gcc/libstdc++-v3/include/bits/regex_executor.h
Tim Shen 18971f1fc3 regex_executor.h: Add _TodoList class.
2013-10-08  Tim Shen  <timshen91@gmail.com>

	* include/bits/regex_executor.h: Add _TodoList class.
	* include/bits/regex_executor.tcc (_BFSExecutor<>::_M_main): Add
	_M_match_stack and _M_stack to make everything faster. Break if
	_M_stack is empty, to reduce unnecessary idling.
	* testsuite/performance/28_regex/split.cc: New.

From-SVN: r203261
2013-10-08 03:41:14 +00:00

442 lines
12 KiB
C++

// class template regex -*- C++ -*-
// Copyright (C) 2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/**
* @file bits/regex_executor.h
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{regex}
*/
// FIXME convert comments to doxygen format.
// TODO Put _DFSExecutor and _BFSExecutor into one class. They are becoming
// much more similar. Also, make grouping seperated. The
// regex_constants::nosubs enables much more simpler execution.
namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
template<typename, typename>
class basic_regex;
template<typename>
class sub_match;
template<typename, typename>
class match_results;
_GLIBCXX_END_NAMESPACE_VERSION
namespace __detail
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
/**
* @addtogroup regex-detail
* @{
*/
template<typename _BiIter, typename _Alloc,
typename _CharT, typename _TraitsT>
class _Executor
{
public:
typedef basic_regex<_CharT, _TraitsT> _RegexT;
typedef std::vector<sub_match<_BiIter>, _Alloc> _ResultsVec;
typedef regex_constants::match_flag_type _FlagT;
typedef typename _TraitsT::char_class_type _ClassT;
public:
_Executor(_BiIter __begin,
_BiIter __end,
_ResultsVec& __results,
const _RegexT& __re,
_FlagT __flags)
: _M_begin(__begin),
_M_end(__end),
_M_results(__results),
_M_re(__re),
_M_flags((__flags & regex_constants::match_prev_avail)
? (__flags
& ~regex_constants::match_not_bol
& ~regex_constants::match_not_bow)
: __flags)
{ }
// Set matched when string exactly match the pattern.
bool
_M_match()
{
_M_match_mode = true;
_M_init(_M_begin);
return _M_main();
}
// Set matched when some prefix of the string matches the pattern.
bool
_M_search_from_first()
{
_M_match_mode = false;
_M_init(_M_begin);
return _M_main();
}
bool
_M_search();
bool
_M_is_word(_CharT __ch) const
{
static const _CharT __s = 'w';
return _M_re._M_traits.isctype
(__ch, _M_re._M_traits.lookup_classname(&__s, &__s+1));
}
bool
_M_at_begin() const
{
return _M_current == _M_begin
&& !(_M_flags & (regex_constants::match_not_bol
| regex_constants::match_prev_avail));
}
bool
_M_at_end() const
{
return _M_current == _M_end
&& !(_M_flags & regex_constants::match_not_eol);
}
bool
_M_word_boundry(_State<_CharT, _TraitsT> __state) const;
virtual std::unique_ptr<_Executor>
_M_clone() const = 0;
// Return whether now match the given sub-NFA.
bool
_M_lookahead(_State<_CharT, _TraitsT> __state) const
{
auto __sub = this->_M_clone();
__sub->_M_set_start(__state._M_alt);
return __sub->_M_search_from_first();
}
void
_M_set_results(_ResultsVec& __cur_results);
public:
virtual void
_M_init(_BiIter __cur) = 0;
virtual void
_M_set_start(_StateIdT __start) = 0;
virtual bool
_M_main() = 0;
_BiIter _M_current;
const _BiIter _M_begin;
const _BiIter _M_end;
const _RegexT& _M_re;
_ResultsVec& _M_results;
_FlagT _M_flags;
bool _M_match_mode;
};
// A _DFSExecutor perform a DFS on given NFA and input string. At the very
// beginning the executor stands in the start state, then it try every
// possible state transition in current state recursively. Some state
// transitions consume input string, say, a single-char-matcher or a
// back-reference matcher; some not, like assertion or other anchor nodes.
