1;
typedef typename std::iterator_traits<RandomAccessIterator1>::value_type
value_type;
typedef typename std::iterator_traits<RandomAccessIterator1>::difference_type
difference_type;
// Last element in sequence.
value_type* max = NULL;
for (RandomAccessIteratorIterator s = seqs_begin; s != seqs_end; s++)
{
if ((*s).first == (*s).second)
continue;
// Last element in sequence.
value_type& v = *((*s).second - 1);
// Strictly greater.
if (!max || comp(*max, v))
max = &v;
}
difference_type overhang_size = 0;
for (RandomAccessIteratorIterator s = seqs_begin; s != seqs_end; s++)
{
RandomAccessIterator1 split = std::lower_bound((*s).first, (*s).second,
*max, comp);
overhang_size += (*s).second - split;
// Set sentinel.
*((*s).second) = *max;
}
// So many elements will be left over afterwards.
return overhang_size;
}
/** @brief Highly efficient 3-way merging procedure.
* @param seqs_begin Begin iterator of iterator pair input sequence.
* @param seqs_end End iterator of iterator pair input sequence.
* @param target Begin iterator out output sequence.
* @param comp Comparator.
* @param length Maximum length to merge.
* @param stable Unused, stable anyway.
* @return End iterator of output sequence. */
template<template<typename RAI, typename C> class iterator, typename RandomAccessIteratorIterator, typename RandomAccessIterator3, typename _DifferenceTp, typename Comparator>
RandomAccessIterator3
multiway_merge_3_variant(RandomAccessIteratorIterator seqs_begin, RandomAccessIteratorIterator seqs_end, RandomAccessIterator3 target, Comparator comp, _DifferenceTp length, bool stable)
{
_GLIBCXX_CALL(length);
typedef _DifferenceTp difference_type;
typedef typename std::iterator_traits<RandomAccessIteratorIterator>::value_type::first_type
RandomAccessIterator1;
typedef typename std::iterator_traits<RandomAccessIterator1>::value_type
value_type;
if (length == 0)
return target;
iterator<RandomAccessIterator1, Comparator>
seq0(seqs_begin[0].first, seqs_begin[0].second, comp),
seq1(seqs_begin[1].first, seqs_begin[1].second, comp),
seq2(seqs_begin[2].first, seqs_begin[2].second, comp);
if (seq0 <= seq1)
{
if (seq1 <= seq2)
goto s012;
else
if (seq2 < seq0)
goto s201;
else
goto s021;
}
else
{
if (seq1 <= seq2)
{
if (seq0 <= seq2)
goto s102;
else
goto s120;
}
else
goto s210;
}
#define Merge3Case(a,b,c,c0,c1) \
s ## a ## b ## c : \
*target = *seq ## a; \
++target; \
length--; \
++seq ## a; \
if (length == 0) goto finish; \
if (seq ## a c0 seq ## b) goto s ## a ## b ## c; \
if (seq ## a c1 seq ## c) goto s ## b ## a ## c; \
goto s ## b ## c ## a;
Merge3Case(0, 1, 2, <=, <=);
Merge3Case(1, 2, 0, <=, < );
Merge3Case(2, 0, 1, < , < );
Merge3Case(1, 0, 2, < , <=);
Merge3Case(0, 2, 1, <=, <=);
Merge3Case(2, 1, 0, < , < );
#undef Merge3Case
finish:
;
seqs_begin[0].first = seq0;
seqs_begin[1].first = seq1;
seqs_begin[2].first = seq2;
return target;
}
template<typename RandomAccessIteratorIterator, typename RandomAccessIterator3, typename _DifferenceTp, typename Comparator>
RandomAccessIterator3
multiway_merge_3_combined(RandomAccessIteratorIterator seqs_begin, RandomAccessIteratorIterator seqs_end, RandomAccessIterator3 target, Comparator comp, _DifferenceTp length, bool stable)
{
_GLIBCXX_CALL(length);
typedef _DifferenceTp difference_type;
typedef typename std::iterator_traits<RandomAccessIteratorIterator>::value_type::first_type
RandomAccessIterator1;
typedef typename std::iterator_traits<RandomAccessIterator1>::value_type
value_type;
int min_seq;
RandomAccessIterator3 target_end;
// Stable anyway.
difference_type overhang = prepare_unguarded(seqs_begin, seqs_end, comp, min_seq, true);
difference_type total_length = 0;
for (RandomAccessIteratorIterator s = seqs_begin; s != seqs_end; ++s)
total_length += LENGTH(*s);
if (overhang != -1)
{
difference_type unguarded_length = std::min(length, total_length - overhang);
target_end = multiway_merge_3_variant<unguarded_iterator>
(seqs_begin, seqs_end, target, comp, unguarded_length, stable);
overhang = length - unguarded_length;
}
else
{
// Empty sequence found.
overhang = length;
target_end = target;
}
#if _GLIBCXX_ASSERTIONS
_GLIBCXX_PARALLEL_ASSERT(target_end == target + length - overhang);
_GLIBCXX_PARALLEL_ASSERT(is_sorted(target, target_end, comp));
#endif
switch (min_seq)
{
case 0:
// Iterators will be advanced accordingly.
target_end = merge_advance(seqs_begin[1].first, seqs_begin[1].second,
seqs_begin[2].first, seqs_begin[2].second,
target_end, overhang, comp);
break;
case 1:
target_end = merge_advance(seqs_begin[0].first, seqs_begin[0].second,
seqs_begin[2].first, seqs_begin[2].second,
target_end, overhang, comp);
break;
case 2:
target_end = merge_advance(seqs_begin[0].first, seqs_begin[0].second,
seqs_begin[1].first, seqs_begin[1].second,
target_end, overhang, comp);
break;
default:
_GLIBCXX_PARALLEL_ASSERT(false);
}
#if _GLIBCXX_ASSERTIONS
_GLIBCXX_PARALLEL_ASSERT(target_end == target + length);
_GLIBCXX_PARALLEL_ASSERT(is_sorted(target, target_end, comp));
#endif
return target_end;
}
/** @brief Highly efficient 4-way merging procedure.