// When the input is exhausted and the current state is an accepting state,
// the whole executor return true.
//
// TODO: This approach is exponentially slow for certain input.
// Try to compile the NFA to a DFA.
//
// Time complexity: exponential
// Space complexity: O(__end - __begin)
template<typename _BiIter, typename _Alloc,
typename _CharT, typename _TraitsT>
class _DFSExecutor
: public _Executor<_BiIter, _Alloc, _CharT, _TraitsT>
{
public:
typedef _Executor<_BiIter, _Alloc, _CharT, _TraitsT> _BaseT;
typedef _NFA<_CharT, _TraitsT> _NFAT;
typedef typename _BaseT::_RegexT _RegexT;
typedef typename _BaseT::_ResultsVec _ResultsVec;
typedef typename _BaseT::_FlagT _FlagT;
public:
_DFSExecutor(_BiIter __begin,
_BiIter __end,
_ResultsVec& __results,
const _RegexT& __re,
_FlagT __flags)
: _BaseT(__begin, __end, __results, __re, __flags),
_M_nfa(*std::static_pointer_cast<_NFA<_CharT, _TraitsT>>
(__re._M_automaton)),
_M_start_state(_M_nfa._M_start())
{ }
private:
void
_M_init(_BiIter __cur)
{
_M_cur_results.resize(_M_nfa._M_sub_count() + 2);
this->_M_current = __cur;
}
void
_M_set_start(_StateIdT __start)
{ _M_start_state = __start; }
bool
_M_main()
{ return _M_dfs(this->_M_start_state); }
bool
_M_dfs(_StateIdT __start);
std::unique_ptr<_BaseT>
_M_clone() const
{
return std::unique_ptr<_BaseT>(new _DFSExecutor(this->_M_current,
this->_M_end,
this->_M_results,
this->_M_re,
this->_M_flags));
}
// To record current solution.
_ResultsVec _M_cur_results;
const _NFAT& _M_nfa;
_StateIdT _M_start_state;
};
// Like the DFS approach, it try every possible state transition; Unlike DFS,
// it uses a queue instead of a stack to store matching states. It's a BFS
// approach.
//
// Russ Cox's article(http://swtch.com/~rsc/regexp/regexp1.html) explained
// this algorithm clearly.
//
// Every entry of _M_covered saves the solution(grouping status) for every
// matching head. When states transit, solutions will be compared and
// deduplicated(based on which greedy mode we have).
//
// Time complexity: O((__end - __begin) * _M_nfa.size())
// Space complexity: O(_M_nfa.size() * _M_nfa.mark_count())
template<typename _BiIter, typename _Alloc,
typename _CharT, typename _TraitsT>
class _BFSExecutor
: public _Executor<_BiIter, _Alloc, _CharT, _TraitsT>
{
public:
typedef _Executor<_BiIter, _Alloc, _CharT, _TraitsT> _BaseT;
typedef _NFA<_CharT, _TraitsT> _NFAT;
typedef typename _BaseT::_RegexT _RegexT;
typedef typename _BaseT::_ResultsVec _ResultsVec;
typedef typename _BaseT::_FlagT _FlagT;
// Here's a solution for greedy/ungreedy mode in BFS approach. We need to
// carefully work out how to compare to conflict matching states.
//
// A matching state is a pair(where, when); `where` is a NFA node; `when`
// is a _BiIter, indicating which char is the next to be matched. Two
// matching states conflict if they have equivalent `where` and `when`.
//
// Now we need to drop one and keep another, because at most one of them
// could be the final optimal solution. This behavior is affected by
// greedy policy.
//
// The definition of `greedy`:
// For the sequence of quantifiers in NFA sorted by their start positions,
// now maintain a vector in every matching state, with length equal to
// quantifier seq, recording repeating times of every quantifier. Now to
// compare two matching states, we just lexically compare these two
// vectors. To win the compare(to survive), one matching state needs to
// make its greedy quantifier count larger, and ungreedy quantifiers
// count smaller.