* @param seqs_begin Begin iterator of iterator pair input sequence.
* @param seqs_end End iterator of iterator pair input sequence.
* @param target Begin iterator out output sequence.
* @param comp Comparator.
* @param length Maximum length to merge.
* @param stable Unused, stable anyway.
* @return End iterator of output sequence. */
template<template<typename RAI, typename C> class iterator, typename RandomAccessIteratorIterator, typename RandomAccessIterator3, typename _DifferenceTp, typename Comparator>
RandomAccessIterator3
multiway_merge_4_variant(RandomAccessIteratorIterator seqs_begin, RandomAccessIteratorIterator seqs_end, RandomAccessIterator3 target, Comparator comp, _DifferenceTp length, bool stable)
{
_GLIBCXX_CALL(length);
typedef _DifferenceTp difference_type;
typedef typename std::iterator_traits<RandomAccessIteratorIterator>::value_type::first_type
RandomAccessIterator1;
typedef typename std::iterator_traits<RandomAccessIterator1>::value_type
value_type;
iterator<RandomAccessIterator1, Comparator>
seq0(seqs_begin[0].first, seqs_begin[0].second, comp),
seq1(seqs_begin[1].first, seqs_begin[1].second, comp),
seq2(seqs_begin[2].first, seqs_begin[2].second, comp),
seq3(seqs_begin[3].first, seqs_begin[3].second, comp);
#define Decision(a,b,c,d) { \
if (seq ## d < seq ## a) goto s ## d ## a ## b ## c; \
if (seq ## d < seq ## b) goto s ## a ## d ## b ## c; \
if (seq ## d < seq ## c) goto s ## a ## b ## d ## c; \
goto s ## a ## b ## c ## d; }
if (seq0 <= seq1)
{
if (seq1 <= seq2)
Decision(0,1,2,3)
else
if (seq2 < seq0)
Decision(2,0,1,3)
else
Decision(0,2,1,3)
}
else
{
if (seq1 <= seq2)
{
if (seq0 <= seq2)
Decision(1,0,2,3)
else
Decision(1,2,0,3)
}
else
Decision(2,1,0,3)
}
#define Merge4Case(a,b,c,d,c0,c1,c2) \
s ## a ## b ## c ## d: \
if (length == 0) goto finish; \
*target = *seq ## a; \
++target; \
length--; \
++seq ## a; \
if (seq ## a c0 seq ## b) goto s ## a ## b ## c ## d; \
if (seq ## a c1 seq ## c) goto s ## b ## a ## c ## d; \
if (seq ## a c2 seq ## d) goto s ## b ## c ## a ## d; \
goto s ## b ## c ## d ## a;
Merge4Case(0, 1, 2, 3, <=, <=, <=);
Merge4Case(0, 1, 3, 2, <=, <=, <=);
Merge4Case(0, 2, 1, 3, <=, <=, <=);
Merge4Case(0, 2, 3, 1, <=, <=, <=);
Merge4Case(0, 3, 1, 2, <=, <=, <=);
Merge4Case(0, 3, 2, 1, <=, <=, <=);
Merge4Case(1, 0, 2, 3, < , <=, <=);
Merge4Case(1, 0, 3, 2, < , <=, <=);
Merge4Case(1, 2, 0, 3, <=, < , <=);
Merge4Case(1, 2, 3, 0, <=, <=, < );
Merge4Case(1, 3, 0, 2, <=, < , <=);
Merge4Case(1, 3, 2, 0, <=, <=, < );
Merge4Case(2, 0, 1, 3, < , < , <=);
Merge4Case(2, 0, 3, 1, < , <=, < );
Merge4Case(2, 1, 0, 3, < , < , <=);
Merge4Case(2, 1, 3, 0, < , <=, < );
Merge4Case(2, 3, 0, 1, <=, < , < );
Merge4Case(2, 3, 1, 0, <=, < , < );
Merge4Case(3, 0, 1, 2, < , < , < );
Merge4Case(3, 0, 2, 1, < , < , < );
Merge4Case(3, 1, 0, 2, < , < , < );
Merge4Case(3, 1, 2, 0, < , < , < );
Merge4Case(3, 2, 0, 1, < , < , < );
Merge4Case(3, 2, 1, 0, < , < , < );
#undef Merge4Case
#undef Decision
finish:
;
seqs_begin[0].first = seq0;
seqs_begin[1].first = seq1;
seqs_begin[2].first = seq2;
seqs_begin[3].first = seq3;
return target;
}
template<typename RandomAccessIteratorIterator, typename RandomAccessIterator3, typename _DifferenceTp, typename Comparator>
RandomAccessIterator3
multiway_merge_4_combined(RandomAccessIteratorIterator seqs_begin, RandomAccessIteratorIterator seqs_end, RandomAccessIterator3 target, Comparator comp, _DifferenceTp length, bool stable)
{
_GLIBCXX_CALL(length);
typedef _DifferenceTp difference_type;
typedef typename std::iterator_traits<RandomAccessIteratorIterator>::value_type::first_type
RandomAccessIterator1;
typedef typename std::iterator_traits<RandomAccessIterator1>::value_type
value_type;
int min_seq;
RandomAccessIterator3 target_end;
// Stable anyway.
difference_type overhang = prepare_unguarded(seqs_begin, seqs_end, comp, min_seq, true);
difference_type total_length = 0;
for (RandomAccessIteratorIterator s = seqs_begin; s != seqs_end; ++s)
total_length += LENGTH(*s);
if (overhang != -1)
{
difference_type unguarded_length = std::min(length, total_length - overhang);
target_end = multiway_merge_4_variant<unguarded_iterator>
(seqs_begin, seqs_end, target, comp, unguarded_length, stable);
overhang = length - unguarded_length;
}
else
{
// Empty sequence found.
overhang = length;
target_end = target;
}
#if _GLIBCXX_ASSERTIONS
_GLIBCXX_PARALLEL_ASSERT(target_end == target + length - overhang);
_GLIBCXX_PARALLEL_ASSERT(is_sorted(target, target_end, comp));
#endif
std::vector<std::pair<RandomAccessIterator1, RandomAccessIterator1> > one_missing(seqs_begin, seqs_end);
one_missing.erase(one_missing.begin() + min_seq); //remove
target_end = multiway_merge_3_variant<guarded_iterator>(one_missing.begin(), one_missing.end(), target_end, comp, overhang, stable);
// Insert back again.
one_missing.insert(one_missing.begin() + min_seq, seqs_begin[min_seq]);
// Write back modified iterators.
copy(one_missing.begin(), one_missing.end(), seqs_begin);
#if _GLIBCXX_ASSERTIONS
_GLIBCXX_PARALLEL_ASSERT(target_end == target + length);
_GLIBCXX_PARALLEL_ASSERT(is_sorted(target, target_end, comp));
#endif
return target_end;
}
/** @brief Basic multi-way merging procedure.
*
* The head elements are kept in a sorted array, new heads are
* inserted linearly.
* @param seqs_begin Begin iterator of iterator pair input sequence.
* @param seqs_end End iterator of iterator pair input sequence.
* @param target Begin iterator out output sequence.
* @param comp Comparator.
* @param length Maximum length to merge.
* @param stable Stable merging incurs a performance penalty.
* @return End iterator of output sequence.
*/
template<typename RandomAccessIteratorIterator, typename RandomAccessIterator3, typename _DifferenceTp, typename Comparator>
RandomAccessIterator3
multiway_merge_bubble(RandomAccessIteratorIterator seqs_begin, RandomAccessIteratorIterator seqs_end, RandomAccessIterator3 target, Comparator comp, _DifferenceTp length, bool stable)
{
_GLIBCXX_CALL(length)
typedef _DifferenceTp difference_type;
typedef typename std::iterator_traits<RandomAccessIteratorIterator>::value_type::first_type
RandomAccessIterator1;
typedef typename std::iterator_traits<RandomAccessIterator1>::value_type
value_type;
// Num remaining pieces.
int k = static_cast<int>(seqs_end - seqs_begin), nrp;
value_type* pl = static_cast<value_type*>(::operator new(sizeof(value_type) * k));
int* source = new int[k];
difference_type total_length = 0;
#define POS(i) seqs_begin[(i)].first
#define STOPS(i) seqs_begin[(i)].second
// Write entries into queue.
nrp = 0;
for (int pi = 0; pi < k; pi++)
{
if (STOPS(pi) != POS(pi))
{
pl[nrp] = *(POS(pi));
source[nrp] = pi;
nrp++;
total_length += LENGTH(seqs_begin[pi]);
}
}
if (stable)
{
for (int k = 0; k < nrp - 1; k++)
for (int pi = nrp - 1; pi > k; pi--)
if (comp(pl[pi], pl[pi - 1]) ||
(!comp(pl[pi - 1], pl[pi]) && source[pi] < source[pi - 1]))
{
std::swap(pl[pi - 1], pl[pi]);
std::swap(source[pi - 1], source[pi]);
}
}
else
{
for (int k = 0; k < nrp - 1; k++)
for (int pi = nrp - 1; pi > k; pi--)
if (comp(pl[pi], pl[pi-1]))
{
std::swap(pl[pi-1], pl[pi]);
std::swap(source[pi-1], source[pi]);
}
}
// Iterate.
if (stable)
{
int j;
while (nrp > 0 && length > 0)
{
if (source[0] < source[1])
{
// pl[0] <= pl[1]
while ((nrp == 1 || !(comp(pl[1], pl[0]))) && length > 0)
{
*target = pl[0];
++target;
++POS(source[0]);
length--;
if (POS(source[0]) == STOPS(source[0]))
{
// Move everything to the left.
for (int s = 0; s < nrp - 1; s++)
{
pl[s] = pl[s + 1];
source[s] = source[s + 1];
}
nrp--;
break;
}
else
pl[0] = *(POS(source[0]));
}
}
else
{
// pl[0] < pl[1]
while ((nrp == 1 || comp(pl[0], pl[1])) && length > 0)
{
*target = pl[0];
++target;
++POS(source[0]);
length--;
if (POS(source[0]) == STOPS(source[0]))
{
for (int s = 0; s < nrp - 1; s++)
{
pl[s] = pl[s + 1];
source[s] = source[s + 1];
}
nrp--;
break;
}
else
pl[0] = *(POS(source[0]));
}
}
// Sink down.