//
// In the implementation, we recorded negtive counts for greedy
// quantifiers and positive counts of ungreedy ones. Now the implicit
// operator<() for lexicographical_compare will emit the answer.
//
// When two vectors equal, it means the `where`, `when` and quantifier
// counts are identical, and indicates the same solution; so
// _ResultsEntry::operator<() just return false.
struct _ResultsEntry
: private _ResultsVec
{
public:
_ResultsEntry(size_t __res_sz, size_t __sz)
: _ResultsVec(__res_sz), _M_quant_keys(__sz)
{ }
void
resize(size_t __n)
{ _ResultsVec::resize(__n); }
size_t
size()
{ return _ResultsVec::size(); }
sub_match<_BiIter>&
operator[](size_t __idx)
{ return _ResultsVec::operator[](__idx); }
bool
operator<(const _ResultsEntry& __rhs) const
{
_GLIBCXX_DEBUG_ASSERT(_M_quant_keys.size()
== __rhs._M_quant_keys.size());
return lexicographical_compare(_M_quant_keys.begin(),
_M_quant_keys.end(),
__rhs._M_quant_keys.begin(),
__rhs._M_quant_keys.end());
}
void
_M_inc(size_t __idx, bool __neg)
{ _M_quant_keys[__idx] += __neg ? 1 : -1; }
_ResultsVec&
_M_get()
{ return *this; }
public:
std::vector<int> _M_quant_keys;
};
typedef std::unique_ptr<_ResultsEntry> _ResultsPtr;
class _TodoList
{
public:
explicit
_TodoList(size_t __sz)
: _M_states(), _M_exists(__sz, false)
{ }
void _M_push(_StateIdT __u)
{
_GLIBCXX_DEBUG_ASSERT(__u < _M_exists.size());
if (!_M_exists[__u])
{
_M_exists[__u] = true;
_M_states.push_back(__u);
}
}
_StateIdT _M_pop()
{
auto __ret = _M_states.back();
_M_states.pop_back();
_M_exists[__ret] = false;
return __ret;
}
bool _M_empty() const
{ return _M_states.empty(); }
void _M_clear()
{
_M_states.clear();
_M_exists.assign(_M_exists.size(), false);
}
private:
std::vector<_StateIdT> _M_states;
std::vector<bool> _M_exists;
};
public:
_BFSExecutor(_BiIter __begin,
_BiIter __end,
_ResultsVec& __results,
const _RegexT& __re,
_FlagT __flags)
: _BaseT(__begin, __end, __results, __re, __flags),
_M_nfa(*std::static_pointer_cast<_NFA<_CharT, _TraitsT>>
(__re._M_automaton)),
_M_match_stack(_M_nfa.size()),
_M_stack(_M_nfa.size()),
_M_start_state(_M_nfa._M_start())
{ }
private:
void
_M_init(_BiIter __cur)
{
this->_M_current = __cur;
_M_covered.clear();
_ResultsVec& __res(this->_M_results);
_M_covered[this->_M_start_state] =
_ResultsPtr(new _ResultsEntry(__res.size(),
_M_nfa._M_quant_count));
_M_stack._M_push(this->_M_start_state);
}
void
_M_set_start(_StateIdT __start)
{ _M_start_state = __start; }
bool
_M_main();
void
_M_e_closure();
void
_M_move();
bool
_M_includes_some();
std::unique_ptr<_BaseT>
_M_clone() const
{
return std::unique_ptr<_BaseT>(new _BFSExecutor(this->_M_current,
this->_M_end,
this->_M_results,
this->_M_re,
this->_M_flags));
}
const _NFAT& _M_nfa;
std::map<_StateIdT, _ResultsPtr> _M_covered;
_TodoList _M_match_stack;
_TodoList _M_stack;
_StateIdT _M_start_state;
// To record global optimal solution.
_ResultsPtr _M_cur_results;
};
//@} regex-detail
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace __detail
} // namespace std
#include <bits/regex_executor.tcc>