j = 1;
while ((j < nrp) && (comp(pl[j], pl[j - 1]) ||
(!comp(pl[j - 1], pl[j]) && (source[j] < source[j - 1]))))
{
std::swap(pl[j - 1], pl[j]);
std::swap(source[j - 1], source[j]);
j++;
}
}
}
else
{
int j;
while (nrp > 0 && length > 0)
{
// pl[0] <= pl[1]
while (nrp == 1 || (!comp(pl[1], pl[0])) && length > 0)
{
*target = pl[0];
++target;
++POS(source[0]);
length--;
if (POS(source[0]) == STOPS(source[0]))
{
for (int s = 0; s < (nrp - 1); s++)
{
pl[s] = pl[s + 1];
source[s] = source[s + 1];
}
nrp--;
break;
}
else
pl[0] = *(POS(source[0]));
}
// Sink down.
j = 1;
while ((j < nrp) && comp(pl[j], pl[j - 1]))
{
std::swap(pl[j - 1], pl[j]);
std::swap(source[j - 1], source[j]);
j++;
}
}
}
delete[] pl;
delete[] source;
return target;
}
/** @brief Multi-way merging procedure for a high branching factor,
* guarded case.
*
* The head elements are kept in a loser tree.
* @param seqs_begin Begin iterator of iterator pair input sequence.
* @param seqs_end End iterator of iterator pair input sequence.
* @param target Begin iterator out output sequence.
* @param comp Comparator.
* @param length Maximum length to merge.
* @param stable Stable merging incurs a performance penalty.
* @return End iterator of output sequence.
*/
template<typename LT, typename RandomAccessIteratorIterator, typename RandomAccessIterator3, typename _DifferenceTp, typename Comparator>
RandomAccessIterator3
multiway_merge_loser_tree(RandomAccessIteratorIterator seqs_begin, RandomAccessIteratorIterator seqs_end, RandomAccessIterator3 target, Comparator comp, _DifferenceTp length, bool stable)
{
_GLIBCXX_CALL(length)
typedef _DifferenceTp difference_type;
typedef typename std::iterator_traits<RandomAccessIteratorIterator>::value_type::first_type
RandomAccessIterator1;
typedef typename std::iterator_traits<RandomAccessIterator1>::value_type
value_type;
int k = static_cast<int>(seqs_end - seqs_begin);
LT lt(k, comp);
difference_type total_length = 0;
// Default value for potentially non-default-constructible types.
value_type* defaultcons = NULL;
for (int t = 0; t < k; t++)
{
if (stable)
{
if (seqs_begin[t].first == seqs_begin[t].second)
lt.insert_start_stable(*defaultcons, t, true);
else
lt.insert_start_stable(*seqs_begin[t].first, t, false);
}
else
{
if (seqs_begin[t].first == seqs_begin[t].second)
lt.insert_start(*defaultcons, t, true);
else
lt.insert_start(*seqs_begin[t].first, t, false);
}
total_length += LENGTH(seqs_begin[t]);
}
if (stable)
lt.init_stable();
else
lt.init();
total_length = std::min(total_length, length);
int source;
if (stable)
{
for (difference_type i = 0; i < total_length; i++)
{
// Take out.
source = lt.get_min_source();
*(target++) = *(seqs_begin[source].first++);
// Feed.
if (seqs_begin[source].first == seqs_begin[source].second)
lt.delete_min_insert_stable(*defaultcons, true);
else
// Replace from same source.
lt.delete_min_insert_stable(*seqs_begin[source].first, false);
}
}
else
{
for (difference_type i = 0; i < total_length; i++)
{
//take out
source = lt.get_min_source();
*(target++) = *(seqs_begin[source].first++);
// Feed.
if (seqs_begin[source].first == seqs_begin[source].second)
lt.delete_min_insert(*defaultcons, true);
else
// Replace from same source.
lt.delete_min_insert(*seqs_begin[source].first, false);
}
}
return target;
}
/** @brief Multi-way merging procedure for a high branching factor,
* unguarded case.
*
* The head elements are kept in a loser tree.
* @param seqs_begin Begin iterator of iterator pair input sequence.
* @param seqs_end End iterator of iterator pair input sequence.
* @param target Begin iterator out output sequence.
* @param comp Comparator.
* @param length Maximum length to merge.
* @param stable Stable merging incurs a performance penalty.
* @return End iterator of output sequence.
* @pre No input will run out of elements during the merge.
*/
template<typename LT, typename RandomAccessIteratorIterator, typename RandomAccessIterator3, typename _DifferenceTp, typename Comparator>
RandomAccessIterator3
multiway_merge_loser_tree_unguarded(RandomAccessIteratorIterator seqs_begin, RandomAccessIteratorIterator seqs_end, RandomAccessIterator3 target, Comparator comp, _DifferenceTp length, bool stable)
{
_GLIBCXX_CALL(length)
typedef _DifferenceTp difference_type;
typedef typename std::iterator_traits<RandomAccessIteratorIterator>::value_type::first_type
RandomAccessIterator1;
typedef typename std::iterator_traits<RandomAccessIterator1>::value_type
value_type;
int k = seqs_end - seqs_begin;
LT lt(k, comp);
difference_type total_length = 0;
for (int t = 0; t < k; t++)
{
#if _GLIBCXX_ASSERTIONS
_GLIBCXX_PARALLEL_ASSERT(seqs_begin[t].first != seqs_begin[t].second);
#endif
if (stable)
lt.insert_start_stable(*seqs_begin[t].first, t, false);
else
lt.insert_start(*seqs_begin[t].first, t, false);
total_length += LENGTH(seqs_begin[t]);
}
if (stable)
lt.init_stable();
else
lt.init();
// Do not go past end.
length = std::min(total_length, length);
int source;
#if _GLIBCXX_ASSERTIONS
difference_type i = 0;
#endif
if (stable)
{
RandomAccessIterator3 target_end = target + length;
while (target < target_end)
{
// Take out.
source = lt.get_min_source();
#if _GLIBCXX_ASSERTIONS
_GLIBCXX_PARALLEL_ASSERT(i == 0 || !comp(*(seqs_begin[source].first), *(target - 1)));
#endif
*(target++) = *(seqs_begin[source].first++);
#if _GLIBCXX_ASSERTIONS
_GLIBCXX_PARALLEL_ASSERT((seqs_begin[source].first != seqs_begin[source].second) || (i == length - 1));
i++;
#endif
// Feed.
// Replace from same source.
lt.delete_min_insert_stable(*seqs_begin[source].first, false);
}
}
else
{
RandomAccessIterator3 target_end = target + length;
while (target < target_end)
{
// Take out.
source = lt.get_min_source();
#if _GLIBCXX_ASSERTIONS
if (i > 0 && comp(*(seqs_begin[source].first), *(target - 1)))
printf(" %i %i %i\n", length, i, source);
_GLIBCXX_PARALLEL_ASSERT(i == 0 || !comp(*(seqs_begin[source].first), *(target - 1)));
#endif
*(target++) = *(seqs_begin[source].first++);
#if _GLIBCXX_ASSERTIONS
if (!((seqs_begin[source].first != seqs_begin[source].second) || (i >= length - 1)))
printf(" %i %i %i\n", length, i, source);
_GLIBCXX_PARALLEL_ASSERT((seqs_begin[source].first != seqs_begin[source].second) || (i >= length - 1));
i++;
#endif
// Feed.
// Replace from same source.
lt.delete_min_insert(*seqs_begin[source].first, false);
}
}
return target;
}
template<typename RandomAccessIteratorIterator, typename RandomAccessIterator3, typename _DifferenceTp, typename Comparator>
RandomAccessIterator3
multiway_merge_loser_tree_combined(RandomAccessIteratorIterator seqs_begin, RandomAccessIteratorIterator seqs_end, RandomAccessIterator3 target, Comparator comp, _DifferenceTp length, bool stable)
{
_GLIBCXX_CALL(length)
typedef _DifferenceTp difference_type;
typedef typename std::iterator_traits<RandomAccessIteratorIterator>::value_type::first_type
RandomAccessIterator1;
typedef typename std::iterator_traits<RandomAccessIterator1>::value_type
value_type;
int min_seq;
RandomAccessIterator3 target_end;
difference_type overhang = prepare_unguarded(seqs_begin, seqs_end,
comp, min_seq, stable);
difference_type total_length = 0;
for (RandomAccessIteratorIterator s = seqs_begin; s != seqs_end; s++)
total_length += LENGTH(*s);
if (overhang != -1)
{
difference_type unguarded_length = std::min(length, total_length - overhang);
target_end = multiway_merge_loser_tree_unguarded
<typename loser_tree_unguarded_traits<value_type, Comparator>::LT>
(seqs_begin, seqs_end, target, comp, unguarded_length, stable);
overhang = length - unguarded_length;
}
else
{
// Empty sequence found.
overhang = length;
target_end = target;
}
#if _GLIBCXX_ASSERTIONS
_GLIBCXX_PARALLEL_ASSERT(target_end == target + length - overhang);
_GLIBCXX_PARALLEL_ASSERT(is_sorted(target, target_end, comp));
#endif
target_end = multiway_merge_loser_tree
<typename loser_tree_traits<value_type, Comparator>::LT>
(seqs_begin, seqs_end, target_end, comp, overhang, stable);
#if _GLIBCXX_ASSERTIONS
_GLIBCXX_PARALLEL_ASSERT(target_end == target + length);
_GLIBCXX_PARALLEL_ASSERT(is_sorted(target, target_end, comp));
#endif
return target_end;
}
template<typename RandomAccessIteratorIterator, typename RandomAccessIterator3, typename _DifferenceTp, typename Comparator>
RandomAccessIterator3
multiway_merge_loser_tree_sentinel(RandomAccessIteratorIterator seqs_begin, RandomAccessIteratorIterator seqs_end, RandomAccessIterator3 target, Comparator comp, _DifferenceTp length, bool stable)
{
_GLIBCXX_CALL(length)
typedef _DifferenceTp difference_type;
typedef std::iterator_traits<RandomAccessIteratorIterator> traits_type;
typedef typename std::iterator_traits<RandomAccessIteratorIterator>::value_type::first_type
RandomAccessIterator1;
typedef typename std::iterator_traits<RandomAccessIterator1>::value_type
value_type;
typedef typename std::iterator_traits<RandomAccessIteratorIterator>::value_type::first_type
RandomAccessIterator1;
RandomAccessIterator3 target_end;
difference_type overhang = prepare_unguarded_sentinel(seqs_begin, seqs_end, comp);
difference_type total_length = 0;
for (RandomAccessIteratorIterator s = seqs_begin; s != seqs_end; s++)
{
total_length += LENGTH(*s);
// Sentinel spot.
(*s).second++;
}
difference_type unguarded_length = std::min(length, total_length - overhang);
target_end = multiway_merge_loser_tree_unguarded
<typename loser_tree_unguarded_traits<value_type, Comparator>::LT>
(seqs_begin, seqs_end, target, comp, unguarded_length, stable);
overhang = length - unguarded_length;
#if _GLIBCXX_ASSERTIONS
_GLIBCXX_PARALLEL_ASSERT(target_end == target + length - overhang);
_GLIBCXX_PARALLEL_ASSERT(is_sorted(target, target_end, comp));
#endif
// Copy rest stable.
for (RandomAccessIteratorIterator s = seqs_begin; s != seqs_end && overhang > 0; s++)
{
// Restore.
(*s).second--;
difference_type local_length = std::min((difference_type)overhang, (difference_type)LENGTH(*s));
target_end = std::copy((*s).first, (*s).first + local_length, target_end);
(*s).first += local_length;
overhang -= local_length;
}
#if _GLIBCXX_ASSERTIONS
_GLIBCXX_PARALLEL_ASSERT(overhang == 0);
_GLIBCXX_PARALLEL_ASSERT(target_end == target + length);
_GLIBCXX_PARALLEL_ASSERT(is_sorted(target, target_end, comp));
#endif
return target_end;
}
/** @brief Sequential multi-way merging switch.
*
* The decision if based on the branching factor and runtime settings.
* @param seqs_begin Begin iterator of iterator pair input sequence.
* @param seqs_end End iterator of iterator pair input sequence.
* @param target Begin iterator out output sequence.
* @param comp Comparator.
* @param length Maximum length to merge.
* @param stable Stable merging incurs a performance penalty.
* @param sentinel The sequences have a sentinel element.
* @return End iterator of output sequence. */
template<typename RandomAccessIteratorIterator, typename RandomAccessIterator3, typename _DifferenceTp, typename Comparator>
RandomAccessIterator3
multiway_merge(RandomAccessIteratorIterator seqs_begin, RandomAccessIteratorIterator seqs_end, RandomAccessIterator3 target, Comparator comp, _DifferenceTp length, bool stable, bool sentinel, sequential_tag)
{
_GLIBCXX_CALL(length)
typedef _DifferenceTp difference_type;
typedef typename std::iterator_traits<RandomAccessIteratorIterator>::value_type::first_type
RandomAccessIterator1;
typedef typename std::iterator_traits<RandomAccessIterator1>::value_type
value_type;
#if _GLIBCXX_ASSERTIONS
for (RandomAccessIteratorIterator s = seqs_begin; s != seqs_end; s++)
_GLIBCXX_PARALLEL_ASSERT(is_sorted((*s).first, (*s).second, comp));
#endif
RandomAccessIterator3 return_target = target;
int k = static_cast<int>(seqs_end - seqs_begin);
Settings::MultiwayMergeAlgorithm mwma = Settings::multiway_merge_algorithm;
if (!sentinel && mwma == Settings::LOSER_TREE_SENTINEL)
mwma = Settings::LOSER_TREE_COMBINED;
switch (k)
{
case 0:
break;
case 1:
return_target = std::copy(seqs_begin[0].first, seqs_begin[0].first + length, target);
seqs_begin[0].first += length;
break;
case 2:
return_target = merge_advance(seqs_begin[0].first, seqs_begin[0].second, seqs_begin[1].first, seqs_begin[1].second, target, length, comp);
break;
case 3:
switch (mwma)
{
case Settings::LOSER_TREE_COMBINED:
return_target = multiway_merge_3_combined(seqs_begin, seqs_end, target, comp, length, stable);
break;
case Settings::LOSER_TREE_SENTINEL:
return_target = multiway_merge_3_variant<unguarded_iterator>(seqs_begin, seqs_end, target, comp, length, stable);
break;
default:
return_target = multiway_merge_3_variant<guarded_iterator>(seqs_begin, seqs_end, target, comp, length, stable);
break;
}
break;
case 4:
switch (mwma)
{
case Settings::LOSER_TREE_COMBINED:
return_target = multiway_merge_4_combined(seqs_begin, seqs_end, target, comp, length, stable);
break;
case Settings::LOSER_TREE_SENTINEL:
return_target = multiway_merge_4_variant<unguarded_iterator>(seqs_begin, seqs_end, target, comp, length, stable);
break;
default:
return_target = multiway_merge_4_variant<guarded_iterator>(seqs_begin, seqs_end, target, comp, length, stable);
break;
}
break;
default:
{
switch (mwma)
{
case Settings::BUBBLE:
return_target = multiway_merge_bubble(seqs_begin, seqs_end, target, comp, length, stable);
break;
#if _GLIBCXX_LOSER_TREE_EXPLICIT
case Settings::LOSER_TREE_EXPLICIT:
return_target = multiway_merge_loser_tree<LoserTreeExplicit<value_type, Comparator> >(seqs_begin, seqs_end, target, comp, length, stable);
break;
#endif
#if _GLIBCXX_LOSER_TREE
case Settings::LOSER_TREE:
return_target = multiway_merge_loser_tree<LoserTree<value_type, Comparator> >(seqs_begin, seqs_end, target, comp, length, stable);
break;
#endif
#if _GLIBCXX_LOSER_TREE_COMBINED
case Settings::LOSER_TREE_COMBINED:
return_target = multiway_merge_loser_tree_combined(seqs_begin, seqs_end, target, comp, length, stable);
break;
#endif
#if _GLIBCXX_LOSER_TREE_SENTINEL
case Settings::LOSER_TREE_SENTINEL:
return_target = multiway_merge_loser_tree_sentinel(seqs_begin, seqs_end, target, comp, length, stable);
break;
#endif
default:
// multiway_merge algorithm not implemented.
_GLIBCXX_PARALLEL_ASSERT(0);
break;
}
}
}
#if _GLIBCXX_ASSERTIONS
_GLIBCXX_PARALLEL_ASSERT(is_sorted(target, target + length, comp));
#endif
return return_target;
}
/** @brief Parallel multi-way merge routine.
*
* The decision if based on the branching factor and runtime settings.
* @param seqs_begin Begin iterator of iterator pair input sequence.
* @param seqs_end End iterator of iterator pair input sequence.
* @param target Begin iterator out output sequence.
* @param comp Comparator.
* @param length Maximum length to merge.
* @param stable Stable merging incurs a performance penalty.
* @param sentinel Ignored.
* @return End iterator of output sequence.
*/
template<typename RandomAccessIteratorIterator, typename RandomAccessIterator3, typename _DifferenceTp, typename Comparator>
RandomAccessIterator3
parallel_multiway_merge(RandomAccessIteratorIterator seqs_begin, RandomAccessIteratorIterator seqs_end, RandomAccessIterator3 target, Comparator comp, _DifferenceTp length, bool stable, bool sentinel)
{
_GLIBCXX_CALL(length)
typedef _DifferenceTp difference_type;
typedef typename std::iterator_traits<RandomAccessIteratorIterator>::value_type::first_type
RandomAccessIterator1;
typedef typename std::iterator_traits<RandomAccessIterator1>::value_type
value_type;
#if _GLIBCXX_ASSERTIONS
for (RandomAccessIteratorIterator rii = seqs_begin; rii != seqs_end; rii++)
_GLIBCXX_PARALLEL_ASSERT(is_sorted((*rii).first, (*rii).second, comp));
#endif
// k sequences.
int k = static_cast<int>(seqs_end - seqs_begin);
difference_type total_length = 0;
for (RandomAccessIteratorIterator raii = seqs_begin; raii != seqs_end; raii++)
total_length += LENGTH(*raii);
_GLIBCXX_CALL(total_length)
if (total_length == 0 || k == 0)
return target;
thread_index_t num_threads = static_cast<thread_index_t>(std::min(static_cast<difference_type>(get_max_threads()), total_length));
bool tight = (total_length == length);
// Thread t will have to merge pieces[iam][0..k - 1]
std::vector<std::pair<difference_type, difference_type> >* pieces = new std::vector<std::pair<difference_type, difference_type> >[num_threads];
for (int s = 0; s < num_threads; s++)
pieces[s].resize(k);
difference_type num_samples = Settings::merge_oversampling * num_threads;
if (Settings::multiway_merge_splitting == Settings::SAMPLING)
{
value_type* samples = static_cast<value_type*>(::operator new(sizeof(value_type) * k * num_samples));
// Sample.
for (int s = 0; s < k; s++)
for (int i = 0; (difference_type)i < num_samples; i++)
{
difference_type sample_index = static_cast<difference_type>(LENGTH(seqs_begin[s]) * (double(i + 1) / (num_samples + 1)) * (double(length) / total_length));
samples[s * num_samples + i] = seqs_begin[s].first[sample_index];
}
if (stable)
__gnu_sequential::stable_sort(samples, samples + (num_samples * k), comp);
else
__gnu_sequential::sort(samples, samples + (num_samples * k), comp);
for (int slab = 0; slab < num_threads; slab++)
// For each slab / processor.
for (int seq = 0; seq < k; seq++)
{
// For each sequence.
if (slab > 0)
pieces[slab][seq].first = std::upper_bound(seqs_begin[seq].first, seqs_begin[seq].second, samples[num_samples * k * slab / num_threads], comp) - seqs_begin[seq].first;
else
{
// Absolute beginning.
pieces[slab][seq].first = 0;
}
if ((slab + 1) < num_threads)
pieces[slab][seq].second = std::upper_bound(seqs_begin[seq].first, seqs_begin[seq].second, samples[num_samples * k * (slab + 1) / num_threads], comp) - seqs_begin[seq].first;
else
pieces[slab][seq].second = LENGTH(seqs_begin[seq]); //absolute ending
}
delete[] samples;
}
else
{
// (Settings::multiway_merge_splitting == Settings::EXACT).
std::vector<RandomAccessIterator1>* offsets = new std::vector<RandomAccessIterator1>[num_threads];
std::vector<std::pair<RandomAccessIterator1, RandomAccessIterator1> > se(k);
copy(seqs_begin, seqs_end, se.begin());
difference_type* borders = static_cast<difference_type*>(__builtin_alloca(sizeof(difference_type) * (num_threads + 1)));
equally_split(length, num_threads, borders);
for (int s = 0; s < (num_threads - 1); s++)
{
offsets[s].resize(k);
multiseq_partition(se.begin(), se.end(), borders[s + 1],
offsets[s].begin(), comp);
// Last one also needed and available.
if (!tight)
{
offsets[num_threads - 1].resize(k);
multiseq_partition(se.begin(), se.end(),
difference_type(length),
offsets[num_threads - 1].begin(), comp);
}
}
for (int slab = 0; slab < num_threads; slab++)
{
// For each slab / processor.
for (int seq = 0; seq < k; seq++)
{
// For each sequence.
if (slab == 0)
{
// Absolute beginning.
pieces[slab][seq].first = 0;
}
else
pieces[slab][seq].first = pieces[slab - 1][seq].second;
if (!tight || slab < (num_threads - 1))
pieces[slab][seq].second = offsets[slab][seq] - seqs_begin[seq].first;
else
{
// slab == num_threads - 1
pieces[slab][seq].second = LENGTH(seqs_begin[seq]);
}
}
}
delete[] offsets;
}
# pragma omp parallel num_threads(num_threads)
{
thread_index_t iam = omp_get_thread_num();
difference_type target_position = 0;
for (int c = 0; c < k; c++)
target_position += pieces[iam][c].first;
if (k > 2)
{
std::pair<RandomAccessIterator1, RandomAccessIterator1>* chunks = new std::pair<RandomAccessIterator1, RandomAccessIterator1>[k];
difference_type local_length = 0;
for (int s = 0; s < k; s++)
{
chunks[s] = std::make_pair(seqs_begin[s].first + pieces[iam][s].first, seqs_begin[s].first + pieces[iam][s].second);
local_length += LENGTH(chunks[s]);
}
multiway_merge(chunks, chunks + k, target + target_position, comp,
std::min(local_length, length - target_position),
stable, false, sequential_tag());
delete[] chunks;
}
else if (k == 2)
{
RandomAccessIterator1 begin0 = seqs_begin[0].first + pieces[iam][0].first, begin1 = seqs_begin[1].first + pieces[iam][1].first;
merge_advance(begin0,
seqs_begin[0].first + pieces[iam][0].second,
begin1,
seqs_begin[1].first + pieces[iam][1].second,
target + target_position,
(pieces[iam][0].second - pieces[iam][0].first) + (pieces[iam][1].second - pieces[iam][1].first),
comp);
}
}
#if _GLIBCXX_ASSERTIONS
_GLIBCXX_PARALLEL_ASSERT(is_sorted(target, target + length, comp));
#endif
// Update ends of sequences.
for (int s = 0; s < k; s++)
seqs_begin[s].first += pieces[num_threads - 1][s].second;
delete[] pieces;
return target + length;
}
/**
* @brief Multi-way merging front-end.
* @param seqs_begin Begin iterator of iterator pair input sequence.
* @param seqs_end End iterator of iterator pair input sequence.
* @param target Begin iterator out output sequence.
* @param comp Comparator.
* @param length Maximum length to merge.
* @param stable Stable merging incurs a performance penalty.
* @return End iterator of output sequence.
*/
template<typename RandomAccessIteratorPairIterator, typename RandomAccessIterator3, typename _DifferenceTp, typename Comparator>
RandomAccessIterator3
multiway_merge(RandomAccessIteratorPairIterator seqs_begin,
RandomAccessIteratorPairIterator seqs_end,
RandomAccessIterator3 target, Comparator comp,
_DifferenceTp length, bool stable)
{
typedef _DifferenceTp difference_type;
_GLIBCXX_CALL(seqs_end - seqs_begin)
if (seqs_begin == seqs_end)
return target;
RandomAccessIterator3 target_end;
if (_GLIBCXX_PARALLEL_CONDITION(((seqs_end - seqs_begin) >= Settings::multiway_merge_minimal_k) && ((sequence_index_t)length >= Settings::multiway_merge_minimal_n)))
target_end = parallel_multiway_merge(seqs_begin, seqs_end, target, comp, (difference_type)length, stable, false);
else
target_end = multiway_merge(seqs_begin, seqs_end, target, comp, length, stable, false, sequential_tag());
return target_end;
}
/** @brief Multi-way merging front-end.
* @param seqs_begin Begin iterator of iterator pair input sequence.
* @param seqs_end End iterator of iterator pair input sequence.
* @param target Begin iterator out output sequence.
* @param comp Comparator.
* @param length Maximum length to merge.
* @param stable Stable merging incurs a performance penalty.
* @return End iterator of output sequence.
* @pre For each @c i, @c seqs_begin[i].second must be the end
* marker of the sequence, but also reference the one more sentinel
* element. */
template<typename RandomAccessIteratorPairIterator, typename RandomAccessIterator3, typename _DifferenceTp, typename Comparator>
RandomAccessIterator3
multiway_merge_sentinel(RandomAccessIteratorPairIterator seqs_begin,
RandomAccessIteratorPairIterator seqs_end,
RandomAccessIterator3 target,
Comparator comp,
_DifferenceTp length,
bool stable)
{
typedef _DifferenceTp difference_type;
if (seqs_begin == seqs_end)
return target;
_GLIBCXX_CALL(seqs_end - seqs_begin)
if (_GLIBCXX_PARALLEL_CONDITION(((seqs_end - seqs_begin) >= Settings::multiway_merge_minimal_k) && ((sequence_index_t)length >= Settings::multiway_merge_minimal_n)))
return parallel_multiway_merge(seqs_begin, seqs_end, target, comp, (typename std::iterator_traits<RandomAccessIterator3>::difference_type)length, stable, true);
else
return multiway_merge(seqs_begin, seqs_end, target, comp, length, stable, true, sequential_tag());
}
}
#endif